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Abstract

Mobility seems to be a fundamental aspect for global computing, however it gives
rise to a lot of relevant security problems. We address the problem of protect-
ing hosts from attacks or misbehavior of mobile processes. We propose to move
process abstractions, i.e. process parameterized with respect to the operations hav-
ing a local meaning, instead of processes ready-to-run or active processes (agents).
Moreover, we exploit global values and types to ensure that operations having a
local meaning are used only locally. Our approach is general and could be applied
to every language/system for programming and coordinating network services that
permits remote communications with transmission of code fragments. We illustrate
our approach by using the Klaim language, where the network services are codified
by means of tuples inside network service repositories, as, e.g., in SUN JavaSpace
and IBM TSpace.

1 Introduction

In global computing, process mobility seems to be a fundamental aspect, how-
ever it gives rise to a lot of relevant security problems. For instance, mobile
processes threaten host machines with theft or misuse of system resources (e.g.
information, money, cpu time, disk space, bandwidth). This may degrade the
performance of hosts or compromise their security and reputation. Recipro-
cally, host machines threaten mobile processes with theft of resources (e.g.
information) and reputation (e.g. the host may implant its own tasks into the
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process for execution at other hosts) and with the possibility of killing the
processes.

In this paper, we address the problem of protecting hosts from attacks or mis-
behavior of mobile processes. To overcome this problem, different solutions
have been proposed in the literature that are based on, e.g., type systems
[4,13,20,8,9], information flow analysis [12,3,14] and proof carrying code [19].
To have a fine-grain control over the behavior of mobile processes and to di-
rectly program and manage security policies, we propose to move process ab-
stractions, i.e. process code which abstracts from local operations, instead of
processes ready-to-run or active processes. To complete a migration, a commu-
nication between the source and the target hosts must first take place. Then,
the target host can instantiate the received process abstraction, by defining all
potentially dangerous operations, and can wrap the resulting process within a
customized environment that takes care of process execution. In other words,
depending on the trustness of the code received, the local operations over
which the code is abstracted may be instantiated with implementations of
local operations at the right security level thus avoiding undesired accesses to
local resources.

Our approach is general and could be applied to every language/system for
programming and coordinating network services that permits remote com-
munications with transmission of code fragments. However, to put it in a
concrete form, in this paper we will apply our approach to a specific language.
We will consider the language Klaim 1 (Kernel Language for Agents Inter-
action and Mobility), an experimental kernel language, inspired by the Linda
coordination model [11,5], specifically designed to model and to program dis-
tributed concurrent applications which exploit code mobility. Hence, following
the Klaim approach, we assume that network services are codified by means
of tuples inside network service repositories, i.e. multiple distributed tuple
spaces. We remark that the Jini [1] infrastructure offers similar mechanisms
(JavaSpace [21]) for matching client requests and services.

The Klaim programming paradigm identifies processes as the primary units of
computation, and nets, i.e. collections of nodes, as the coordinators of process
activities. Each node has an address, called locality, and consists of a pro-
cess component and a tuple space component. Processes are distributed over
nodes and asynchronously communicate via tuple spaces. Klaim processes
may perform three different kinds of basic operations: accessing (possibly re-
mote) tuple spaces, sending (possibly remotely) processes for execution and
creating new nodes. In particular, mobility can be performed in two differ-
ent ways. The (asynchronous) migration primitive eval allows a process to
autonomously move to another node that has no control over the incoming
mobile process. In addition, processes can be exchanged in communications

1 The requirements and the design philosophy of the language are presented in [7]; Klaim
prototype implementation is described in [2].
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by using the primitives out and in/read. This fosters synchronous mobil-
ity because the receiving process has a certain amount of control over the
execution of the incoming process.

In this paper, we introduce HotKlaim (for Higher-order typed Klaim), a
variant of Klaim that does not provide the eval primitive while provides a
kind of data which can embody a process, namely process abstraction. Process
abstraction is useful for parameterization with respect to local operations. To
express process abstractions in HotKlaim the full power of system F [10] is
needed, while 2-types, similar to those in λ2 [6], are used to classify global
values that can freely move over the network.

We present a simplified version of HotKlaim, where pattern matching is
replaced by lambda-abstraction and there is only one operation to read val-
ues from tuple spaces, which suffices to illustrate the key idea of the paper.
However, in informal examples we make use of pattern matching and other
constructs typical of functional languages.

The rest of the paper is organized as follows: Section 2 introduces the syn-
tax of HotKlaim, Section 3 gives the type system, Section 4 defines the
operational semantics, Section 5 presents the type safety result (proofs are
omitted), and Section 6 illustrates a simple example of mobile code applica-
tion in HotKlaim. A few comparisons with related work are in Section 7.

2 HotKlaim

Throughout this paper we will use the following notations and conventions.

• m, n range over the set N of natural numbers, and
m ∈ N is identified with the set {i ∈ N|i < m} of its predecessors;

• e denotes a sequence of terms and |e| indicates the number of its elements;

• if Γ1 and Γ2 are sequences of declarations, then Γ1, Γ2 denotes their con-
catenation (and similarly for sequences of terms);

• µ(A) is the set of multisets with elements in A, and ] is multiset union;

• e2[x: = e1] denotes substitution of e1 for x in e2 (modulo alpha-conversion).

HotKlaim is a kernel functional language based on system F [10], extended
with the modal types of λ2 [6] and Klaim’s primitives for concurrency, com-
munication and dynamic creation of new sites. The syntax uses a few auxiliary
syntactic categories:

• a numerable set XT of type variables, ranged over by X,Y, . . .;

• a numerable set X of term variables, ranged over by x, y, . . .;

• a numerable set L of localities, ranged over by l, l1, . . .;

• a finite set O = {nil, spawn, new, input, output} of local operations, ranged
over by o.
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• Types t ∈ T: : = X | L | P | t1 → t2 | (ti|i ∈ m) | 2t | ∀X: k.t with k = g, l

Fully global types g ∈ G: : = L | (gi|i ∈ m) | 2t

• Terms e ∈ E: : = x | l | λx: t: k.e | e1 e2 | fix x: t: k.e | (ei|i ∈ m) | πi(e)

| ΛX: k.e | e[t] | nil | o[t](e)

where |t| = #to and |e| = #o > 0

• Signatures Σ ⊆fin L

• Contexts ∆, Γ ∈ Ctx: : = ∅ | Γ, X: k | Γ, x: t: k

Fig. 1. Syntax for types and terms.

Local operations take a fixed number of type- and term-operands

• process: nil, spawn(e)

• new locality: new(e)

• communication: input[t](e1, e2), output[t](e1, e2)

#to and #o will indicate the type- and term-arity of o. The local operations
input and output operate over tuple spaces, new creates a new site, spawn
(locally) activates a new thread of execution and, finally, nil stands for the
terminated process.

The syntax of HotKlaim is given in Figure 1. The definition of the set FV( )
of free variables is as expected, e.g. FV(λx: t: k.e) = FV(t) ∪ (FV(e)− {x}).
In HotKlaim there are two kinds of types (and terms), global- and local-
types (terms), classified by g and l respectively. Contexts declare the kind of
type- and term-variables. L is the global-type of localities, and P is the local-
type of processes. A global-type does not contain P nor free type variables
declared local. A global-term, in addition, does not contain local operations
o, nor free term variables declared local.

3 Type system

The type system derives judgments of the following forms

• Σ; Γ ` , i.e. Γ is a well-formed context

• Σ; Γ ` t, i.e. t is a well-formed type

• Σ; Γ ` e: t, i.e. e is a well-formed term of type t.

We will use Σ; Γ ` J to indicate any of the judgements above. Moreover, we
will use Γg to indicate the context Γ where local declarations, i.e. those of the
form X: l and x: t: l, have been removed. Finally, we will use also the derived
judgement Σ; Γg `g J to stand for Σ; Γg ` J with the additional requirement
that P and the local operation o are not used in J .
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The typing rules are given in Figure 2 (in some rules, when clear from the
context, the premise Σ; Γ ` is removed). Most of the rules are standard. The
typing rules for the local operations o are simpler to understand by viewing o
as a higher-order polymorphic constants:

• nil: tnil[P ]
∆
= P

• spawn: tspawn[P ]
∆
= (() → P ) → ()

• new: tnew[P ]
∆
= (L → P ) → L

• input: tinput[P ]
∆
= ∀X: g.(L, 2X → P ) → P

• output: toutput[P ]
∆
= ∀X: g.(L, 2X) → ()

For instance, the polymorphic type ∀X: g.(L, 2X → P ) → P abstracts over
the type X of global values (which can be read from tuple spaces), and states
that input takes as parameters a locality (of type L) and a continuation func-
tion (of type 2X → P ) that given a global value yields the continuation
process. Hence, the input operation returns the continuation process.

We can now comment on the typing rules in Figure 2. The bound variable in
λx: t: k.e and fix x: t: k.e can be declared either local or global, depending on
whether k is l or g. When k = l the typing rules are the standard ones.

The formation rule for 2t requires t to be a global-type. The introduction and
elimination rules for 2t say that 2t is a subset of t (i.e. it classifies a subset
of the terms classified by t), and that 2t is equal to t (i.e. 2t and t classify
the same set of terms) when t ∈ G. A key property of 2t is that its values are
exactly the global values of type t.

Only values of type 2t can be exchanged with the input and output operations.
In particular, one cannot exchange processes. However, one can exchange

global values of type Code
∆≡ ∀X: l.(to[X]|o ∈ O) → X. Intuitively, Code

is the type of process code abstracted over the local type P and the local
operations in O. Its definition mimics that given in [17,18] for monadic code.
When a global value of type Code has been read, it can be turned into a
process by applying it to the local type P and the tuple (o|o ∈ O) of local
operations.

Lemma 3.1 (Substitution) The following rules are admissible (cf [6]):

Σ; Γg
1 `g t Σ; Γ1, X: g, Γ2 ` J

Σ; Γ1, Γ2[X: = t] ` J [X: = t]

Σ; Γg
1 `g e: t Σ; Γ1, x: t: g, Γ2 ` J

Σ; Γ1, Γ2 ` J [x: = e]

Σ; Γ1 ` t Σ; Γ1, X: l, Γ2 ` J

Σ; Γ1, Γ2[X: = t] ` J [X: = t]

Σ; Γ1 ` e: t Σ; Γ1, x: t: l, Γ2 ` J

Σ; Γ1, Γ2 ` J [x: = e]
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Σ; Γ `

Σ; Γ, X: k `
X fresh

Σ; Γ ` t

Σ; Γ, x: t: l `
x fresh

Σ; Γg `g t

Σ; Γ, x: t: g `
x fresh

Σ; Γ ` t1 Σ; Γ ` t2

Σ; Γ ` t1 → t2

Σ; Γ ` ti i ∈ m

Σ; Γ ` (ti|i ∈ m)

Σ; Γg `g t

Σ; Γ ` 2t

Σ; Γ, X: k ` t

Σ; Γ ` ∀X: k.t

Σ; Γ `

Σ; Γ ` L

Σ; Γ `

Σ; Γ ` P

Σ; Γ `

Σ; Γ ` l: L
l ∈ Σ

Σ; Γ `

Σ; Γ ` x: t
x: t: k ∈ Γ

Σ; Γ `

Σ; Γ ` nil: P

Σ; Γ ` e: () → P

Σ; Γ ` spawn(e): ()

Σ; Γ ` e: L → P

Σ; Γ ` new(e): L

Σ; Γg `g t Σ; Γ ` e1: L, e2: 2t → P

Σ; Γ ` input[t](e1, e2): P

Σ; Γg `g t Σ; Γ ` e1: L, e2: 2t

Σ; Γ ` output[t](e1, e2): ()

Σ; Γ, x: t1: l ` e: t2

Σ; Γ ` (λx: t1: l.e): t1 → t2

Σ; Γ, x: t1: g ` e: t2

Σ; Γ ` (λx: t1: g.e): 2t1 → t2

Σ; Γ ` e1: t1 → t2 ∧ e2: t1

Σ; Γ ` e1 e2: t2

Σ; Γ, x: t: l ` e: t

Σ; Γ ` fix x: t: l.e: t

Σ; Γg, x: t: g `g e: t

Σ; Γ ` fix x: t: g.e: 2t

Σ; Γ ` ei: ti i ∈ m

Σ; Γ ` (ei|i ∈ m): (ti|i ∈ m)

Σ; Γ ` e: (ti|i ∈ m)

Σ; Γ ` πi(e): ti

i ∈ m

Σ; Γg `g e: t

Σ; Γ ` e: 2t

Σ; Γ ` e: g

Σ; Γ ` e: 2g

Σ; Γ ` e: 2t

Σ; Γ ` e: t

Σ; Γ, X: k ` e: t

Σ; Γ ` (ΛX: k.e):∀X: k.t

Σ; Γ ` e:∀X: l.t2 Σ; Γ ` t1

Σ; Γ ` e[t1]: t2[X: = t1]

Σ; Γ ` e:∀X: g.t2 Σ; Γg `g t1

Σ; Γ ` e[t1]: t2[X: = t1]

Fig. 2. Type System.

4 Operational semantics

An HotKlaim net N ∈ Net
∆
= µ(L× E) is a multiset of pairs (l: e) consisting

of a locality l (node name) and a term e (either a process running under
the authority of that node or a value in the tuple space of that node). The
dynamics of a net is given by a transition relation =⇒⊂ Net× (Net + {err}),
written N =⇒ N ′ or N =⇒ err, defined in terms of a transition relation

> ⊂ (Sig × E × A × E) + (Sig × E × {err}), written Σ; e
a

> e′ or
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• Values v ∈ V: : = l | λx: t: k.e | (vi|i ∈ m) | ΛX: k.e

• Redexes r ∈ R: : = x | v1 v2 | fix x: t: k.e | πi(v) | v[t]

| o[t](v) where |t| = #to and |v| = #o > 0

• Eval. contexts E ∈ EC: : = [ ] | E e | v E | (v, E, e) | πi(E) | E [t]

| o[t](v, E, e) where |t| = #to and |v, e|+ 1 = #o

Fig. 3. Values, redexes and evaluation contexts.

Σ; e > err, describing the potential interactions of a term with the rest of
the net. The set A of potential interactions is

a ∈ A: : = τ | i(v)@l | o(v)@l | s(e) | l: e

For instance, i(v)@l is the capability of inputing a value v from the tuple space
at locality l, while l: e is the (non-blocking) action of creating a new locality
l running process e.

We follow [22] and define > in terms of redexes and evaluation contexts

(see Table 3), and a reduction > ⊂ (Sig× R× A× E) + (Sig× R× {err})
for redexes given in Figure 4.

The reduction makes use of the signature to check whether there is a node
with name l in the net. The reduction for input[t](l, v2) corresponds to an
early semantics (according to the terminology used for the π-calculus [16]).
Following the Klaim type system [8,9], input performs run-time type checking
with the additional requirement that the input value must be global.

We can now define the transition relation > as the least relation satisfying

the following rules:

Σ; r
a
> e

Σ; E[r]
a
> E[e]

Σ; r > err

Σ; E[r] > err

Finally, the net transition relation =⇒ is given in Figure 5. As in Linda-like
languages, input removes one matching value chosen non-deterministically
(since ] is commutative), and such value could be in the same locality of the
process performing the input operation (and similarly for output).

Lemma 4.1 (Basic properties) A value v ∈ V cannot be of the form E[r].
For any e ∈ E there is at most one E ∈ EC and one r ∈ R s.t. e ≡ E[r],
moreover FV(r) ⊆ FV(e).

Notice that nil is not a value but is inactive.

Lemma 4.2 (Replacement for Evaluation Contexts)
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• x > err

• (λx: t: k.e) v2
τ
> e[x: = v2] otherwise v1 v2 > err

• fix x: t: k.e
τ
> e[x: = fix x: t: k.e]

• πi(vi|i ∈ m)
τ
> vi when i ∈ m otherwise πi(v) > err

• (ΛX: k.e)[t]
τ
> e[X: = t] otherwise v[t] > err

• spawn(v)
s(v())

> ()

• Σ; new(v)
l:(v l)

> l provided l 6∈ Σ

• Σ; input[t](l, v2)
i(v)@l

> v2 v when l ∈ Σ and Σ; ∅ `g v: t

Σ; input[t](v1, v2) > err when v1 6∈ Σ

• Σ; output[t](l, v)
o(v)@l

> () when l ∈ Σ

Σ; output[t](v1, v) > err when v1 6∈ Σ

Fig. 4. Reduction relation. Σ is left implicit when irrelevant.

Σ(N) ∪ {l}; e τ
> e′

N ] (l: e) =⇒ N ] (l: e′)

Σ(N) ∪ {l}; e > err

N ] (l: e) =⇒ err

Σ(N) ∪ {l}; e s(e1)
> e2

N ] (l: e) =⇒ N ] (l: e1) ] (l: e2)

Σ(N) ∪ {l1}; e
l2:e2

> e1

N ] (l1: e) =⇒ N ] (l1: e1) ] (l2: e2)

Σ(N) ∪ {l1, l2}; e
i(v)@l2

> e′

N ] (l1: e) ] (l2: v) =⇒ N ] (l1: e
′) ] (l2: nil)

Σ(N) ∪ {l1}; e
o(v)@l2

> e′

N ] (l1: e) =⇒ N ] (l1: e
′) ] (l2: v)

Fig. 5. Net transition relation. Σ(N) is the signature {l|∃e.(l: e) ∈ N}.

If Σ; Γ ` E[e]: t with E ∈ EC, then there exists t1 such that

• Σ; Γ ` e: t1
• Σ′; Γ ` e′: t1 implies Σ′; Γ ` E[e′]: t for any Σ′ ⊇ Σ and e′
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5 Type Safety

To state the type safety property we define when a net is well-formed.

Definition 5.1 A net N is well-formed if, and only if, for every (l: e) ∈ N

either Σ(N); ∅ ` e: P , or e ∈ V and Σ(N); ∅ ` e: g for some g ∈ G
(i.e. every e in N is either a local process or a global value)

where Σ(N) is the signature {l|∃e.(l: e) ∈ N}.

The following Lemma captures a key property of 2-types.

Lemma 5.2 If Σ; Γ ` v: g, then Σ; Γg `g v: g.

Proof. By induction on the derivation of Σ; Γ ` v: g 2

The following Lemmas express type safety for > and > .

Lemma 5.3 (Safety for > ) If Σ; ∅ ` r: t, then

• Σ; r 6 > err

• Σ; r
τ
> e′ implies Σ; ∅ ` e′: t

• Σ; r
s(e2)

> e1 implies Σ; ∅ ` e2: P and Σ; ∅ ` e1: t

• Σ; r
l:e2

> e1 implies l 6∈ Σ, Σ, l; ∅ ` e2: P and Σ, l; ∅ ` e1: t

• Σ; r
i(v)@l

> e′ implies l ∈ Σ, Σ; ∅ ` v: g for some g ∈ G and Σ; ∅ ` e′: t

• Σ; r
o(v)@l

> e′ implies l ∈ Σ, Σ; ∅ ` v: g for some g ∈ G and Σ; ∅ ` e′: t

Proof. By case analysis on the possible reductions 2

Lemma 5.4 (Safety for > ) If Σ; ∅ ` e: t, then

• Σ; e 6 > err

• Σ; e
τ
> e′ implies Σ; ∅ ` e′: t

• Σ; e
s(e2)

> e1 implies Σ; ∅ ` e2: P and Σ; ∅ ` e1: t

• Σ; e
l:e2

> e1 implies l 6∈ Σ, Σ, l; ∅ ` e2: P and Σ, l; ∅ ` e1: t

• Σ; e
i(v)@l

> e′ implies l ∈ Σ, Σ; ∅ ` v: g for some g ∈ G and Σ; ∅ ` e′: t

• Σ; e
o(v)@l

> e′ implies l ∈ Σ, Σ; ∅ ` v: g for some g ∈ G and Σ; ∅ ` e′: t

Proof. If e is active, then it must be of the form E[r]. By Lemma 4.2 there

exists a t1 s.t. Σ; ∅ ` r: t1, then one can exploit Safety for > 2

Theorem 5.5 (Type Safety) Let N be a well-formed net, then

• N 6=⇒ err

9
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• N =⇒ N ′ implies that N ′ is well-formed and Σ(N) ⊆ Σ(N ′).

Proof. If N is active, then there is a pair (l: e) ∈ N s.t. e is active. Since N

is well-formed, then Σ(N); ∅ ` e: P , and one can exploit Safety for > 2

6 A simple example: a dynamic news-gatherer

In this section, by means of a simple example borrowed from [7], we show how
to use HotKlaim to program mobile code applications. Let us consider the
following scenario. User U needs additional information on a piece of data
represented by item (e.g. item could be the title of a book, and U wants
to know its price). Part of the behavior of U depends on this information.
However, there are some activities which are independent of it. U can look
for the required information in a database distributed over the net by using
a mobile process abstraction that dynamically travels among nodes looking
for a tuple that contains information on item. We assume that each node of
the database contains either a tuple of the form (item, d), with the desired
information, or a tuple of the form (item, l n), with the information about
the next node where the search must be repeated.

In the rest of this section, we will use Klaim syntax for patterns

p: : = x!t: k | e | (pi|i ∈ m)

and ML-like notation for functions and local declarations. Moreover, for
type-setting reasons, we write { } instead of 2 .

Given the types of the local operations (nil has type P):

I[P] = VX:g.(L,{X}->P)->P; (* type of input *)
O[P] = VX:g.(L,{X})->(); (* type of output *)
N[P] = ()->P; (* type of delayed nil *)

we will make use of the following additional global types:

Bool = ...;
Data = ...; (* items and associated information *)
Key = ...; (* authorization keys *)
L = ...; (* localities *)
EnvK[X] = (L,Key->I[X],Key->O[X],N[X])
MC = VX:l. EnvK[X] -> X; (* mobile code with keys *)

The example uses three auxiliary functions:

start : {(L,L,Data,Key)} -> P ;
gatherer : {(L,Data,Key)} -> {MC} ;
execute : (L,Key->Bool,(Key,L)->Bool) -> P ;

start is the part of the behavior of user U that depends on the information
associated to item. It is a process parameterized with respect to its locality
self, the locality l i where the search must start (which can be chosen ac-
cording to the search key item), the search key item, and an authorization
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key k (to remotely perform local operations). start adds a tuple containing
the process abstraction gatherer(self, item, k) of type MC to the tuple
space at l i, then waits for the result of the search at the local tuple space.

start (self,l_i:L:g, item:Data:g, k:Key:g) =
output [MC] (l_i, gatherer(self, item, k));
input (self,{x!Data} => ... )

gatherer is the mobile code for searching. Its parameters are: the locality
res where the result of the search must be placed, the search key item, and an
authorization key k used to check the permission to perform local operations.
Since gatherer is mobile code of type MC), it is abstracted with respect to
customized versions (which take a key as parameter) of the communication
operations. gatherer looks for one of two alternative tuples. The first one
contains the wanted information associated to item (e.g. the price); if it is
found, then the result of the search is added to the tuple space at res and
the process terminates. The second tuple contains the address l of the node
where the search has to be repeated; if it is found, then a tuple containing the
process abstraction gatherer(res, item, k) is added to the tuple space at
l for searching there.

11
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gatherer (res:L:g, item:Data:g, k:Key:g) =
fix ng:MC:g.

Fn X:l fn (self, in’, out’, nil’):EnvK[X]:g
=> in’ k (self, (d!Data,item) => out’ k (res, d); nil’() |

(l!L,item) => out’ k (l,ng); nil’() )

execute is the process that acts as the guardian of nodes. It is parameterized
with respect to its locality self, an authorization function safe that, on the
basis of an authorization key, checks if code can be considered reliable (and
thus may not be constrained), and an authorization function allow, on the
basis of an authorization key and of a location, check if code can be allowed to
perform a communication operation at that location. execute takes care of
taking a process abstraction (i.e. a tuple with just one field of type MC) from
the local tuple space, specializing and instantiating the abstraction and then
executing the resulting process. in’ and out’ are the customized versions
of the communication operations with which mobile code is specialized; they
make use of the two authorization functions safe and allow.

execute (self:L:l, safe:Key->Bool:l, allow:(Key,L)->Bool:l) =
fix exec:P:l.

let fun in’ (k:Key) =
if safe k then input
else Fn [X:g] fn (l:L, f:{X}->P) =>

if allow(k,l) then input[X](l,f) else nil ;
fun out’ (k:Key) =

if safe k then output
else Fn [X:g] fn (l:L, x:{X}) =>

if allow(k,l) then output[X](l,x) else () ;
fun nil’ () = nil

in
input (self, mc!{MC} => spawn(mc[P](self,in’,out’,nil’)); exec)

Finally, a HotKlaim net for this application could be

(l_U: start(l_U,l_i,item,k)) (l_U: execute(l_U,safe_U,allow_U))
(l_i: (item, l_1)) (l_i: execute(l_i,safe_i,allow_i))
(l_1: (item, l_2)) (l_1: execute(l_1,safe_1,allow_1))
(l_2: (item, data)) (l_2: execute(l_2,safe_2,allow_2))

the wanted information is supposed to be at l 2, and each locality has its own
guardian, obtained by instantiating execute with appropriate parameters.

7 Related Work

The programming paradigms that are closer to ours are those in [23,24,15].

In [23,24] a process language, named Dπλ, is considered that results from the
integration of the call-by-value λ-calculus and the π-calculus, together with
primitives for process distribution and remote process creation. Differently

12
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from HotKlaim, communication is channel based and processes cannot ex-
plicitly refer localities (indeed, these are anonymous). Dπλ permits the trans-
mission of process abstractions parameterized with respect to resource (i.e.
channel) names.

More specifically, in [23], a type system for Dπλ is defined that ensures that
at any one time all the processes that intend to perform inputs at a given
channel are co-located. To this aim, a value is deemed sendable whenever its
exportation does not violate locality of channels. Although the type system
has a different flavor from that of HotKlaim, sendable values and types play
a role similar to our global values and types.

In [24], a fine-grain type system for Dπλ is defined that permits controlling the
effect of transmitted process abstractions on local resources (i.e. channels).
Differently from HotKlaim, processes are assigned fine-grain types that, like
interfaces, record the resources to which processes have access together with
the corresponding capabilities, and process abstractions are assigned depen-
dent functional types that abstract from channel names and types. Although
process abstractions have not polymorphic types as in HotKlaim, channel
names may appear and be bound both in terms and in types and thus, in
some sense, play the role of type variables.

In [15] a higher-order functional language, named Confined-λ, is presented that
supports distributed computing by allowing expressions at different localities
to communicate via channels. In Confined-λ, authors of code can assign re-
gions (i.e. subsystems) to values in order to limit the part of a system where
a value can freely move. Then, a type system is defined that guarantees that
each value can roam only within the corresponding region. Differently from
HotKlaim, communication is channel based, the transmissible process ab-
stractions can be parameterized with respect channel names, and the types of
transmissible values permit restricting the subsystem where a value can freely
move.

Acknowledgements We thank the anonymous referees for their useful com-
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