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The aim of these notes is to describe the monadic and incremental approaches to the de-
notational semantics of programming languages. This is done via the use of suitable typed
metalanguages, which capture the relevant structure of semantic categories. The monadic
and incremental approaches are formulated in the setting of a type-theoretic framework for
the following reasons:

• a type theory with dependent types allows a precise, concise and general description
of the two approaches, based on signatures as abstract representations for languages;

• there are various implementations (e.g. LEGO and CoQ) which provide computer
assistance for several type-theories, and without computer assistance it seems unlikely
that any of the two approaches can go beyond toy languages.

On the other hand, the monadic and incremental approaches can be described already with
a naive set-theoretic semantics. Therefore, knowledge of Domain Theory and Category
Theory becomes essential only in Section 5.

The presentation adopted differs from advanced textbooks on denotational semantics in
the following aspects:

• it makes significant use of type theory as a tool for describing languages and calculi,
while this is usually done via a set of formation or inference rules;

• it incorporates ideas from Axiomatic and Synthetic Domain Theory into metalan-
guages, while most metalanguages for denotational semantics are variants of LCF;

• it stresses the use of metalanguages to give semantics via translation (using the mon-
adic and incremental approaches), but avoids a detailed analysis of the categories
used in denotational semantics.

The remaining sections are organized as follows:

• Section 1 introduces few toy languages used in examples.

• Section 2 gives a brief overview of different approaches to programming language
semantics, in order to place the use of metalanguages into context.

• Section 3 introduces a logical framework suitable for our applications, and explains
how it may be used.
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• Section 4 explains possible uses of typed metalanguages for giving semantics to pro-
gramming languages. Then, it introduces computational types and describes the
monadic and incremental approaches.

• Section 5 addresses the issue of recursive definitions in the context of metalanguages.
This is done by incorporating ideas from axiomatic and synthetic domain theory.
Finally, it revises the notion of computational types (and its applications) in this
richer setting.
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some unpublished work by A. Simpson, and the MSc thesis of N. Signa. I would like to
thank several people for discussions on Axiomatic and Synthetic Domain Theory: B. Reus,
M. Fiore, P. Freyd, M. Hyland, A. Pitts, P. Rosolini, A. Simpson and T. Streicher. This
notes were completed during my stay at the Newton Institute, and I would like to thanks
the institute and the organizers of the program on “Semantics of Computation” for inviting
me and providing such a pleasant working environment. I have used Paul Taylor’s package
for diagrams.
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In this section we introduce few toy programming languages. They will be used as running
examples to illustrate the use of metalanguages in describing the denotational semantics of
programming languages.

These toy languages include a simple functional language and simple extensions of it
obtained by adding the following features: divergence, mutable store, exception handling,
nondeterminism, parallelism.

We present the functional language first, by giving its syntax, its typing rules, and
two operational semantics (one call-by-value and one call-by-name). Then we introduce
its extensions, by saying how their presentations differ from that of the simple functional
language.

Here programming languages are given via an operational semantics, since this requires
very little mathematical sophistication and it is enough to to give meaning to observations.
However, in Section 2 we will describe alternative approaches, the trade-offs involved, and
criteria to compare different semantics for the same language.

exceptions

functional - divergence
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- non-determinism - pararallelism
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1.1 A simple functional language

A simple way of describing the syntax of a programming language is first to define pseudo-
expressions by a BNF, and then define well-formed expressions by a set of typing rules.
Often, the operational semantics can be defined for pseudo-expressions, while the denota-
tional semantics is given by induction on the derivation that an expression is well-formed.

1.1.1 Syntax

The syntax for types and expressions of the language is given by the following BNF:

types τ ∈ T ::= unit | bool | nat | τ1⇒τ2

identifiers x ∈ Id ::= an infinite set
expressions e ∈ Exp ::= x |

∗ |
tt | ff | if(e, e1, e2) |
0 | s(e) | It(e0, (λx : τ.es), e) |
(λx : τ1.e2) | ap(e, e1)

1.1.2 Typing rules

We give a set of rules to derive judgements of the form Γ ` e : Exp[τ ], i.e. “expression e has
type τ in typing context Γ”. A typing context Γ is a sequence x1 : Id[τ1], . . . , xn : Id[τn]
s.t. the xi are distinct.
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Notation 1.1 We write:

• DV(Γ) for the set of the xi, i.e. “the set of declared variables in Γ”;

• Γ(xi) for Id[τi], i.e. “the type of xi in Γ”;

• Γ; x : Id[τ ] for “the extension of Γ with x : Id[τ ]”, i.e.
Γ1, x : Id[τ ], Γ2 when Γ ≡ Γ1, x : Id[τ ′], Γ2 and Γ, x : Id[τ ] otherwise.

var
Γ ` x : Exp[τ ]

Γ(x) = Id[τ ] ∗
Γ ` ∗ : Exp[unit]

tt
Γ ` tt : Exp[bool]

ff
Γ ` ff : Exp[bool]

0
Γ ` 0 : Exp[nat]

s
Γ ` e : Exp[nat]

Γ ` s(e) : Exp[nat]

if

Γ ` e : Exp[bool]
Γ ` e1, e2 : Exp[τ ]

Γ ` if(e, e1, e2) : Exp[τ ]
It

Γ ` e : Exp[nat]
Γ ` e0 : Exp[τ ]
Γ; x : Id[τ ] ` es : Exp[τ ]

Γ ` It(e0, (λx : τ.es), e) : Exp[τ ]

ap

Γ ` e : Exp[τ1⇒τ2]
Γ ` e1 : Exp[τ1]

Γ ` ap(e, e1) : Exp[τ2]
ab

Γ; x : Id[τ1] ` e2 : Exp[τ2]

Γ ` λx : τ1.e2 : Exp[τ1⇒τ2]

Remark 1.2 There are some basic properties of the typing rules one would like: it should
be decidable whether a judgement Γ ` e : Exp[τ ] is derivable, and its derivation should be
unique, so that the interpretation of a judgement can be given unambiguously by induction
on its derivation.

1.1.3 CBV operational semantics

The call-by-value (CBV) operational semantics is given by an evaluation relation ⇓⊂ Exp×V al,
where V al ⊂ Exp is the set of values:

v ∈ V al ::= x | ∗ | tt | ff | 0 | s(v) | (λx : τ1.e2)

The evaluation relation is defined by giving a set of rules for deriving judgements of the
form e ⇓ v, i.e. “expression e evaluates to value v”.

val
v ⇓ v

s
e ⇓ v

s(e) ⇓ s(v)

if

e ⇓ tt

e1 ⇓ v

if(e, e1, e2) ⇓ v
if

e ⇓ ff

e2 ⇓ v

if(e, e1, e2) ⇓ v

It

e ⇓ 0
e0 ⇓ v

It(e0, (λx : τ.es), e) ⇓ v
It

e ⇓ s(vn)
It(e0, (λx : τ.es), vn) ⇓ vs

es[x := vs] ⇓ v

It(e0, (λx : τ.es), e) ⇓ v

ap

e ⇓ (λx : τ1.e2)
e1 ⇓ v1

e2[x := v1] ⇓ v

ap(e, e1) ⇓ v

where e′[x := v] is the substitution of identifier x with value v in expression e′ (with a
suitable renaming of the bound variables in e′ to avoid clashes with the free variables in v).
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Remark 1.3 Although the operational semantics is given independently from the typing
rules, one expects some properties relating the two, e.g. subject reduction: ∅ ` e : Exp[τ ]
and e ⇓ v implies ∅ ` v : Exp[τ ]. This operational semantics is deterministic, i.e. there is
at most one v s.t. e ⇓ v, but this is not a property one may expect in general.

1.1.4 CBN operational semantics

The call-by-name (CBN) operational semantics is similar to CBV. The only differences
are the definition of value (identifiers range over expressions) and the rule for evaluating
ap(e, e1) (e1 is not evaluated before substitution).

v ∈ V al ::= ∗ | tt | ff | 0 | s(v) | (λx : τ1.e2)

The Set of rules defining the CBN evaluation relation are those for CBV except

ap

e ⇓ (λx : τ1.e2)
e2[x := e1] ⇓ v

ap(e, e1) ⇓ v

where e′[x := e] is the substitution of identifier x with expression e in e′.

1.2 Extensions to the functional language

For each extension we give the corresponding additions to the syntax and typing rules
of the functional language, and the modifications to the CBV operational semantics (the
modifications to CBN operational semantics are left as an exercise).

1.2.1 Extension with divergence

• Syntax

types τ ∈ T ::= . . .

identifiers x ∈ Id ::= . . .

expressions e ∈ Exp ::= . . . | ⊥

• Typing rules

⊥
Γ ` ⊥ : Exp[τ ]

• CBV operational semantics

⇓⊂ Exp×V al, there are no changes to V al and the evaluation rules.

1.2.2 Extension with mutable store

• Syntax

types τ ∈ T ::= . . .

identifiers x ∈ Id ::= . . .

locations l ∈ Loc ::= a set
expressions e ∈ Exp ::= . . . | l | l := e

• Typing rules

get
Γ ` l : Exp[nat]

l ∈ Loc set
Γ ` e : Exp[nat]

Γ ` (l := e) : Exp[unit]
l ∈ Loc

• CBV operational semantics
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⇓⊂ (Exp×St)×(V al×St), there are no changes to V al, and St is the set of stores

s ∈ St
∆
= Loc⇒V al

the evaluation rules for the functional language are changed, e.g.

val
v, s ⇓ v, s

ap

e, s0 ⇓ (λx.e2), s1

e1, s1 ⇓ v1, s2

e2[x := v1], s2 ⇓ v, s3

ap(e, e1), s0 ⇓ v, s3

the following evaluation rules are added

get
l, s ⇓ v, s

v = s(l) set
e, s0 ⇓ v, s1

l := e, s0 ⇓ ∗, s1[l 7→ v]
where s[l 7→ v] is the function which maps l to v and is like s elsewhere.

1.2.3 Extension with exception handling

• Syntax

types τ ∈ T ::= . . .

identifiers x ∈ Id ::= . . .

exception names n ∈ Exn ::= a set
expressions e ∈ Exp ::= . . . | raise(n) | handle(n, e1, e2)

• Typing rules

raise
Γ ` raise(n) : Exp[τ ]

n ∈ Exn

handle
Γ ` e1, e2 : Exp[τ ]

Γ ` handle(n, e1, e2) : Exp[τ ]
n ∈ Exn

• CBV operational semantics

⇓⊂ Exp×(V al + Exn) there are no changes to V al

the evaluation rules for the functional language are changed, e.g.

val
v ⇓ v

ap

e ⇓ (λx.e2)
e1 ⇓ v1

e2[x := v1] ⇓ r

ap(e, e1) ⇓ r
ap

e ⇓ (λx.e2)
e1 ⇓ n

ap(e, e1) ⇓ n
ap

e ⇓ n

ap(e, e1) ⇓ n

the following evaluation rules are added

raise
raise(n) ⇓ n

handle

e2 ⇓ n

e1 ⇓ r

handle(n, e1, e2) ⇓ r
handle

e2 ⇓ r

handle(n, e1, e2) ⇓ r
r 6≡ n

1.2.4 Extension with nondeterministic choice

• Syntax

types τ ∈ T ::= . . .

identifiers x ∈ Id ::= . . .

expressions e ∈ Exp ::= . . . | or(e1, e2)
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• Typing rules

or
Γ ` e1, e2 : Exp[τ ]

Γ ` or(e1, e2) : Exp[τ ]

• CBV operational semantics

⇓⊂ Exp×V al, there are no changes to V al and the evaluation rules

the following evaluation rule is added

or
ei ⇓ v

or(e1, e2) ⇓ v

1.2.5 Extension with parallelism

• Syntax

types τ ∈ T ::= . . .

identifiers x ∈ Id ::= . . .

expressions e ∈ Exp ::= . . . | por(e1, e2) | pap(e1, e2)

• Typing rules

por
Γ ` e1, e2 : Exp[τ ]

Γ ` por(e1, e2) : Exp[τ ]
pap

Γ ` e : Exp[τ1⇒τ2]
Γ ` e1 : Exp[τ1]

Γ ` pap(e, e1) : Exp[τ2]

• small step CBV operational semantics

⇒ ⊂ Exp×Exp, there are no changes to V al

the evaluation rules for the functional language are changed, e.g.

if
e⇒e′

if(e, e1, e2)⇒if(e′, e1, e2)

if
if(tt, e1, e2)⇒e1

if
if(ff, e1, e2)⇒e2

s
e⇒e′

s(e)⇒s(e′)
. . .

ap
e⇒e′

ap(e, e1)⇒ap(e′, e1)
ap

e1⇒e′1

ap(v, e1)⇒ap(v, e′1)

ap
ap((λx.e2), v1)⇒e2[x := v1]

the following evaluation rules are added

pap
e⇒e′

pap(e, e1)⇒pap(e′, e1)
pap

e1⇒e′1

pap(e, e1)⇒pap(e, e′1)

pap
pap((λx.e2), v1)⇒e2[x := v1]

por
e1⇒e′1

por(e1, e2)⇒por(e′1, e2)
por

e2⇒e′2

por(e1, e2)⇒por(e1, e
′
2)

por
por(v, e2)⇒v

por
por(e1, v)⇒v
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So far we have considered only operational semantics. In this section we review the denota-
tional and algebraic (axiomatic) approaches, and explain how one can compare different
semantics. The denotational approach assigns meaning to well-formed expressions (by in-
duction on the derivation that they are well-formed), while the algebraic approach gives a
set of rules for deriving when two well-formed expressions are equivalent. The denotational
approach is particularly useful to validate reasoning principles, including equational rules,
which can be used to prove properties of programs formally (without direct reference to
the denotational model).

2.1 Observational equivalence

Operational semantics (even for the same programming language) can be substantially
different, however one can compared the induced observational equivalences, which are
equivalence relations (indeed congruences) on well-formed expressions. In fact, to associate
an observational equivalence/preorder to an operational semantics one has to fix a notion of
observation on programs, e.g. “program p has value tt”, a notion of program context C[ ],
and an (operational) interpretation of observations. We exemplify these notions for some
of the operational semantics introduced so far:

• p is a program (p ∈ Prg for short)
∆

⇐⇒ p is a well-formed expression of type bool

without free variables, i.e. ` p : Exp[bool] is derivable.

• C[ ] is a program context for expressions of type τ in typing context Γ
∆

⇐⇒ C[ ] is
an expression with one hole s.t. C[e] ∈ Prg, whenever Γ ` e : Exp[τ ] is derivable.

• given an operational semantics of the form ⇓⊆ Exp×V al we say that

“p has value tt”
∆

⇐⇒ (p ∈ Prg and) p ⇓ tt

• given two well-formed expressions Γ ` ei : Exp[τ ] we say that

Γ ` e1 ≤op e2 : Exp[τ ] (observational preorder)
∆

⇐⇒
C[e1] ⇓ tt implies C[e2] ⇓ tt, whenever C[ ] is a program context for expressions of
type τ in typing context Γ

Γ ` e1 =op e2 : Exp[τ ] (observational equivalence)
∆

⇐⇒
Γ ` e1 ≤op e2 : Exp[τ ] and Γ ` e2 ≤op e1 : Exp[τ ].

Definition 2.1 Given two programming languages PLi and corresponding (operational)
semantics ⇓i s.t. the well-formed expressions of PL1 are included in those of PL2 (i.e.
Γ `1 e : Exp[τ ] implies Γ `2 e : Exp[τ ]), we say that

• ⇓2 is computationally adequate w.r.t. ⇓1
∆

⇐⇒ the meaning of observations agrees,
i.e. p ⇓1 tt iff p ⇓2 tt for any program p of PL1.

• ⇓2 is equationally sound w.r.t. ⇓1
∆

⇐⇒ Γ `2 e1 =op e2 : Exp[τ ] implies Γ `1 e1 =op

e2 : Exp[τ ], whenever ei are well-formed expressions of PL1 (i.e. Γ `1 ei : Exp[τ ])

• ⇓2 is abstraction preserving w.r.t. ⇓1
∆

⇐⇒ (it is equationally sound and) Γ `1

e1 =op e2 : Exp[τ ] implies Γ `2 e1 =op e2 : Exp[τ ].

Under reasonable assumptions about programs and program contexts (which we do not
spell out), the following result hold.
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Proposition 2.2 If ⇓2 is computationally adequate (w.r.t. ⇓1), then it is also sound.

Let us consider the following operational semantics: ⇓f v (CBV for the functional lan-
guage), ⇓f n (CBN for the functional language), ⇓v (CBV for the functional language with
divergence), ⇓n (CBN for the functional language with divergence).

Proposition 2.3 The following relations holds:

• p ⇓f v tt iff p ⇓f n tt, so the two semantics induce the same observational equivalence
=op;

• ⇓v and ⇓n are computationally adequate w.r.t. ⇓f v;

• ⇓v and ⇓n are not computationally adequate w.r.t. each other, e.g.
p ⇓n tt but p 6⇓v tt when p = (λx : τ.tt)⊥.

If one compares the observational equivalences =op, =op
v and =op

n on the well-formed ex-
pressions of the functional language, then =op

v and =op
n are incomparable, and both are

properly included in =op. In fact:

• x, y : Id[unit] ` x = y : Exp[unit] holds for =op and =op
v , but not for =op

n

• y : Id[unit], f : Id[unit⇒unit] ` ap(λx : unit.y, ap(f, ∗)) = y : Exp[unit] holds for
=op and =op

n , but not for =op
v ,

Remark 2.4 Instead of observing “p has value tt” (where ` p : Exp[bool]), we could
have observed “p has a value” (where ` p : Exp[τ ] for some type τ). The observational
equivalences considered above are affected by this change as follows:

• =op collapses to the equivalence which identifies well-formed expressions of the same
type;

• =op
v is unchanged;

• =op
n discriminates more, e.g. f : Id[τ1⇒τ2] ` λx : τ1.ap(f, x) = f : Exp[τ1⇒τ2] is no

longer true.

2.2 Denotational semantics

The general pattern of a set-theoretic semantics for the functional language (and its exten-
sions) is:

• types, like τ , syntactic categories, like Exp[τ ], and typing contexts, like Γ, are inter-
preted as sets

• well-formed expressions, like Γ ` e : Exp[τ ], are interpreted as functions from the
interpretation of Γ to that of Exp[τ ].

The same pattern applies, mutatis mutandis, to the interpretation in any category (e.g. the
category of cpos), just replace sets with objects and functions with morphisms.

In fact, we will view the interpretation of Γ ` e : Exp[τ ] as a family 〈aρ|ρ ∈ [[Γ]]〉 assign-
ing to each environment ρ the interpretation of e in it. This is closer to the usual Tarski’s
semantics for predicate calculus, but it does not generalize as easily to other categories. The
interpretation is defined by induction on the syntax, in the case of a well-formed expression
this means by induction on the derivation of Γ ` e : Exp[τ ].

As a sample we give the standard set-theoretic interpretation of the functional language
and two interpretations of the extension with divergence, which correspond to CBV and
CBN (in a sense to be made precise later).
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2.2.1 Standard semantics of the functional language

• The interpretation of types, syntactic categories and typing contexts is:

[[unit]] = {∗}
[[bool]] = {tt, ff}
[[nat]] = N the set of natural numbers

[[τ1⇒τ2]] = [[τ1]] → [[τ2]] the set of total functions
[[Id[τ ]]] = [[τ ]]

[[Exp[τ ]]] = [[τ ]]
[[Γ]] = [[Id[τ1]]]× . . .×[[Id[τn]]] where Γ is x1 : Id[τ1], . . . , xn : Id[τn]

• The interpretation of well-formed expressions (of functional type) is:

[[Γ ` xi : Exp[τi]]]ρ = πn
i (ρ) : Ai

[[Γ, x : Id[τ1] ` e2 : Exp[τ2]]]ρ,a = ba : A2

[[Γ ` λx : τ1.e2 : Exp[τ1⇒τ2]]]ρ = λa ∈ A1.ba

[[Γ ` e : Exp[τ1⇒τ2]]]ρ = f : A1 → A2

[[Γ ` e1 : Exp[τ1]]]ρ = a : A1

[[Γ ` ap(e, e1) : Exp[τ2]]]ρ = f(a)

where A = [[τ ]] and Ai = [[τi]].

2.2.2 CBV semantics of the functional language with divergence

• CBV semantics differs from standard semantics in the interpretation of τ1⇒τ2 and
Exp[τ ]:

[[τ1⇒τ2]] = [[τ1]] → [[Exp[τ2]]]
[[Exp[τ ]]] = [[τ ]] + {⊥}

• while the interpretation of well-formed expressions has to be changed consistently
(and extended in the obvious way):

[[Γ ` xi : Exp[τi]]]ρ = in1(π
n
i (ρ)) : Ai + {⊥}

[[Γ ` ⊥ : Exp[τ ]]]ρ = in2(⊥) : A + {⊥}

[[Γ, x : Id[τ1] ` e2 : Exp[τ2]]]ρ,a = ba : A2 + {⊥}
[[Γ ` λx : τ1.e2 : Exp[τ1⇒τ2]]]ρ = in1(λa ∈ A1.ba)

[[Γ ` e : Exp[τ1⇒τ2]]]ρ = f : (A1 → (A2 + {⊥})) + {⊥}
[[Γ ` e1 : Exp[τ1]]]ρ = a : A1 + {⊥}

[[Γ ` ap(e, e1) : Exp[τ2]]]ρ =

{

ga1 if f = in1(g), a = in1(a1)
in2(⊥) otherwise

where A = [[τ ]] and Ai = [[τi]].

2.2.3 CBN semantics of the functional language with divergence

• The CBN semantics differs from CBV semantics in the interpretation of τ1⇒τ2 and
Id[τ ]:

[[τ1⇒τ2]] = [[Exp[τ1]]] → [[Exp[τ2]]]
[[Id[τ ]]] = [[τ ]] + {⊥}
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• while the interpretation of well-formed expressions has to be changed consistently:

[[Γ ` xi : Exp[τi]]]ρ = πn
i (ρ) : Ai + {⊥}

[[Γ ` ⊥ : Exp[τ ]]]ρ = in2(⊥) : A + {⊥}

[[Γ, x : Id[τ1] ` e2 : Exp[τ2]]]ρ,a = ba : A2 + {⊥}
[[Γ ` λx : τ1.e2 : Exp[τ1⇒τ2]]]ρ = in1(λa ∈ A1.ba)

[[Γ ` e : Exp[τ1⇒τ2]]]ρ = f : ((A1 + {⊥}) → (A2 + {⊥})) + {⊥}
[[Γ ` e1 : Exp[τ1]]]ρ = a : A1 + {⊥}

[[Γ ` ap(e, e1) : Exp[τ2]]]ρ =

{

g(a) if f = in1(g)
in2(⊥) otherwise

where A = [[τ ]] and Ai = [[τi]].

2.2.4 Denotational versus observational equivalence

An interpretation [[ ]] of well-formed expressions induces an equivalence relation indeed a
congruence (under reasonable assumptions about [[ ]]):

• [[Γ ` e1 = e2 : Exp[τ ]]] (denotational equivalence)
∆

⇐⇒ the interpretations [[Γ ` ei :
Exp[τ ]]] are equal.

However, one can also associate an observational equivalence/preorder to a denotational
semantics. What is needed is to fix the interpretation of observations (and proceed like in
Section 2.1), e.g.:

• “p has value tt”
∆

⇐⇒ [[` p = tt : Exp[bool]]].

Remark 2.5 At this point we can relate the three denotational semantics considered in
this section with the operational semantics considered in Section 2.1:

• [[` p = tt : Exp[bool]]]fun iff p ⇓fun tt

• [[` p = tt : Exp[bool]]]v iff p ⇓v tt

• [[` p = tt : Exp[bool]]]n iff p ⇓n tt

i.e. corresponding semantics agree on the interpretation of observations.

In general, denotational and observational equivalence for a given denotational semantics
do not coincide, but under reasonable assumptions about [[ ]], the following result hold.

Proposition 2.6 Denotational equivalence implies observational equivalence.

It is usually easier to establish denotational equivalence than observational equivalence,
since the latter involves a universal quantification over program contexts. Therefore, the
result above gives a simpler way to prove observational equivalence (on the other hand,
it is easy to prove that two expressions are not observationally equivalent, just find a
discriminating program context!).

Definition 2.7 Given a denotational semantics [[ ]] for a programming language PL (and
an interpretation of observations), we say that

• [[ ]] is fully abstract
∆

⇐⇒ denotational and observational equivalence coincide.

Remark 2.8 A broader and deeper discussion on “good fit criteria” between operational
and denotational semantics can be found in [MC88].
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2.3 Equational calculi

A simple way to prove observational equivalence is to identify inference rules which are
admissible w.r.t. denotational equivalence, and use them to derive formally Γ ` e1 = e2 :
Exp[τ ]. It is usually easy to check that an inference rule is admissible w.r.t. denotational
equivalence (just check that the conclusion of the rule is true in the model, whenever the
premisses are!). When one cannot rely on a denotational model, one can establish that
provable equivalence implies observational equivalence, by analogy with Section 2.2.4:

• first express observations in the equational calculus, e.g.

“p has value tt”
∆

⇐⇒ “` p = tt : Exp[bool]” is derivable

• then prove that: ` p = tt : Exp[bool] is derivable iff p ⇓ tt.

Under reasonable assumptions about program contexts this entails that provable equivalence
implies observational equivalence. Note that this is weaker than “the inference rules are
admissible w.r.t. observational equivalence”.

For each of the denotational semantics considered in Section 2.2 we give a set of ad-
missible rules for deriving denotational equivalence (we skip the congruence rules, which
are always admissible):

• standard equational calculus

β′

Γ ` ap(λx : τ1.e2, x) = e2 : Exp[τ2]

η′

Γ ` λx : τ1.ap(f, x) = f : Exp[τ1⇒τ2]

sub

Γ ` ei : Exp[τi] (i = 1, . . . , n)
x1 : Id[τ1], . . . , xn : Id[τn] ` e = e′ : Exp[τ ]

Γ ` e[x := e] = e′[x := e] : Exp[τ ]

• CBV equational calculus, like the standard calculus but (sub) is replaced by

subv

Γ ` ei : Exp[τi] (i = 1, . . . , n)
x1 : Id[τ1], . . . , xn : Id[τn] ` e = e′ : Exp[τ ]

Γ ` e[x := e] = e′[x := e] : Exp[τ ]
ei values

where values are either variables or lambda-abstractions

• CBN equational calculus, like the standard calculus but without (η′).
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In this section we introduce a logical framework with a cumulative hierarchy of predicative
universes (in this way we don’t need to distinguish between contexts Γ and signatures Σ).
Our main motivation for introducing a logical framework is to have precise and concise
descriptions of (the well-formed expressions of) languages and translations: languages are
described by signatures and translations by signature realizations.

3.1 The logical framework LF

The logical framework is give by a set of inference rules for deriving judgements of the
following forms:

• Γ `, i.e. Γ is a context

• Γ ` A : Typei, i.e. A is a type (in the i-th universe) in context Γ

• Γ ` M : A, i.e. M is a term of type A in context Γ

where M and A range over pseudo-terms described by the following BNF:

identifiers x ∈ Id ::= an infinite set
pseudo-terms A, M ∈ Exp ::= x | Typei | Πx : A1.A2 | λx : A.M | M1M2

empty
∅ `

ext
Γ ` A : Typei

Γ, x : A `
x 6∈ DV(Γ)

type-∈
Γ `

Γ ` Typei : Typei+1

i ≥ 0

type-⊂
Γ ` A : Typei

Γ ` A : Typej

i < j

var
Γ `

Γ ` x : A
A = Γ(x)

Π
Γ ` A1 : Typei Γ, x : A1 ` A2 : Typei

Γ ` (Πx : A1.A2) : Typei

λ
Γ ` A1 : Typei Γ, x : A1 ` M2 : A2

Γ ` (λx : A1.M2) : (Πx : A1.A2)

app
Γ ` M : (Πx : A1.A2) Γ ` M1 : A1

Γ ` MM1 : A2[x := M1]

conv
Γ ` M : A1 Γ ` A2 : Typei

Γ ` M : A2

A1 =βη A2

where =βη is βη-conversion on pseudo-terms, i.e. the congruence induced by α-conversion,
(λx : A.M2)M1 = M2[x := M1] and (λx : A.Mx) = M provided x 6∈ FV(M).

Remark 3.1 The meta-theory of LF is rather delicate because of the (conv) rule and the
failure of the Church-Rosser property for βη-reduction on pseudo-terms, anyway one can
prove the following properties (see [HHP87, Geu92, Luo94]):

• it is decidable whether Γ ` M : A is derivable



14

• if Γ ` Mi : A (for i = 1, 2) is derivable, then M1 =βη M2 is decidable.

It is convenient to separate the initial part of a context, which is intended to consist
of constants, from the remaining part, consisting of variables. Therefore, we introduce the
following derived notation:

• a LF-signature Σ is a well-formed context Σ `

• a relativized judgement Γ `Σ J stands for Σ, Γ ` J .

3.2 Set-theoretic semantics

The set-theoretic interpretation of LF has the following pattern (to model the cumulative
hierarchy of universes we need a sequence of inaccessible cardinals αi, so that Typei is
interpreted by the set Vαi

of the von Neumann’s hierarchy):

• the interpretation [[Γ `]] of a context is a set I

• the interpretation [[Γ ` A : Typej]] of a type is a family of sets 〈Xi|i ∈ I〉 s.t. Xi ∈ Vαj

• the interpretation [[Γ ` M : A]] of a term is a family of elements 〈xi|i ∈ I〉 s.t. xi ∈ Xi.

Remark 3.2 Because of the (conv) rule one may have different derivations of the same
judgement, therefore the interpretation of a judgement cannot be defined by induction on
the derivation. In any case, for defining the interpretation it is better to work with an
equivalent semantic system (see [GW94]), in which one has also judgements of the form
Γ ` M1 = M2 : A. One can proceed in two ways, either define the interpretation of a
derivation and prove that derivations of the same judgement are interpreted in the same
way (this is called a coherence result), or give a partially defined interpretation of pseudo-
judgements (by induction on their size) and prove that whenever a pseudo-judgement is
derivable its interpretation is defined (and satisfies certain properties).

We Follow the second approach and define a partial function [[Γ ` M : A]] by induction
on s(Γ) + s(M), where s( ) gives the number of symbols in .

Notation 3.3 Given a set X and a family of sets 〈Yx|x ∈ X〉 we write Σx ∈ X.Yx for the
set {(x, y)|x ∈ X, y ∈ Yx} and Πx ∈ X.Yx for the set of all functions with domain X s.t.
∀x ∈ X.f(x) ∈ Yx. Moreover, we identify a function λx ∈ X.yx with its graph, i.e. the set
{(x, yx)|x ∈ X}, and write X×Y and X → Y instead of Σx ∈ X.Yx and Πx ∈ X.Yx, when
Yx is constantly Y .
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empty [[∅ `]] = 1 = {∗}

ext [[Γ ` A]] = 〈Xi|i ∈ I〉
[[Γ, x : A `]] = Σi ∈ I.Xi

type-∈ [[Γ `]] = I

[[Γ ` Typej ]] = 〈Vαj
|i ∈ I〉

var [[Γ `]] = I

[[Γ ` x]] = 〈πΓ
x (i)|i ∈ I〉

Π [[Γ ` A1]] = 〈Xi|i ∈ I〉
[[Γ, x : A1 ` A2]] = 〈Y(i,x)|i ∈ I, x ∈ Xi〉

[[Γ ` (Πx : A1.A2)]] = 〈Πx ∈ Xi.Y(i,x)|i ∈ I〉

λ [[Γ ` A1]] = 〈Xi|i ∈ I〉
[[Γ, x : A1 ` M2]] = 〈y(i,x)|i ∈ I, x ∈ Xi〉

[[Γ ` (λx : A1.M2)]] = 〈λx ∈ Xi.y(i,x)|i ∈ I〉

app [[Γ ` M ]] = 〈fi|i ∈ I〉
[[Γ ` M1]] = 〈xi|i ∈ I〉

[[Γ ` MM1]] ' 〈fi(xi)|i ∈ I〉

Note that it is only in the last case that the interpretation can be undefined even when the
premisses are satisfied. At this point one can prove (by induction on the derivation of a
judgement in the semantic system), that:

• if Γ ` is derivable, then [[Γ `]] = I for some set I

• if Γ ` M : A is derivable, then
[[Γ ` M ]] = 〈xi|i ∈ I〉, [[Γ ` A]] = 〈Xi|i ∈ I〉 and ∀i ∈ I.xi ∈ Xi

for some set I and I-indexed families x and X

therefore we can define [[Γ ` M : A]] as [[Γ ` M ]]

• if Γ ` M = N : A is derivable, then
[[Γ ` M ]] = 〈xi|i ∈ I〉 = [[Γ ` N ]], [[Γ ` A]] = 〈Xi|i ∈ I〉 and ∀i ∈ I.xi ∈ Xi

for some set I and I-indexed families x and X .

Given a model for a LF-signature, i.e. M ∈ [[Σ]], one can define the interpretation [[Γ `Σ J ]]M

of relativized judgements in M in the obvious way, e.g. [[Γ `Σ]]M
∆
= {i|M ∗ i ∈ I}, where

I = [[Σ, Γ `]] and ∗ is concatenation.

3.3 Encodings

One can give a compact and uniform description of the typing rules for the functional
language (and the other languages introduced in Section 1) in terms of a LF-signature.

Notation 3.4 We use the convention of writing: Type for some unspecified Typei with i big
enough, A1 → A2 for Πx : A1.A2 with x 6∈ FV(A2), A1, . . . , An → A for A1 → . . . An → A.

• LF-signature Σfun for the functional language
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types T : Type

unit, bool, nat : T

⇒ : T, T → T

ident Id : T → Type

expr Exp : T → Type

var : ΠX : T.Id(X) → Exp(X)
unit ∗ : Exp(unit)
bool tt, ff : Exp(bool)

if : ΠX : T.Exp(bool), Exp(X), Exp(X) → Exp(X)
nat 0 : Exp(nat)

s : Exp(nat) → Exp(nat)
It : ΠX : T.Exp(X), (Id(X) → Exp(X)), Exp(nat) → Exp(X)

⇒ ab : ΠX1, X2 : T.(Id(X1) → Exp(X2)) → Exp(X1⇒X2)
ap : ΠX1, X2 : T.Exp(X1⇒X2), Exp(X1) → Exp(X2)

The correspondence between the syntax of the functional language and the LF-signature
Σfun is expressed by the following adequacy result (more examples of encodings and similar
adequacy results can be found in [HHP87]).

Proposition 3.5 (Syntactic adequacy) There is a translation ∗ of types τ ∈ T and
expressions e ∈ Exp of the functional language into pseudo-terms of LF s.t.:

• `Σfun
τ∗ : T , whenever τ ∈ T

• Γ∗ `Σfun
e∗ : Exp(τ∗), whenever Γ `fun e : Exp[τ ].

Moreover, the translation induces the following bijections

• types τ ∈ T ⇐⇒ pseudo-terms M (up to βη-conversion) s.t. `Σfun
M : T

• expression e ∈ Exp (up to α-conversion) s.t. Γ `fun e : Exp[τ ] ⇐⇒
pseudo-terms M (up to βη-conversion) s.t. Γ∗ `Σfun

M : Exp(τ∗).

LF-signatures for the other languages of Section 1 can be obtain by a simple extension
of Σfun (and similar syntactic adequacy results can be proved):

• LF-signature extension Σdiv

⊥ : ΠX : T.Exp(X)

• LF-signature extension Σimp

locations Loc : Type

get : Loc → Exp(nat)
set : Loc, Exp(nat) → Exp(unit)

• LF-signature extension Σexc

exception names Exn : Type

raise : ΠX : T.Exn → Exp(X)
handle : ΠX : T.Exn, Exp(X), Exp(X) → Exp(X)

• LF-signature extension Σnd

or : ΠX : T.Exp(X), Exp(X) → Exp(X)

• LF-signature extension Σpar

por : ΠX : T.Exp(X), Exp(X) → Exp(X)
pap : ΠX1, X2 : T.Exp(X1⇒X2), Exp(X1) → Exp(X2)
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3.4 Semantics via translation

A model M for the LF-signature Σfun induces an interpretation of the functional language
via the encoding ∗ as follows:

• the interpretation [[τ ]]M of a type τ is (the only element in the family) [[`Σfun
τ∗ : T ]]M

• the interpretation [[Γ ` e : Exp[τ ]]]Mρ of a well-formed expression e in an environment

ρ is [[Γ∗ `Σfun
e∗ : Exp[τ∗]]]Mρ .

Moreover, the standard semantics for the functional language can be recovered by a suitable
choice of M.

In general, given a translation ∗ : L′ → L from the language/formalism L′ to L, we
can turn an interpretation [[ ]] of L into an interpretation [[ ]]′ of L′ by defining [[ ]]′ to be the
interpretation of the translation of , i.e. [[ ∗]]. We call this way of defining an interpretation
semantics via translation.

When one considers only languages induced by a LF-signature (this is not a strong re-
striction because of syntactic adequacy results), translations can be described in a compact
way as signature realizations:

• given a LF-signature Σ, let L(Σ) be the set of all derivable judgements of the form
Γ `Σ J

• given two LF-signatures Σ and Σ′, a realization I : Σ′ → Σ of Σ′ in Σ is a sequence
of substitutions, one for each constant declared in Σ′. The precise definition is given
by induction on the length of Σ′:

– ∅ : ∅ → Σ

– (I, x := M) : (Σ′, x : A) → Σ iff I : Σ′ → Σ and `Σ M : A[I ] is derivable,
where A[I ] is the substitution instance of A obtained by applying in parallel all
substitutions in I

• given a realization I : Σ′ → Σ between LF-signatures, the induced translation (also
denoted by I) from L(Σ′) to L(Σ) maps Γ `Σ′ J to Γ[I ] `Σ J [I ].

In the sequel, we will describe languages by LF-signatures and translations by realizations.
However, for readability we will often use some derived notation or suppress some type
information, which can be recovered from the context.
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In this section we specialize the technique of giving semantics via translation to the case
of programming languages. The general idea is to define the denotational semantics of a
programming language PL by translating it into a typed metalanguage ML. The idea is
as old as denotational semantics (see [Sco93]), so the main issue is whether it can be made
into a viable technique capable of dealing with complex programming languages.

Before being more specific about metalanguages, let us discuss what are the main ad-
vantages in using them to give semantics via translation:

• to reuse the same ML for translating several programming languages.

PL1

. . .

HHHHH
transl

j
ML

interp- C

PLn

�����

transl

*

Here we are implicitly assuming that defining a translation from PL to ML is simpler
than directly defining an interpretation of PL.

In this case it is worth putting some effort in the study of ML. In fact, once certain
properties of ML have been established (e.g. reasoning principles or computational
adequacy), it is usually easy to transfer them to PL via the translation.

• to choose ML according to certain criteria, which are usually not met by programming
languages, for instance:

– a metalanguage which is built around few orthogonal concepts will be simpler to
study, on the contrary programming languages often introduce syntactic sugar
for the benefit of programmers;

– ML may be equipped with a logic so that it can be used for formalizing reasoning
principles or for translating specification languages;

– ML may be chosen as the internal language for a class of categories (e.g.
cartesian closed or order-enriched categories) or for a specific semantic category
(e.g. the category of sets or cpos).

• to use ML for hiding details of semantic categories (see [Gor79]).

For instance, when ML is the internal language for a class of categories, it has one
intended interpretation in each of them, therefore a translation into ML will induce
a variety of interpretations

C1

PL
transl- ML

�����interp *

. . .
HHHHHinterp j

Cn

even when ML has only one intended interpretation, it may be difficult to work with
the semantic category directly.

A good starting point for a metalanguage is to build it on top of a fairly standard typed
λ-calculus, more controversial issues are:
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• whether the metalanguage should be equipped with some logic (ranging from equa-
tional logic to higher order predicate logic).

We believe that it should, since this is the simplest way to abstract from the se-
mantics of the metalanguage, and still have something usable to establish properties
of programs.

• whether the metalanguage should be itself a programming language (i.e. to have an
operational semantics).

In fact, this may force to choose among a variety of operational semantics (CBV or
CBN), to place restriction on the types (dependent types would be problematic), and
to use non-standard equational axiomatizations (see Section 2.3).

• whether one gains something by giving semantics to a (complex) programming lan-
guage PL via translation into a metalanguage ML insteads of giving the semantics of
PL directly. In particular, it would be unsatisfactory if giving either the translation
of PL into ML or the semantics of ML are as difficult as giving the semantics of PL

directly.

We will discuss how the monadic approach can help in structuring the translation
from PL to ML by the introduction of auxiliary notation (see [Mos90a, Mog91])

PL
transl- ML(Σ)

transl- ML

and in incrementally defining the semantics of auxiliary notation (see [CM93])

PL
transl- ML(Σn)

transl- . . .
transl- ML(Σ0)

transl- ML

Remark 4.1 The metalanguages we consider can be described in terms of LF-signatures.
This may cause problems in defining their interpretation in semantic categories other than
sets, since some of them (e.g. the category of cpos) are not suitable for interpreting LF.
One way around this is to define the interpretation of these metalanguages directly, without
going via LF. An alternative way, is to follow the approach of Synthetic Domain Theory
(SDT) and view these semantic categories as fully embedded in a constructive set-theoretic
universe, like a topos or quasitopos, in which one can interpret LF (and much more). The
latter approach has considerable advantages, provided one can avoid (e.g. by axiomatizing
the relation between the semantics category and the constructive set-theoretic universe) the
extra mathematical sophistication involved in SDT models.

4.1 Typed lambda-calculi

The metalanguages we consider are extensions of the simply typed λβη-calculus (with type
variables). Formally they will be described by LF-signatures, but we will introduce and use
more standard syntax and notational conventions as shorthand for the formal (and almost
unreadable) notation.

4.1.1 Equational logic and extensionality

An integral part of any typed lambda-calculi is the set of equational rules, which often
give a complete characterization of types (like the universal properties used in Category
Theory). Therefore, we consider LF-signatures which incorporate equational logic.

• LF-signature Σeq for equational logic
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propositions Prop : Type

proofs pr : Prop → Type

we write φ for pr(φ), identifying a prop with the type of its proofs
logical constants
equality eq : ΠX : Type.X, X → Prop

we write M1 =τ M2 or M1 = M2 for eq(τ, M1, M2)
axioms
reflexivity ΠX : Type.Πx : X.x = x

substitutivity ΠX : Type, P : X → Prop, x, y : X.x = y, P (x) → P (y)

We have not introduce explicit constants for reflexivity of equality and substitutivity of
equals (in propositions), since they are never needed for defining signature extensions.

One can show that the following rules are derivable (in equational logic), where A is derivable
(in equational logic) formally means that there exists a term M s.t. `Σeq

M : A:

• symmetry, i.e. x = y → y = x

• transitivity, i.e. x = y, y = z → x = x

• congruence for application, i.e. x =τ1
y, f =(τ1→τ2) g → fx =τ2

gy

this cannot be extended to arbitrary Π-types, because fx and gy may have different
types, nevertheless the following rule is derivable

f =(Πx:τ.Xx) g → fx =Xx gx

Remark 4.2 Instead of equational logic one can start with the more powerful Higher Order
Logic, taking as sole logical constant universal quantification ∀ : ΠX : Type.(X → Prop) →
Prop. Then one defines implication φ1 ⊃ φ2 as ∀p : φ1.φ2 and equality x =τ y as Leibniz’
equality ∀P : τ → Prop.P (x) ⊃ P (y).

Although in LF one can identify functional types with Π-types, extensionality for func-
tions is not derivable (from Σeq). Therefore, it has to be included explicitly as additional
rule.

• LF-signature extension Σext for extensionality rules

Π-ext ΠX : Type, F : X → Type, f, g : (Πx : X.Fx).
(Πx : X.fx = gx) → f = g

Prop-ext Πφ1, φ2 : Prop.(φ1 → φ2) → (φ2 → φ1) → φ1 = φ2

pr-irrel Πφ : Prop, x, y : φ.x = y

Π-extensionality generalizes extensionality for functions, Prop-extensionality says
that logical equivalence implies equality, and proof-irrelevance says that all proofs
of a given proposition are equal.

In this extension one can easily derive (using only Π-ext) extensionality for functions, i.e.
(Πx : τ1.fx =τ2

gx) → f =(τ1→τ2) g.

The standard set-theoretic interpretation of Σeq (and Σext) is as follows:

[[Prop]] = 2
∆
= {∅, {∅}} the set of truth values

[[pr]](φ) = φ

[[eq]](τ, x, y) =

{

1 if x = y

0 otherwise

Remark 4.3 Other interesting models of Σeq , including intensional ones (which fail to
satisfy Σext), can be obtained by interpreting LF in realizability toposes.
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4.1.2 Products, sums and natural numbers

We describe products, sums and the type of natural numbers as extensions of the LF-
signature Σeq for equational logic.

• LF-signature extension Σ× for product types

types
unit 1 : Type

product × : Type, Type → Type

we write τ1×τ2 for ×(τ1, τ2)
operations

∗ : 1
pairing pair : ΠX1, X2 : Type.X1, X2 → X1×X2

we write 〈M1, M2〉 for pair(τ1, τ2, M1, M2)
projections πi : ΠX1, X2 : Type.(X1×X2) → Xi

we write πi(M) for πi(τ1, τ2, M)
axioms

Πx : 1.x = ∗
ΠX1, X2 : Type, x1 : X1, x2 : X2.πi(〈x1, x2〉) = xi

ΠX1, X2 : Type, x : X1×X2.〈π1(x), π2(x)〉 = x

• LF-signature extension Σ+ for sum types

types
empty 0 : Type

sum + : Type, Type → Type

we write τ1 + τ2 for +(τ1, τ2)
operations

0 : ΠX : Type.0 → X

inclusions ini : ΠX1, X2 : Type.Xi → (X1 + X2)
we write ini(M) for ini(τ1, τ2, M)
case case : ΠX1, X2, X : Type.

(X1 → X), (X2 → X) → (X1 + X2) → X

we write case(M1, M2, M) for case(τ1, τ2, τ, M1, M2, M)
axioms

ΠX : Type, x : 0, y : X.0(X, x) = y

ΠX1, X2 : Type, f1 : (X1 → X), f2 : (X2 → X), x : Xi.

case(f1, f2, ini(x)) = fi(x)
ΠX1, X2, X : Type, f : (X1×X2) → X.

case(f ◦ in1, f ◦ in2) = f

we may write (case M of x1.M1|x2.M2) for case(λx1 : τ1.M1, λx2 : τ2.M2, M)

• LF-signature extension ΣN for natural numbers

types
NNO N : Type

operations
zero 0 : N

successor s : N → N

iteration I : ΠX : Type.X, (X → X) → N → X

we write Mn(N) for I(τ, N, M, n)
axioms

ΠX : Type, x : X, f : (X → X).f0(x) = x

ΠX : Type, x : X, f : (X → X), n : N.f s(n)(x) = f(fn(x))
ΠX : Type, x : X, f : (X → X), h : (N → X), n : N.

h(0) = x, (Πm : N.h(sm) = f(hm)) → h(n) = fn(x)
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Remark 4.4 there are stronger axiomatizations of natural numbers (and other types) as
inductive types (see [CP88]), which introduce also additional conversion rules on pseudo-
terms:

types
NNO N : Type

operations
zero 0 : N

successor s : N → N

induction R : ΠP : N → Type.P (0), (Πn : N.P (n) → P (sn)) → Πn : N.P (n)
axioms

ΠP : N → Type, x : P (0), f : (Πn : N.P (n) → P (sn)).
R(P, x, f, 0) = x

ΠP : N → Type, x : P (0), f : (Πn : N.P (n) → P (sn)), n : N.

R(P, x, f, s(n)) = f(n, R(P, x, f, n))

Iteration I(τ, a, f) can be defined by induction as R(λn : N.τ, a, λn : N.f). The first
two axioms for I follow easily from the two axioms for R, while the third axiom for I is
proved by induction. Namely, given proofs b : (h(0) = a) and c : (Πn : N.h(sn) = f(hn)),
one can construct a proof g : (Πn : N.P (n) → P (sn)), where P (n) stands for h(n) = fn(a).
Therefore, R(P, b, g, n) : P (n) proves the conclusion of the third axiom for I .

The stronger axiomatization of natural numbers becomes equivalent to the weaker one
only in an extensional version of LF, where convertibility and equality coincide. However,
in this extensional version of LF it is no longer decidable whether a judgement is derivable.

4.2 Computational types and structuring

A typical problem of denotational and operational semantics is the following: when a pro-
gramming language is extended, its semantics may need to be extensively redefined. For
instance, in Section 1 we kept redefining the operational semantics of the functional part,
every time we considered a different extension. The problem remains even when the se-
mantics is given via translation in a typed lambda-calculus (like the one introduce so far):
one would keep redefining the translation of the functional part. In [Mos90b] this problem
is identified very clearly, and it is stressed how the use of auxiliary notation may help in
making semantic definitions more reusable.

[Mog91] identifies monads as an important structuring device for denotational semantics
(but not for operational semantics!). The basic idea is that there is a unary type constructor
T , called a notion of computation, and terms of type Tτ , called a computational type,
should be thought as programs which computes values of type τ . The interpretation of T

is not fixed, it varies according to the computational features of the programming language
under consideration. Nevertheless, one can identifies some operations (for specifying the
order of evaluation) and basic properties of them, which should be common to all notions of
computation. This suggests to translate a programming language PL into a metalanguage
MLT (Σ) with computational types, where the signature Σ give additional operations (and
their basic properties). In summary, the monadic approach to denotational semantics
consists of three steps, i.e. given a programming language PL:

• identify a suitable metalanguage MLT (Σ), this hides the interpretation of T and Σ
like an interface hides the implementation of an abstract datatype,

• define a translation of PL into MLT (Σ),

• construct a model of MLT (Σ), e.g. via translation into a metalanguage ML without
computational types.
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By a suitable choice of Σ, one can find a simple translation from PL to MLT (Σ) (in
comparison to a direct translation into ML), which usually does not have to be redefined
when PL is extended, and at the same time one can keep the translation of MLT (Σ) into
ML fairly manageable.

• LF-signature extension ΣT for computational types

types
T T : Type → Type

operations
val valT : ΠX : Type.X → TX

let letT : ΠX1, X2 : Type.(X1 → TX2), TX1 → TX2

we write valT (M) for valT (τ, M) and similarly for letT

we drop the superscript T , when it is clear from the context
axioms

ΠX1, X2 : Type, x : X1, f : (X1 → TX2).let(f, val(x)) = f(x)
ΠX : Type, c : TX.let(val, c) = c

ΠX1, X2, X3 : Type, c : TX1, f : (X1 → TX2), g : (X2 → TX3).
let(g, let(f, c)) = let(let(g) ◦ f, c)

Notation 4.5 We introduce some derived notation for computational type:

• [e]T stands for valT (e)

• letT x⇐e1 in e2 stands for letT (λx : τ1.e2, e1)

• Tf : Tτ1 → Tτ2, where f : τ1 → τ2, stands for λc : Tτ1.let x⇐c in [f(x)]

• µ : T 2τ → Tτ stands for λc : T 2τ.let x⇐c inx

• let x⇐e in e stands for let x1⇐e1 in (. . . (let xn⇐en in e) . . .)

• 〈x ⇐ e, e〉 stands for let x, x⇐e, e in [〈x, x〉]

• let 〈x〉⇐c in e(x1, . . . , xn) stands for let x⇐c in e(π1(x), . . . , πn(x)).

Intuitively, the program [e] simply returns the value e, while (let x⇐e1 in e2) first evaluates
e1 and binds the result to x, then evaluates e2. With the above notation the third axiom
becomes

let x2⇐(let x1⇐e1 in e2) in e3 = let x1⇐e1 in (let x2⇐e2 in e3)

which says that only the order of evaluation matters.

Unlike the previous types, computational types are not uniquely determined (up to
isomorphism) by their equational axioms.

Example 4.6 We give a list of possible interpretations of computational types in Set, and
indicate which computational feature they try to capture. It is left as an exercise to find a
suitable interpretation of val and let and verify the equational axioms.

• Given a single sorted algebraic theory Th (i.e. a signature and a set of equational
axioms), let TX = |TTh(X)|, i.e. the carrier of the free Th-algebra TTh(X) over X .
By a suitable choice of Th one can obtain interesting notions of computation, e.g.:

– TX = X , which captures terminating functional programs

– TX = X + {⊥}, which captures functional programs which may diverge, where
⊥ represents programs which diverge
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– TX = Pfin(X) the set of finite subsets of X , which captures nondeterministic
programs

– TX = (X +E), which captures programs with exceptions, where E is the set of
exceptions

– TX = µX ′.Pfin(X + X ′) the set of finite trees with leaves labeled in X , which
captures parallel programs

• TX = (X×S)S , which captures imperative programs, where S is the set of states,
while TX = XS captures programs that can only look at the state

• TX = R(RX), which captures programs with a continuation, where R is the set of
final results

• TX = X×N , which captures programs with timers, where N is the set of natural
numbers

One could consider variations and combinations of the examples above, e.g.

• variations for nondeterministic programs are: TX = P(X) the set of subsets of X ,
and TX = Pω(X) the set of countable subsets of X

• two possible combinations for imperative programs with exceptions are:
TX = ((X + E)×S)S and TX = ((X×S) + E)S

• TX = µX ′.Pfin(X + (A×X ′)), which captures parallel programs which interact,
where A is the set of actions (in fact TX is the set of finite synchronization trees up
to strong bisimulation)

• TX = µX ′.Pfin((X +X ′)×S)S , which captures parallel imperative programs (in fact
TX is closely related to resumptions).

One could give further examples (in the category of cpos) based on the denotational se-
mantics for various programming languages (see [Sch86, GS89, Mos89]).

To exemplify the use of computational types, for each of the programming languages
introduced in Section 1 we define a translation into a metalanguage MLT (Σ) with compu-
tational types, for a suitable choice of Σ, and indicate a possible interpretation for compu-
tational types and Σ. More formally, we give a realization of the LF-signature ΣPL for a
programming language PL (as given in Section 3.3) in the LF-signature ΣML +ΣT +Σ for
the metalanguage, where ΣML could be taken as Σeq + Σ× + Σ+ + ΣN . Incidentally, the
axioms for the metalanguage could be safely ignored when defining the realization.

4.2.1 CBV translation of the functional language with divergence

We define a translation of Σfun +Σdiv into MLT (Σ). For this translation the LF-signature
extension Σ is

operations
divergence ⊥ : ΠX : Type.T (X)
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T ∗ := Type

types
unit∗ := 1
bool∗ := 1 + 1
nat∗ := N

⇒∗(X1, X2) := X1 → T (X2)
Id∗(X) := X

Exp∗(X) := T (X)
expressions

var∗(X, x) := [x]
∗∗ := [∗]
tt∗ := [in1(∗)]

ff∗ := [in2(∗)]
if∗(X, c, c1, c2) := let x⇐c in (case x of : 1.c1| : 1.c2)

0∗ := [0]
s∗(c) := let n⇐c in [s(n)]

It∗(X, c0, f, c) := let n⇐c in gn(c0) , where g
∆
= λc : TX.let c⇐x in f(x)

ab∗(X1, X2, f) := [f ]
ap∗(X1, X2, c, c1) := let f⇐c in (let x⇐c1 in f(x))

⊥∗ := ⊥

One gets the CBV denotational semantics by taking TX = X + {⊥}, and the standard
semantics (for the fragment Σfun without divergence) by taking TX = X .

4.2.2 CBN translation of the functional language with divergence

We define a translation of Σfun + Σdiv into MLT (Σ). Also for this translation the LF-
signature extension Σ is

operations
divergence ⊥ : ΠX : Type.T (X)

We report only those clauses, where the CBN translation differs from the CBV transla-
tion

types
⇒∗(X1, X2) := T (X1) → T (X2)

Id∗(X) := T (X)
Exp∗(X) := T (X) , this is like CBV

expressions
var∗(X, c) := c

ap∗(X1, X2, c, c1) := let f⇐c in f(c1)

One gets the CBN denotational semantics by taking TX = X + {⊥}, and again the
standard semantics (for the fragment without divergence) by taking TX = X .

4.2.3 CBV translation of Σfun + Σimp

For this translation the LF-signature extension Σ is

types
locations L : Type

operations
lookup lkp : L → TN

update upd : L, N → T1

We report only those clauses which extend the CBV translation
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types
Loc∗ := L

expressions
get∗(l) := lkp(l)

set∗(l, c) := let x⇐c in upd(l, x)

One gets a CBV denotational semantics for the imperative language by taking L = Loc,
TX = (X×S) L with S = Loc → N , lkp(l) = λs : S.〈s(l), s〉, and upd(l, n) = λs : S.〈∗, s[l 7→
n]〉. More precisely, one could prove this semantics to be computationally adequate w.r.t.
the CBV operational semantics, when observing “p has value tt”.

4.2.4 CBV translation of Σfun + Σexc

For this translation the LF-signature extension Σ is

types
exceptions E : Type

operations
test eq : E, E → 1 + 1
raise raise : ΠX : Type.E → TX

handle handle : ΠX : Type.(E → TX), TX → TX

We report only those clauses which extend the CBV translation

types
Exn∗ := E

expressions
raise∗ := raise

handle∗(X, n, c1, c2) := handle(X, (λx : E.case eq(x, n) of c1|raise(x)), c2)

One gets a CBV denotational semantics for the language with exceptions by taking E =
Exn, TX = (X+E), eq(n1, n2) is the equality on E, raise(n) = in2(n), handle(f, in1(x)) =
x and handle(f, in2(n)) = f(n).

4.2.5 CBV translation of Σfun + Σnd

For this translation the LF-signature extension Σ is

operations
choice or : ΠX : Type.TX, TX → TX

We report only those clauses which extend the CBV translation

expressions
or∗ := or

One gets a CBV denotational semantics for the non-deterministic language by taking
TX = Pfin(X) and or(x1, x2) = x1 ∪ x2. More precisely, one could prove this semantics
to be computationally adequate w.r.t. the CBV operational semantics, when observing “p

may have value tt”.

4.2.6 CBV translation of Σfun + Σpar

For this translation the LF-signature extension Σ is

operations
one-step δ : ΠX : Type.TX → TX

or-parallelism por : ΠX : Type.TX, TX → TX

and-parallelism pand : ΠX1, X2 : Type.TX1, TX2 → T (X1×X2)
we write δ(M) for δ(τ, M) and similarly for the others

Unlike the previous examples of CBV translations, here we need both to extend and
redefine the CBV translation of expressions. For brevity we consider only the redefinition
of constructors associated to boolean and functional types
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expressions
var∗(X, x) := [x]

tt∗ := [in1(∗)]
ff∗ := [in2(∗)]

if∗(X, c, c1, c2) := let x⇐c in δ(case x of : 1.c1| : 1.c2)
ab∗(X1, X2, f) := [f ]

ap∗(X1, X2, c, c1) := let f⇐c in (let x⇐c1 in δ(fx))
pap∗(X1, X2, c, c1) := let 〈f, x〉⇐pand(c, c1) in δ(fx)

por∗ := por

One gets a trace semantics of the parallel language by taking TX = Pfne(N×X) the
set of finite nonempty subsets of N×X , where 〈n, x〉 represents a sequence of n steps with
final result x. The operations pand and por can be defined as the additive functions s.t.

pand(〈n1, x1〉, 〈n2, x2〉) = {〈n1 + n2, 〈x1, x2〉〉}

por(〈n1, x1〉, 〈n2, x2〉) = {〈n1 + m, x1〉|0 ≤ m ≤ n2} ∪ {〈n2 + m, x2〉|0 ≤ m ≤ n1}

these correspond to an interleaved implementation of pand and por, a concurrent (lock-step)
implementation would be better represented as follows

pand(〈n1, x1〉, 〈n2, x2〉) = {〈max(n1, n2), 〈x1, x2〉〉}

por(〈n1, x1〉, 〈n2, x2〉) = {〈n1, x1〉|n1 ≤ n2} ∪ {〈n2, x2〉|n2 ≤ n1}

Remark 4.7 The translation for the parallel language could be considered a refinement of
that for the functional language, obtained by inserting δ in few places. One can consider
many variations of the above translation, which differ only in the use of δ, each of them
corresponds to a different choice of granularity for the steps of the operational semantics.

4.3 Translations and incremental approach

The monadic approach to denotational semantics outlined in Section 4.2 has a caveat.
When the programming language PL is complex, the signature Σ identified by the monadic
approach can to get fairly large, and the translation of MLT (Σ) into ML may become
quite complicated. There is no magic, but one can alleviate the problem by adopting an
incremental approach in defining the translation of MLT (Σ) into ML.

The basic idea is to adapt to this setting the techniques and modularization facilities ad-
vocated for formal software development, in particular the desired translation of MLT (Σ)
into ML corresponds to the implementation of an abstract datatype (in some given lan-
guage). In an incremental approach, the desired implementation is obtained by a sequence
of steps, where each step constructs an implementation for a more complex datatype from an
implementation for a simpler datatype. To make the approach viable, we need a collection
of self-contained parameterized polymorphic modules with the following features:

• they should be polymorphic, i.e. for any signature Σ (or at least for a wide range of
signatures) the module should take an implementation of Σ and construct an imple-
mentation of Σ + Σnew , where Σnew is fixed

• they could be parametric, i.e. the construction and the signature Σnew may depend
on parameters of some fixed signature Σpar.

The polymorphic requirement can be easily satisfied, when one can implement Σnew without
changing the implementation of Σ (this is often the case in software development). However,



28

the constructions we are interested in are not persistent, since they involve a reimplement-
ation of computational types, and consequently of Σ. The translations we need to consider
are of the form

I : MLT (Σpar + Σ + Σnew) → MLT (Σpar + Σ)

where Σnew are the new symbols defined by I , Σ are the old symbols redefined by I and
Σpar are the parameters of the construction (which are unaffected by I). In general I can
be decomposed in

• a translation Inew : MLT (Σpar + Σnew) → MLT (Σpar) defining the new symbols (in
Σnew) and redefining computational types,

• translations Iop : MLT (Σop) → MLT (Σpar + Σop) redefining an old symbol op in
isolation (consistently with the redefinition of computational types), for each possible
type of symbol one may have in Σ.

Remark 4.8 An obvious question is: why do we not apply the incremental approach
directly to programming languages? One reason is that we take programming languages as
given, so we have no scope to make them suitable to an incremental approach. A deeper
reason is that programming languages cannot separate computational types from other type
constructors, so one could not delimit the part of the language which need to be redefined
as sharply as in metalanguages.

We exemplify the ideas above with a variety of translations for adding one computational
feature at a time and do the necessary redefinitions. For each translation we give

• LF-signature extensions Σpar and Σnew

• an LF-signature realization

ΣML + Σpar + ΣT + Σop + Σnew → ΣML + Σpar + ΣT + Σop

where Σop is the following LF-signature extension

A, B : Type

old op : ΠX : Type.A, (B → TX) → TX

we write op(a, f) for op(τ, a, f)

The realization leaves unchanged the symbols in ΣML + Σpar and the types A and B

in Σop, so they are not explicitly redefined. For simplicity the axiom part of signatures
is ignored.

4.3.1 Translation Ise for adding side-effects

• LF-signature Σpar for parameter symbols

states S : Type

• LF-signature Σnew for new symbols

lookup lkp : TS

update upd : S → T1

• LF-signature realization
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redefinition of computational types
T ∗X := S → T (X×S)

val∗(X, x) := λs : S.[〈x, s〉]
let∗(X, Y, f, c) := λs : S.let 〈x, s′〉⇐c(s) in f(x, s′)
definition of new symbols

lkp∗ := λs : S.[〈s, s〉]
upd∗(s) := λs′ : S.[〈∗, s〉]

redefinition of old operation
op∗(X, a, f) := λs : S.op(X×S, a, λb : B.f(b, s))

Remark 4.9 The operations lkd and upd do not fit (by a suitable instantiation of A and B)
the format for a redefinable operation, as specified in Σop. However, they can be massaged
to fit into the required format. In fact, given an operation of the form op′ : A → TB (like
lkd and upd) one can define an operation op : ΠX : Type.A, (B → TX) → TX of the right
format by taking op(X, a, f) = let b⇐op′(a) in f(b). Moreover, op′ can be recovered from
op as follows op′(a) = op(B, a, val(B)).

4.3.2 Translation Iex for adding exceptions

• LF-signature Σpar for parameter symbols

exceptions E : Type

• LF-signature Σnew for new symbols

raise raise : ΠX : Type.E → TX

handle handle : ΠX : Type.(E → TX), TX → TX

• LF-signature realization

redefinition of computational types
T ∗X := T (X + E)

val∗(X, x) := [in1(x)]
let∗(X, Y, f, c) := let u⇐c in (case u of x : X.f(x)|n : E.raise∗(Y, n))

definition of new symbols
raise∗(X, n) := [in2(n)]

handle∗(X, f, c) := let u⇐c in (case u of x : X.val∗(X, x)|n : E.f(n))
redefinition of old operation

op∗(X) := op(X + E)

Remark 4.10 In this translation we have improperly used the symbols to be realized on
the rhs of the realization. This could always be replaced with a proper realization, since we
have been careful enough to avoid circular definitions.

In this translation the redefinition of op is particularly simple, and one can show that
the same redefinition works for a more general type of operations, given by the following
LF-signature extension

F : Type → Type

old op : ΠX : Type.F (TX)

4.3.3 Translation Ico for adding complexity

• LF-signature Σpar for parameter symbols

monoid M : Type

1 : M

∗ : M, M → M

we write m ∗ n for ∗(m, n)
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• LF-signature Σnew for new symbols

cost δ : M → T1

• LF-signature realization

redefinition of computational types
T ∗X := T (X×M)

val∗(X, x) := [〈x, 1〉]
let∗(X, Y, f, c) := let 〈x, m〉⇐c in (let 〈y, n〉⇐f(x) in [〈y, m ∗ n〉])
definition of new symbols

δ∗(m) := [〈∗, m〉]
redefinition of old operation

op∗(X) := op(X×M)

Remark 4.11 We should have added to Σpar axioms saying that (M, 1, ∗) is a monoid. In
fact, without them one cannot proved that the redefinition of computational types satisfies
the axioms in ΣT .

4.3.4 Translation Icon for adding continuations

• LF-signature Σpar for parameter symbols

results R : Type

• LF-signature Σnew for new symbols

abort abort : ΠX : Type.R → TX

call-cc callcc : ΠX, Y : Type.((X → TY ) → TX) → TX

• LF-signature realization

redefinition of computational types
T ∗X := (X → TR) → TR

val∗(X, x) := λk.k(x)
let∗(X, Y, f, c) := λk.c(λx : X.f(x)k)
definition of new symbols

abort∗(X, r) := λk.[r]
callcc

∗(X, Y, f) := λk.f(λx : X.λk′.abort∗(X, kx))k
redefinition of old operation

op∗(X, a, f) := λk.op(R, a, λb : B.f(b)k)

Remark 4.12 The operation callcc does not fit the format for a redefinable operation, as
specified in Σop (nor the more general one). This translation is quite different from the
others, since computational types are used very little on the lhs of the realization.

4.3.5 Other Translations

One can consider also a translation Ires for adding resumptions, i.e. T ∗X := µX ′.T (X +
X ′). However, in the category of sets the type expression on the rhs does not have a
semantics, unless one makes strong restrictions about T . A proper treatment of resumptions
can be done only after extending the metalanguages MLT (Σ) with suitable machinery for
dealing with recursive definitions. We have not provided any translation for adding non-
determinism. In fact, it seems that this (and some other notions of computation) should be
used as starting point for the incremental approach.
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4.3.6 Incremental approach at work

Now that we have introduced several translations for adding one computational feature at
a time, one can compose them to obtain more complex translations and richer metalan-
guages MLT (Σ), as advocated by the incremental approach. We consider the realization
of computational types given by some of the composite translations, and indicate the kind
of programming languages for which they could be used:

• Iex(IseT )X = S → T ((X + E)×S)

this is suitable for imperative language with exceptions, like Standard ML

• Ise(IexT )X = S → T ((X×S) + E)

this is suitable for languages with recovery blocks, where an error is handled by
executing some alternative piece of code starting from a checkpoint state

• Ise(IconT )X = (X → S → TR) → S → TR

this is suitable for imperative languages with goto

• Icon(IseT )X = (X → S → T (R×S)) → S → T (R×S)

as above but with R replaced by R×S

• Ires(IseT )X = µX ′.S → T ((X + X ′)×S)

this is suitable for parallel imperative languages, when T is suitable for nondetermin-
istic languages (e.g when T is the finite powerset)

• Ise(IresT )X = S → µX ′.T ((X×S) + X ′)

this is suitable for transaction based languages, where a change of state can happen
only after the interaction with other processes has been successfully completed.

One can pursue further the analogies with formal software development. For instance,
an important issue that we have ignored so far is: what properties of the symbols defined by
a realization can be proved, knowing that the symbols used on the rhs of the realization have
certain properties? Of course, one wants to know that the redefinition of computational
types preserves at least the axioms given in ΣT . More interesting properties of translations
one can investigate are:

• Which equations for the new operations are validated by the translation?

For instance, Ise validates the following equations

upd(s); lkp = upd(s); [s]
upd(s); upd(s′) = upd(s′)
let s⇐lkp inupd(s) = [∗]
lkp; c = c

while Iex validates

let x⇐raise(n) in f(x) = raise(n)
handle(f, [x]) = [x]
handle(f, raise(n)) = f(n)
handle(raise, c) = c

handle(f2, handle(f1, c)) = handle(λn : E.handle(f2, f1(n)), c)

• Which equations for the old operation are preserved by the translation?

For instance, one can show that all translations preserve algebraic equations such
as commutativity, associativity and idempotency for a binary polymorphic operation
op : ΠX : Type.TX, TX → TX .
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The typed metalanguages considered so far do not allow for recursive definitions of programs
or types. The extensions we consider are inspired by Synthetic Domain Theory (SDT) and
Axiomatic Domain Theory (ADT). From SDT we take the idea that predomains should be
part of a set-theoretic universe with an expressive logic. From ADT we take equational
reasoning principles, which are valid in many categories used in Denotational Semantics,
such as the category of cpos. We have not taken the more traditional approach of LCF
(see [Sco93]), in which predomains come equipped with a partial order, because in some
semantic categories (e.g. complete extensional PERs and effective morphisms) the order
structure is not the most important one, while in others (e.g. in dI-domains and stable
functions) some of the LCF axioms fail. The axiomatization is structured as follows:

• the axioms clarifying the relation between predomains and the predicative universes
Typei;

• axioms for lifting as the classifier of partial computable functions, at this point we
introduce the derived notion of partial map, domain and strict map;

• axioms asserting that the category of predomains and partial maps is algebraically
compact (see [Fre92]), from which one derives the existence of a fix-type and a unique
uniform fix-point combinator. At this point, we mention an equivalent axiomatization,
based on the fix-type and existence of special invariant objects.

• revised axioms for computational types, which take into account recursive definitions.

5.1 The category of cpos

The category Cpo of cpos is the intended model of ADT, and we use it to exemplify the
ADT part of the axiomatization. In this section we recall the basic definitions, and the key
properties of Cpo and related categories.

• A cpo (also called predomain) is a poset X
¯

= (X,≤X) (the subscript is omitted
when clear from the context) s.t. every ω-chain 〈xi|i ∈ ω〉 has lub (least upper bound)
tixi, where

an ω-chain is a sequence 〈xi ∈ X |i ∈ ω〉 s.t. ∀i.xi ≤ xi+1, and

the lub of a sequence/set 〈xi ∈ X |i ∈ I〉 is the unique x ∈ X s.t.
∀y ∈ X.(∀i ∈ I.xi ≤ y) ↔ x ≤ y.

• A cppo (also called domain) is a cpo X
¯

with least element ⊥X , where

the least element of a cpo/poset X
¯

is the unique x ∈ X s.t. ∀y ∈ X.x ≤ y.

• A continuous function f : X
¯

→ Y
¯

between cpos is a function f : X → Y which
is monotonic, i.e. x1 ≤ x2 ⊃ f(x1) ≤ f(x2), and preserves lubs of ω-chains, i.e.
f(tixi) = tif(xi).

• An open subset X ′ of a cpo X
¯

is an upward closed subset of X , i.e. x1 ∈ X ′ and
x1 ≤X x2 imply x2 ∈ X ′, s.t. (tixi) ∈ X ′ implies ∃i.xi ∈ X ′ for any ω-chain
〈xi|i ∈ ω〉. We write X’

¯
for the cpo (X ′,≤X ∩(X ′×X ′)), i.e. X ′ with the induced

order.

• A partial continuous function f : X
¯

⇀ Y
¯

between cpos is a partial function f : X ⇀

Y s.t. its domain X ′ is an open subset of X
¯

and f is continuous on X’
¯

, i.e. f : X’
¯

→ Y
¯
.

• A strict function f : X
¯
◦→Y

¯
between cppos is a continuos function f : X

¯
→ Y

¯
which

preserves the least element, i.e. f(⊥) = ⊥.
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There are four categories of domains and predomains one could consider:

• Cpo is the category of predomains and continuous functions,

• Cpo⊥ is the category of predomains and partial continuous functions,

• Cppo is the category of domains and continuous functions,

• Cpo⊥ is the category of domains and strict functions.

Remark 5.1 Cpo is a biCCC (i.e. a cartesian closed category with finite coproducts)
with NNO and the category Set of sets is a full sub-biCCC with NNO of Cpo, therefore
it is the appropriate replacement for Set. Cppo is a full sub-CCC of Cpo and every
endomorphism has a fix point, therefore it is the right setting for a fix-point combinator.
Cpo⊥ is algebraically compact, therefore it is the right setting for solving domain equations.
Moreover, the inclusion of Cpo in Cpo⊥ is bijective on objects and reflects isomorphisms,
therefore a solution in Cpo⊥ to a domain equation is also a solution in Cpo. In fact, Cpo⊥

is isomorphic to Cpo⊥, but in other models of ADT the situation can be different.

5.2 The category of predomains

The main slogan of SDT is “predomains are sets”. In LF this can be formalized by adding
a new universe Pdom included in Type0 and closed under Π-types over Type0, i.e.

Π
Γ ` A1 : Type0 Γ, x : A1 ` A2 : Pdom

Γ ` (Πx : A1.A2) : Pdom

One could impose additional properties on Pdom:

• Pdom is a full reflective subcategory of Type0, this ensures that many universal
constructions in Pdom are like in Type0, and so “predomain constructions are set
constructions”;

• Pdom is an impredicative universe, i.e.

Π
Γ ` A1 : Typei Γ, x : A1 ` A2 : Pdom

Γ ` (Πx : A1.A2) : Pdom

this is satisfiable in realizability models, and it is particularly useful when modeling
programming languages with polymorphic types.

It is consistent to assume that Prop ⊂ Pdom, while Prop ∈ Pdom is inconsistent with
Pdom being an impredicative universe (and with other axioms for predomains introduced
in the sequel). The rest of the axiomatization of predomains is rather independent from
the above assumptions. This reflects the ADT approach, which tries to identify only the
essential structure and properties to give meaning to recursive definitions.

5.3 The classifier for partial computable functions

The axiomatization of predomains takes has sole additional structure a monad (L, η, letL)
on the category of predomains. Other structure introduced by the axiomatization consists
of universal constructions, and therefore unique up to isomorphism. Intuitively, Lτ is the
type of partial (deterministic) computations, which may either diverge or produce a value
in τ . The intended interpretation in Cpo is as follows:

• LX
¯

is lifting X
¯⊥ of X

¯
, i.e. the domain ({⊥} + X,≤) s.t. ⊥ < in(x) and in(x) ≤

in(x′) ↔ x ≤ x′, i.e. L adds an element ⊥ below X
¯
;
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• η : X
¯
→ LX

¯
is given by η(x) = in(x);

• letL : (LY
¯
)X¯×LX

¯
→ LY

¯
is given by letL(f,⊥) = ⊥ and letL(f, in(x)) = f(x).

Moreover, (L, η) classifies partial continuous maps, i.e. there is a one-one correspondence
between partial continuous maps f : X

¯
⇀ Y

¯
and continuous maps g : X

¯
→ LY

¯
given by

X
¯

g - LY
¯

X’
¯

∪

6

f
- Y

¯

6

η

• LF-signature extension ΣL for lifting

types
lifting L : Pdom → Pdom

operations
val η : ΠX : Pdom.X → LX

diverge ⊥ : ΠX : Pdom.LX

let letL : ΠX1, X2 : Pdom.(X1 → LX2), LX1 → LX2

same conventions as for computational types in Section 4.2
axioms
L.0 ΠX1, X2 : Pdom, x : X1, f : (X1 → LX2).let(f, η(x)) = f(x)
L.1 ΠX1, X2 : Pdom, f : (X1 → LX2).let(f,⊥) = ⊥
L.2 ΠX1, X2 : Pdom, f, g : (LX1 → X2).

f(⊥) = g(⊥), (Πx : X1.f(η(x)) = g(η(x))) → f = g

L.3 ΠX : Pdom, x, y : X.η(x) = η(y) → x = y

L.4 ΠX : Pdom, f, g : (LX → X).
(Πx : X1.f(η(x)) = x), (Πx : X1.g(η(x)) = x) → f = g

derived properties
ΠX : Pdom, c : LX.let(η, c) = c

ΠX1, X2, X3 : Pdom, c : LX1, f : (X1 → LX2), g : (X2 → LX3).
let(g, let(f, c)) = let(let(g) ◦ f, c)

Remark 5.2 We have not axiomatize that (L, η) is a partial map classifier, because it is
too clumsy. We will indicate explicitly, when this extra axiom would have been useful.

Some comments about the axioms. (L.0) is the only axiom for computational we need
to assume, the other are derivable. (L.1) says that ⊥ represents the diverging program.
(L.2) says that [η,⊥] : X + 1 → LX is epic in Pdom, but not in Type. (L.3) says that
η : X → LX is monic in Pdom as well as Type, this is true for any partial map classifier.
(L.4) says that there is at most one left inverse to η : X → LX , this axiom is convenient
but not essential.

In Cpo there are only three partial map classifiers: lifting X
¯⊥, topping X

¯
> and X

¯
+ 1.

Only the first two satisfy (L.4). In a preorder (viewed as a category) the only monad, which
satisfies (trivially) all the axioms, is the one mapping every object to the terminal one.

Various domain-theoretic notions can be defined solely in terms of L. When L is the
lifting monad in Cpo these notions agree with those introduced already for cpos, and
defined in terms of the partial order. Moreover, most of their properties, valid in Cpo, can
be derived formally from the axioms for L.
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• (X, αX : LX → X) (i.e. is a domain) iff

X
ηX - LX

@
@

@
@

@
X
?

αX

We often say that X is a domain, since by (L.4) the left inverse is unique, and write
Dom for the collection of domains.

• f : X ⇀ Y (i.e. is partial) iff f : X → LY , therefore predomains and partial maps
are the Kleisli category for the monad L.

• Given X and Y domains, f : X◦→Y (i.e. is strict) iff f(αX(⊥)) = αY (⊥).

The following assertions are derivable:

• ⊥ is the unique element satisfaying (L.1), i.e.

ΠX : Pdom, c : LX.(Πf : X → LX.let(f, c) = c) → c = ⊥

• If X and Y are domains and f : X◦→Y , then

L2X
LαX- LX

LX

µX

?

αX

- X
?

αX

LX
Lf - LY

X

αX

?

f
- Y

?

αY

therefore domains and strict maps are the category of Eilenberg-Moore algebras for
the monad L.

• If X � Y via (m, e), i.e. m; e = idX , and Y is a domain, then X is a domain and e is
strict.

• 1, Y1×Y2 and X1 → Y2 are domains, provided Y1 and Y2 are domains.

5.4 Algebraic compactness

The main contribution of Domain Theory to Denotational Semantics are general techniques
(applicable to a variety of categories) for giving semantics to recursive definitions. Recursive
definitions comes in two forms: x = f(x) where f is a function on a domain, or X ∼= FX

where F is a type constructor. The more traditional approach to recursive definitions
works in the context of Cpo-categories (see [SP82, Ten91]). More recently Freyd has iden-
tified algebraic compactness as the general abstract property to give semantics to recursive
definitions (see [Fre90, Fre92]).

Definition 5.3 (Freyd) Given a category C we say that:

• σF : F (µF ) → µF is a free algebra for the functor F : C → C, when σF is an initial
F -algebra and σ−1

F is a final F -coalgebra;

• C is algebraically complete iff every F : C → C has an initial algebra
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• C is algebraically cocomplete iff every F : C → C has a final coalgebra

• C is algebraically compact iff every F : C → C has a free algebra.

Remark 5.4 The quantification over every endofunctor should be understood 2-categorically.
Algebraic compactness implies that 0 ∼= 1, therefore it is equationally inconsistent with C
being cartesian closed. We will consider only covariant domain equations. However, one
can solve also domain equations of mixed variance, since Cop×C is algebraically compact
when C is.

Neither Set nor Cpo are algebraically complete (or cocomplete), even w.r.t. strong
functors, e.g. take FX = (X → 2) → 2. The category of PER (Partial Equivalence Rela-
tions over Kleene’s partial applicative structure) is algebraically complete and cocomplete
w.r.t. realizable functors.

T h

e category C⊥ of predomains and partial maps is algebraically compact w.r.t. Cpo-
functors, where F : C⊥ → C⊥ is a Cpo-functor iff its action on morphisms is given by
continuous maps F : (LY )X → L(FY )FX .

Proof This follows from a general result on Cpo-categories (see [SP82]). More explicitly,
the free F -algebra µF is given by the set (with the pointwise order)

{x ∈ ΠnL(F n0)|∀n : N.xn = let(F n!.xn+1) ∧ ∃n : N, x′ : F n0.xn = η(x′)}

where ! is the unique map in F0 → L0, i.e. !(x′) = ⊥.

The following axioms say that for each endofunctor F : CL → CL, F -algebra α : Fτ ⇀ τ

and F -coalgebra β : τ ⇀ Fτ exist unique α† and β† s.t.

F (µF )
F (α†)

⇀ Fτ

µF

σF

?

α†
⇀ τ

�

α and

Fτ
F (β†)

⇀ F (µF )

τ

β

�

β†

⇀ µF

6

σ−1
F

The precise axiomatization is quite complicated in comparison to the above description.
First, one has to represent by a suitable type EndoL the collection of endofunctors on the
Kleisli category CL, to do this one uses the cumulative hierarchy of universes. Then, one
has to introduce some common conventions for functors. Finally, one can introduce the
following LF-signature.

• LF-signature extension Σµν for free algebras
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types
free µ : EndoL → Pdom

operations
σ : ΠF : EndoL.F (µF ) → µF

σ−1 : ΠF : EndoL.µF → F (µF )
I : ΠF : EndoL, X : Pdom.(FX → LX), (µF ) → LX

J : ΠF : EndoL, X : Pdom.(X → L(FX)), X → L(µF )
we write α† for I(F, τ, α) and α† for J(F, τ, α)
axioms
iso ΠF : EndoL, x : F (µF ).σ−1

F (σF x) = x

ΠF : EndoL, x : µF.σF (σ−1
F x) = x

initial ΠF : EndoL, X : Pdom, α : (FX → LX), x : F (µF ).
α†(σF x) = letL(α, F (α†)x)

ΠF : EndoL, X : Pdom, α : (FX → LX), f : (µF → LX).
(Πx : F (µF ).letL(α, F (f)x)) → f = α†

final ΠF : EndoL, X : Pdom, β : (X → L(FX)), x : F (X).
letL(Lσ−1

F , β†x) = letL(F (β†), βx)
ΠF : EndoL, X : Pdom, β : (X → L(FX)), f : (X → L(µF )).

(Πx : X.letL(Fσ−1
F , fx) = letL(Ff, βx)) → f = β†

Remark 5.5 To be faithful to the definition of algebraic compactness, we should have
required σF to be an isomorphism in CL instead of C. In fact, when L is a partial map
classifier (we have not axiomatized this) one can show that: the inclusion of C in CL reflects
isomorphisms, and that an initial F -algebra in CL is initial also in C, when F cuts down to
C.

There are several functors on C, which can be extended to CL

• binary products, although τ1×τ2 is not the product of τ1 and τ2 in CL

• binary sums, and τ1 + τ2 is also the coproduct of τ1 and τ2 in CL

a restricted form of exponentiation, which suffices for most applications to Denotational
Semantics, is also available

Proposition 5.6 If T : CL → CL factors through CL, i.e. FX is a domain and Ff is (the
image of) a strict map, then T cuts down to C and

• the functor → T : Cop×C → C extend to a functor from Cop
L ×CL to CL which factors

through CL;

• the free T -algebra T (µT ) → µT in CL is also a free T -algebra in C.

Remark 5.7 One could have assumed algebraic compactness for CL, i.e. the category of
domains and strict maps, rather than for CL. In our opinion, it is preferable to use CL. In
fact, in CL one can define by recursion only domains (not predomains), and some additional
type constructors, i.e. ⊗ (smash product) and ◦→ (strict function spaces), for dealing with
CBV programming languages.

It is very cumbersome to work directly with functors. However, one can define once
for all functors corresponding to (some) type constructors, and then canonically associate
functors to type expressions, by exploiting the usual closure properties for functors. In
fact, most metalanguages for denotational semantics avoid the problem by working with a
restricted form of type expressions, which are guaranteed to have a corresponding functor.

At this point we can introduce some constructions with universal properties, whose
existence follows from algebraic compactness: the fix-type (introduce by [CP92]) and a
uniform fix-point combinator (see [Sim92]).
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5.4.1 The fix-type

The monad L extends to an endofunctor L′ on the category CL of predomains and partial
maps, namely L′f = Lf ; µY ; ηY whenever f : X → LY . Let σL : L(Ω) → Ω be the free
L′-algebra in CL, then one can prove that it is also the free L-algebra in C. In fact, [CP92]
introduces the equivalent (but apparently weaker) notion of fix-type, which is enough for
defining a uniform fix-point combinator and prove the consistent algebraic compactness of
CL and CL (see [Sim92]).

• LF-signature extension ΣΩ for the fix-type

types
fix-type Ω : Pdom

operations
σ : LΩ → Ω
IL : ΠX : Pdom.(LX → X), Ω → X

ω : Ω
we write α† for IL(X, α), 0

¯
for σL(⊥) and s

¯
for η; σL

axioms
Ω.1 ΠX : Pdom, α : (LX → X), c : LΩ.α†(σc) = α(L(α†)c)

ΠX : Pdom, α : (LX → X), f : (Ω → X).
(Πc : LΩ.f(σc) = α(L(f)c)) → f = α†

Ω.2 s
¯
(ω) = ω

Πx : LΩ.s
¯
(x) = x → x = ω

additional axioms
Ω.3 ΠX : Pdom, f, g : (Ω → X).(Πn : N.f(s

¯
n(0

¯
)) = g(s

¯
n(0

¯
))) → f = g

Remark 5.8 (Ω.1) says that σL is the initial L-algebra. (Ω.2) that there exists a unique
fix-point for s

¯
, or equivalently a unique L-coalgebra morphism from η : 1 → L1 to σ−1

L .
These axioms are enough to derive consistent algebraic compactness of CL, i.e. any
initial algebra (when it exists) is also a free algebra. Therefore, in the presence of a fix-type
algebraic completeness of CL implies algebraic compactness.

The axiom (Ω.3) involves a NNO N in Type, and it is not derivable from algebraic
compactness. It amounts to computational induction for the fix-point combinator (defined
in terms of the fix-type), which is a useful proof principle.

In Cpo (when L is lifting) the fix-type can be described as follows:

• Ω is the domain {0 < 1 < . . . < n < n + 1 < . . . ω}, i.e. the set of ordinals ≤ ω with
the natural order.

There is a one-one correspondence between continuous maps f : Ω → X
¯

and ω-chains
〈xi|i ∈ ω〉 given by f(n) = xn for n ∈ N and f(ω) = tixi.

• σ : LΩ → Ω is the map s.t. σ(⊥) = 0, σ(in(n)) = n + 1 and σ(in(ω)) = ω.

Moreover one has that 0
¯

= 0, s
¯
(n) = n + 1 and s

¯
(ω) = ω. Therefore, ω is the unique

fix-point of s
¯
, and the unique e : N → Ω s.t. e(n) = s

¯
n(0

¯
) is e(n) = n.

• Given α : LX
¯

→ X
¯
, the unique α† : Ω → X

¯
s.t.

LΩ
σ - Ω

LX
¯

L(α†)

?

α
- X

¯

?

α† is α†n =

s
¯
n
α(α(⊥)) and α†ω = tnα†n, where s

¯α(x) = α(ηx).
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• It is easy to see (because of continuity) that e : N → Ω is an epic in Cpo, so the
additional axiom (Ω.3) is valid.

When LX
¯

is X
¯
> or X

¯
+ 1 the initial L-algebra exists, but s

¯
has no fix-points.

5.4.2 The fix-point combinator

Following [CP92], we use the fix-type to define a canonical fix-point for a map f : X → X

over a domain X , namely fix(f) = f∗(ω), where f∗ : Ω → X is the unique map s.t.

LΩ
σL - Ω

LX

L(f∗)

?

Lf
- LX

αX

- X
?

f∗ i.e.

s
¯
n(0

¯
)

fn(αX (⊥))
?

f∗

• LF-signature extension Σfix for the fix-point combinator

operations
fix : ΠX : Dom.(X → X) → X

we write fixf for fix(τ, f)
axioms
fix-point ΠX : Dom, f : (X → X).fixf = f(fixf)
uniform ΠX1, X2 : Dom, f1 : (X1 → X1), f2 : (X2 → X2), h : (X1◦→X2).

f2 ◦ (h = h ◦ f1 → fixf2 = h(fixf1)
additional axioms
comp-ind ΠX1 : Dom, X2 : Pdom, f : (X1 → X1), g1, g2 : (X1 → X2).

(Πn : N.φ(fn(⊥))) → φ(fixf)
where φ(M) stands for g1(M) = g2(M) and ⊥ for ατ (⊥)

Bekic ΠX1, X2 : Dom, f : (X1×X2 → X1×X2).
(fixf) = 〈fix(F1), F2(fix(F1))〉

where F2(x1) = fix(λx2.π2(f(〈x1, x2〉)))
and F1(x1) = λx1.π1(f(〈x1, F2(x1)〉))

Remark 5.9 From the axioms for the fix-type one can prove that there exists a unique fix
satisfying (fix-point) and (uniform).

(Bekic) involves products in Pdom and follows from algebraic compactness. Basically,
it says that to solve a (finite) system of recursive equations, it does not matter in which
order one constructs a solution, the result is anyway the same.

(comp-ind) follows from (Ω.3) and closure of Pdom under equalizers computed in Type

(which is true when Pdom is a full reflective sub-category of Type). However a weaker
form of induction, called Scott’s induction

φ(⊥), (Πx : φ(x) → φ(fx)) → φ(fixf)

follows from the axioms for the fix-type (and the assumption about equalizers).

In Cpo the fix-point combinator obtained from the fix-type Ω coincides with the least
prefix-point combinator.

Definition 5.10 (Least prefix-point point) Given a domain X
¯

and a map f : X
¯
→ X

¯
,

the least x s.t. f(x) ≤ x exists, and it is given by fix(f)
∆
= tif

i(⊥).
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5.4.3 Special invariant objects

Instead of assuming algebraic compactness (of CL) and then deriving a fix-type and fix-point
combinator, we can proceed in the other way. More precisely, first assume a fix-type, which
is enough to prove that there exists a unique uniform fix-point combinator, then assume the
existence of special invariant objects.

• LF-signature extension Σinv for special invariant objects

types
invariant µ : EndoL → Pdom

operations
σ : ΠF : EndoL.F (µF ) → µF

σ−1 : ΠF : EndoL.µF → F (µF )
axioms
iso ΠF : EndoL, x : µF.σ(σ−1x) = x

ΠF : EndoL, x : F (µF ).σ−1(σx) = x

special ΠF : EndoL.fix(λf : µF → L(µF ).(Lσ) ◦ (Ff) ◦ σ−1) = η

Remark 5.11 The definition of special invariant object is taken from [Sim92] (which dif-
fers from Freyd’s definition). In the presence of a fix-type, one can prove that for any
endofunctor F over CL an isomorphism σ : FX → X is a free F -algebra (a global prop-
erty) iff it is a special invariant object (a local property). This correspondence generalizes
the equivalence, established in [SP82], between O-limits and ω-colimits for an ω-chain of
embeddings.

5.5 Computational types revised

Once the monad L has been introduced, it is natural to revise the axioms for computational
types given in Section 4.2. More specifically, T should act on predomains rather then
arbitrary types, moreover one wants the possibility of defining programs by recursion and
to use T in recursive domain equations.

• LF-signature extension ΣT for revised computational types

types
T T : Pdom → Pdom

operations
val valT : ΠX : Pdom.X → TX

let letT : ΠX1, X2 : Pdom.(X1 → TX2), TX1 → TX2

dom αT : ΠX : Pdom.L(TX) → TX

same conventions as in Section 4.2
axioms

ΠX1, X2 : Pdom, x : X1, f : (X1 → TX2).let(f, val(x)) = f(x)
ΠX : Pdom, c : TX.let(val, c) = c

ΠX1, X2, X3 : Pdom, c : TX1, f : (X1 → TX2), g : (X2 → TX3).
let(g, let(f, c)) = let(let(g) ◦ f, c)

T.1 ΠX : Pdom, c : TX.α(η(c)) = c

T.2 ΠX1, X2 : Pdom, f : (X1 → TX2).let(f,⊥) = ⊥
where ⊥ stands for ατ (⊥)

The first three axioms are the one already introduced in Section 4.2. (T.1) says that TX

is a domain, therefore it has a fix-point combinator (because of the fix-type), which we can
be use to define programs by recursion. (T.2) says that let(f) : TX → TY is strict, this
has two important consequences.
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Proposition 5.12 Let inX be LX ◦
L(val)

> L(TX) ◦
α

> TX, then

• in : LX◦→TX is the unique strict monad morphism from L to T , i.e.
in([x]L) = [x]T and in(letL x⇐c in f(x)) = letT x⇐in(c) in in(fx)

• the functor T : C → C extends to an endofunctor T ′ on CL which factors through CL,
namely T ′f is (the image of)

TX ◦
Tf

> T (LY ) ◦
T (in)

> T 2Y ◦
µ

> TY

The second consequence of (T.2) says not only that we can use T in recursive domain
equations, but we can also exponentiate it (see Proposition 5.6).

5.6 Structuring and incremental approach revised

At this point we can replace the metalanguages MLT (Σ) introduced in Section 4.2 with
more expressive ones, which distinguish between predomains Pdom and type Type, and
moreover incorporate the monad L, algebraic compactness of CL, the fix-type and fix-point
combinator, and the revised LF-signature for computational types. Therefore, one can
give semantics to more realistic programming languages via translation into these metalan-
guages. On the other hand, the more complex LF-signature for computational types requires
only a minor overhead to the incremental approach, since we have to check two additional
axioms (the structure αT is unique). One can easily check that all translations given in
Section 4.3 preserve these two axioms.

As a sample application, we define a translation Ires for adding resumptions, which
uses recursive types, and show a better way to give semantics to the parallel language by
translating it into a metalanguage with a fix-point combinator.

5.6.1 Translation for adding resumptions

In this section we define a translation parameterized w.r.t. an endofunctor H on C (not
necessarily on CL). To deal with the simple parallel language introduced in Section 1 the
parameter H should be instantiated to the identity functor. However, different instances of
H may be needed for more complex parallel languages. We proceed as in Section 4.3, by
given LF-signature extensions Σpar and Σnew, and an LF-signature realization

ΣML + Σpar + ΣT + Σop + Σnew → ΣML + Σpar + ΣT + Σop

but now we should use the variant of LF incorporating predomains, ΣML should be Σeq +
Σ× + Σ+ + ΣN + ΣL + Σµν and ΣT is the LF-signature of Section 5.5.

• LF-signature Σpar for parameter symbols

resumptions H : Endo

where Endo is the type of endofunctors on C

• LF-signature Σnew for new symbols

step S : ΠX : Pdom.H(TX) → TX

case C : ΠX, Y : Pdom.(X → TY ), (H(TX) → TY ), TX → TY

• LF-signature realization
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redefinition of computational types
T ∗X := T (µ(GX))

where GX : EndoL is GX (X ′) = X + H(TX ′)
val∗(X, x) := [in1(x)]

let∗(X, Y, f) := fix( λf ′ : T ∗X → T ∗Y.

C∗(X, Y, f, λx′ : H(T ∗X).S∗(Y, H(f ′)x′)) )
definition of new symbols

S∗(X, x′) := [in2(x
′)]

C∗(X, Y, f, g, c) := let u⇐c in (case u of x : X.val∗(x)|x′ : H(TX).g(x′))
redefinition of old operation

op∗(X) := op(X + H(T ∗X))

In the definition above we have been somewhat imprecise, in order to keep the translation
concise and readable:

• the exact definition of the endofunctor Gτ , where τ : Pdom, is

Gτ = CL

T ′

- C
τ + H- C ⊂ - CL

where T ′ was defined in Proposition 5.12

• we have not explicitly written the isomorphisms σGτ
: Gτ (µGτ ) → µGτ nor their

inverses.

Remark 5.13 The translation Iex for adding exceptions can be viewed as an instance of
Ires obtained by instantiating H to a constant functor.

C(f, g, c) performs a case analysis on the first step of c: when the result is in X it
applies f , when the result is in H(T ∗X) it applies g. When H(X ′) = E the operation
handle(X, f, c) defined by Iex can be expressed in terms of C as C(X, X, val∗, f, c).

The definition of let∗(f) uses the fact that T ∗X → T ∗Y is a domain (as T ∗Y is), and
so it has a fix-point combinator.

Like for the other translations, one can investigate the equations for the new operations
validated by the translation. For convenience, we divide the equations in two groups.

• Rewriting rules for C

C(f, g, [x]) = f(x)
C(f, g, S(c)) = g(c)
C(f2, g2, C(f1, g1, c)) = C(C(f2, g2) ◦ f1, C(f2, g2) ◦ g1, c)

these follow from the equational axioms for computational types

• special invariant property of T

ΠX : Pdom.fix(λh : TX → TX.C(val, S ◦ (Hh))) = (λc : TX.c)

This follows from the special invariant property for µ(Gτ ). Using this property in
combination with computational induction, one can prove that an equation φ(c) ≡
(g1(c) = g2(c)) is true for any c : TX by proving (e.g. by induction on N) that

Πn : N.φ(cn), where cn ∆
= Φn(λc : TX.⊥) and Φ(h)

∆
= C(val, S ◦ (Hh)).

A consequence of this property (and the rewriting rules for C) is existence and
uniqueness of h : TX → TY s.t. h = C(f, g ◦ (Hh)), where f : X → TY and
g : H(TY ) → TY are fixed.

In particular, let(f) is the unique h s.t. h = C(f, S ◦ (Hh)), and λc : TX.c is the
unique h s.t. h = C(val, S ◦ (Hh)).
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Besides studying which equations for the old operation are preserved by the translation,
one can also study whether equations for the old operation implies new equations involving
the old operation and the new operations. For instance one can easily prove that:

• If before translation op distributes over let, i.e.

ΠX, Y : Pdom, a : A, h : (B → TX), f : (X → TY ).
let(f, op(a, h)) = op(a, λb : B.let(f, hb))

then after the Ires translation op distributes over C, i.e.

ΠX, Y : Pdom, a : A, h : (B → TX), f : (X → TY ), g : (H(TX) → TY ).
C(f, g, op(a, h)) = op(a, λb : B.C(f, g, hb))

5.6.2 Revised CBV translation of Σfun + Σpar

In Section 4.2 we gave a translation of the parallel language into a fairly ad hoc metalanguage
MLT (Σ), where Σ was the LF-signature:

one-step δ : ΠX : Pdom.TX → TX

or-parallelism por : ΠX : Pdom.TX, TX → TX

and-parallelism pand : ΠX1, X2 : Pdom.TX1, TX2 → T (X1×X2)

This was not very satisfactory, because most of the operations in Σ are not obtained via
the incremental approach. We now show that such operations are definable (by making an
essential use of the fix-point combinator) from non-deterministic choice and the operations
introduced by the translation Ires for adding resumptions when HX ′ = X ′:

choice or : ΠX : Pdom.TX, TX → TX

step S : ΠX : Pdom.TX → TX

case C : ΠX, Y : Pdom.(X → TY ), (TX → TY ), TX → TY

The translation makes essential use of the fix-point combinator:

δ(X)
∆
= S(X)

por(X)
∆
= fix( λh : TX, TX → TX.λc1, c2 : TX.

or (C(val, λc′1.S(h(c′1, c2)), c1),
C(val, λc′2.S(h(c1, c

′
2)), c2)) )

pand(X1, X2)
∆
= fix( λh : TX1, TX2 → T (X1×X2).λc1 : TX1, c2 : TX2.

or (C(λx1.S(let x2⇐c2 in [〈x1, x2〉]), λc′1.S(h(c′1, c2)), c1),
C(λx2.S(let x1⇐c1 in [〈x1, x2〉]), λc′2.S(h(c1, c

′
2)), c2)) )

Remark 5.14 The computations por(c1, c2) and pand(c1, c2) are quite similar. In both
cases the computations c1 and c2 are interleaved. However, por(c1, c2) may terminate as
soon as one of the ci has terminated, while pand(c1, c2) terminates only when both ci have
terminated.

One can derive various expected properties of por and pand from the properties of S and
C validated by the translation for adding resumptions and the following properties of or:

• algebraic properties

or(c1, or(c2, c3)) = or(or(c1 , c2), c3)
or(c1, c2) = or(c2, c1)
or(c, c) = c

• distributivity

C(f, g, or(c1, c2)) = or(C(f, g, c1), C(f, g, c2))
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We exemplify a fairly general technique to prove algebraic properties of these and other
derived operations, by proving associativity of por:

• first prove, by induction on m + n + p, that

ΠX : Pdom.c1, c2, c3 : TX.por(cm
1 , por(cn

2 , c
p
3)) = por(por(cm

1 , cn
2 ), cp

3)

• then, by repeatedly applying computational induction, conclude that

ΠX : Pdom.c1, c2, c3 : TX.por(c1, por(c2, c3)) = por(por(c1 , c2), c3)

Remark 5.15 The operations S and C, in combination with the fix-point operator, can
be used to define many other forms of parallel composition or other kinds of combinators.
Moreover, by instantiating H with different functors one can deal with other (parallel)
languages, e.g.:

• HX ′ = L×X ′ is suitable for processes which can only synchronize with signals in L

(like pure CCS);

• HX ′ = X ′+L×(V → X ′)+L×V ×X ′ is suitable for processes which can communicate
values in V using channels in L;

• HX ′ = I → (O×X ′) is suitable for I/O-automata, with input alphabet I and output
alphabet O.
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