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In recent years there has been a considerable amount of work in using category theory to
analyse and model type theories. Most of this work has taken inspiration from Categorical
Logic (especially Hyperdoctrines), and has developed in two directions: the modelling of
Higher order Lambda Calculus Fω using indexed categories (see Seely [1987]), and the
modelling of Martin-Löf Type Theory TT (see Cartmell [1987], Seely [1984] and Taylor
[1987]) and the Calculus of Constructions CC (see Ehrhard [1988], Hyland & Pitts [1989]
and Streicher [1989]). More recently new type theories have been proposed, HML (see
Moggi [1991]) and the Theory of Predicates (see Pavlović [1990]), exhibiting a two-level
structure (like in Fω), where the first level (constructors of Fω) is independent from the
second level (terms of Fω), and type dependency (like in TT) but now at both levels.
HML is an example of such a type theory.

This paper introduces comprehension categories (see also Jacobs [1990]), which gen-
eralise D-categories (see Ehrhard [1988]) and classes of display maps (see Hyland & Pitts
[1989]), and explains how they can be used (together with fibrations) to give a categor-
ical treatment of type theories. Comprehension categories are unnecessarily general for
describing type dependency (see Pitts [1989], Moggi [1991] for similar remarks on D-
categories). In practice one uses comprehension categories which are either cartesian
(corresponding to Cartmell’s categories with attributes) or full (corresponding to Taylor’s
relative slice categories). However, most of the relevant definitions and results make sense
for comprehension categories in general. Our investigation is divided in two steps:



• general results on fibrations and comprehension categories; this is “category theory
over a base category”.

• the fibred version of such results where the base category has been replaced by
a fibration. This is “category theory over a fibration”. The choice of fibrations
and comprehension categories as conceptual framework for type theories makes this
passage from the first to the second step particularly straightforward.

We apply some of the above results to clarify the relation between categorical models of
Fω,HML and CC. In comparison with other approaches to type theories ours is particu-
larly suitable to describe type theories with two levels (or more):

• Seely [1987] considers only a two-level type theory without type dependency;

• Hyland & Pitts [1989] considers type theories with type dependency, but only one
level (e.g. in CC constructors and terms are interdependent);

• Moggi [1991] models two-level type theories without using explicitly comprehension
categories over a fibration, but then the less natural concept of independence (of a
comprehension category from another comprehension category over the same cat-
egory) has to be used;

• Pavlović [1990] models two level-type theories using classes of display maps (over a
fibration). However, the use of fibrations and comprehension categories provides in
our opinion great conceptual clarity.

We do realise that the use of fibred category theory makes the paper rather technical.
However, whenever possible we try to give underlying type theoretical intuitions. At first
reading it might be of help to concentrate on sections 2,6 and 7 and take a brief look only
at the first parts of the more technical sections 3,4 and 5.

Ê1¾MË1Ç©Ì�ÌÎÍ�ÃÐÏ-Ä�ÑZÃÐÒ`Ó¡Í0Â�ÉfÄ�Á{Ô

In this section we give an informal type-theoretic formulation of the results in section 7 on
the relations among Fω (Higher order Lambda Calculus), HML (Higher order ML) and
CC (Calculus of Constructions). Type-theoretically Fω, CC and HML are described by a
set of rules for deriving well-formation and equality judgements. The informal description
below involves only well-formation judgements and we will use the following notational
conventions: k for kinds, u for constructors, v for constructor variables, τ for types, e for
terms, x for term variables, ∆ for constructor contexts “v1 : k1, . . . , vm : km”, Γ for term
contexts “x1 : τ1, . . . , xn : τn” and Φ for mixed contexts (allowed only in CC).

• Fω Higher order Lambda Calculus

well-formation judgements
constructors terms
∆ `Fω context ∆; Γ `Fω context
`Fω k kind ∆ `Fω τ type
∆ `Fω u : k constructor ∆; Γ `Fω e : τ term



context extension rules

∆ `Fω `Fω k ∆; Γ `Fω ∆ `Fω τ
∆, v : k `Fω ∆; Γ, x : τ `Fω

The judgements for Fω tell us that:

– kinds do not depend on variables;

– constructors and types may depend only on constructor variables;

– terms may depend both on constructor and on term variables.

Therefore the rules for kinds and constructors can be given independently from those
for types and terms, and there are no dependent kinds or types.

• HML Higher order ML

well-formation judgements
constructors terms
∆ `HML context ∆; Γ `HML context
∆ `HML k kind ∆; Γ `HML τ type
∆ `HML u : k constructor ∆; Γ `HML e : τ term

context extension rules

∆ `HML k ∆; Γ `HML τ
∆, v : k `HML ∆; Γ, x : τ `HML

The judgements for HML tell us that:

– kinds and constructors may depend only on constructor variables;

– types and terms may depend both on constructor and on term variables.

As for Fω the rules for kinds and constructors can be given independently from those
for types and terms, but there may be dependent kinds and types.

• CC Calculus of Constructions

well-formation judgements
constructors terms
Φ `CC context Φ `CC context
`CC k kind Φ `CC τ type
Φ `CC u : k constructor Φ `CC e : τ term

context extension rules

Φ `CC k Φ `CC τ
Φ, v : k `CC Φ, x : τ `CC

The judgements for CC are all interdependent, and there may be all sorts of depend-
ency between kinds and types.



The relations established in section 7 are summarised by the following picture, where an
arrow S1 → S2 is a mapping from S1-models/-theories to S2-models/-theories. Alternat-
ively, an arrow S1 → S2 can be viewed as a translation from S2 to S1.

Fω � U1
CC � ·

Fω

I@
@

@
@

@

U2

Fω

id

6

¯
- HML

?

˜

We describe an arrow S1 → S2 as a function f from S1-theories to S2-theories, by giving
the judgements in f(T ) in terms of the judgements in T , where T is an S1-theory. We
consider only few key judgements.

• ¯: Fω → HML is essentially an inclusion, i.e.

– ∆ `HML u : k iff ∆ `Fω u : k

– ∆; Γ `HML e : τ iff ∆; Γ `Fω e : τ

so k does not depend on ∆ and τ does not depend on Γ.

• U2 : HML→ Fω is removal of dependency, i.e.

– u1 : k1, . . . , um : km `Fω iff ∅ `HML ki for 1 ≤ i ≤ m

– ∆ `Fω u : k iff ∆ `Fω , ∅ `HML k and ∆ `HML u : k

– ∆; x1 : τ1, . . . , xn : τn `Fω iff ∆ `Fω and ∆; ∅ `HML τi for 1 ≤ i ≤ n

– ∆; Γ `Fω e : τ iff ∆; Γ `Fω , ∆; ∅ `HML τ and ∆; Γ `HML e : τ

• ˜: CC→ HML is restriction to split contexts, i.e.

– ∆ `HML u : k iff ∆ `CC u : k

– ∆; Γ `HML e : τ iff ∆, Γ `CC e : τ

• · : Fω → CC is the most complex and has to rely on a translation ∗.

– Φ `CC iff Φ∗ ≡ ∆; Γ and ∆; Γ `Fω

– Φ `CC u : k iff Φ∗ ≡ ∆; Γ , k∗ ≡ [v : k′, τ ′] , u∗ ≡ [u′, e′] and
∆, Γ `Fω , ∆, v : k′ `Fω τ ′ , ∆ `Fω u′ : k′ , ∆, Γ `Fω e′ : [u′/v]τ ′

– Φ `CC e : τ iff Φ∗ ≡ ∆; Γ , τ ∗ ≡ τ ′ , e∗ ≡ e′ and ∆; Γ `Fω e′ : τ ′

the key clause in the definition of ∗ (used in defining context extension) is
(Φ, v : k)∗ ≡ ∆, v : k′; Γ, xv : τ ′, where Φ∗ ≡ ∆; Γ and k∗ ≡ [v : k′, τ ′].
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Before starting with the precise mathematical exposition in 3.5 below, we describe the
type-theoretic view on the notions defined in this section.

3.1. á]â¸ã=äQåyæQâèç0é0ê . A fibration p : D→ B corresponds to a type theory with two levels, the
second depending on the first, but with no other dependency. The judgements interpretable
in such structure (and their interpretation) are:

judgement interpretation
x : B `p object B in the base B

x : B `p e(x) : B′ morphism in the base
x : B; y : D(x) `p object of total category D

“;” indicates the separation between the two levels
x : B `p D(x) object in the fibre DB over B
x : B; y : D(x) `p [e(x), e′(x, y)] : [x′ : B′; D′(x′)] morphism in the total category
x : B; y : D(x) `p e(x, y) : D′(x) morphism in the fibre over B

3.2. ë/çDì�íÅä�îÅï`îÅé0ê�âèç0éLð#åÐæ�îÅñIç0ä`â¸îWê . A comprehension category

D

P0 -

⇓ P

p
-

B

corresponds to a type theory with one level and type dependency (i.e. with two levels, but
where the second can be reflected into the first). Such a diagram corresponds to a functor
from D to B→, the “arrow category” of B. The kind of judgements interpretable in such
structure are:

judgement interpretation
∆ `P object B in the base
∆ `P D object D in the fibre over B
∆ `P φ : Γ morphism in the base
∆ `P e : D section of PD

∆ `P D
∆, x : D `P

is the rule for context extension, and it corresponds to apply P0 to D. The arrow PD is
the projection ∆, x : D → ∆.

3.3. ëØï`å`é0ñDîyò�ç0ó;ò�ã#å0êgî . If P : D→ B→ and q : E→ B, then the comprehension category
q∗(P) over E is such that ∆; z : E `q∗(P) D iff ∆ `q E and ∆ `P D, while context
extension is given by

∆; z : E `q∗(P) D
∆, y : D; z : E `q∗(P)



3.4. ôyõQö0æGå`íÅçiê�â¸æ�âèçDé . If P : D→ B→ and Q : E→ B→, then the comprehension category
P · Q over B is such that ∆ `P·Q [y : D, E] iff ∆ `P D and ∆, y : D `Q E, while context
extension is given by

∆ `P·Q [y : D, E]
∆, y : D, z : E `P·Q

3.5. á]â¸ã=äQîÐ÷Lð#åÐæ�îÅñIç0äaø�æ�ï`îWç0äaø . Suppose we have a functor p :E→ B. An object E ∈
E (resp. a morphism f in E) is said to be above A ∈ B (resp. u in B) if pE = A
(resp. pf = u). A morphism above an identity is called vertical . Every object A ∈ B

thus determines a so-called “fibre” category EA consisting of objects above A and vertical
morphisms. One often calls B the base category and E the total category.

A morphism f : D → E in E is called cartesian over a morphism u in B if f is above
u and every f ′ : D′ → E with pf ′ = u ◦ v in B, uniquely determines a φ : D′ → D above v
with f ◦ φ = f ′. The functor p :E→ B is called a fibration (sometimes a fibred category
or a category over B) if for every E ∈ E and u : A → pE in B, there is a cartesian
morphism with codomain E above u. Dually, f : D → E is cocartesian over u if every
f ′ : D → E ′ with pf ′ = v ◦ u, uniquely determines a φ : E → E ′ above v with φ ◦ f = f ′.
And: p is a cofibration if every morphism pE → A in B has a “cocartesian lifting” with
domain E. In case B is a category with pullbacks, the functor cod :B→ → B forms an
example of a fibration; it is at the same time a cofibration.

If f : D → E and f ′ : D′ → E are both cartesian over u, then f ∼= f ′ in E/E by a
vertical isomorphism. Hence given u : A → B in B and E above B, it makes sense to
choose a cartesian lifting of u with codomain E; we often write u(E) : u∗(E)→ E for such
a choice. Making similar choices for every E ∈ EB determines a functor u∗ :EB → EA,
called inverse image, reindexing or substitution functor. Such functors u∗ are determined
(by choice) up to vertical natural isomorphism. In general, one only has vertical natural
isomorphisms (u ◦ v)∗ ∼= v∗ ◦ u∗ and id∗ ∼= Id, as for pullbacks in case of cod :B→ → B.
A fibration is split if it is given together with a choice of inverse images for which these
isomorphisms are identities. Often, we suppose that a fibration comes equipped with a
cleavage, i.e. an arbitrary choice of inverse images.

A morphism between fibrations p and q is given by a commuting square as below, in
which the functor H preserves cartesian morphisms, i.e. f is p-cartesian implies that Hf
is q-cartesian (such a functor is called cartesian).

E
H

- D

B

p

? K - A
?

q



This determines a (very large) “category” Fib. Given a fibration q :D → A and an
arbitrary functor K :B→ A one can form the pullback

B ×
K,q

D - D

B

K∗(q)

? K - A
?

q

and verify that K∗(q) is a fibration again. Consequently, the “functor” Fib −→ Cat, send-
ing a fibration to its base, is a fibration itself. Usually, one writes Fib(B) for the “fibre”
category of fibrations with base B. The above construction is called change-of-base (for
fibrations). Fib(B) is in fact a 2-category with vertical natural transformations as 2-cells.
Also Fib is a 2-category.

The “fibred” way of doing category theory over a base category was started by A.
Grothendieck and further developed notably by J. Bénabou. For example, a fibred adjunc-
tion between fibrations p :E → B and q :D → B is given by a pair of cartesian functors
F :E → D and G :D→ E forming an adjunction F a G with vertical units and counits.
These data determine adjunctions between the fibre categories, which are preserved under
reindexing. Similarly, one says that a fibration has fibred cartesian products, exponents
etc. if such a structure exists in the fibre categories and is preserved under reindexing, see
Jacobs [1990] for a (more precise) description in terms of fibred adjunctions. Thus, fibred
terminal objects for a fibration p :E→ B may be described by a functor 1 :B→ E such
that p ◦ 1 = Id with the property that 1A is terminal in EA and for u : A → B in B one
has u∗(1B) ∼= 1A.

There is one further notion that should be explained at this point. A fibration p :E→ B

is said to have a generic object if there is an object T ∈ E such that for every E ∈ E one
can find a cartesian arrow E → T

3.6. ù4éLîÅú;îÅì�îÅé`æaå`ä;øMð�ç0é0êgæ�ä#õ0ð=æ�âèçDé . Suppose a fibration p :E→ B is given which has
fibred finite products. A new fibration p :E→ E is constructed in the following way. The
category E has pairs E, E ′ ∈ E with pE = pE ′ as objects; morphisms (f, g) : (E, E ′) →
(D, D′) in E are given by arrows f : E → D and g : E × E ′ → D′ in E with pf = pg. The
first projection p :E → E is then a fibration. One easily verifies that p has fibred finite
products again and that it has a generic object in case p has one. Moreover that there is
a change-of-base situation,

E
H

- E

B

p

? 1 - E
?

p

in which both 1 (for terminals) and H are full and faithful functors.

3.7. û4îÐóÐâ¸é0â¸æ�âèçDé . (Jacobs [1990]) A comprehension category is a functor P :E → B→

satisfying



(i) cod ◦ P :E→ B is a fibration;
(ii) f cartesian in E ⇒ Pf is a pullback in B.

This P is called a full comprehension category in case P is a full and faithful functor, and
it is called a cartesian comprehension category in case every morphisms in E is cartesian.

3.8. üBîWì©å`äQýIê . (i) For a comprehension category P :E→ B→ we use the following stand-
ard notation: p = cod ◦ P and P0 = dom ◦ P. The object part of P then forms a natural
transformation P :P0 ˙−→ p. (Similarly, for e.g. Q :D → A→, we write q = cod ◦ Q and
Q0 = dom ◦ Q.) The components PE are often called projections and reindexing functors
of the form PE∗ are called weakening functors.

(ii) If P :E → B→ is a comprehension category, one has that every object E ∈ E

determines a pullback functor PE# :B/pE → B/P0E by u 7→ P0(u(E)).
(iii) In Ehrhard [1988] a D-category is defined as a fibration p :E → B provided with

a terminal object functor 1 :B → E, which has a right adjoint P0 :E → B. The ensuing
functor P :E → B→ given by E 7→ p(εE) then forms a comprehension category (where
ε : 1P0 ˙−→ Id is counit). Two things are worth noticing.

(a) This functor P preserves the terminal objects, i.e. for A ∈ B, the map P1A is
an isomorphism (i.e. terminal in B/A). Since 1 is a full and faithful functor, the unit
η : Id ˙−→P01 is an iso. But P1 ◦ η = pε1 ◦ η = pε1 ◦ p1η = p(ε1 ◦ 1η) = id, which
makes P1 an iso as well.

(b) For E ∈ E and u : A→ pE in B one has

B/pE (u, PE) ∼= EA (1A, u∗(E)),

which can be verified by playing a bit with the adjunction 1 a P0. We understand
D-categories as forming a suitable concept of “comprehension categories with a unit”.
Therefore, we’ll say that a comprehension category has (or admits) a unit if it is a D-
category. This renaming gives more uniformity.

The essential point about a comprehension category P :E→ B→ is that it determines
a class {PE | E ∈ E} of “display” maps in B, which behave well in a certain sense.
The abstract formulation of comprehension categories has technical and methodological
advantages. This section concludes with two constructions on comprehension categories;
the first one is from Jacobs [1991] and the second one from Moggi [1991].

3.9. û4îÐóÐâ¸é0â¸æ�âèçDé (Change-of-base for comprehension categories along fibrations). Given a
comprehension category P :E→ B→ and a fibration q :D→ B, a new comprehension cat-
egory q∗(P) with base category D can be constructed as follows. First form the fibration
q∗(p) by change-of-base

D ×
q,p

E - E

D

q∗(p)

? q - B
?

p

and then choose q∗(P) :D ×
q,p

E → D→ by (D, E) 7→ PE(D) :PE∗(D) → D. On ar-

rows (f, g) : (D, E) → (D′, E ′) where qf = pg one defines q∗(P)(f, g) = (f, h), in which



h :PE∗(D) → PE ′∗(D′) is the unique arrow above P0g satisfying PE ′(D′) ◦ h = f ◦
PE(D).

3.10. û&îÅóyâ¸é0â¸æQâèç0é (Juxtaposition of comprehension categories). Starting from two com-

prehension categories E
P
−→ B→ Q

←− D one constructs another comprehension category
Q · P with base category B, by first performing change-of-base

D ×
Q0,p

E - E

D

Q∗
0(p)

? Q0 - B
?

p

and then defining Q · P :D ×
Q0,p

E→ B→ by (D, E) 7→ QD ◦ PE and (f, g) 7→ (qf,P0g).

One has cod ◦ Q · P = q ◦ Q∗
0(p).

3.11. þ?îWì{ì©å . (i) P is full ⇒ q∗(P) is full;
P has a unit ⇒ q∗(P) has a unit.

(ii) P,Q have units ⇒ Q ·P has a unit. Moreover, there is a full and faithful functor
I : cod ◦ P → cod ◦ Q · P preserving the terminal object and satisfying Q ·P ◦ I ∼= P. ÿ
� ¾LÖPÉ�×ØÃÅÒ?Æ��|ÃÅÄ²Æ1Ç]È=ÂaÔÀÍ�Á]ÆÛË²Ç©Ì Ô=¾

Comprehension categories will be used in two different, but related ways: in this section
to define appropriate fibred notions of product and sum; in the sixth section to provide
categories for type dependency.

A comprehension category determines a class of “projection” morphisms. Quantific-
ation along such projections is described in the next definition by adjoints to the corres-
ponding “weakening” functors. We first mention that a fibration p :E→ B determines a
category Cart(E) with all objects from E, but only the cartesian arrows. By restriction one
obtains a fibration |p| : Cart(E) → B. Similarly a comprehension category P :E → B→

determines two functors |p|, |P0| : Cart(E) → B and a natural transformation between
them. Hence one obtains a cartesian comprehension category |P| : Cart(E)→ B→.

4.1. û4îÐóÐâ¸é0â¸æ�âèçDé . Let q :D→ B be a fibration and P :E→ B→ a comprehension category.
By change-of-base of q along the above functors |p| and |P0| one obtains two fibrations
|p|∗(q) and |P0|

∗(q). There is a cartesian functor 〈P 〉 : |p|∗(q) → |P0|
∗(q) described by

(E, D) 7→ (E,PE∗(D)). We say that q admits P-products (resp. P-sums) if this functor
〈P 〉 has a fibred right (resp. left) adjoint.

4.2. üBîWì©å`äQýIê . (i) The definition of the cartesian functor 〈P 〉 is based on proposition 3
in Ehrhard’s [1988]. In fact this whole definition is inspired by his approach.

(ii) The above fibred definition has a more practical equivalent: let q and P be as
above; then q admits P-products (resp. P-sums) iff both

• for every E ∈ E, every weakening functor PE∗ :DpE → DP0E has a right adjoint ΠE

(resp. a left adjoint ΣE).



• the “Beck-Chevalley” condition holds, i.e. for every cartesian morphism f : E → E ′

in E one has that the canonical natural transformation

(pf)∗ΠE′
.
−→ ΠE(P0f)∗ (resp. ΣE(P0f)∗

.
−→ (pf)∗ΣE′ )

is an isomorphism.

The first map is the transpose of PE∗ (pf)∗ ΠE′ ∼= (P0f)∗ PE ′∗ ΠE′
ε
−→ (P0f)∗; similarly

one obtains the second one. In the sequel, we’ll use products and sums in this “fibrewise”
form.

(iii) A more economical approach would be to define P-quantification for full cartesian
comprehension categories P only. However, as will become clear later, the extra generality
we have in the above definition has advantages.

4.3. þnîWì�ì�å . Suppose q admits P-sums as defined above. For every E ∈ E and D ∈
D with qD = P0E, one has that the morphism inE,D = PE(ΣE.D) ◦ ηD : D →
PE∗(ΣE.D) → ΣE.D is cocartesian. ÿ

In type theory one finds so-called “weak” and “strong” sums, see section 6. The above
definition covers the weak case. For the strong one q must be (part of) a comprehension
category.

4.4. û4îÐóÐâ¸é0â¸æ�âèçDé . Given comprehension categories E
P
−→ B→ Q

←− D, we say that
(i) Q has P-products/sums in case q = cod ◦ Q has P-products/sums.
(ii) Q has strong P-sums in case Q has P-sums in such a way that every morphism

Q0(inE,D) in B (cf. the previous lemma) is orthogonal to the class {QD′ | D′ ∈ D}.
The latter means that for every D′ ∈ D and u, v forming a commuting square,

•
Q0(inE,D)- •

	�
�

�
�

�

w

•

u

?

QD′
- •

?

v

there is a unique w satisfying QD′ ◦ w = v and w ◦ Q0(inE,D) = u.

We say that a comprehension categoryQ admits products/(strong) sums if it admitsQ-
products/(strong) sums. One easily verifies thatQ has strong sums iff the above morphism
Q0(inE,D) is an isomorphism. The latter formulation is used in Jacobs [1990] to define
strong sums for comprehension categories.

The notion to be introduced next is of great importance — see e.g. the subsequent
examples. It provides a suitable “unit” or “building-block” to describe more complicated
categories later.

4.5. û4îÐóÐâ¸é0â¸æ�âèçDé . A closed comprehension category (abbr. CCompC) is a full comprehen-
sion category with unit, products and strong sums; moreover, the base category is required
to have a terminal object.



4.6. �1ö0å0ì©íÅú;îWê . (i) Let B be a category with finite limits. The identity functor on B→

then forms a full comprehension category with unit and strong sums. Moreover,

idB
→ is a CCompC ⇔ B is a LCCC.

(ii) Let B be a category with finite products. The functor B→ 1 (the terminal category)
then forms a fibration with finite products. Hence the construction from 3.6 yields a
fibration B → B. The functor ConsB :B → B→ given by (A, A′) 7→ [π : A× A′ → A]
forms a full comprehension category with unit and strong sums. Moreover,

ConsB is a CCompC ⇔ B is a CCC.

The rest of this section will be devoted to technical results about products and sums
and closed comprehension categories.

4.7. þnîWì�ì�å . Let P :E→ B→ be a comprehension category and q :D→ B a fibration.
(i) A fibration r admits P-products/sums ⇒ q∗(r) admits q∗(P)-products/ sums.
(ii) A comprehension category R admits strong P-sums ⇒ q∗(R) admits strong

q∗(P)-sums.

Proof. Suppose the fibration r has C as total category, i.e. one has r :C→ B.
(i) Assume ΣE a PE∗ in C; we have to construct ∃(D,E) a (q∗(P)(D, E))∗. This is

done by defining ∃(D,E) : (D ×
q,r

C)PE∗(D) → (D ×
q,r

C)D as (PE∗(D), C) 7→ (D, ΣE.C).

Products are handled similarly.
(ii) Notice that one has in = in(D,E), (PE∗(D),C) = (PE(D), inE,C) : (PE∗(D), C) →

∃(D,E). (PE∗(D), C) and that q∗(P)0(in) is by definition above R0(inE,C). Orthogonilty
can then be lifted. ÿ
4.8. þnîWì�ì�å . Let E

P
−→ B→ Q

←− D be comprehension categories.
(i) A fibration r admits both P- andQ-products/sums ⇒ r admitsQ·P-products/sums.
(ii) A comprehension category R admits both strong P- and strong Q-sums ⇒ R

admits strong Q · P-sums.

Proof. (i) By composition of adjoints.
(ii) By successive application of orthogonality. ÿ

4.9. þnîWì�ì�å . Consider two comprehension categories E
P
−→ B→ Q

←− D.
(i) Q has strong sums ⇒ Q · P has strong Q-sums.
(ii) In case P has a unit,

P and Q both have Q-products ⇒ Q · P has Q-products.

Proof. (i) Let ΣD a QD∗ in D be given; we have to construct ∃D a QD∗ in D ×
Q0,p

E.

This is done by taking for (D1, E1) ∈ (D ×
Q0,p

E) above Q0D,

∃D.(D1, E1) = (ΣD.D1, Q0(inD,D1
)−1 ∗(E1)).



(ii) We may assume adjunctions QD∗ a ΠD in D and QD∗ a ∀D in E. One takes

∀D.(D1, E1) = (D′, ∀QD′∗(D). φ
∗Q0(εD1

)∗(E1) ),

where D′ = ΠD.D1 and εD1
:QD∗(ΠD.D1) → D1 is unit and φ is an obvious mediating

isomorphism in B. In order to obtain the required adjunction, one has to use that P
preserves products, see the proof of 4.11 (ii). ÿ
4.10. þ?îWì{ì©å . Let q :D → B be a fibration and P :E → B→ be a comprehension cat-
egory.

(i) If there is a fibred reflection r → q (i.e. a fibration r :C→ B and a full and faithful
cartesian functor C→ D which has a fibred left adjoint), then

q has P-products/sums ⇒ r has P-products/sums.

Moreover, the functor C→ D preserves the products.
(ii) In case P is a full comprehension category with unit and sums and q has a fibred

terminal object, which is preserved by a full and faithful cartesian functor G :D → E,
then

G has a fibred left adjoint ⇔ q has P-sums.

Proof. (i) Standard.
(ii) (⇒) By (i).

(⇐) Define F :E → D by E 7→ ΣE(>P0E), where > :B → D describes the terminal
object for q. By 4.3, F extends to a functor, which is cartesian by Beck-chevalley. ÿ
4.11. þ?îWì{ì©å . Let P :E→ B→ be a CCompC. Then

(i) p = cod ◦ P :E→ B is a fibred CCC;
(ii) Considered as a functor, P preserves units, sums and products.

Proof. (i) One takes E × E ′ = ΣE.PE∗(E ′) and E ⇒ E ′ = ΠE.PE∗(E ′). In fact,
strongness of the sums is not needed to obtain this, see Jacobs [1990], 5.2.3.

(ii) Units are preserved by remark 3.8 (iii) (a) and sums by strongness: P(ΣE .E ′) ∼=
PE ◦ PE ′ = ΣPE .PE ′ in B/pE. As to products we obtain for u : A→ pE in B,

B/pE (u, P(ΠE.E ′) ) ∼= EA (1A, u∗(ΠE.E ′) )
∼= EA (1A, Πu∗(E).(PE#(u))∗(E ′) ), by Beck-Chevalley
∼= EP0u∗(E) ( (Pu∗(E))∗(1A), (PE#(u))∗(E ′) )
∼= EP0u∗(E) ( 1Pu∗(E), (PE#(u))∗(E ′) )
∼= B/P0E (PE#(u), PE ′)

in which the pullback functor PE# comes from 3.8 (ii). The first and last step hold by
3.8 (iii) (b) ÿ
4.12. �1ä�ç0íWçDê�â¸æQâèç0é . P is a CCompC ⇒ q∗(P) is a CCompC.

Proof. Let P :E→ B→ be a full comprehension category with unit, products and strong
sums. q∗(P) is again full and has a unit by 3.11 (ii); it admits products and strong sums
by 4.7. ÿ
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In the first section it was explained how a fibration forms a category fibred over a base
category. Now we go one step up and consider categories over a fibration. This is not as
bad as it may seem, since it turns out that one can reduce matters to the previous level.
The following lemma lies at the basis of all this.

5.1. þnîWì�ì�å . Let p :E→ B and r :B→ A be fibrations.
(i) The functor rp :E→ A is a fibration, with

f is rp-cartesian ⇔ f is p-cartesian and pf is r-cartesian.

(ii) The functor p is cartesian from rp to r.
(iii) If q :D→ B is another fibration, then

F : p→ q in Fib(B) ⇒ F : rp→ rq in Fib(A). ÿ
5.2. ù óyâ¸ã=ä�åÐæQâèç0é_å0ê�åÙã#å0ê�âèê . Suppose a cartesian functor p is given as in the following
diagram.

E
p

- B

@
@

@
@

@
q

R 	�
�

�
�

�

r

A

Every object A ∈ A determines a “fibrewise” functor p|A :EA → BA by restriction. One
calls p a fibration over r if all these fibrewise functors are fibrations and reindexing functors
preserve the relevant cartesian structure (similarly to the definition of e.g. fibred cartesian
products). More explicitly, p is a fibration over r if both

• for very A ∈ A, p|A is a fibration;

• for every u : A → A′ in A and every r-reindexing functor u∗ :BA′ → BA, there is a
q-reindexing functor u# :EA′ → EA forming a morphism of fibrations:

EA′

u#
- EA

BA′

p|A′

? u∗

- BA

?

p|A

This rather complicated notion is equivalent to a more simple one; namely

p is a fibration over r ⇔ p is a fibration itself.

To verify the implication (⇐), notice that p|A can be obtained from p by change-of-base.
This yields that f in EA is p|A-cartesian iff f is p-cartesian. The rest is not difficult. As to
the implication (⇒), observe that if p is a fibration over r, then f in E is p-cartesian iff f
can be written as g ◦ α where g is q-cartesian and α is p|A-cartesian (with A = q(dom f)).



Next, suppose we have a diagram,

E
F

- E′

@
@

@
@

@

p

R

A
A
A
A
A
A
A
A
A
A
A
A
A

q

U

	�
�

�
�

�
p′

��
�
�
�
�
�
�
�
�
�
�
�
�

q′
B

A
?

r

in which r, q, q′, p and p′ are fibrations with q = rp, q′ = rp′ and F is a cartesian functor
from q to q′. One calls F a cartesian functor from p to p′ over r if both

• p′ ◦ F = p.

• for every A ∈ A, F|A is cartesian form p|A to p|A′ ;

As before, one can show that

F is cartesian p→ p′ over r ⇔ F is cartesian p→ p′ in Fib(B).

In this way, one obtains a category Fib(r) of fibrations and cartesian functors over r.
As shown, one has Fib(r) = Fib(B). It is left to the reader to formulate what natural
transformations over r are and that the previous identification also concerns the 2-structure.
Hence adjunctions over r :B→ A are adjunctions over B (i.e. in the 2-category Fib(B)).
In order to get an even better picture, the reader may want to verify that for F : p → p′

in Fib(B) as above and G : p′ → p one has that F a G is an adjunction over r iff both

• for every A ∈ A, there is fibred adjunction F|Aa G|A in Fib(BA);

• for every morphism A → A′ in A there is a morphism F |A′a G|A′−→ F |Aa G|A of
fibred adjunctions (see Jacobs [1990], 2.2 for the definition).

The above exposition is based on work of J. Bénabou; see also Pavlović [1990].

5.3. û4îÐóÐâ¸é0â¸æ�âèçDé . Let r :B→ A be a fibration. A functor P :E→ B→ is a comprehension
category over r if P is a comprehension category in such a way that the functor P0 = dom ◦
P is cartesian in

E
P0

- B

@
@

@
@

@
rp

R 	�
�

�
�

�

r

A

and P has r-vertical components.



5.4. üBîWì©å`äQýIê . (i) It takes a bit of effort, but one can show that given fibrations E
p
→

B
r
→ A and a 2-cell P :P0 ˙−→ p : rp → r in Fib(A), one has that P is a comprehension

category over r iff for every A ∈ A one has a comprehension category P|A :EA → B→
A and

reindexing functors form suitable maps between these. Moreover, P is a full comprehension
category iff all P|A’s are full, see Jacobs [1991] for more details.

(ii) We mention two examples.
(a) Let B be a category with pullbacks. The (obvious) functor cod→ :B→→ → B→

forms a fibration over cod :B→ → B. One obtains a full comprehension category B→→ −→
B→→ over cod by [

v
→

u
→] 7→ [(id, v) : u ◦ v → u] in B→.

(b) Let p :E → B be a fibration with finite products as in 3.6. One defines functor
P :E → E→ by (E, E ′) 7→ π : E × E ′ → E, which forms a full comprehension category
over p. This generalizes ConsB :B→ B→ from 4.6.

5.5. û4îÐóÐâ¸é0â¸æ�âèçDé . Let p :E → B and r :B → A be fibrations; p forms a comprehension
category with unit over r if there is

• a terminal object functor 1 :B→ E for p in Fib(B);

• a fibred right adjoint P0 of 1 : r → rp in Fib(A).

(Ordinary comprehension categories with unit are described in remark 3.8 (iii).)

5.6. û4îÐóÐâ¸é0â¸æ�âèçDé . A closed comprehension category over a fibration r is a full comprehen-
sion category with unit over r which admits products and strong sums (as a comprehension
category in itself, not over r); moreover, r is required to have a fibred terminal object.

5.7. �1ö0å0ì©íÅú;îWê . (i) If B is a LCCC, one obtains a CCompC over cod :B→ → B, see
remark 5.4 (ii) (a). This comes from the fact that the slice categories B/A are LCCC’s
again using the same ingredients.

(ii) The other example mentioned in remark 5.4 (ii) is also of interest; it gives rise to a
generalization of the equivalence obtained in 4.6 (ii). For a fibration p :E→ B with finite
products one has

P :E→ E→ is a CCompC over p ⇔ p is a fibred CCC.

In the next construction (from Jacobs [1991]), a generalization of p from 3.6 is obtained
by using strong sums instead of cartesian products. In fact, the first example above is
obtained in this way from idB

→.

5.8. �²ä=çDíÅçiê�â¸æ�âèçDé . Let P :E → B→ be a closed comprehension category. By change-of-
base, we form the fibration p̃ : ˜E→ E.

˜E = E ×
P0,p

E - E

E

p̃

? P0 - B
?

p

Then



(i) p̃ : ˜E→ E forms part of a CCompC ˜P : ˜E→ E→ over p;
(ii) there is a “pseudo” change-of-base situation (in which 1 is terminal object functor),

E - ˜E

B

p

? 1 - E
?

p̃

By “pseudo” we mean that the pullback of p̃ along 1 yields a fibration which is equivalent
instead of isomorphic to p (in the fibred sense).

Proof. (i) One defines ˜P : ˜E → E→ by (E, E ′) 7→ [the projection ΣE.E ′ → E]; it is the
unique map f with P0f = PE ′ ◦ P0(inE,E′)−1, using the morphism described in lemma
4.3 and the fact that P is full. The cocartesianess obtained in this lemma is needed to
define ˜P on morphisms. The rest is laborious but straightforward.

(ii) Easy. ÿ
The constructions p and p̃ provide two ways to obtain closed comprehension categories

over a fibration. The next two lemmas state that quantification for the base fibration p can
be lifted to p and p̃. One gets strongness of the lifted sums for free. Proofs are omitted,
but may be found in Jacobs [1991].

5.9. þnîWì�ì�å . Let p :E→ B be a fibred CCC and Q :D→ B→ a comprehension category.
Then

p admits Q products and sums ⇒ P admits p∗(Q) products and strong sums. ÿ
5.10. þ?îWì{ì©å . Let P :E→ B→ be a closed comprehension category and Q :D→ B→ an
arbitrary comprehension category. Then

p admits Q-products and sums ⇒ ˜P admits p∗(Q)-products and strong sums. ÿ
In order to obtain the result of the next lemma, Moggi [1991] used the auxiliary notion

of independence. This can be avoided with comprehension categories over a fibration.

5.11. þ?îWì{ì©å . Let P :E → B→ be a comprehension category over r :B → A and let
Q :D → A→ be an ordinary comprehension category. We form S = r∗(Q) · P with base
category B, see 3.9 and 3.10.

(i) P,Q are full ⇒ S is full.
(ii) P,Q have a unit ⇒ S has a unit.
(iii) P has products (resp. strong sums) ⇒ S has P-products (resp. strong sums). ÿ
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In this section we describe categorical versions of the typed λ-calculi Fω, the Calculus of
Constructions(CC) and HML. The first system (due to J.-Y. Girard and J. Reynolds) and
the second one (due to Th. Coquand and G. Huet) are considered to be well-known. The
latter one comes from Moggi [1991] — see also Pavlović [1990] for a comparable system
— and is essentially Fω extended with the possibility of types depending on types and
propositions on propositions.

The next definition is based on Seely [1987].

6.1. û4îÐóÐâ¸é0â¸æ�âèçDé . A PL-category is a fibred CCC p :E → B with a CCC B as basis,
admitting a generic object and ConsB-products and sums.

For the Calculus of Construction, we give a fibred version of a notion from Hyland &
Pitts [1989]. Later, we briefly mention a weaker version.

6.2. û4îÐóÐâ¸é0â¸æ�âèçDé . A CC-category is described by the following data.
(i) A CCompC Q :D→ B→.
(ii) A fibration p :E→ B together with a fibred terminal object and a full and faithful

cartesian functor I :E → D which preserves this terminal. Further, we require that the
comprehension category (with unit) P = QI :E → B→ admits strong Q-sums. In that
case also P is a CCompC, see 4.10.

(iii) An object Ω ∈ D such that qΩ ∈ B is terminal and there is a generic object for p
in E above Q0Ω ∈ B.

Summarising all this in a picture, we have

E
I - D

Q - B→

Q
Q

Q
Q

Q
Q

Q
Q

Q
p

s +�
�

�
�

�
�

�
�

�

cod

B

q

?

As a simple example of such a category, one can take B to be a topos, D = B→ and
Q = idB

→ . For E, we take the full subcategory Sub(B) ↪→ B→ of monic arrows.
In this figure, the objects of E are to be understood as types and the objects of D

as kinds. For s1, s2 ∈ {type, kind}, one has that all “(s1, s2)-sums” are strong. Let’s
explain weak and strong sums type-theoretically: there is no difference in the formation
and introduction rules.

Γ ` A : s1 Γ, x : A ` B : s2
(s1, s2)

Γ ` Σx: A.B : s2

Γ `M : A Γ ` N : [M/x]B

Γ ` 〈M, N 〉 : Σx: A.B.

The weak elimination rule is given by

Γ ` P : Σx: A.B Γ ` C : s2 Γ, x : A, y : B ` Q : C

Γ ` Q where 〈x, y〉 := P : C.



In the strong elimination rule, the type C may contain an extra variable w : Σx: A.B.

Γ ` P : C Γ, w : Σx: A.B ` C : s2 Γ, x : A, y : B ` Q : [〈x, y〉/w]C

Γ ` Q where 〈x, y〉 := P : [P/w]C,

both with conversions

Q where 〈x, y〉 := 〈M, N 〉 = [M, N/x, y]Q

[〈x, y〉/w]Q where 〈x, y〉 := P = [P/w]Q.

6.3. �²ä=çDíÅçiê�â¸æ�âèçDé . (i) The elimination and conversion rules for strong (s, s)-sums can
equivalently be described by the following rules with explicit projections.

Γ ` P : Σx: A.B

Γ ` πP : A Γ ` π′P : [πP/x]B

Γ `M : A Γ ` N : [M/x]B

Γ ` π〈M, N 〉 = M : A Γ ` π′
〈M, N 〉 = N : [M/x]B

Γ ` P : Σx: A.B

Γ ` 〈πP, π′P 〉 = P : Σx: A.B

(ii) weak (s1, s2)-sums + strong (s2, s2)-sums ⇒ strong (s1, s2)-sums.

Proof. (i) Standard.
(ii) Let’s use “∃” for the (s1, s2)-sums and “Σ” for the (strong) (s2, s2)-sums. Assume

types Γ ` A : s1 and Γ, x : A ` B : s2 are given together with terms Γ ` P : ∃x: A.B
and Γ, x : A, y : B ` Q : [〈x, y〉/w]C, where Γ, w : ∃x: A.B ` C : s2. Write C ′ ≡
Σw: ∃x: A.B. C and Q′ ≡ 〈〈x, y〉, Q〉. Then Γ ` C ′ : s2 and Γ, x : A, y : B ` Q′ : C ′. Hence
one can take as new term Q with 〈x, y〉 := P ≡ π′{Q′

where 〈x, y〉 := P}, which is of
type [P/w]C, since

π{Q′
where 〈x, y〉 := P} = π{Q′

where 〈x, y〉 := 〈x′, y′
〉} where 〈x′, y′

〉 := P

= π{〈〈x′, y′
〉, [x′, y′/x, y]Q〉} where 〈x′, y′

〉 := P

= 〈x′, y′
〉 where 〈x′, y′

〉 := P

= P. ÿ
Based on this result (and on the fact that we use type-kind inclusion via the above

functor I), we conclude that a variant of CC-categories with weak (s, type)-sums can only
have at the same time weak (type, type) and weak (kind, type) sums. Hence one can
define a weak CC-category similarly to definition 6.2, except that P should only have
weak Q-sums — instead of the strong ones used in 6.2 (ii).

The next definition introduces a new notion. The subsequent term model example may
help to convey the underlying ideas. The fact that in the calculus HML one can separate
kind- and type-contexts plays an important structural rôle.

6.4. û4îÐóÐâ¸é0â¸æ�âèçDé . A HML-category is given by the following data.
(i) A CCompC Q :D→ A→.



(ii) A CCompC P :E→ B→ over a fibration r :B→ A (provided with terminal object
functor 1 :A→ B); moreover, we require that P admits r∗(Q)-products and strong sums.

(iii) An object Ω ∈ D such that qΩ ∈ A is terminal; further, the fibration p′ obtained
by change-of-base as below should have a generic object above Q0Ω ∈ A.

E′ - E

A

p′

? 1 - B
?

p

Summarising the constituents of a HML-category in a figure, we obtain

E
-

⇓ P - B

D
-

⇓ Q - A

r

?

6

1

The upper comprehension category P concerns the run-time part of the system; the
one below concerns the compile-time part.

6.5. 
³îÅäQì�ì{ç0÷DîÐú îÐö0å0ì©íÅú;î . The generic object in the definition of a HML-category is
not as in the original system in Moggi [1991]. To obtain it in the term model we must add
∆ ` τ : Ω ⇔ ∆; ∅ ` τ . We define categories as in the above figure.

A obj. [∆], where ∆ is a “constructor context” 〈v1 : k1, . . . , vm : km〉; the brackets [−]
denote that we take the equivalence class (wrt. conversion).

mor. ([u1], . . . , [un]) : [∆] → [〈v1 : k1, . . . , vn : kn〉] consist of equivalence classes of
constructors ∆ ` ui : [u1, . . . , ui−1/v1, . . . , vi−1]ki.

D obj. [∆ ` k].

mor. ( ~[u], [u′]) : [∆ ` k]→ [∆′ ` k′] ⇔ ~[u] : [∆]→ [∆′] in A and ∆, w : k ` u′ : [~u/~v]k′.

B obj. [∆; Γ], where Γ is a “term context” 〈x1 : τ1, . . . , xn : τn〉 with
∆; 〈x1 : τ1, . . . , xi−1 : τi−1〉 ` τi : Ω.

mor. ( ~[u]; ~[e]) : [∆; Γ] → [∆′; 〈x1 : τ1, . . . , xm : τm〉] ⇔ ~[u] : [∆] → [∆′] in A and
∆; Γ ` ej : [e1, . . . , ej−1/x1, . . . , xj−1][~u/~v]τj.

E obj. [∆; Γ ` σ].

mor. ( ~[u]; ~[e], [e′]) : [∆; Γ ` σ] → [∆′; Γ′ ` σ′] ⇔ ( ~[u]; ~[e]) : [∆; Γ] → [∆′; Γ′] in B

and ∆; Γ, y : σ ` e′ : [~u/~v, ~e/~x]σ′.

In this way the setting is built. The presence of the required additional structure is easily
verified.
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The relations that we are about to establish between the categorical versions of the calculi
Fω, CC and HML described in the previous section, are of the following kind: given a
model of calculus 1, we can perform certain categorical constructions and obtain a model
of calculus 2. There will be no functoriality involved, since we did not describe appropriate
morphisms between such categories.

7.1. 
³ï`îWç0äQîWì . (i) Every PL-category can be transformed into a HML-category.
(ii) Every HML-category can be transformed into a PL-category.
(iii) The output of first applying (i) and then (ii) yields a result which is isomorphic to

the input.

Proof. (i) Let p :E→ B be a PL-category, i.e. a fibred CCC on a CCC B, with a generic
object and ConsB-products and sums. One forms

E
-

⇓ P -
E

B
-

⇓ ConsB - B

p

?

6

1

This structure forms an HML-category since

• ConsB is a CCompC, see example 4.6 (ii).

• P :E→ E→ is a CCompC over p, see example 5.7 (ii); moreover, it has p∗(ConsB)-
products and strong sums by lemma 5.9.

• The generic object for p also works here, by the change-of-base situation described
in 3.6.

(ii) Suppose an HML-category as in the figure after definition 6.4 is given. We form
the fibration p′′ by change-of-base

E′′ - E′ - E

Dt

p′′

?
⊂ - D

Q0 - A

p′

? 1 - B

p

?

where t ∈ A is terminal object. Then

• Dt is CCC, since q = cod ◦ Q is a fibred CCC, see 4.11 (i).

• p′′ is a fibred CCC, since fibred CCC’s are preserved by change-of-base.

• The generic object T for p′ above Q0Ω ∈ A where Ω ∈ Dt yields a generic object
for p′′: for every E ∈ E and D ∈ Dt with pE = 1Q0D, there is a morphism
u :Q0D → Q0Ω in A with u∗(T ) ∼= E in E′. Since Q is a full comprehension
category there is a (unique) f : D → Ω in Dt with Q0f = u. But then we are done.



• p′′ admits ConsDt
-products and sums: the essential point to verify is that p′ admits

Q-products and sums; then one easily obtains that p′′ admits ˜Q|t-products and sums
— where ˜Q |t denotes the restriction of ˜Q from definition 5.8 to the fibre above
the terminal object t, see also remark 5.4 (i). As a special case we obtain that
p′′ admits ConsDt

-products and sums, since the projection D × D′ → D in Dt is
˜Q|t (D,QD∗(D′)) : ΣD.QD∗(D′)→ D.

(iii) By the change-of-base situation p→ p from 3.6 and the fact that Bt
∼= B. ÿ

7.2. 
³ï`îWç0äQîWì . (i) Every PL-category can be transformed into a CC-category.
(ii) Every CC-category can be transformed into a PL-category.

Proof. (i) Let p :E→ B be a PL-category. We form

E
I - •

S - E→

Q
Q

Q
Q

Q
Q

Q
Q

Q
p

s +�
�

�
�

�
�

�
�

�

cod

E
?

where S = p∗(ConsB) · P . It is a CCompC by lemmas 3.11, 4.8, 4.9 and 5.11. The first
lemma 3.11 yields the functor I : p→ cod ◦ S; SI ∼= P has strong S-sums by 5.9, 5.7 (ii)
and 4.8 (ii). Hence we are done.

(ii) Assume a CC-category as described in definition 6.2 is given. We obtain a PL-
category p′′ :E′′ → Dt, much in the same way as in (ii) of the previous proof:

E′′ - E

Dt

p′′

?
⊂ - D

Q0 - B

p

? ÿ
With these two theorems one can transform HML-categories into CC-categories via

PL-categories and vice-versa. There is however a direct “canonical” way to go from CC

to HML. Whether one can do similar things the other way round is not clear.

7.3. 
³ï`îWç0äQîWì . (i) Every CC-category can be transformed directly into a HML-category.
(ii) Doing CC −→ HML −→ PL and CC −→ PL yields equivalent results.

Proof. (i) Assume we have a CC-category as in definition 6.2. One forms

˜E
-

⇓ ˜P -
E

D
-

⇓ Q - B

p

?

6

1



where P = QI is a CCompC, see 6.2 (ii). Hence ˜P is a CCompC over p by 5.8, admitting
p∗(Q)-products and strong sums by lemma 5.10. The generic object of the CC-category
also works here, because of the “pseudo” change-of-base situation p̃→ p from 5.8.

(ii) Again by the “pseudo” change-of-base situation p̃→ p. ÿ
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