
ML-like Inference for Classifiers

Cristiano Calcagno1, Eugenio Moggi2?, and Walid Taha3??

1 Imperial College, London, UK (ccris@doc.ic.ac.uk)
2 DISI, Univ. of Genova, v Dodecaneso 35, Genova, Italy (moggi@disi.unige.it)

3 Rice University, TX, USA (taha@cs.rice.edu)

Abstract. Environment classifiers were recently proposed as a new approach to typing
multi-stage languages. Safety was established in the simply-typed and let-polymorphic set-
tings. While the motivation for the classifier approach was the feasibility of inference, this
was in fact not established. This paper starts with the observation that inference for the full
classifier-based system fails. We then identify a subset of the original system for which infer-
ence is possible. This subset, which uses implicit classifiers, retains significant expressivity
(e.g. it can embed the calculi of Davies and Pfenning) and eliminates the need for classifier
names in terms. Implicit classifiers were implemented in MetaOCaml, and no changes were
needed to make an existing test suite acceptable by the new type checker.

1 Introduction

Introducing explicit staging constructs into programming languages is the goal of research projects
including ‘C [11, 12], Popcorn [30], MetaML [36, 23], MetaOCaml [5, 22], and Template Haskell
[28]. Staging is an essential ingredient of macros [13], partial evaluation [6, 18], program generation
[19], and run-time code generation [15]. In the untyped setting, the behavior of staging constructs
resembles the quasi-quotation mechanisms of LISP and Scheme [3]. But in the statically-typed
setting, such quotation mechanisms may prohibit static type-checking of the quoted expression.
Some language designs, such as that of ‘C, consider this acceptable. In Template Haskell, this is
considered a feature; namely, a form of staged type inference [29]. But in the design of MetaML and
MetaOCaml, it is seen as a departure from the commitment of ML and OCaml to static prevention
of runtime errors.4

1.1 Multi-stage Basics

The use of staging constructs can be illustrated in a multi-stage language such as MetaOCaml [22]
with a classic example5:
let rec power n x = (* : int -> int code -> int code *)
if n=0 then .<1>. else .<.~x * .~(power (n-1) x)>.

let power72 : int -> int = .! .<fun x -> .~(power 72 .<x>.)>.

Ignoring the type constructor t code and the three staging annotations brackets .<e>., escapes
.~e, and run .!, the above code is a standard definition of a function that computes xn, which
is then used to define the specialized function x72. Without staging, however, the last step just
? Supported by MIUR project NAPOLI, EU project DART IST-2001-33477 and thematic network

APPSEM II IST-2001-38957
?? Supported by NSF ITR-0113569 and NSF CCR-0205542.
4 Dynamic typing can always be introduced as an orthogonal and non-pervasive feature [1, 2, 34].
5 Dots are used around brackets and escapes to disambiguate the syntax in the implementation. They are

dropped when we talk about the underlying calculus rather than the implementation.

produces a closure that invokes the power function every time it gets a value for x. To understand
the effect of the staging annotations, it is best to start from the end of the example. Whereas a term
fun x -> e x is a value, an annotated term .<fun x -> .~(e .<x>.)>. is not. Brackets indicate
that we are constructing a future stage computation, and an escape indicates that we must perform
an immediate computation while building the enclosing bracketed computation. The application
e .<x>. has to be performed first, even though x is still an uninstantiated symbol. In the power
example, power 72 .<x>. is performed immediately, once and for all, and not repeated every
time we have a new value for x. In the body of the definition of the power function, the recursive
application of power is escaped to make sure that it is performed immediately. The run construct
(.!) on the last line invokes the compiler on the generated code fragment, and incorporates the
result of compilation into the runtime system.

1.2 Background

Starting with the earliest statically typed languages supporting staging (including those of Go-
mard and Jones [14] and Nielson and Nielson [26]), most proposals to date fall under two distinct
approaches: one treating code as always open, the other treating code as always closed. The two
approaches are best exemplified by two type systems corresponding to well-known logics:

λ© Motivated by the next modality © of linear time temporal logic, this system provides a sound
framework for typing constructs that have the same operational semantics as bracket and
escape [8]. As illustrated above, brackets and escapes can be used to annotate λ-abstractions
so as to force evaluation under lambda. This type system supports code generation but does
not provide a construct for code execution.

λ� Motivated by the necessity modality � of S4 modal logic, this system provides constructs for
generating and executing closed code [9]. The exact correspondence between the constructs of
λ� and LISP-style quotation mechanism is less immediate than for λ©.

Combining the two approaches to realize a language that allows evaluation under lambda and a run
construct is challenging [31]. In particular, evaluation under lambda gives rise to code fragments
that contain free variables that are not yet “linked” to any fixed value. Running such open code
fragments can produce a runtime error. Several type systems [24, 4, 35, 25] have been proposed for
safely combining the key features of λ© (the ability to manipulate open code) and λ� (the ability
to execute closed code). But a practical solution to the problem requires meeting a number of
demanding criteria simultaneously:

– Safety: the extension should retain static safety;
– Conservativity: the extension should not affect programs that do not use multi-stage facilities;
– Inference: the extension should support type inference;
– Light annotations: the extension should minimize the amount of programmer annotations

required to make type inference possible.

All the above proposals were primarily concerned with the safety criterion, and were rarely able
to address the others. Because previous proposals seemed notationally heavy, implementations of
multi-stage languages (such MetaML and MetaOCaml) often chose to sacrifice safety. For example,
in MetaOCaml .! e raises an exception, when the evaluation of e produces open code.

The type system for environment classifiers λα of [35] appears to be the most promising starting
point towards fulfilling all criteria. The key feature of λα is providing a code type 〈τ〉α decorated
with a classifier α that constrains the unresolved variables that may occur free in code. Intuitively,
in the type system of λα, variables are declared at levels annotated by classifiers, and code of type
〈τ〉α may contain only unresolved variables declared at a level annotated with α. Classifiers are
also used explicitly in terms. Type safety for λα was established [35], but type inference was only
conjectured.

2

1.3 Contributions and Organization of this Paper

The starting point for this work is the observation that inference for full λα fails. To address this
problem, a subset of the original system is identified for which inference is not only possible but
is in fact easy. This subset uses implicit classifiers, i.e. , eliminates the need for classifier names in
terms, and retains significant expressivity (e.g. , it embeds the paradigmatic calculi λ© and λ�).
Implicit classifiers have been implemented in MetaOCaml, and no changes were needed to make
an existing test suite acceptable by the type checker. The paper proceeds as follows:

– Section 2 extends a core subset of ML with environment classifiers, and proves type safety
(in the sense that well typed terms cannot lead to runtime errors). The new calculus, called
λi

let, corresponds to a proper subset of λα but eliminates classifier names in terms. This is an
improvement on λα in making annotations lighter. Moreover, the proof of type safety for λα

adapts easily to λi
let.

– Section 3 gives two inference algorithms:
1. a principal typing algorithm for λi, the simply-typed subset of λi

let (i.e. , no type schema
and let-binding), which extends Hindley’s principal typing algorithm for the λ-calculus.

2. a principal type algorithm for λi
let, which extends Damas and Milner’s algorithm W .

These results indicate that classifiers are a natural extension to well-established type systems.
– Section 4 relates λi to λα and exhibits some terms typable in λα that fail to have a principal

type (thus, λα fails to meet the inference criterion). It also shows that λi retains significant
expressivity, namely there are typability-preserving embeddings of λ© and a variant of λ� into
λi (similar to the embeddings into λα given in [35]). However, if one restricts λi

let further, by
considering a runClosed construct similar to Haskell’s runST [20, 21], then the embedding of
λ� is lost (but term annotations disappear completely).

– Section 5 reports on our preliminary experience in extending the MetaOCaml implementation
with the type inference algorithm for λi

let.
– Section 6 concludes and discusses further work.

Details of selected proofs as well as auxiliary definitions are included in the appendix.

1.4 Notation

Throughout the paper we use the following notation and conventions:

– We write m to range over the set N of natural numbers. Furthermore, m ∈ N is identified with
the set of its predecessors {i ∈ N|i < m}.

– We write a to range over the set A∗ of finite sequences (ai|i ∈ m) with ai ∈ A, and |a| denotes
its length m. We write a1, a2 to denote the concatenation of a1 and a2.

– We write f : A
fin→ B to say that f is a partial function from A to B with a finite domain,

written dom(f). We write A → B to denote the set of total functions from A to B. We use the
following operations on (possibly) partial functions:
• {ai : bi|i ∈ m} is the partial function mapping ai to bi (where the ai are distinct, i.e. ,

ai = aj implies i = j); in particular, ∅ is the everywhere undefined partial function;
• f\a denotes the partial function g s.t. g(a′) = b iff f(a′) = b when a′ 6= a, and undefined

otherwise;
• f{a : b} denotes the (possibly) partial function g s.t. g(a) = b and g(a′) = f(a′) when

a′ 6= a;
• f, g denotes the union of two partial functions with disjoint domains.
• f = g mod X means that ∀x ∈ X.f(x) = g(x).

– We write X#X ′ to mean that X and X ′ are disjoint sets, and X]X ′ for their disjoint union.

3

Variables x ∈ X
Classifiers α ∈ A
Named Levels A ∈ A∗

Terms e ∈ E ::= x | λx.e | e e | 〈e〉 | ˜e | run e | %e | open e | close e | let x = e1 in e2

Type Variables β ∈ B
Types τ ∈ T ::= β | τ1 → τ2 | 〈τ〉α | 〈τ〉
Type Schema σ ∈ S ::= τ | ∀α.σ | ∀β.σ (equivalently ∀κ.τ with κ sequence of distinct α and β)

Assignments Γ ∈ X
fin→ (T× A∗) of types and named levels

Assignments ∆ ∈ X
fin→ (S× A∗) of type schema and named levels

Fig. 1. Syntax of λi
let

2 λi
let: a Calculus with Implicit Classifiers

This section defines λi
let, an extension of the functional subset of ML with environment classifiers.

In comparison to λα [35], classifier names do not appear in terms. In particular, the constructs of
λα for explicit abstraction (α)e and instantiation e[α] of classifiers are replaced by the constructs
close e and open e, but with more restrictive typing rules. As we show in this paper, this makes it
possible to support ML-style inference of types and classifiers in a straightforward manner.

Figure 1 gives the syntax of λi
let. Intuitively, classifiers allow us to name parts of the environment

in which a term is typed. Classifiers are described as implicit in λi
let because they do not appear

in terms. Named levels are sequences of environment classifiers. They are used to keep track of the
environments used as we build nested code. Named levels are thus an enrichment of the traditional
notion of levels in multi-stage languages [8, 36, 33], the latter being a natural number which keeps
track only of the depth of nesting of brackets. Terms include:

– the standard λ-terms, i.e. , variables drawn from an infinite set, λ-abstraction and application;
– the staging constructs of MetaML [36], i.e. , Brackets 〈e〉, escape ˜e, and run run e, and an

explicit construct %e for cross-stage persistence (CSP) [4, 35];
– the constructs close e and open e are the implicit versions of the λα constructs for classifiers

abstraction (α)e and instantiation e[α] respectively;
– the standard let-binding for supporting Hindley-Milner polymorphism.

Types include type variables, functional types, and code types 〈τ〉α annotated with a classifier
(exactly as in λα of [35], thus refining open code types). The last type 〈τ〉 is for executable code
(it is used for typing run e) and basically corresponds to the type (α)〈τ〉α of λα (as explained in
more detail in Section 4.1).

As in other Hindley-Milner type systems, type schema restrict quantification at the outermost
level of types. Since the types of λi

let may contain not only type variables but also classifiers, type
schema allow quantification of both.

Notation The remainder of the paper makes use of the following definitions:

– FV() denotes the set of variables free in . In λi
let, there are three kinds of variables: term

variables x, classifiers α, and type variables β. The definition of FV() for terms, types, and
type schema is standard, and it extends in the obvious way to A, Γ , and ∆, e.g. , FV(∆) =
∪{FV(σ) ∪ FV(A) | ∆(x) = σA}.

4

var
σ � τ

∆ `A x : τ
∆(x) = σA lam

∆{x : τA
1 } `A e : τ2

∆ `A λx.e : τ1 → τ2

app
∆ `A e1 : τ1 → τ2 ∆ `A e2 : τ1

∆ `A e1e2 : τ2

brck
∆ `A,α e : τ

∆ `A 〈e〉 : 〈τ〉α
esc

∆ `A e : 〈τ〉α

∆ `A,α ˜e : τ
run

∆ `A e : 〈τ〉
∆ `A run e : τ

csp
∆ `A e : τ

∆ `A,α %e : τ

open
∆ `A e : 〈τ〉

∆ `A open e : 〈τ〉α
close

∆ `A e : 〈τ〉α

∆ `A close e : 〈τ〉
α 6∈ FV(∆, A, τ)

let
∆ `A e1 : τ1 ∆{x : (∀κ.τ1)

A} `A e2 : τ2

∆ `A let x = e1 in e2 : τ2

FV(∆, A)#κ

Fig. 2. Type System for λi
let

– We write ≡ for equivalence up to α-conversion on terms, types, and type schema. [x : e]
denotes substitution of x with e in modulo ≡, i.e. , the bound variables in are automatically
renamed to avoid clashes with FV(e). Similarly we write [α : α′] and [β : τ] for classifiers and
type variables.

– We write ρ ∈ Sub for the set of substitutions, i.e. , functions (with domain A ∪ B) mapping
classifiers α to classifiers and type variables β to types τ , and having a finite support defined as
{α|ρ(α) 6= α}∪{β|ρ(β) 6= β}. Then [ρ] denotes parallel substitution, where each free occurrence
in of a classifier α and type variable β is replaced by its ρ-image. With some abuse of notation,
we write e[ρ] also when ρ is a partial function with finite domain, by extending it as the identity
outside dom(ρ).

– σ � τ means that type τ is an instance of σ, i.e. ,

• ∀κ.τ � τ ′
def⇐⇒ τ [ρ] = τ ′ for some ρ ∈ Sub with support κ (the order in κ is irrelevant)

and � extends to a relation on type schemas and type schema assignments:

• ∀κ.τ � ∀κ′.τ ′ def⇐⇒ ∀κ.τ � τ ′, where we assume κ′#FV(∀κ.τ) by α-conversion

• ∆1 � ∆2
def⇐⇒ dom(∆1) = dom(∆2) and

σ1 � σ2 and A1 = A2 whenever σA1
1 = ∆1(x) and σA2

2 = ∆2(x).

2.1 Type System

Figure 2 gives the type system for λi
let. The first three rules are mostly standard. As in ML, a

polymorphic variable x whose type schema is σ can be assigned any type which is an instance of σ.
As in type systems for multi-level languages, the named level A is propagated without alteration to
the sub-terms in these constructs. In the variable rule, the named level associated with the variable
being typed-checked is required to be the same as the current level. In the lambda abstraction rule,
the named level of the abstraction is recorded in the environment.

The rule for brackets is almost the same as in previous type systems. First, for every code type
a classifier must be assigned. Second, while typing the body of the code fragment inside brackets,
the named level of the typing judgment is extended by the name of the “current” classifier. This
information is used in both the variable and the escape rules to make sure that only variables and
code fragments with the same classification are ever incorporated into this code fragment. The
escape rule at named level A,α only allows the incorporation of code fragments of type 〈τ〉α. The
rule for CSP itself is standard: It allows us to incorporate a term e at a “higher” level. The rule
for run allows to execute a code fragment that has type 〈τ〉.

The close and open rules are introduction and elimination for the runnable code type 〈τ〉
respectively. One rule says that close e is runnable code when e can be classified with any α,

5

conversely the other rule says that code open e can be classified by any α provided e is runnable
code. The rule for let is standard and allows the introduction of variables of polymorphic type.

The following proposition summarizes the key properties of the type system relevant for type
safety as well as type inference.

Proposition 1 (TS properties). The following rules are admissible:

– ατ -subst
∆ `A e : τ

(∆ `A e : τ)[ρ]
ρ ∈ Sub ∆-sub

∆2 `A e : τ

∆1 `A e : τ
∆1 � ∆2

– strength
∆ `A e : τ

∆\x `A e : τ
x 6∈ FV(e) weaken

∆ `A e : τ

∆, x : σA1
1 `A e : τ

x 6∈ dom(∆)

– e-subst
∆ `A1 e1 : τ1 ∆, x : (∀κ.τ1)A1 `A2 e2 : τ2

∆ `A2 e2[x : e1] : τ2

κ#FV(∆, A1)

Proof. Interesting cases in the proofs of these properties are outlined in Appendix A.

2.2 Operational Semantics and Type Safety

Figure 3 gives the evaluation rules of the big-step operational semantics for deriving judgments
of the form e

n
↪→ v with v ∈ Vn. This function is essentially the same as the one for λα. For

establishing type safety (of a big-step operational semantics), one must spell out when evaluation
causes an error. This is done in Figure 10, by giving rules deriving judgments of the form e

n
↪→ err.

Auxiliary definitions, like Demotion, and technical lemmas are similar but also simpler than
those for λα, because of the absence of classifier names in terms.

Lemma 1 (Promotion and Demotion). The following rules are admissible:

promotion
∆ `A e : τ

∆ `α,A %|A|e : τ
demotion

∆1,∆
α
2 `α,A v : τ v ∈ V|A|+1

∆1,∆2 `A v↓|∆2|
|A| : τ

α 6∈ FV(∆1)

Proposition 2 (SOS properties). Let ∆+ be any ∆ such that ∆(x) 6= σ∅ for any x, then

1. ∆+ `A e : τ and e
|A|
↪→ v imply ∆+ `A v : τ .

2. ∆+ `A e : τ implies not e
|A|
↪→ err

As a corollary, we get that well-typed programs cannot cause a run-time error.

Theorem 1 (Type Safety). If ∅ `∅ e : τ , then e
0

↪→ err is not derivable.

3 Inference Algorithms

This section describes two inference algorithms. The first algorithm extends Hindley’s principal
typing algorithm [16] for the simply typed λ-calculus with type variables to λi (the simply-typed
subset of λi

let, i.e. , without type schema and let-binding). Existence of principal typings is very
desirable but hard to get (see [17, 37]). Thus it is reassuring that it is retained after the addition
of classifiers.

The second algorithm extends Damas and Milner’s algorithm W [7] to λi
let and proves that it

is sound and complete for deriving principal types. Damas and Milner’s algorithm is at the core
of type inference for languages such as ML, OCaml, and Haskell. That this extension is possible
(and easy) is of paramount importance to the practical use of the proposed type system.

6

Levels n ∈ N ::= 0 | n+

Assignments γ ∈ X
fin→ N of levels

Values v0 ∈ V0 ::= λx.e | 〈v1〉 | close v0

vn+ ∈ Vn+ ::= x | λx.vn+ | vn+
1 vn+

2 | 〈vn++〉 | %vn | run vn+ | close vn+ | open vn+ |
let x = vn+

1 in vn+
2

vn++ ∈ Vn+++ = ˜vn+ (in addition to productions of BNF for Vn+)

Normal evaluation rules:

x
n+
↪→ x λx.e

0
↪→ λx.e

e
n+
↪→ v

λx.e
n+
↪→ λx.v

e1
0

↪→ λx.e

e2
0

↪→ v

e[x : v]
0

↪→ v′

e1e2
0

↪→ v′

e1
n+
↪→ v1

e2
n+
↪→ v2

e1e2
n+
↪→ v1v2

e
0

↪→ close 〈v〉
v↓∅0

0
↪→ v′

run e
0

↪→ v′

e
n+
↪→ v

〈e〉 n
↪→ 〈v〉

e
0

↪→ 〈v〉

˜e
1

↪→ v

e
n+
↪→ v

˜e
n++
↪→ ˜v

e
n
↪→ v

%e
n+
↪→ %v

e
n+
↪→ v

run e
n+
↪→ run v

e
n
↪→ v

close e
n
↪→ close v

e
0

↪→ close v

open e
0

↪→ v

e
n+
↪→ v

open e
n+
↪→ open v

e1
0

↪→ v e2[x : v]
0

↪→ v′

let x = e1 in e2
0

↪→ v′

e1
n+
↪→ v1 e2

n+
↪→ v2

let x = e1 in e2
n+
↪→ let x = v1 in v2

Demotion and Auxiliary Definitions:

x↓γ
n≡ x if γ(x) = n (λx.e)↓γ

n≡ λx.(e↓γ{x:n}
n) (e1e2)↓γ

n≡ e1 ↓γ
n e2 ↓γ

n

〈e〉↓γ
n≡ 〈e↓γ

n+ 〉 (˜e)↓γ
n+≡ ˜(e↓γ

n) (run e)↓γ
n≡ run (e↓γ

n) (%e)↓γ
n+≡ %(e↓γ

n) (%e)↓γ
0≡ e[%γ]

(close e)↓γ
n≡ close (e↓γ

n) open e↓γ
n≡ open e↓γ

n (let x = e1 in e2)↓γ
n≡ let x = (e1 ↓γ

n) in (e2 ↓γ{x:n}
n)

%0e ≡ %e %n+e ≡ ˜(%n〈e〉) %γ(x) ≡ %nx if γ(x) = n

|∆|(x) = |A| if ∆(x) = σA ∆α(x) = σα,A if ∆(x) = σA

Fig. 3. Big-step Operational Semantics

Both algorithms make essential use of a function mgu(T) computing a most general unifier
ρ ∈ Sub for a finite set T of equations between types or between classifiers. Section B.1 in the
appendix recalls the basic properties of mgu in the setting of many-sorted algebra. For convenience,
we also introduce the following derived notation for sets of equations (used in some side-conditions
to the rules describing the algorithms):

– (A1, A2) denotes {(α1,j , α2,j) | j ∈ n} when n = |A1| = |A2| and αi,j is the j-th element of Ai,
and is undefined when |A1| 6= |A2|

– (Γ1, Γ2) denotes ∪{(τ1,x, τ2,x), (A1,x, A2,x)|x ∈ dom(Γ1) ∩ dom(Γ2)} where Γi(x) = τ
Ai,x

i,x .

3.1 Principal typing

We extend Hindley’s principal typing algorithm for the simply typed λ-calculus with type variables
to λi. Wells [37] gives a general definition of principal typing and related notions, but we need to
adapt his definition of Hindley’s principal typing to our setting, mainly to take into account levels.

Definition 1 (Typing). A triple (Γ, τ, A) is a typing of (e, n)
def⇐⇒ Γ `A e : τ is derivable and

n = |A|. A Hindley principal typing of (e, n) is a typing (Γ, τ, A) of (e, n) s.t.

7

– Γ ′ `A′
e : τ ′ with n = |A′| implies Γ [ρ] ⊆ Γ ′ and τ ′ = τ [ρ] and A′ = A[ρ] for some ρ ∈ Sub.

Remark 1. Usually one assigns typings to terms. We have chosen to assign typings to a pair (e, n),
because the operational semantics of a term is level-dependent. However, one can easily assign
typings to terms (and retain the existence of principal typings). First, we introduce an infinite set
of variables φ ∈ Φ ranging over annotated levels. Then, we modify the BNF for annotated levels to
become A ::= φ | A,α. Unification will also have to deal with equations for annotated levels, e.g. ,
φ1 = φ2, α. A posteriori, one can show that a principal typing will contain exactly one variable φ.

Figure 4 defines the algorithm by giving a set of rules (directed by the structure of e) for deriv-
ing judgments of the form K, (e, n) =⇒ K′, (Γ, τ, A). K ⊆fin A] B is an auxiliary parameter
(instrumental to the algorithm), which is threaded in recursive calls for recording the classifiers
and type variables used so far. The algorithm either computes a typing (and updates K) or fails.
The algorithm enjoys the following properties, which imply that every (e, n) with a typing has a
principal typing.

Theorem 2 (Soundness). If K, (e, n) =⇒ K′, (Γ ′, τ ′, A′), then Γ ′ `A′
e : τ ′ and n = |A′|,

moreover dom(Γ ′) = FV(e), K ⊆ K′ and FV(Γ ′, τ ′, A′) ⊆ K′ \ K.

Theorem 3 (Completeness). If Γ ′ `A′
e : τ ′, then K, (e, n) =⇒ K′, (Γ, τ, A) is derivable (for

any choice of K) and exists ρ′ ∈ Sub s.t. Γ [ρ′] ⊆ Γ ′, τ ′ = τ [ρ′] and A′ = A[ρ′].

Moreover, from general properties of the most general unifier and the similarity of our principal
typing algorithm with that for the λ-calculus, one can also show that:

Theorem 4 (Conservative Extension). If e ::= x | λx.e | e e is a λ-term, then (Γ, τ) is a
principal typing of e in λ ⇐⇒ (Γ, τ, ∅) is a principal typing of (e, 0) in λi, where we identify x : τ
with x : τ∅.

3.2 Principal Type Inference

In this section, we extend Damas and Milner’s [7] principal type algorithm to λi
let and prove

that it is sound and complete. Also in this case we have to adapt to our setting the definition of
Damas-Milner principal type in [37].

Definition 2 (Principal Type). A Damas-Milner principal type of (∆, A, e) is a type τ s.t.

1. ∆ `A e : τ .
2. ∆ `A e : τ ′ implies τ ′ = τ [ρ] for some ρ ∈ Sub with support FV(τ)− FV(∆, A)

We define a principal type algorithm W (∆, A, e,K), where K ⊆fin A]B is an auxiliary parameter
that is threaded in recursive calls for recording the classifiers and type variables used so far. The
algorithm either computes a type and a substitution for ∆ and A (and updates K) or fails. Figure 5
derives judgments of the form K, (∆, e, A) =⇒ K′, (ρ, τ). When the judgment is derivable, it
means that W (∆, A, e,K) = (ρ, τ,K′). The rules use the following notation:

– close(τ,∆,A)
def≡ ∀κ.τ , where κ = FV(τ)− FV(∆, A) (the order in κ is irrelevant)

– ρ′ρ denotes composition of substitutions, i.e. , e[ρ′ρ] = (e[ρ])[ρ′]

The algorithm enjoys the following soundness and completeness properties. Details of selected
proofs are included in Appendix B.

Theorem 5 (Soundness). If W (∆, A, e,K) = (ρ, τ,K′) and FV(∆, A) ⊆ K then ∆[ρ] `A[ρ] e : τ ,
moreover K ⊆ K′ and FV(τ,∆[ρ], A[ρ]) ⊆ K′.

8

β and A = (αi|i ∈ n) distinct and /∈ K
K, (x, n) =⇒ K] {β, A}, (x : βA, β, A)

K, (e, n) =⇒ K′, (Γ, τ, A) x 6∈ FV(e) and β /∈ K′

K, (λx.e, n) =⇒ K′] {β}, (Γ, β → τ, A)

K, (e, n) =⇒ K′, (Γ, τ2, A2) x ∈ FV(e) and Γ (x) = τA1
1 and ρ = mgu(A1, A2)

K, (λx.e, n) =⇒ K′, (Γ \ x, τ1 → τ2, A2)[ρ]

K, (e1, n) =⇒ K′, (Γ1, τ1, A1)
K′, (e2, n) =⇒ K′′, (Γ2, τ2, A2) ρ = mgu((τ1, τ2 → β), (Γ1, Γ2), (A1, A2))

K, (e1 e2, n) =⇒ K′′] {β}, (Γ1 ∪ Γ2, β, A1)[ρ]

K, (e, n+) =⇒ K′, (Γ, τ, (A, α))

K, (〈e〉, n) =⇒ K′, (Γ, 〈τ〉α, A)

K, (e, n) =⇒ K′, (Γ, τ, A) ρ = mgu(τ, 〈β〉α) and β, α /∈ K′

K, (˜e, n+) =⇒ K′] {β, α}, (Γ, β, (A, α))[ρ]

K, (e, n) =⇒ K′, (Γ, τ, A) α 6∈ K′

K, (%e, n+) =⇒ K′] {α}, (Γ, τ, (A, α))

K, (e, n) =⇒ K′, (Γ, τ, A) ρ = mgu(τ, 〈β〉) and β /∈ K′

K, (run e, n) =⇒ K′] {β}, (Γ, β, A)[ρ]

K, (e, n) =⇒ K′, (Γ, τ, A) ρ = mgu(τ, 〈β〉α) and β, α /∈ K′

K, (open e, n) =⇒ K′] {β, α}, (Γ, 〈β〉α, A)[ρ]

K, (e, n) =⇒ K′, (Γ, τ, A) ρ = mgu(τ, 〈β〉α) and β, α 6∈ K′ and α[ρ] 6∈ FV((Γ, β, A)[ρ])

K, (close e, n) =⇒ K′′] {β, α}, (Γ, 〈β〉, A)[ρ]

Fig. 4. Principal Typing Algorithm

Proof. The proof is by induction on the computation of W (∆, A, e,K).

Theorem 6 (Completeness). If ∆[ρ′] `A[ρ′] e : τ ′ and FV(∆, A) ⊆ K and K ⊆fin A ∪ B then
W (∆, A, e,K) = (ρ, τ,K′) is defined and exists ρ′′ ∈ Sub s.t. τ ′ = τ [ρ′′] and ∆[ρ′] ≡ ∆[ρ′′ρ] and
A[ρ′] = A[ρ′′ρ].

Proof. The proof is by induction on the structure of e.

Remark 2. In practice, one is interested in typing a complete program e, i.e. , in computing the
principal type for (∅, ∅, e). If the algorithm returns a pair (ρ, τ), then τ is the principal type of
(∅, ∅, e), and ρ can be ignored. Even when the program uses a library, one can ignore the substitution
ρ, since FV(∆) = ∅.

4 Relation to other calculi

This section studies the expressivity of the type system for λi, the simply-typed subset of λi
let (i.e.

, no let-binding and no quantification in type schema). The typing judgment for λi takes the form
Γ `A e : τ , since type schema collapse into types, and the typing rules are restricted accordingly.
In summary, we have the following results:

– λi is a proper subset of λα, but the additional expressivity of λα comes at a price: the type
system has no principal types.

– λi retains significant expressivity, namely, the embeddings given in [35] for two paradigmatic
calculi λ© and λS4 (a variant of λ�) factor through λi.

9

∆(x) ≡ (∀κ.τ)A1 ρ = mgu(A, A1) κ#K
K, (∆, x, A) =⇒ K] {κ}, (ρ, τ [ρ])

K] {β}, (∆{x : βA}, e, A) =⇒ K′, (ρ, τ) β /∈ K
K, (∆, λx.e, A) =⇒ K′, (ρ, β[ρ] → τ)

K, (∆, e1, A) =⇒ K′, (ρ1, τ1)
K′, (∆[ρ1], e2, A[ρ1]) =⇒ K′′, (ρ2, τ2) ρ = mgu(τ1[ρ2], τ2 → β) β /∈ K′′

K, (∆, e1e2, A) =⇒ K′′] {β}, (ρρ2ρ1, β[ρ])

K] {α}, (∆, e, (A, α)) =⇒ K′, (ρ, τ) α /∈ K
K, (∆, 〈e〉, A) =⇒ K′, (ρ, 〈τ〉α[ρ])

K, (∆, e, A) =⇒ K′, (ρ, τ) ρ′ = mgu(τ, 〈β〉α) β /∈ K′

K, (∆, ˜e, (A, α)) =⇒ K′] {β}, (ρ′ρ, β[ρ′])

K, (∆, e, A) =⇒ K′, (ρ, τ)

K, (∆, %e, (A, α)) =⇒ K′, (ρ, τ)

K, (∆, e, A) =⇒ K′, (ρ, τ) ρ′ = mgu(τ, 〈β〉) β /∈ K′

K, (∆, run e, A) =⇒ K′] {β}, (ρ′ρ, β[ρ′])

K, (∆, e, A) =⇒ K′, (ρ, τ) ρ′ = mgu(τ, 〈β〉) α, β /∈ K′

K, (∆, open e, A) =⇒ K′] {α, β}, (ρ′ρ, 〈β[ρ′]〉α)

K, (∆, e, A) =⇒ K′, (ρ, τ) ρ′ = mgu(τ, 〈β〉α) α, β /∈ K′ α[ρ′] 6∈ FV(∆[ρ′ρ], A[ρ′ρ], β[ρ′])

K, (∆, close e, A) =⇒ K′] {α, β}, (ρ′ρ, 〈β[ρ′]〉)

K, (∆, e1, A) =⇒ K′, (ρ1, τ1) K′, (∆[ρ1]{x : close(τ1, ∆[ρ1], A[ρ1])
A[ρ1]}, e2, A[ρ1]) =⇒ K′′, (ρ2, τ2)

K, (∆, let x = e1 in e2, A) =⇒ K′′, (ρ2ρ1, τ2)

Fig. 5. Principal Type Algorithm

λi can be simplified further, by replacing run e with a construct runClosed e similar to Haskell’s
runST, and then removing 〈τ〉, close e and open e, but doing so implies that the embedding of
λS4 no longer holds.

4.1 Relation to λα

The key feature of λα is the inclusion of a special quantifier (α)τ in the language of types, repre-
senting universal quantification over classifiers. Figure 6 recalls the BNF for terms and types, and
the most relevant typing rules [35]. In λi the main difference is that the quantifier (α)τ of λα is
replaced by the runnable code type 〈τ〉. In fact, 〈τ〉 corresponds to a restricted form of quantifi-
cation, namely (α)〈τ〉α with α /∈ FV(τ). It is difficult to define formally a typability-preserving
embedding of λi into λα, since we need to recover classifier names in terms. Therefore, we justify
the correspondence at the level of terms only informally:

– The terms close e and open e of λi correspond to (α)e and e[α] of λα. Since λi has no classifier
names in terms, these constructs record that a classifier abstraction and instantiation has
occurred without naming the classifier involved. (Similarly, the term 〈e〉 in λi corresponds to
〈e〉α in λα.)

– The term %e has exactly the same syntax and meaning in the two calculi.
– The term run e of λi corresponds to (run e)[α′] of λα, where α′ can be chosen arbitrarily

without changing the result type. In fact, the type of run in λα is ((α)〈τ〉α) → (α)τ , while in
λi it is 〈τ〉 → τ , which corresponds to ((α)〈τ〉α) → τ with α /∈ FV(τ).

We conclude the comparison between λi and λα by showing that type inference in λα is problematic.

10

Terms e ∈ E ::= x | λx.e | e e | 〈e〉α | ˜e | %e | run e | (α)e | e[α]
Types τ ∈ T ::= β | τ1 → τ2 | 〈τ〉α | (α)τ

brck
Γ `A,α e : τ

Γ `A 〈e〉α : 〈τ〉α
esc

Γ `A e : 〈τ〉α

Γ `A,α ˜e : τ
csp

Γ `A e : τ

Γ `A,α %e : τ
all-run

Γ `A e : (α)〈τ〉α

Γ `A run e : (α)τ

all-close
Γ `A e : τ

Γ `A (α)e : (α)τ
α 6∈ FV(Γ, A) all-open

Γ `A e : (α)τ

Γ `A e[α′] : τ [α : α′]

Fig. 6. Type System for λα (adapted from [35])

Lack of principal types in λα. Consider the closed term e ≡ (λx.run x). We can assign to e exactly
the types of the form ((α)〈τ〉α) → (α)τ with an arbitrary type τ , including ones with α ∈ FV(τ).
However, e does not have a principal type, i.e. , one from which one can recover all other types
(modulo α-conversion of bound classifiers) by applying a substitution ρ ∈ Sub for classifiers and
type variables. In fact, the obvious candidate for the principal type, i.e. , ((α)〈β〉α) → (α)β, allows
us to recover only the types of the form ((α)〈τ〉α) → (α)τ with α /∈ FV(τ), since substitution
should be capture avoiding.

Lack of principal types in previous polymorphic extensions of λα. A more expressive type system
for λα was previously proposed [35], where type variables β are replaced by variables βn ranging
over types parameterized w.r.t. n classifiers. Thus, the BNF for types becomes:

τ ∈ T ::= βn[A] | τ1 → τ2 | 〈τ〉α | (α)τ with |A| = n

In this way, there is a better candidate for the principal type of e, namely ((α)〈β1[α]〉α) → (α)β1[α].
In this extension, standard unification techniques are no longer applicable, and some form of

higher-order unification is needed. However, even in this system, there are typable terms that do
not have a principal type. For instance, the term e = (x(x1[α]), f(x2[α])) (for simplicity, we assume
that we have pairing and product types) has no principal typing, in fact

– x must be a function, say of type τ → τ ′

– xi must be of type (αi)τi, among them the most general is (αi)β1
i [αi]

– τ and τi[αi : α] must be the same, but there is no most general unifier for β1
1 [α] = β1

2 [α].

4.2 Embedding of λ©

The embedding of λ© [8] into λi is direct. We pick one arbitrary classifier α and define the
embedding as follows:

[[β]] ≡ β, [[©τ]] ≡ 〈[[τ]]〉α, [[τ1 → τ2]] ≡ [[τ1]] → [[τ2]] [[n]] ≡ αn, [[xi : τni
i]] ≡ xi : [[τi]][[ni]]

[[x]] ≡ x, [[λx.e]] ≡ λx.[[e]], [[e1 e2]] ≡ [[e1]] [[e2]] [[next e]] ≡ 〈[[e]]〉 [[prev e]] ≡ ˜[[e]]

The translation preserves the typing, i.e. ,

Theorem 7. If Γ `n e : τ is derivable in λ©, then [[Γ]] `[[n]] [[e]] : [[τ]] is derivable in λi.

It is easy to prove that the translation preserves the big-step operational semantics.

11

Terms e ∈ E ::= x | λx.e | e e | box e | unboxn e
Types τ ∈ T ::= β | τ1 → τ2 | �τ

Assignments Γ ∈ X
fin→ T of types

Stacks Ψ ∈ (X
fin→ T)∗ of type assignments

Ψ ; Γ ` x : τ
Γ (x) = τ

Ψ ; Γ, x : τ1 ` e : τ2

Ψ ; Γ ` λx.e : τ1 → τ2

Ψ ; Γ ` e1 : τ1 → τ2 Ψ ; Γ ` e2 : τ1

Ψ ; Γ ` e1e2 : τ2

Ψ ; Γ ; () ` e : τ

Ψ ; Γ ` box e : �τ

Ψ ; Γ ` e : �τ

Ψ ; Γ ; Γ1; . . . ; Γn ` unboxn e : τ

Fig. 7. Type system for λS4 [10, Section 4.3]

4.3 Embedding of λS4

Figure 7 recalls the type system of λS4 [10, Section 4.3]. This calculus is equivalent to λ� [9],
but makes explicit use of levels in typing judgments. The operational semantics of λS4 is given
indirectly [10, Section 4.3] via the translation into λ�. The embedding of this calculus into λi is
as follows: the embedding maps types to types:

[[�τ]] ≡ 〈[[τ]]〉 [[τ1 → τ2]] ≡ [[τ1]] → [[τ2]] [[β]] ≡ β

The embedding on terms is parameterized by a level m:

[[box e]]m ≡ close 〈[[e]]m+1〉 [[unbox0 e]]m ≡ run [[e]]m [[unboxn+1 e]]m+n+1 ≡ %n(˜(open [[e]]m))
[[x]]m ≡ x [[λx.e]]m ≡ λx.[[e]]m [[e1e2]]m ≡ [[e1]]m[[e2]]m

The translation of unboxm depends on the subscript m. unbox0 corresponds to running code. When
m > 0 the term unboxm corresponds to ˜−, but if m > 1 it also digs into the environment stack to
get code from previous stages, and thus the need for the sequence of %s. To define the translation
of typing judgments, we must fix a sequence of distinct classifiers α1, α2, . . ., and we write Ai for
the prefix of the first i classifiers, i.e. , Ai = α1, . . . , αi:

[[Γ0; . . . ;Γn ` e : τ]] ≡ [[Γ0]]A0 , . . . , [[Γn]]An `An [[e]]n : [[τ]]

where [[x1 : τ1, . . . , xn : τn]]A ≡ x1 : [[τ1]]A, . . . , xn : [[τn]]A. The translation preserves the typing, i.e.

Theorem 8. If Γ0; . . . ;Γn ` e : τ is derivable in λS4, then [[Γ0; . . . ;Γn ` e : τ]] is derivable in λi.

4.4 Relation to Haskell’s runST

The typing rules for close and run can be combined into one rule analogous to that for the Haskell’s
runST [20, 21], namely,

runClosed
∆ `A e : 〈τ〉α

∆ `A runClosed e : τ
α /∈ FV(∆, A, τ)

With this rule in place, there is no need to retain the type 〈τ〉 and the terms close e and open e,
thus resulting in a proper fragment of λi. There is a loss in expressivity, because the embedding of
λS4 does not factor through this fragment. In fact, the term λx.runClosed x is not typable, while
λx.run x is typable in λi

let (but λx.close x is still not typable).

12

5 Implementation

The main motivation for this work was to provide a type system supporting a seamless extension
of existing type inference algorithms. In order to assess the practical utility of the approach we
extended the implementation of MetaOCaml [22] with this new type system. As expected, the
extension was a straightforward exercise requiring only minor modifications.6 More importantly,
the presence of an implementation allowed us to perform an initial test of usability of the system
from the programmer’s point of view. In the example presented in the introduction, no change
is needed, because in the implementation, the .! construct is taken as the concrete syntax used
for the runClosed . For a test suite used in previous work [5], there was also no change required.
Although these are only initial tests, they provide indications that the new type system allows the
programmer to write safe code in essentially the same way as before, when the .! construct was
not statically guaranteed to be type safe.

6 Conclusions and future work

We have presented a sound, expressive, and practical type system for functional multi-stage lan-
guages. Soundness is demonstrated by establishing type safety. Expressivity is demonstrated by
two typability-preserving embeddings of two paradigmatic calculi (λ© and λ�), as well as by
implementing the type system and finding that the type system does not prevent us from ex-
pressing existing example MetaOCaml programs. Practicality is demonstrated by showing that
it is straightforward to extend the well-established inference algorithms for principal types and
principal typings to support classifiers. Furthermore, experience with the implementation and the
existing example programs suggests that programmers may not need to significantly change the
way they write multi-stage programs.

Our development used a call-by-value (CBV) language, but the techniques are equally applicable
for a lazy language. Thus, our results can be used also for a multi-stage extension of Haskell.

It is also possible to extend the type system λi to the imperative setting, by incorporating some
ideas from closed types [4]. The syntax and type system for such extension, called λi

ref , are given in
Figure 8 and 9 respectively. The proof of type safety for λi

ref requires major adaptations, while the
inference algorithms extend quite easily, but one has to use unification for a three-sorted algebra
with a non-trivial (but decidable) equational theory: ι(c1 → c2) = ι(c1) → ι(c2) , ι(〈c〉) = 〈ι(c)〉.

References

1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically typed language. ACM
Transactions on Programming Languages and Systems, 13(2):237–268, April 1991.

2. M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic typing in polymorphic languages. Journal
of Functional Programming, 5(1):111–130, January 1995.

3. Alan Bawden. Quasiquotation in LISP. In O. Danvy, editor, Proceedings of the Workshop on Partial
Evaluation and Semantics-Based Program Manipulation, pages 88–99, San Antonio, 1999. University
of Aarhus, Dept. of Computer Science. Invited talk.

4. Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types for a safe imperative MetaML.
Journal of Functional Programming, 2003. To appear.

5. Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing multi-stage languages
using asts, gensym, and reflection. In Krzysztof Czarnecki, Frank Pfenning, and Yannis Smaragdakis,
editors, Generative Programming and Component Engineering (GPCE), Lecture Notes in Computer
Science. Springer-Verlag, 2003.

6 In an implementation, there is no need for the two-sort distinction, since the inference algorithm never
tries to unify type variables and classifier variables.

13

Variables x ∈ X
Locations l ∈ L
Terms e ∈ E ::= x | λx.e | e e | 〈e〉 | ˜e | run e | %e | open e | close e | ref e | !e | e := e | l

Classifiers α ∈ A
Type Variables β ∈ B
Closed Variables δ ∈ D
Types τ ∈ T ::= β | τ → τ | 〈τ〉α | 〈τ〉 | ι(c)
Closed Types c ∈ C ::= δ | c1 → c2 | 〈c〉 | ref c

Named Levels A ∈ A∗

Assignments Γ ∈ X
fin→ (T× A∗) of types and named levels to variables

Signatures Σ ∈ L
fin→ C assign closed types to locations

Fig. 8. Syntax of λi
ref

var
Γ (x) = τA

Γ `A
Σ x : τ

lam
Γ{x : τA

1 } `A
Σ e : τ2

Γ `A
Σ λx.e : τ1 → τ2

app

Γ `A
Σ e1 : τ1 → τ2

Γ `A
Σ e2 : τ1

Γ `A
Σ e1e2 : τ2

eq
Γ `A

Σ e : τ1

Γ `A
Σ e : τ2

τ1 = τ2

brck
Γ `A,α

Σ e : τ

Γ `A
Σ 〈e〉 : 〈τ〉α

esc
Γ `A

Σ e : 〈τ〉α

Γ `A,α
Σ ˜e : τ

run
Γ `A

Σ e : 〈τ〉
Γ `A

Σ run e : τ
csp

Γ `A
Σ e : τ

Γ `A,α
Σ %e : τ

close
Γ `A

Σ e : 〈τ〉α

Γ `A
Σ close e : 〈τ〉

α 6∈ FV(Γ, A, τ) open
Γ `A

Σ e : 〈τ〉
Γ `A

Σ open e : 〈τ〉α

new
Γ `A

Σ e : ι(c)

Γ `A
Σ ref e : ι(ref c)

get
Γ `A

Σ e : ι(ref c)

Γ `A
Σ !e : ι(c)

set

Γ `A
Σ e1 : ι(ref c)

Γ `A
Σ e2 : ι(c)

Γ `A
Σ e1 := e2 : ι(ref c)

loc
Σ(l) = c

Γ `∅Σ l : ι(ref c)

Fig. 9. Type System for λi
ref

6. Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In ACM Symposium on
Principles of Programming Languages, pages 493–501, 1993.

7. Lúıs Damas and Robin Milner. Principal type schemes for functional languages. In 9th ACM Sympo-
sium on Principles of Programming Languages. ACM, August 1982.

8. Rowan Davies. A temporal-logic approach to binding-time analysis. In the Symposium on Logic in
Computer Science (LICS ’96), pages 184–195, New Brunswick, 1996. IEEE Computer Society Press.

9. Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In the Symposium on
Principles of Programming Languages (POPL ’96), pages 258–270, St. Petersburg Beach, 1996.

10. Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the ACM,
48(3):555–604, 2001.

11. Dawson R. Engler. VCODE : A retargetable, extensible, very fast dynamic code generation system. In
Proceedings of the Conference on Programming Language Design and Implemantation, pages 160–170,
New York, 1996. ACM Press.

12. Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language for high-level, effi-
cient, and machine-independent dynaic code generation. In In proceedings of the ACM Symposium on
Principles of Programming Languages (POPL), pages 131–144, St. Petersburg Beach, 1996.

13. Steven Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage computations: Type-safe, generative,
binding macros in MacroML. In the International Conference on Functional Programming (ICFP ’01),
Florence, Italy, September 2001. ACM.

14

14. Carsten K. Gomard and Neil D. Jones. A partial evaluator for untyped lambda calculus. Journal of
Functional Programming, 1(1):21–69, 1991.

15. Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eggers. An evaluation
of staged run-time optimizations in DyC. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 293–304, 1999.

16. J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, 1997.

17. Trevor Jim. What are principal typings and what are they good for? In Conf. Rec. POPL ’96: 23rd
ACM Symp. Princ. of Prog. Langs., 1996.

18. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

19. Sam Kamin, Miranda Callahan, and Lars Clausen. Lightweight and generative components II: Binary-
level components. In [32], pages 28–50, 2000.

20. John Launchbury and Simon L. Peyton Jones. State in haskell. LISP and Symbolic Computation,
8(4):293–342, 1995. pldi94.

21. John Launchbury and Amr Sabry. Monadic state: Axiomatization and type safety. In Proceedings of
the International Conference on Functional Programming, Amsterdam, 1997.

22. MetaOCaml: A compiled, type-safe multi-stage programming language. Available online from
http://www.cs.rice.edu/ taha/MetaOCaml/, 2001.

23. The MetaML Home Page, 2000. Provides source code and documentation online at
http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html.

24. Eugenio Moggi, Walid Taha, Zine El-Abidine Benaissa, and Tim Sheard. An idealized MetaML:
Simpler, and more expressive. In European Symposium on Programming (ESOP), volume 1576 of
Lecture Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.

25. A. Nanevski and F. Pfenning. Meta-programming with names and necessity. submitted, 2003.
26. Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code generation. Theoretical

Computer Science, 56(1):59–133, 1988.
27. Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR 97291-1000,USA. Avail-

able online from ftp://cse.ogi.edu/pub/tech-reports/README.html. Last viewed August 1999.
28. Tim Sheard and Simon Peyton-Jones. Template meta-programming for haskell. In Proc. of the

workshop on Haskell, pages 1–16. ACM, 2002.
29. Mark Shields, Tim Sheard, and Simon L. Peyton Jones. Dynamic typing through staged type inference.

In In proceedings of the ACM Symposium on Principles of Programming Languages (POPL), pages
289–302, 1998.

30. Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and Trevor Jim. Compiling for run-time
code generation. Journal of Functional Programming, 2003.

31. Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate
Institute of Science and Technology, 1999. Available from [27].

32. Walid Taha, editor. Semantics, Applications, and Implementation of Program Generation, volume
1924 of Lecture Notes in Computer Science, Montréal, 2000. Springer-Verlag.

33. Walid Taha. A sound reduction semantics for untyped CBN multi-stage computation. Or, the theory
of MetaML is non-trivial. In Proceedings of the Workshop on Partial Evaluation and Semantics-Based
Program Maniplation (PEPM), Boston, 2000. ACM Press.

34. Walid Taha, Henning Makholm, and John Hughes. Tag elimination and Jones-optimality. In Olivier
Danvy and Andrzej Filinksi, editors, Programs as Data Objects, volume 2053 of Lecture Notes in
Computer Science, pages 257–275, 2001.

35. Walid Taha and Michael Florentin Nielsen. Environment classifiers. In The Symposium on Principles
of Programming Languages (POPL ’03), New Orleans, 2003.

36. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In Proceedings
of the Symposium on Partial Evaluation and Semantic-Based Program Manipulation (PEPM), pages
203–217, Amsterdam, 1997. ACM Press.

37. Joe Wells. The essence of principal typings. In Proc. 29th Int’l Coll. Automata, Languages, and
Programming, volume 2380 of Lecture Notes in Computer Science, pages 913–925. Springer-Verlag,
2002.

15

Error-generating rules (used for proving type safety):

x
0

↪→ err
e1

0
↪→ v 6= λx.e

e1e2
0

↪→ err
˜e

0
↪→ err

e
0

↪→ v 6= 〈v′〉

˜e
1

↪→ err
%e

0
↪→ err

e
0

↪→ v 6= close 〈v′〉

run e
0

↪→ err

e
0

↪→ close 〈v〉 v↓∅0 undefined

run e
0

↪→ err

e
0

↪→ v 6= close v′

open e
0

↪→ err

Error-propagating rules:

e
n+
↪→ err

λx.e
n+
↪→ err

e1
n
↪→ err

e1e2
n
↪→ err

e1
0

↪→ λx.e e2
0

↪→ err

e1e2
0

↪→ err

e1
0

↪→ λx.e e2
0

↪→ v e[x : v]
0

↪→ err

e1e2
0

↪→ err

e1
n+
↪→ v1 e2

n+
↪→ err

e1e2
n+
↪→ err

e
n+
↪→ err

〈e〉 n
↪→ err

e
n
↪→ err

˜e
n+
↪→ err

e
n
↪→ err

%e
n+
↪→ err

e
n
↪→ err

run e
n
↪→ err

e
0

↪→ close 〈v〉 v↓∅0
0

↪→ err

run e
0

↪→ err

e
n
↪→ err

close e
n
↪→ err

e
n
↪→ err

open e
n
↪→ err

e1
n
↪→ err

let x = e1 in e2
n
↪→ err

e1
0

↪→ v e2[x : v]
0

↪→ err

let x = e1 in e2
0

↪→ err

e1
n+
↪→ v1 e2

n+
↪→ err

let x = e1 in e2
n+
↪→ err

Fig. 10. Big-step Operational Semantics Extended with Error Generation and Propagation

A Proofs for Type Safety and Embeddings

Proof (Proposition 1). All admissible rules are proved by induction on the (structure of the) deriva-
tion of the right-most typing premise. We consider only the most interesting cases:

ατ-subst case close: We know ∆ `A close e : 〈τ〉 and α 6∈ FV(∆, A, τ). We must prove (∆ `A

close e : 〈τ〉)[ρ]. Let α′ /∈ FV((∆, A, τ)[ρ]) and ρ′ = ρ{α : α′}, then by IH applied to the
premise of (close), we get (∆ `A e : 〈τ〉α)[ρ′], or, equivalently, ∆[ρ] `A[ρ] e : 〈τ [ρ]〉α

′
. Because

of the way we have chosen α′, we can apply (close) and derive what we want.
ατ-subst case let: Similar to the case (close). Here we have to rename κ with some κ′ s.t.

κ′#FV((∆, A)[ρ]), and use the fact that ∀κ.τ ≡ ∀κ′.(τ [κ : κ′]).
∆-sub: Straightforward, because ∆1 � ∆2 implies FV(∆1) ⊆ FV(∆2). Note also that the deriva-

tions of premise and conclusion are structurally equal, i.e. , the same typing rules are applied.
weaken case close: We must use ατ -subst to rename α (as done in ατ -subst case close) and

ensure that (after renaming) α#FV(σ1, A1). Since ατ -subst does not change the structure of
the derivation, we can still apply the IH.

weaken case let: We must use ατ -subst to rename κ (as done in ατ -subst case close) and ensure
that (after renaming) κ#FV(σ1, A1).

e-subst case lam: Since (lam) extends ∆, we must use weaken to extend ∆ also in the first
premise of (e-subst).

e-subst case let: Similar to the case (lam).

Figure 10 presents the rules that define the extension of the big-step semantics (Figure 3) with
error handling. This extension is part of the definition of type safety.

Proof. (Lemma 1) Promotion is proved by induction on |A|, and Demotion is proved by induction
on v ∈ V|A|+. The most interesting case is where Promotion is needed to prove Demotion:

demotion case %v ∈ V1. We know A = ∅ and ∆1,∆
α
2 `∅ v : τ .

We must prove ∆1,∆2 `∅ v[%|∆2|] : τ . Let (∀κi.τi)Ai = ∆2(xi), then by promotion we get
xi : (∀κi.τi)Ai `α,Ai %|Ai|xi τi, and we can assume that κi#FV(∆1,∆2, α). Thus, we repeat-
edly apply e-subst to replace xi with %|Ai|xi in ∆1,∆

α
2 `∅ v : τ and derive what we want.

16

Proof (Theorem 8). By induction over the height of the S4 derivation. An interesting case is
the translation of the box term, where the distinctness assumption about the α’s is essential for
establishing the validity of the side condition for typing the close in the translated term. In the case
of unboxn+1, weakening is used, which means that more terms are typable in the target language
than in the source language.

B Auxiliary Definitions and Proofs for the Principal Type algorithm

B.1 Most general unifier for many-sorted algebras

Given a many-sorted signature (S, O), i.e. ,

– S is the set of sorts, and
– Os,s is the set of operations of arity s → s, with s ∈ S∗

and an S-indexed family X : S → Set of infinite sets (Xs is the set of variables of sort s), we
write:

– Ts(X) for the set of terms of sort s with free variables in X,
– Sub(X) for the set of sort-preserving substitutions ρ :

∏
s∈S Xs → Ts(X)

– FV(t) ⊆fin

∑
s∈S Xs for the set of free variables in t ∈ Ts(X)

– t[ρ] ∈ Ts(X) for the term obtained by applying the substitution ρ to the term t ∈ Ts(X).

Given a set T ⊆fin

∑
s∈S Ts(X) × Ts(X) of equations, we say that ρ ∈ Sub(X) is a T -unifier

def⇐⇒ t[ρ] = t′[ρ] for every (t, t′) ∈ T . There exists a function mgu : Pfin(
∑

s∈S Ts(X)× Ts(X)) →
Sub(X) + fail computing a most general unifier for T , i.e. , mgu has the following properties:

1. If mgu(T) = ρ, then ρ is a T -unifier. Moreover,
(a) ρ(x) = x for x 6∈ FV(T)
(b) FV(T [ρ]) ⊆ FV(T)
(c) the operations occurring in ρ occur in T already

2. If ρ′ is a T -unifier, then ρ = mgu(T) is defined and there exists ρ′′ ∈ Sub(X) s.t. ρ′s(x) =
ρs(x)[ρ′′] for any s ∈ S and x ∈ Xs.

Remark 3. The type inference algorithms for λi and λi
let use mgu for a signature with two sorts,

A for classifiers and T for types, and the following operations:

fun : T,T → T code : T,A → T ccode : T → T

We write α for classifier variables, β for type variables, and τ for terms of sort T of types. The only
terms of sort A are variables α. Moreover, we write τ1 → τ2 for fun(τ1, τ2), 〈τ〉α for code(τ, α) and
〈τ〉 for ccode(τ).

B.2 Proofs for the Principal Type algorithm

Proof (Theorem 5). The proof is by induction on the computation of W (∆, A, e,K). We consider
case let.

let We have W (∆, A, let x = e1 in e2,K) = (ρ2ρ1, τ2,K′′) and (ρ1, τ1,K′) = W (∆, A, e1,K) and
(ρ2, τ2,K′′) = W (∆[ρ1]{x : close(τ1,∆[ρ1], A[ρ1])A[ρ1]}, A[ρ1], e2,K′).
Induction hypothesis on e1 and e2 gives:
– K ⊆ K′ ⊆ K′′

17

– ∆[ρ1] `A[ρ1] e1 : τ1

– FV(τ1,∆[ρ1], A[ρ1]) ⊆ K′

– ∆′[ρ2] `A[ρ2ρ1] e2 : τ2 with ∆′ ≡ ∆[ρ1]{x : close(τ1,∆[ρ1], A[ρ1])A[ρ1]}
– FV(τ2,∆

′[ρ2], A[ρ2ρ1]) ⊆ K′′

We show the following:
– ∆[ρ2ρ1] `A let x = e1 in e2 : τ2

Let ρ′ be a renaming of FV(τ1) − FV(∆[ρ1], A[ρ1]) with fresh variables so that ∆[ρ′ρ1] ≡
∆[ρ1] and A[ρ′ρ1] = A[ρ1] and close(τ1,∆[ρ1], A[ρ1])[ρ2] ≡ close(τ1[ρ2ρ

′],∆[ρ2ρ1], A[ρ2ρ1]).
Then we have ∆[ρ2ρ1]{x : (close(τ1[ρ2ρ

′],∆[ρ2ρ1], A[ρ2ρ1]))A[ρ2ρ1]} `A[ρ2ρ1] e2 : τ2. Propo-
sition 1 gives ∆[ρ2ρ

′ρ1] `A[ρ2ρ′ρ1] e1 : τ1[ρ2ρ
′], hence ∆[ρ2ρ1] `A[ρ2ρ1] e1 : τ1[ρ2ρ

′]. Finally,
∆[ρ2ρ1] `A[ρ2ρ1] let x = e1 in e2 : τ2 by (let).

– K ⊆ K′′

– FV(τ2,∆[ρ2ρ1], A[ρ2ρ1]) ⊆ FV(τ2,∆
′[ρ2], A[ρ2ρ1]) ⊆ K′′

The following lemma is used for the proof of completeness (Theorem 6) case let.

Lemma 2. close(τ,∆,A)[ρ] � ∀κ.(τ [ρ]) provided FV(∆[ρ], A[ρ])#κ.

Proof. Let κ1 = FV(∆, A), then FV(κ1[ρ])#κ. Let κ2 = FV(τ)−{κ1}, and let κ′2 be fresh variables
for renaming the variables κ2. Then close(τ,∆,A)[ρ] ≡ (∀κ2.τ)[ρ] ≡ (∀κ′2.τ ′)[ρ] ≡ ∀κ′2.(τ ′[ρ]) with
τ ′ = τ [κ2 : κ′2]. We have FV(∀κ′2.(τ ′[ρ])) ⊆ FV(κ1[ρ])#κ.

Since τ ′[ρ][κ′2 : κ2] = τ [ρ] and [κ′2 : κ2] has support κ′2, by definition of � we can conclude
∀κ′2.(τ ′[ρ]) � ∀κ.(τ [ρ]).

Proof (Theorem 6). The proof is by induction on the structure of e. We consider two cases let and
(α)e.

let
∆[ρ′] `A[ρ′] e1 : τ ′1 ∆[ρ′]{x : (∀κ.τ ′1)

A[ρ′]} `A[ρ′] e2 : τ ′2

∆[ρ′] `A[ρ′] let x = e1 in e2 : τ ′2
FV(∆[ρ′], A[ρ′])#κ

By IH (ρ1, τ1,K′) = W (∆, A, e1,K) and exists ρ′′ ∈ Sub s.t. τ ′1 = τ1[ρ′′] and ∆[ρ′] ≡ ∆[ρ′′ρ1]
and A[ρ′] = A[ρ′′ρ1].
– ∆[ρ′′ρ1]{x : (∀κ.τ1[ρ′′])A[ρ′′ρ1]} `A[ρ′′ρ1] e2 : τ ′2
– (close(τ1,∆[ρ1], A[ρ1]))[ρ′′] � ∀κ.τ1[ρ′′] by Lemma 2 since FV(∆[ρ′′ρ1], A[ρ′′ρ1])#κ
– ∆[ρ′′ρ1]{x : (close(τ1,∆[ρ1], A[ρ1]))[ρ′′]A[ρ′′ρ1]} `A[ρ′′ρ1] e2 : τ ′2 by Proposition 1

By IH (ρ2, τ2,K′′) = W (∆′, A, e2,K′) and exists ρ′′′ ∈ Sub s.t. τ ′2 = τ2[ρ′′′] and ∆′[ρ′′] ≡
∆′[ρ′′′ρ2] and A[ρ′′ρ1] = A[ρ′′′ρ2ρ1] with ∆′ ≡ ∆[ρ1]{x : close(τ1,∆[ρ1], A[ρ1])A[ρ1]}.
To conclude we show:
– W (∆, A, let x = e1 in e2,K) = (ρ2ρ1, τ2,K′′)
– τ ′2 = τ2[ρ′′′]
– ∆[ρ′] ≡ ∆[ρ′′ρ1] ≡ ∆[ρ′′′ρ2ρ1] and A[ρ′] = A[ρ′′ρ1] = A[ρ′′′ρ2ρ1]

close e
∆[ρ′] `A[ρ′] e : 〈τ ′1〉

α

∆[ρ′] `A[ρ′] close e : 〈τ ′1〉
α 6∈ FV(∆[ρ′], A[ρ′], τ ′1)

By IH W (∆, A, e,K) = (ρ, τ,K′) and exists ρ′′ ∈ Sub s.t. 〈τ ′1〉
α = τ [ρ′′], and ∆[ρ′] ≡ ∆[ρ′′ρ]

and A[ρ′] = A[ρ′′ρ].
– FV(τ,∆[ρ], A[ρ]) ⊆ K′ by Theorem 5

Take α′, β /∈ K′, so that α′, β#FV(τ,∆[ρ], A[ρ]), and let ρ′′′ = ρ′′{β : τ ′1, α
′ : α}, then

– τ [ρ′′′] = 〈β〉α
′
[ρ′′′] = 〈τ ′1〉

α

– ρ1 = mgu(τ, 〈β〉α
′
) is defined, and ρ′′′ = ρ2ρ1 for some ρ2.

– α′[ρ1] /∈ FV(∆[ρ1ρ], A[ρ1ρ], β[ρ1]) since α = α′[ρ2ρ1] /∈ FV(∆[ρ2ρ1ρ], A[ρ2ρ1ρ], β[ρ2ρ1]) =
FV(∆[ρ′′′ρ], A[ρ′′′ρ], β[ρ′′′]) = FV(∆[ρ′], A[ρ′], τ ′1)

To conclude, we show:
– W (∆, A, close e,K) = (ρ1ρ, 〈β[ρ1]〉,K′ ∪ {β, α′}) is defined
– 〈τ ′1〉 = 〈β[ρ1]〉[ρ2] since β[ρ2ρ1] = β[ρ′′′] = τ ′1
– ∆[ρ′] ≡ ∆[ρ2ρ1ρ] and A[ρ′] = A[ρ2ρ1ρ]

18

