
A Semantics for Evaluation Logic

(extended version)

Eugenio Moggi∗

DISI, Univ. of Genova, Italy
moggi@disi.unige.it

July 29, 1993

Abstract

This paper proposes an internal semantics for the modalities and evaluation predicate of Pitts’
Evaluation Logic, and introduces several predicate calculi (ranging from Horn sequents to Higher
Order Logic), which are sound and complete w.r.t. natural classes of models. It is shown (by examples)
that many computational monads satisfy the additional properties required by the proposed semantics.

Introduction

Evaluation logic ELT is a typed predicate logic (see [CP92, Pit91]) based on the metalanguage for
computational monads MLT (a typed calculus introduced in [Mog91]), which permits statements
about the evaluation of programs to values by the use of evaluation modalities. In particular, ELT

might be used for axiomatising computation-related properties of a monad or devising compu-
tationally adequate theories (see [Pit91]), and it appears useful when addressing the question of
logical principles for reasoning about the behaviour of programs. Ideally, ELT should provide a
uniform framework for presenting programming languages and program logics (as in Scott’s and
Milner’s LCF approach [GMW79], one should view programs as terms and assertions as formulas),
which hopefully will support a modular approach to their description.
This paper addresses the issue of finding general logical principles for evaluation modalities by fol-
lowing the same methodology used to find the equational axioms for MLT , i.e. first the categorical
semantics, then sound and complete formal systems (see the introduction of [Mog91]). This issue
is addressed also in [Pit91], but our approach differs from that by Pitts mainly in the categori-
cal semantics of the evaluation modalities. In fact, our interpretation is uniquely determined by
a strong monad T (but it is defined only if T satisfies some additional properties), while Pitts’
interpretation depends on some additional structure (which has to be found). However, there are
important differences also at the level of logical principles, due to the fact that Pitts allows non-
standard semantics for formulas (e.g. when formulas over A are interpreted by subsets of A×S,
rather than subsets of A), while we want to stick to standard semantics. By means of examples,
we will show that there is no need to allow non-standard semantics of formulas, and that in our
semantics the interpretation of evaluation modalities is “almost always the expected one”.
The paper is organised as follows. Section 1 explains the intuition about ELT , presents a set-
theoretic semantics with a few simple examples, and discusses alternative semantics. Section 2
introduces several formal systems, that will be proved sound and complete w.r.t. suitable classes of
categorical models, and establishes some definability results (see Theorem 2.12 and 2.13). Section 3
recalls the external and internal approaches to interpreting typed predicate logics. Section 4 defines
our internal semantics for (the necessity modality of) ELT , establishes soundness results for those

∗This work is supported by ESPRIT BRA 6811 (Categorical Logic In Computer Science II) and EC SCIENCE
twinning ERBSC1*CT920795 (Progr. Lang. Semantics and Program Logics).

1

rules of Section 2 involving necessity (see Theorem 4.8), and presents further examples of our
categorical semantics for ELT (see Example 4.9, 4.10, 4.11 and 4.12). Section 5 proves several
completeness results w.r.t. our internal semantics (see Theorem 5.1), and in doing so it relates our
semantics of ELT to that in [Pit91] (the three constructions described in this section may be useful
to establish similar completeness results). This last section is rather technical. Most of the proofs
are given in the appendix.

1 Informal semantics of ELT

At this stage, we leave vague the language of ELT (and MLT), and describe only its key features,
but when needed we will be more specific. For applications it is useful to extend ELT with
additional type constructors, operations and logical constants; however, in some cases this might
require a careful analysis of the interactions between ELT and the additional features.

1.1 Key features of MLT and ELT

The syntactic categories of ELT are types, terms and formulas (as in many-sorted first order logic).

• We write ` τ type for the judgement “τ is a well formed type”. Types are closed under the
formation rule

(T)
` τ type

` Tτ type

Tτ is called a computational type, and terms of type Tτ should be thought of as programs
which return values of type τ . We do not consider dependent types, since their interaction with
computational types seems problematic.

A well formed context Γ is simply a sequence of the form x1: τ1, . . . , xn: τn, where xi are distinct
variables and τi are well formed terms.

• We write Γ ` e: τ for the judgement “e is a well formed term of type τ in context Γ”. Terms are
closed under the formation rules

(lift)
Γ ` e: τ

Γ ` [e]T :Tτ
(let)

Γ ` e1:Tτ1 Γ, x: τ1 ` e2:Tτ2

Γ ` (letT x⇐e1 in e2):Tτ2

Intuitively the program [e]T simply returns the value e, while (letT x⇐e1 in e2) first evaluates e1
and binds the result to x, then evaluates e2.

• We write Γ ` φ prop for the judgement “φ is a well formed formula in context Γ”. Formulas are
closed under the formation rules

(necessity)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` [x⇐e]φ prop

(possibility)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` 〈x⇐e〉φ prop

(evaluation)
Γ ` e:Tτ Γ ` v: τ

Γ ` e⇓v prop

Intuitively the formula [x⇐e]φ means that every possible result of program e satisfies φ, 〈x⇐e〉φ
means that some possible result of program e satisfies φ, and e⇓v means that v is one possible
result of program e.

1.2 A set-theoretic semantics of ELT

In this section we specialise our categorical semantics for evaluation modalities and evaluation
predicate to the category Set of sets. In particular, formulas over A are interpreted by subsets of

2

A. For interpreting computational types and terms (lift and let) of MLT , we must fix a strong
monad (T, t, η, µ) over Set (see [Mog91]). For interpreting necessity, we make the extra assumption
that T preserves inclusions, i.e. A ⊆ B implies TA ⊆ TB:
Γ, x:A ` φ prop = p ⊆ Γ×A
Γ ` e:TA = f : Γ → TA
Γ ` [x⇐e]φ prop = 〈idΓ, f〉−1(2Γ,Ap) ⊆ Γ

where 2X,A:P(X×A) → P(X×TA) maps a subset p ⊆ X×A into the inverse image t−1
Γ,A(Tp) of

Tp ⊆ T (X×A) along the tensorial strength tX,A:X×TA → T (X×A). Actually, to ensure that
the substitution lemma (see Lemma 4.5) still holds we must require that necessity commutes with
substitution, i.e. for every f :X → Y

P(Y×A)
(f×idA)−1

> P(X×A)

2Y,A

∨ ∨

2X,A

P(Y×TA)
(f×idTA)−1

> P(X×TA)

In the setting of HOL one can define evaluation predicate and possibility in terms of necessity:

• c:TA, v:A ` (c⇓v)
∆
≡ ∀X :PA.([x⇐c]x ∈A X) ⊃ v ∈A X , and

• Γ, c:TA ` (〈x⇐c〉φ)
∆
≡ ∀w: Ω.([x⇐c](φ ⊃ w)) ⊃ w , where Γ, x:A ` φ prop.

In fact, in classical logic possibility can be defined more simply as ¬([x⇐c]¬φ).
There are many strong monads over Set preserving inclusions (e.g. those corresponding to single-
sorted algebraic theories), among them there are most of the computational monads over Set (the
situation is more complex in the category of cpos, see Example 4.10).

Example 1.1 For each computational monad below we give TA and the meaning of c⇓a, [a⇐c]p(x, a)
and 〈a⇐c〉p(x, a), where a:A, c:TA, x:X and p is a predicate over X×A.

• exceptions TA = A+E, E set of exceptions

c⇓a iff c = [a]T , i.e. c = in1(a)

[a⇐c]p(x, a) iff ∀a:A.c⇓Aa ⊃ p(x, a)

〈a⇐c〉p(x, a) iff ∃a:A.c⇓Aa ∧ p(x, a);

• non-determinism TA = Pfin(A)

c⇓a iff a ∈ c

[a⇐c]p(x, a) and 〈a⇐c〉p(x, a) are defined in terms of c⇓a as for exceptions;

• side-effects (and non-determinism) TA = Pfin(A×S)S , S set of states

c⇓a iff ∃s, s′:S.〈a, s′〉 ∈ cs

[a⇐c]p(x, a) and 〈a⇐c〉p(x, a) are defined in terms of c⇓a as for exceptions;

• resumptions (and non-determinism) TA = µX.Pfin(A +X), i.e. the set of finite trees whose
leaves are labelled by elements of A

c⇓a iff “at least one leaf of c is labelled by a”

[a⇐c]p(x, a) and 〈a⇐c〉p(x, a) are defined in terms of c⇓a as for exceptions;

3

• continuations TA = R(RA), R set of results

c⇓a iff ∃k, k′:RA.ck 6= ck′∧(∀a′:A.a′ = a∨ka′ = k′a′), i.e. there exist two continuations k, k′:RA

that differ only on a and are distinguished by c

[a⇐c]p(x, a) iff ∀k, k′:RA.(∀a:A.p(x, a) ⊃ ka = k′a) ⊃ ck = ck′

〈a⇐c〉p(x, a) iff ¬[a⇐c]¬p(x, a), i.e.
∃k, k′:RA.ck 6= ck′ ∧ (∀a:A.p(x, a) ∨ ka = k′a).

1.3 Discussion on related semantics

Here we discuss other set-theoretic interpretations of ELT , and how they relate to the semantics
given above.

Example 1.2 [Extensional semantics of [CP92]] This semantics is defined for any strong monad T
by taking

• c⇓a iff c = [a]T

• [a⇐c]p(x, a) iff ∀a:A.c⇓Aa ⊃ p(x, a)

• 〈a⇐c〉p(x, a) iff ∃a:A.c⇓Aa ∧ p(x, a).

In this semantics evaluation modalities are definable in first order logic (FOL) over MLT . In the
case of exceptions TA = A + E this semantics coincides with ours. However, for the monad of
non-determinism TA = Pfin(A) (and others), the interpretation of the evaluation predicate (i.e.
c⇓Aa iff c = {a}) is not what one would expect (i.e. c⇓Aa iff a ∈ c).

Example 1.3 [Side-effects of [Pit91]] This semantics is defined for the monad TA = P(A×S)S

(and others involving side-effects). Its peculiarity is the non-standard interpretation of formulas,
i.e. predicates over A are interpreted by subsets of A×S (this should be compared with dynamic
logic, where propositions are interpreted by subsets of S). We write s |= p(a) for 〈a, s〉 ∈ p, where
p ⊆ A×S is a predicate over A, a:A and s:S.

• s |= c⇓nsa iff ∃s′:S.〈a, s′〉 ∈ cs

• s |= [a⇐c]nsp(x, a) iff ∀a:A, s′:S.〈a, s′〉 ∈ cs ⊃ s′ |= p(x, a)

• s |= 〈a⇐c〉nsp(x, a) iff ∃a:A, s′:S.〈a, s′〉 ∈ cs ∧ s′ |= p(x, a)

However, we can express this non-standard semantics of ELT in ours, provided MLT comes with
operations lookup:TS and update:S → T1, whose intended interpretation (for this particular
choice of monad) is lookup = λs.{〈s, s〉} and update(s) = λs′.{〈∗, s〉}.

• s |= c⇓nsa iff (update(s) ; c)⇓a
where e1 ; e2 stand for (let x⇐e1 in e2) with x 6∈ FV(e2)

• s |= [a⇐c]nsp(x, a) iff [〈a, s′〉⇐let a⇐(update(s) ; c) in (let s′⇐lookup in [〈a, s′〉])]p(x, a, s′)
where the predicate p over X×A of the non-standard semantics should be viewed as a predicate
over X×A×S in our semantics

• s |= 〈a⇐c〉nsp(x, a) iff 〈〈a, s′〉⇐let a⇐(update(s) ; c) in (let s′⇐lookup in [〈a, s′〉])〉p(x, a, s′)

This suggests a general way of translating dynamic logic into ELT with lookup and update. In
particular, if p is a proposition of dynamic logic and c:T1 ∼= P(S×S) is a program, then s |= [c]p iff
[s′⇐(update(s);c;lookup)]p(s′) is true. For the monad TA = Pfin(A×S)S , there is another possible
interpretation for the evaluation predicate, namely c⇓∗a iff ∀s:S.∃s′:S.〈a, s′〉 ∈ cs. However, this
can be expressed in our semantics, since c⇓∗a iff [x⇐c](x = a).

4

Example 1.4 [Continuations revisited] There is another interpretation of the evaluation predicate

for the monad TA = R(RA), namely c⇓∗a iff ∀k, k′:RA.ck = ck′ ⊃ ka = k′a, i.e. any two continu-
ations k, k′:RA that differ on a are distinguished by c. It does not seem possible to express c⇓∗a
in our semantics, although one can show that c⇓∗a implies c⇓a (provided R has at least two ele-
ments). It is difficult to say which of the two evaluation predicates captures better the operational
intuition.

2 Typed predicate logics

The main objective of this paper is to find axioms for necessity (possibility, and the evaluation
predicate of ELT) justified by a general and convincing semantics. We cannot expect to achieve this
without looking at the interactions between necessity and other logical constants1. Therefore, we
consider various typed (calculi and) predicate logics, which provide suitable contexts for necessity.
We believe that a good program logic should be built on standard logical machinery, even more so
if it should serve as a framework for other program logics. In particular, interpretation of formulas
should be consistent with that used in predicate calculus. The only concession we make is to
use intuitionistic logic, rather than classical logic. This is in line with Synthetic Domain Theory
(SDT), which views domains as special sets in a constructive universe (see [Hyl91]).

Remark 2.1 We are working towards a better integration of ELT with SDT . According to SDT ,
the right place for doing Denotational Semantics in a topos E is the full reflective sub-category R
of predomains. In general, one would expect computational monads to be defined over R, rather
than the whole topos (e.g. see the treatment of Plotkin’s powerdomain in [TP90]). However, the
internal logic of (regular subobjects in) R is quite poor, and it would be far more desirable to work
with the internal logic of E . Indeed there is a canonical way of extending a strong monad over R
to E (because the reflection preserve products), but such an extension does not preserve monos in
E , therefore we don’t get a model for the strongest of our formal systems.

In presenting typed predicate logics we use three kinds of judgements: formation judgements,
equational judgements and entailment judgements. Formation judgements are used for describing
the language, we distinguish four of them:

• ` τ type, which means “τ is a well formed type”;

• Γ `, which means “Γ is a well formed context”, and the only rules for deriving these judgements
are:

(empty) ∅ ` (extend)
Γ ` ` τ type

Γ, x: τ `
x 6∈ DV(Γ)

• Γ ` e: τ , which means “e is a well formed term of type τ in context Γ”;

• Γ ` φ prop, which means “φ is a well formed formula in context Γ”.

Equational judgements are used to present the equational calculus underlying a predicate logic
(which in general may have no equality predicate):

• Γ ` e1 = e2: τ , which means “e1 and e2 are equal terms of type τ in context Γ” (and it is
implicitly assumed that “the equation e1 = e2: τ is well formed in context Γ”, i.e. Γ ` e1: τ and
Γ ` e2: τ).

For the logics under consideration it is more convenient to use sequents Φ =⇒ φ (instead of
formulas), where Φ is a finite set or sequence of formulas. We say that “the sequent Φ =⇒ φ is
well formed in context Γ”, when Γ ` φ′ prop for every φ′ ∈ Φ ∪ {φ}. Entailment judgements are
used for describing which sequents are true:

1We have not considered falsity ⊥, disjunction ∨ and existential quantification ∃, since their interaction with
necessity seems marginal. Moreover, when we are able to interpret possibility and the evaluation predicate, i.e. in
HOL, ∨ and ∃ are definable anyway from ∀ and ⊃.

5

• Γ ` Φ =⇒ φ, which means “Φ entails φ in context Γ” (and it is implicitly assumed that “the
sequent Φ =⇒ φ is well formed in context Γ”);

we also write “Γ ` φ1 ⇐⇒ φ2” as a shorthand for Γ ` φ1 =⇒ φ2 and Γ ` φ2 =⇒ φ1.

The general format of rules for deriving judgements is

(name)
Premise1 . . . P remisen

Conclusion
side-condition

i.e. if the premises are true, then the conclusion is true, we may also use bi-rules (as a shorthand
for n+ 1 rules)

(name)
Premise1 . . . P remisen

Conclusion
side-condition

i.e. the premises are true iff the conclusion is true.
In general, we impose the following restrictions on rules:

• formation rules for types may have only formation judgements for types as premises;

• formation rules for terms and formulas may not have equational or entailment judgements in
their premises.

Notation 2.2 If M is a term or formula, we write [e1, . . . , en/x1, . . . , xn]M (or [e/x]M) for the
parallel substitution of xi with ei in M . We assume that parallel substitution performs also a
suitable renaming of the bound variables in M to avoid capture of free variables in ei.
We introduce the following notation for referring to sets of rules:

Set of rules in

ML section 2.1
HML section 2.4

Set of rules in

T section 2.2.1
⇒ section 2.2.2

Set of rules in

⊃ section 2.3.1
∀ section 2.3.2

Set of rules in

= section 2.3.3
2 section 2.3.5

When side-conditions refer to a signature Σ (see section 2.1), we are actually defining functions
from signatures to sets of rules. In this case, we write R(Σ) for the set of rules obtained by taking
the signature to be Σ. We introduce also some notation for combining sets of rules:

• if R1 and R2 are sets of rules, then we write R1, R2 for R1 ∪ R2;

• if r is a rule, then we write r for {r};

• if R is either ML or HML (see section 2.1 and 2.4), R1 is a set of rules for additional types (see
section 2.2.1 and 2.2.2) and R2 are sets of rules for logical constants (see section 2.3 and 2.5),
then we write RR1[R2] for R ∪R1 ∪ R2.

Given a set R of rules and a set Th of well formed equational and entailment judgements (w.r.t.
R), then Th is a theory for R iff it is closed under the equational and entailment rules of R.

2.1 The typed predicate logic ML(Σ)

Definition 2.3 A signature Σ is a triple 〈Σt,Σf ,Σp〉 s.t.

• Σt is a set (of type symbols),

• Σf is a family of sets Σf
τ1,τ2

of (unary) function symbols from τ1 to τ2,

• Σp is a family of sets Σp
τ of (unary) predicate symbols over τ .

We do not require that τ , τ1 and τ2 be well formed types, since the set of well formed types depends
not only on Σ, but also on a set of rules R (which is not fixed a priori), whose side-conditions may
refer to Σ. The price to pay for this liberal definition of signature is some extra checks to prevent
non well formed types to get in (see rule (f) below). Alternatively, we could have defined when a
signature is well formed w.r.t. a set of rules R, but this may become rather involved.

6

General rules

(A) ` A type A ∈ Σt (x)
Γ `

Γ ` x: τ
τ = Γ(x) (f)

Γ ` e: τ1
` τ2 type

Γ ` f(e): τ2
f ∈ Σf

τ1,τ2

(refl)
Γ ` e: τ

Γ ` e = e: τ
(symm)

Γ ` e1 = e2: τ

Γ ` e2 = e1: τ
(trans)

Γ ` e1 = e2: τ
Γ ` e2 = e3: τ

Γ ` e2 = e3: τ

(congr)

Γ ` ei = e′i: τi (i = 1, . . . , n)
Γ ` [e/x]e = [e/x]e′: τ

Γ ` [e′/x]e = [e′/x]e′: τ
(subst)

Γ ` ei: τi (i = 1, . . . , n)
xi: τ1, . . . , xn: τn ` e = e′: τ

Γ ` [e/x]e = [e/x]e′: τ

(p)
Γ ` e: τ

Γ ` p(e) prop
p ∈ Σp

τ

(assume)
Γ ` φi prop (i = 1, . . . , n)

Γ ` φ1, . . . , φn =⇒ φi

(cut)

Γ ` Φ =⇒ φi (i = 1, . . . , n)
Γ ` φ1, . . . , φn =⇒ φ

Γ ` Φ =⇒ φ

(subst)

Γ ` ei: τi (i = 1, . . . , n)
xi: τ1, . . . , xn: τn ` Φ =⇒ φ

Γ ` [e/x]Φ =⇒ [e/x]φ
(congr)

Γ ` ei = e′i: τi (i = 1, . . . , n)
Γ ` [e/x]Φ =⇒ [e/x]φ

Γ ` [e′/x]Φ =⇒ [e′/x]φ
For convenience, we include in ML also the equational rules for unit 1 and binary products τ1×τ2

(1) ` 1 type (∗)
Γ `

Γ ` ∗: 1
(∗) x: 1 ` ∗ = x: 1

(×)
` τ1 type ` τ2 type

` τ1×τ2 type
(〈, 〉)

Γ ` e1: τ1 Γ ` e2: τ2

Γ ` 〈e1, e2〉: τ1×τ2
(πi)

Γ ` e: τ1×τ2

Γ ` πi(e): τi

(×.β)
Γ ` e1: τ1 Γ ` e2: τ2

Γ ` πi(〈e1, e2〉) = ei: τi
(×.η)

Γ ` e: τ1×τ2

Γ ` 〈π1(e), π2(e)〉 = e: τ1×τ2
and the logical rules for true > and binary conjunctions φ1 ∧ φ2

(>)
Γ `

Γ ` > prop
(>)

Γ ` Φ =⇒ φ

Γ ` Φ,> =⇒ φ

(∧)
Γ ` φ1 prop Γ ` φ2 prop

Γ ` φ1 ∧ φ2 prop
(∧)

Γ ` Φ, φ1, φ2 =⇒ φ

Γ ` Φ, φ1 ∧ φ2 =⇒ φ

2.2 Additional types

2.2.1 Computational types: T

(T)
` τ type

` Tτ type
(lift)

Γ ` e: τ

Γ ` [e]:Tτ
(let)

Γ ` e1:Tτ1 Γ, x: τ1 ` e2:Tτ2

Γ ` (let x⇐e1 in e2):Tτ2

(let.ξ)
Γ ` e1 = e2:Tτ1 Γ, x: τ1 ` e′1 = e′2:Tτ2

Γ ` let x⇐e1 in e′1 = let x⇐e2 in e′2:Tτ2

(ass)
Γ ` e1:Tτ1 Γ, x1: τ1 ` e2:Tτ2 Γ, x2: τ2 ` e3:Tτ3

Γ ` let x2⇐(let x1⇐e1 in e2) in e3 = let x1⇐c1 in (let x2⇐e2 in e3):Tτ3

(T.β)
Γ ` e1: τ1 Γ, x: τ1 ` e2:Tτ2

Γ ` let x⇐[e1] in e2 = [e1/x]e2:Tτ2
(T.η)

Γ ` e:Tτ

Γ ` let x⇐e in [x] = e:Tτ

2.2.2 Functional types: ⇒

(⇒)
` τ1 type ` τ2 type

` τ1⇒τ2 type
(app)

Γ ` e1: τ1
Γ ` e: τ1⇒τ2

Γ ` ee1: τ2
(λ)

Γ, x: τ1 ` e: τ2

Γ ` (λx: τ1.e): τ1⇒τ2

7

(λ.ξ)
Γ, x: τ1 ` e1 = e2: τ2

Γ ` (λx: τ1.e1) = (λx: τ1.e2): τ1⇒τ2

(⇒.β)
Γ ` e1: τ1 Γ, x: τ1 ` e2: τ2

Γ ` (λx: τ1.e2)e1 = [e1/x]e2: τ2
(⇒.η)

Γ ` e: τ1⇒τ2

Γ ` (λx: τ1.ex) = e: τ1⇒τ2
x 6∈ FV(e)

2.3 Logical constants

In presenting the rules for logical constants we follow the adjoint calculus of [Pit89], which is
equivalent to (but more compact than) the natural deduction presentation.

2.3.1 Implication: ⊃

(⊃)
Γ ` φ1 prop Γ ` φ2 prop

Γ ` φ1 ⊃ φ2 prop
(⊃)

Γ ` Φ, φ1 =⇒ φ2

Γ ` Φ,=⇒ φ1 ⊃ φ2

2.3.2 Universal quantification: ∀

(∀)
Γ, x ; τ ` φ prop

Γ ` ∀x: τ.φ prop
(∀)

Γ, x: τ ` Φ =⇒ φ

Γ ` Φ =⇒ ∀x: τ.φ
x 6∈ FV(Φ)

2.3.3 Equality: =

It is common in predicate logic to view equational judgements as a special form of entailment
judgements, by introducing an equality predicate =τ∈ Στ×τ .

(=)
Γ ` e1: τ Γ ` e2: τ

Γ ` e1 =τ e2 prop
(=)

Γ, x: τ, y: τ ` Φ, x =τ y =⇒ φ

Γ, x: τ ` [x/y]Φ =⇒ [x/y]φ
However, an external semantics (e.g. an hyperdoctrine) distinguishes between them, by allowing
an intensional interpretation of equational judgements. In HOL one can define Leibniz’ equality,
which already satisfies (=).

2.3.4 Additional axioms for =

Congruence for binders is not derivable from (=) and has to be added explicitly.

(=-λ)
Γ, x: τ1 ` Φ =⇒ e1 =τ2

e2

Γ ` Φ =⇒ (λx: τ1.e1) =τ1⇒τ2
(λx: τ1.e2)

x 6∈ FV(Φ)

(=-let)
Γ ` Φ =⇒ e1 =Tτ e2 Γ, x: τ ` Φ =⇒ e′1 =Tτ ′ e′2
Γ ` Φ =⇒ (let x⇐e1 in e′1) =Tτ ′ (let x⇐e2 in e′2)

Remark 2.4 InML⇒[=, ∀] the rule (=-λ) is equivalent to the axiom of extensionality for functions:
` (∀x: τ1.fx =τ2

gx) =⇒ f =τ1⇒τ2
g. In HML⇒ the rule (=-λ) is derivable from (Comp-⇒), but

they are not equivalent. In MLT [=,2] the rule (=-let) is derivable from (2-=), but they are not
equivalent.

2.3.5 Necessity: 2

(necessity)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` [x⇐e]φ prop

(2->*)
` τ type

c:Tτ ` ∅ =⇒ [x⇐c]>

(2-=⇒)
Γ, x: τ ` Φ, φ =⇒ ψ

Γ, c:Tτ ` Φ, [x⇐c]φ =⇒ [x⇐c]ψ
x 6∈ FV(Φ)

(2-η)
Γ, x: τ ` φ prop

Γ, x: τ ` φ =⇒ [x⇐[x]]φ

8

(2-µ)
Γ, x: τ ` φ prop

Γ, c:T 2τ ` [y⇐c]([x⇐y]φ) =⇒ [x⇐(let y⇐c in y)]φ

(2-T)
Γ, x: τ1 ` e: τ2 Γ, y: τ2 ` φ prop

Γ, c:Tτ1 ` [x⇐c]([e/y]φ) =⇒ [y⇐(let x⇐c in [e])]φ

(2-t*)
Γ, z: τ1×τ2 ` φ prop

Γ, x: τ1, c:Tτ2 ` [y⇐c]([〈x, y〉/z]φ) ⇐⇒ [z⇐(let y⇐c in [〈x, y〉])]φ

(2-∧*)
Γ, x: τ ` φ1 prop Γ, x: τ ` φ2 prop

Γ, c:Tτ ` [x⇐c](φ1 ∧ φ2) ⇐⇒ ([x⇐c]φ1) ∧ ([x⇐c]φ2)

(2-T*)
Γ, x: τ1 ` e: τ2 Γ, y: τ2 ` φ prop

Γ, c:Tτ1 ` [x⇐c]([e/y]φ) ⇐⇒ [y⇐(let x⇐c in [e])]φ

2.3.6 Additional axioms for 2

(2-η*)
Γ, x: τ ` φ prop

Γ, x: τ ` φ ⇐⇒ [x⇐[x]]φ

(2-µ*)
Γ, x: τ ` φ prop

Γ, c:T 2τ ` [y⇐c]([x⇐y]φ) ⇐⇒ [x⇐(let y⇐c in y)]φ

(2-⊃*)
Γ ` φ1 prop Γ, x: τ ` φ2 prop

Γ, c:Tτ ` [x⇐c](φ1 ⊃ φ2) ⇐⇒ φ1 ⊃ ([x⇐c]φ2)

(2-∀*)
Γ, x: τ1, y: τ2 ` φ prop

Γ, c:Tτ1 ` [x⇐c](∀y: τ2.φ) ⇐⇒ ∀y: τ2.([x⇐c]φ)

(2-=)
Γ, x: τ1 ` e1: τ2 Γ, x: τ1 ` e2: τ2

Γ, c:Tτ1 ` ([x⇐c]e1 =τ2
e2) =⇒ (let x⇐c in [e1]) =Tτ2

(let x⇐c in [e2])

Remark 2.5 All axioms proposed in [Pit91] for necessity are derivable in MLT [2,2-η*,2-µ*], and
conversely all rules in 2,2-η*,2-µ* are derivable in Pitts’ Evaluation Logic, with the exception of
(2-=⇒). In fact, Pitts allows only a restricted form of (2-=⇒), where Φ is empty, which (unlike
the more general form) is sound for his non-standard interpretation of formulas (see Example 1.3).

2.4 Higher Order Logic: HML

HML is an extension of ML[⊃, ∀] where formulas are represented as terms of a type Ω of truth
values. In particular, logical constants and predicate symbols are replaced by function symbols,
namely: p ∈ Σp

τ is replaced by p ∈ Σf
τ,Ω, and the (formation rules for) logical constants are replaced

by > ∈ Σf
1,Ω, ∧,⊃∈ Σf

Ω×Ω,Ω
, ∀τ ∈ Σf

Pτ,Ω, =τ∈ Σf

τ×τ,Ω
, and 2τ ∈ Σf

Tτ×Pτ,Ω
.

(Ω) Ω ` type (P)
` τ type

` Pτ type
()

Γ ` φ: Ω

Γ ` φ prop

({|})
Γ, x: τ ` φ: Ω

Γ ` {x: τ |φ}:Pτ
(∈)

Γ ` E:Pτ Γ ` e: τ

Γ ` e ∈τ E: Ω

({|}.ξ)
Γ, x: τ ` φ1 = φ2: Ω

Γ ` {x: τ |φ1} = {x: τ |φ2}:Pτ
(P.β)

Γ ` e: τ Γ, x: τ ` φ: Ω

Γ ` [e/x]φ = e ∈τ {x: τ |φ}: Ω

(P.η)
Γ ` E:Pτ

Γ ` E = {x: τ |x ∈τ E}:Pτ
x 6∈ FV(E)

Sometimes, we may write Ωτ for Pτ , E(e) for e ∈τ E and λx: τ.φ for {x: τ |φ}.
The term representation of formulas is more intensional, i.e. Γ ` φ1 = φ2: Ω implies Γ ` φ1 ⇐⇒ φ2,
while the converse may not be true. In HML all logical constants (except necessity) could be
expressed in terms of ⊃ and ∀, so that the corresponding logical rules are derivable. In particular:

• x 'τ y
∆
≡ ∀X :Pτ.X(x) ⊃ X(y), called Leibniz’ equality

• ∃x: τ.φ
∆
≡ ∀X :P1.(∀x: τ.φ ⊃ X(∗)) ⊃ X(∗), where X 6∈ FV(φ)

9

• ∃!x: τ.φ
∆
≡ (∃y: τ.∀x: τ.φ ↔ x 'τ y), where y 6∈ FV(φ)

2.5 Additional axioms for HML

2.5.1 Comprehension for powersets: Comp-P

(Comp-P)
Γ, x: τ ` φ prop

Γ ` ∅ =⇒ ∃!X :Pτ.(∀x: τ.φ ↔ x ∈τ X)
X 6∈ FV(φ)

Remark 2.6 In HML the rule (Comp-P) is equivalent to the axiom of extensionality for sets, i.e.
X,Y :Pτ ` (∀x: τ.x ∈τ X ↔ x ∈τ Y) =⇒ X 'Pτ Y .

2.5.2 Comprehension for functional types: Comp-⇒

(Comp-⇒)
Γ, x: τ1, y: τ2 ` φ prop

Γ ` (∀x: τ1.∃!y: τ2.φ(x, y)) =⇒ (∃!f : τ1⇒τ2.∀x: τ1.φ(x, fx))
f 6∈ FV(φ)

(Comp-⇒) says that there is a one-one correspondence between functions and functional relations.

2.5.3 Comprehension for computational types: Comp-T

(Comp-T)
` τ type

C:T (Pτ) ` ([X⇐C]∃!x: τ.x ∈τ X) ⇐⇒
∃!c:Tτ.C 'T (Pτ) (let x⇐c in [{x}])

where {x}
∆
≡ {y|y 'τ x}. (Comp-T) says that there is a one-one correspondence between compu-

tations of singletons and computations of values.

2.6 Formal consequences

This section gives a few useful axioms and rules derivable in some of the formal systems introduced
previously. Of special significance are the definability results in Theorem 2.12 and 2.13, whose main
consequences are: necessity is expressible in HMLT , necessity and possibility are definable from
the evaluation predicate, when necessity commutes with ⊃ and ∀.

Lemma 2.7 In MLT [2->*,2-=⇒,2-T](Σ) the following are derivable:

1. (2-D1) Γ, c:Tτ ` φ =⇒ [x⇐c]φ x 6∈ FV(φ)

2. (2-∧) Γ, c:Tτ ` [x⇐c](φ1 ∧ φ2) =⇒ ([x⇐c]φ1) ∧ ([x⇐c]φ2)

3. (2-⊃) Γ, c:Tτ ` [x⇐c](φ1 ⊃ φ2) =⇒ φ1 ⊃ ([x⇐c]φ2) x 6∈ FV(φ1)

4. (2-∀) Γ, c:Tτ1 ` [x⇐c](∀y: τ2.φ) =⇒ ∀y: τ2.([x⇐c]φ)

5. (2-iso)
Γ, x: τ1 ` e: τ2 iso

Γ, c:Tτ1 ` [x⇐c]([e/y]φ) ⇐⇒ [y⇐(let x⇐c in [e])]φ
x 6∈ FV(φ)

where Γ, x: τ1 ` e: τ2 iso means that for some e′ the equational judgements
Γ, x: τ1 ` x = [e/y]e′: τ1 and Γ, y: τ2 ` y = [e′/x]e: τ2 are derivable

6. (2-let) Γ, c:Tτ1 ` [x⇐c]([y⇐e]φ) =⇒ [y⇐(let x⇐c in e)]φ x 6∈ FV(φ)
is derivable using (2-µ*).

Lemma 2.8 In MLT [2->*,2-=⇒,2-T*,2-∧*](Σ) the rule (2-t*) is derivable, and the rule
(2-let*) Γ, c:Tτ1 ` [x⇐c]([y⇐e]φ) ⇐⇒ [y⇐(let x⇐c in e)]φ x 6∈ FV(φ)
is derivable using (2-µ*).

Lemma 2.9 In MLT [=,2->*,2-=⇒,2-T , 2-=](Σ) the following are derivable:

10

1. (2-=iso)
Γ, x: τ1 ` Φ =⇒ e: τ2 iso

Γ, c:Tτ1 ` Φ, [y⇐(let x⇐c in [e])]φ =⇒ [x⇐c]([e/y]φ)
x 6∈ FV(Φ, φ)

where Γ, x: τ1 ` Φ =⇒ e: τ2 iso means that for some e′ the entailment judgements
Γ, x: τ1 ` Φ =⇒ x =τ1

[e/y]e′ and Γ, y: τ2 ` Φ =⇒ y =τ2
[e′/x]e are derivable

2. (2+-=) Γ, c:Tτ1 ` ([x⇐c]e1 =Tτ2
e2) =⇒ (let x⇐c in e1) =Tτ2

(let x⇐c in e2)

3. (=-let)

Lemma 2.10 In HML[Comp-P](Σ) the following are derivable:

1. (ext-P) X,Y :Pτ ` (∀x: τ.x ∈τ X ↔ x ∈τ Y) =⇒ X 'Pτ Y

2. (ext-Ω) X : Ω ` X =⇒ X 'Ω >

Lemma 2.11 In HML⇒[Comp-⇒](Σ) the rule (=-λ) is derivable.

Theorem 2.12 In HMLT [Comp-P , 2->*,2-=⇒,2-T*, 2-=](Σ) these formula are equivalent:

• Γ, c:Tτ ` [x⇐c]φ

• Γ, c:Tτ ` (let x⇐c in [φ]) =TΩ (let x⇐c in [>])

• Γ, c:Tτ ` 2(let x⇐c in [φ]), where c:TΩ ` 2(c)
∆
≡ [X⇐c]X.

Theorem 2.13 In HMLT [2->*,2-=⇒,2-T*, 2-⊃*,2-∀*](Σ) these sequents are derivable:

1. c:Tτ ` [x⇐c](c⇓x)

2. Γ, c:Tτ ` ([x⇐c]φ) ⇐⇒ (∀x: τ.c⇓x ⊃ φ)

3. Γ, c:Tτ ` (〈x⇐c〉φ) ⇐⇒ (∃x: τ.c⇓x ∧ φ)

4. c:Tτ, v: τ ` (c⇓v) ⇐⇒ 〈x⇐c〉(x =τ v)

3 Categorical semantics

Given a category C with finite products, the general pattern for interpreting a typed calculus
according to Lawvere’s functorial semantics goes as follows (see [KR77, Law63]):

• a context Γ ` and a type ` τ type are interpreted by objects of C, by abuse of notation we will
indicate these objects with Γ and τ respectively;

in particular, the empty context ∅ ` is interpreted by the terminal object 1 and the context
Γ, x: τ ` is interpreted by Γ×τ ;

• a term Γ ` e: τ is interpreted by a morphism from Γ to τ in C, indicated with e;

• a (well formed) equational judgement Γ ` e1 = e2: τ is true iff e1 = e2 as morphisms in C.

We refer to the literature for details on the categorical semantics of typed calculi (e.g. see [Pit88,
Pit89, Mog91]). In categorical logic there are two approaches which extend Lawvere’s functorial
semantics to typed predicate logics: the internal approach interprets formulas as subobjects, while
the external approach interprets formulas in the fibers of a C-indexed category (see [KR77, Osi73,
PS78]). The obvious trade-off between these two approaches is that the first is closer to models,
while the second is closer to theories. In this section we recall the categorical structures proposed
in the literature for interpreting computational types (strong monads) and logical constants.

11

3.1 Strong monads

Strong monads are used for interpreting computational types. We refer to [Mog91] for details
about the interpretation and the proof of soundness and completeness. Monads over a category
C can be viewed as monoids in the strict monoidal category Endo(C) of endofunctors and natural
transformations, where the tensor S ⊗ T is composition S ; T . Strong monads over a category C
with finite products (more generally a symmetric monoidal category) enjoy a similar character-
isation as monoids in the strict monoidal category SEndo(C) of strong endofunctors and strong
transformations.

Definition 3.1 Given a category with finite products, we define the strict monoidal category
SEndo(C) as follows:

• an object is a strong endofunctor (T, tT), i.e. T : C → C is a functor and tT
A,B :A×TB

.
→

T (A×B) is a natural transformation s.t.

1×TC
tT
1,C
> T (1×C)

rTC

∨ 	�
�
� TrC

�
�
�

TC

(A×B)×TC
tT
A×B,C

> T ((A×B)×C)

	�
�
�

aA,B,TC �
�
�

∨

TaA,B,C

A×(B×TC)
idA×tT

B,C

> A×T (B×C)
tT
A,B×C

> T (A×(B×C))

where rA: (1×A) → A and aA,B,C : (A×B)×C → A×(B×C) are the obvious natural isomor-
phisms (in what follows they are left implicit);

• a morphism from (S, tS) to (T, tT) is a strong transformation σ: (S, tS)
.
→ (T, tT), i.e. σ:S

.
→

T is a natural transformation s.t.

A×SB
tS
A,B

> S(A×B)

idA×σB

∨ ∨

σA×B

A×TB
tT
A,B

> T (A×B)

composition is given by vertical composition of natural transformation;

• the tensor (S, tS) ⊗ (T, tT) is (S ; T, t), where tA,B = tT
A,SB ; T (tS

A,B);

σ ⊗ τ is given by horizontal composition of natural transformation;

the unit I for ⊗ is (idC , t), where tA,B = idA×B.

In what follows we will consider additional properties or structures for strong monads, which will
allow us to extend the interpretation beyond MLT (Σ).

3.2 External semantics

The external approach based on indexed categories can represent proof-theoretic aspects of a logic,
but we are only interested in provability. To simplify things even further we will also identify
formulas that are provably equivalent (i.e. we only need indexed posets).

Definition 3.2 If W is the category of widgets and C is a category, then a C-indexed widget is
a functor P : Cop → W.

12

We call P [A] the fiber over A ∈ C and P [f]:P [A] → P [B] substitution along f :B → A (we write
f∗ for P [f], when P is clear from the context). The external semantics of a typed predicate logic
in a C-indexed meet semi-lattice P extends Lawvere’s functorial semantics as follows:

• The interpretation of a formula Γ ` φ prop is an element of P [Γ], indicated with φ.

• The sequent Γ ` φ1, . . . , φn =⇒ φ is true iff (∧iφi) ≤ φ in P [Γ].

For interpreting logical constants one needs additional properties on indexed meet semi-lattices.

Definition 3.3 ([Tay87]) A class of display maps D over C is a class of morphisms in C closed
under pullback along arbitrary maps.

Definition 3.4 Given a C-indexed meet semi-lattice P, we say that:

• P is closed under implication iff each fiber has pseudo-complements a ⊃ b and they are pre-
served by substitution;

• P is closed under universal quantification along maps in D (where D is a class of display
maps over C) iff for all d:A→ B in D exists the right adjoint ∀d to d∗:P [B] → P [A] satisfying
the Beck-Chevalley condition

B′
f

> B
∧ ∧

d′ d

A′

g
> A

implies

P [B]
f∗

> P [B′]
∧ ∧

∀d ∀d′

P [A]
g∗

> P [A′]

• P has equality over A iff there exists =A∈ P [A×A] s.t. for all X ∈ C the monotonic function
(idX×∆A)∗:P [X×A×A] → P [X×A] has a left adjoint ∃:P [X×A] → P [X×A×A] given by
∃(a) = π∗

1(a) ∧ π∗
2(=A), where a ∈ P [X×A], π1:X×A×A→ X×A and π2:X×A×A → A×A;

• t ∈ P [Ω] is a (skeletal) generic predicate iff for all A ∈ C and a ∈ P [A] there exists (unique)
f :A→ Ω s.t. a = P [f]t, where Ω is some given object of C;

• P is a tripos iff

– C has finite products and exponentials of the form ΩA, for some distinguished object Ω

– P is closed under implication and universal quantification along first projections

– there is some distinguished generic predicate t ∈ P [Ω].

The interpretation of equality is equivalent to that proposed in [Law70]: the predicate =A is
necessarily unique, and ∃ satisfies the Beck-Chevalley and Frobenious Reciprocity conditions. The
definition of tripos is a minor simplification of the original one (see [Pit81, HJP80]).

Lemma 3.5 If t ∈ P [Ω] and t′ ∈ P [Ω′] are skeletal generic predicates, then the unique f : Ω → Ω′

s.t. t = P [f]t′ is an isomorphism and t′ = P [f−1]t.

3.2.1 External interpretation

Given a category C with finite products and a C-indexed meet semi-lattice P , the interpretation of
formulas in P is defined by induction on the derivation of Γ ` φ prop (see [Pit89]). This is done
by assigning to each predicate symbol p ∈ Σt

τ an interpretation p ∈ P [τ], and by defining for each
formation rule (for formulas) the interpretation of its conclusion in terms of the interpretation of
its premises (and additional structure or properties for P):

13

•
Γ ` e: τ = e: Γ → τ
Γ ` p(e) prop = e∗p ∈ P [Γ]

Γ ` = Γ ∈ C
Γ ` > prop = > ∈ P [Γ]

Γ ` φ1 prop = φ1 ∈ P [Γ]
Γ ` φ2 prop = φ2 ∈ P [Γ]
Γ ` φ1 ∧ φ2 prop = φ1 ∧ φ2 ∈ P [Γ]

• if P is closed under implication, then

Γ ` φ1 prop = φ1 ∈ P [Γ]
Γ ` φ2 prop = φ2 ∈ P [Γ]
Γ ` φ1 ⊃ φ2 prop = φ1 ⊃ φ2 ∈ P [Γ]

• if P is closed under universal quantification along π1:A×τ → A (for A ∈ C and τ interpretation
of a well formed type), then

Γ, x: τ ` φ prop = φ ∈ P [Γ×τ]
Γ ` ∀x: τ.φ prop = ∀d(φ) ∈ P [Γ] where

d = π1: Γ×τ → Γ

• if P has equality over τ (for τ interpretation of a well formed type), then

Γ ` e1: τ = e1: Γ → τ
Γ ` e2: τ = e2: Γ → τ
Γ ` e1 =τ e2 prop = 〈e1, e2〉∗(=τ) ∈ P [Γ]

• if t ∈ P [Ω] is a generic predicate and C has exponentials of the form Ωτ (for τ interpretation of
a well formed type), then

` Ω type = Ω ∈ C

` τ type = τ ∈ C
` Pτ type = Ωτ ∈ C

Γ, x: τ ` φ: Ω = φ: Γ×τ → Ω
Γ ` {x: τ |φ}:Pτ = Λ(φ): Γ → Ωτ

Γ ` e: τ = E: Γ → τ
Γ ` E:Pτ = e: Γ → Ωτ

Γ ` e ∈τ E: Ω = 〈E, e〉 ; eval: Γ → Ω

Γ ` φ: Ω = φ: Γ → Ω
Γ ` φ prop = φ∗t ∈ P [Γ]

moreover, the interpretation of function symbols representing logical constants and predicate
symbols must be consistent (see [See87]), e.g. the interpretation of ∧ ∈ Σf

Ω×Ω,Ω
must satisfy

(〈φ1, φ2〉 ; ∧)∗t = φ∗1t ∧ φ
∗
2t for every φ1, φ2:A→ Ω (where ∧ in the rhs is meet in P [A]).

3.3 Internal semantics

The internal semantics of formulas mimics the set-theoretic one by using the categorical analogue of
subsets (i.e. subobjects), and can be viewed as a special case of external semantics, where formulas
are interpreted in indexed posets made of subobjects in the base.

14

Notation 3.6 We write ≤ both the inclusion preorder on monos and the corresponding inclu-
sion order on subobjects, we denote by [m] the subobject (of A) corresponding to the mono
m: d ↪→ A. On subobjects we define the following operations:

• composition ; n with a mono n:A ↪→ B, i.e. [m] ; n = [m ; n] (provided m has codomain A);

• inverse image along a morphism f :B → A, i.e. f ∗[m] = [n], where

B
f

> A
∧ ∧

n

∪ ∪

m

·
g

> ·

(provided m has codomain A and the pullback exists).

In general, the interpretation of a formula must be a well behaved subobjects. This is achieved by
restricting to subobjects induced by a dominion.

Definition 3.7 ([RR88]) A dominion M over C is a class of display maps where all displays
are monos and closed under identities and composition.

The internal semantics of a typed predicate logic in a dominion M over a category C with finite
products is defined in terms of the external semantics by giving a C-indexed meet semi-lattice.

Definition 3.8 A dominion M over C induces a C-indexed meet semi-lattice M (of M-subobjects):

• the fiber M[A] over A is the poset of subobjects [m] of A witnessed by monos in M,

• substitution M[f] along f :B → A is the inverse image operation f ∗ restricted to M[A].

For interpreting logical constants one needs additional properties on dominions. Often one can ex-
press these additional properties in terms of the induced indexed meet semi-lattices, but sometimes
it is more convenient to express them directly in terms of dominions.

Definition 3.9 Given a dominion M over a category C, we say that:

• M has equalities iff (C has finite products and) ∆A:A ↪→ A×A ∈ M for every A ∈ C;

• M is closed under universal quantification along maps in D (where D is a class of display
maps over C) iff the induced C-indexed meet semi-lattice is closed w.r.t. universal quantification
along maps in D;

• t ∈ M is a dominance iff for all m ∈ M exist unique f s.t. [m] = f ∗[t].

Lemma 3.10 If M has equalities and is closed under implication and universal quantification
along projections, then it is closed under universal quantification along any morphism in C.

Proof It is enough to show that every f :A→ B in C is decomposable in a mono m in M followed
by a first projection. Take m = 〈f, idA〉:A ↪→ B×A and π1:B×A → B. Then f = m ; π1, and
m ∈ M, because

B×A
idB×f

> B×B
∧ ∧

〈f, idA〉

∪ ∪

∆B ∈ M

A
f

> B

15

Lemma 3.11 If t:A ↪→ Ω is a dominance, then A is a terminal object of C.

Proof Given B ∈ C, exists g:B → A, because idB ∈ M. On the other hand, if g1, g2:B → A, then

B
gi ; t

> Ω
∧ ∧

idB

∪ ∪

t

B
gi

> A

because t is mono. Therefore, g1 ; t = g2 ; t because of the unicity property for dominances, and
g1 = g2 because t is mono.

Proposition 3.12 Given a dominion M, let P be the induced indexed meet semi-lattice, then

• P has equalities, when M has equalities;

• P is closed under implication iff it is closed under universal quantification along maps in M;

• [t] ∈ P [Σ] is a skeletal generic predicate iff t ∈ M is a dominance.

Proof If M has equalities, then =A is given by [∆A] ∈ P [A×A].
We show only the correspondence between pseudo-complement and universal quantification. If
[m], [m′] ∈ P [A], then [m] ⊃ [m′] = ∀m(m∗[m′]). If m:A ↪→ B ∈ M and [m′] ∈ P [A], then
∀m([m′]) = [m] ⊃ [m′ ;m].

3.3.1 Internal interpretation

Given a category C with finite products and a dominion M over C, the interpretation of formulas in
the induced C-indexed meet semi-lattice M is defined as in Section 3.2.1, provided the dominion M
satisfies the additional properties corresponding to those required for C-indexed meet semi-lattices.
In particular, if M has equalities, then the interpretation of equality predicates is defined by

Γ ` e1: τ = e1: Γ → τ
Γ ` e2: τ = e2: Γ → τ
Γ ` e1 =τ e2 prop = 〈e1, e2〉∗[∆τ] ∈ M[Γ]

and there is a close correspondence between equational judgements and equality predicates.

Proposition 3.13 If Γ ` ei: τ are well formed terms and M has equalities, then Γ ` e1 = e2: τ is
true in C iff Γ ` ∅ =⇒ e1 =τ e2 is true in M.

Proof Let ei: Γ → τ be the interpretation of Γ ` ei: τ , then we have to prove that e1 = e2 iff
〈e1, e2〉∗[∆τ] = [idΓ], or equivalently

Γ
〈e1, e2〉

> τ×τ
∧ ∧

idΓ

∪
∪

∆τ

Γ
f

> τ

is a pullback for some f (necessarily unique). Therefore, the claim follows from basic properties of
pullbacks.

16

4 Semantics for necessity

We define a categorical semantics of necessity, which provides criteria for judging logical rules for
necessity (by establishing their soundness and possibly completeness). We do this in the general
setting of a category C with finite products equipped with a dominion M (to interpret formulas
according to the internal approach) and a strong monad (T, t, η, µ) (to interpret computational
types according to [Mog91]), by analogy with the set-theoretic semantics of section 1.2. We intro-
duce various properties of T in relation to M, and prove soundness of the rules for necessity (see
sections 2.3.5 and 2.5.3) in strong monads satisfying some of these additional properties.

4.1 Properties of strong monads w.r.t. a dominion

In this section we define additional properties for (strong) monads over a category C with (finite
products and) a dominion M.

Definition 4.1 Given a category C and a dominion M over it, we say that T : C → C is:

• mono preserving (w.r.t. M) iff m ∈ M implies Tm ∈ M (up to isomorphism),

• meet preserving (w.r.t. M) iff

B ⊂

n ∈ M
> A

∧ ∧

m′

∪ ∪

m ∈ M

B′
⊂

n′
> A′

implies

TB ⊂

Tn ∈ M
> TA

∧ ∧

Tm′

∪ ∪

Tm ∈ M

TB′
⊂

Tn′
> TA′

• inverse image preserving (w.r.t. M), M-functor for short, iff

B
f

> A
∧ ∧

m′

∪ ∪

m ∈ M

B′

f ′
> A′

implies

TB
Tf

> TA
∧ ∧

Tm′

∪ ∪

Tm ∈ M

TB′

Tf ′
> TA′

We say that a natural transformation σ:S
.
→ T between (mono preserving) endofunctors is M-

cartesian iff for every m:A′ → A in M

SA
σA

> TA
∧ ∧

Sm

∪ ∪

Tm ∈ M

SA′

σA′

> TA′

Lemma 4.2 M-functors are closed under composition, and the same is true for mono and meet
preserving endofunctors. M-cartesian transformations are closed under vertical composition. M-
cartesian transformations between M-functors are closed under horizontal composition.

The properties defined above for endofunctors and natural transformations specialise (in the obvi-
ous way) to the case of strong endofunctors and strong transformations. However, in this setting
we can consider a further property:

17

Definition 4.3 Given a category C with finite products and a dominion M, we say that a strong
endofunctor (T, t) is strongly mono preserving (w.r.t. M) iff (it is mono preserving and)

X×A
f×idA

> Y×A
∧ ∧

m′

∪ ∪

m ∈ M

· > ·

implies

X×TA
f×idTA

> Y×TA
∧ ∧

2X,Am
′

∪ ∪

2Y,Am

· > ·

where 2Y,Am is a mono of M (unique up to isomorphism) s.t. [2Y,Am] = t∗Y,A[Tm].

In general strongly mono preserving endofunctors are not closed w.r.t. composition.

Definition 4.4 Given a category C with finite products, a dominion M and a strong endofunctor
(T, t) which is mono preserving (w.r.t. M), then we can interpret necessity as follows:
Γ, x:A ` φ prop = [m] ∈ M[Γ×A]
Γ ` e:TA = f : Γ → TA
Γ ` [x⇐e]φ prop = 〈idΓ, f〉∗[2Γ,Am] ∈ M[Γ]

Unfortunately, we do not have an equally general semantics for the evaluation predicate and pos-
sibility, it is only by going to full HOL that we are able to define their semantics.
The definition of necessity requires only that T is mono preserving, but it is only when (T, t) is
strongly mono preserving that necessity is well behaved.

Lemma 4.5 If (T, t) is strongly mono preserving (w.r.t. M) and substitution holds for Γ ` e:TA
and Γ, x:A ` φ prop, then it holds for Γ ` [x⇐e]φ prop. Where substitution holds for
x1: τ1, . . . , xn: τn ` e: τ/φ prop means that
x1: τ1, . . . , xn: τn ` e: τ = f : τ1× . . .×τn → τ
x1: τ1, . . . , xn: τn ` φ prop = [m] ∈ M[τ1× . . .×τn]
Γ ` ei: τi = fi: Γ → τi (i = 1, . . . , n)
Γ ` [e/x]e: τ = 〈f1, . . . , fn〉 ; f : Γ → τ
Γ ` [e/x]φ prop = 〈f1, . . . , fn〉∗[m] ∈ M[Γ]

for every Γ ` ei: τi (i = 1, . . . , n).

Proposition 4.6 The following implications (among properties of strong endofunctors) hold:

• M-functor ⊃ meet preserving and strongly mono preserving,

• meet preserving or strongly mono preserving ⊃ mono preserving.

Proof We prove only that if (T, t) is a strong endofunctor and T is an M-functor, then (T, t)
is strongly mono preserving. The other implications are immediate. Given f :X → Y , [m] ∈
M[Y×A] and [m′] ∈ M[X×A] s.t. [m′] = (f×idA)∗[m], we have to show that [2X,Am

′] =
(f×idTA)∗(2Y,Am). Since [2X,Am

′] = t∗X,A[Tm′] (by definition of 2) and [Tm′] = T (f×idA)∗[Tm]
(because T is an M-functor), the equation above rewrites to (tX,A ;T (f×idA))∗[Tm] = ((f×idTA);
tY,A)∗[Tm], which is true by naturality of t.

Definition 4.7 Given C, M, (T, t) as in Definition 4.3 and a class of display maps D over C, if
T is mono preserving and M is closed under universal quantification along maps in D, then we
say that necessity (for T) commutes with universal quantification (along D) iff

M[X×A]
∀d×idA

> M[Y×A]

2X,A

∨ ∨

2Y,A

M[X×TA]
∀d×idTA

> M[Y×TA]

18

for every X,Y,A ∈ C and d:X → Y ∈ D.

4.2 Soundness of rules for necessity

In this section we prove soundness of the rules given in Sections 2.3.5 and 2.5.3.

Theorem 4.8 Given a category C with finite products, a dominion M and a strong monad (T, t, η, µ)
over C s.t. (T, t) is strongly mono preserving (w.r.t. M), we have the following soundness results:

• the rules (2->*,2-=⇒,2-T ,2-t*, 2-η,2-µ) are sound;

• (2-∧*) is sound, provided T is meet preserving;

• the rule (2-T*) is sound, provided T is an M-functor;

• the rule (2-η*) is sound, provided η is M-cartesian;

• the rule (2-µ*) is sound, provided µ is M-cartesian and T is an M-functor;

• the rule (2-⊃*) is sound, provided M is closed under universal quantification along m ∈ M and
necessity commutes with it;

• the rule (2-∀*) is sound, provided M is closed under universal quantification along projections
and necessity commutes with it;

• the rule (2-=) is sound, provided M has equalities;

• the rule (Comp-T) is sound, provided C is a topos and M is the dominion of all monos.

We consider further examples of computational monads, and check whether they satisfy those
additional properties which ensure soundness of the various inference rules for necessity.

Example 4.9 Let C be a topos and M the dominion of all monos, we consider some strong monads
(T, t, η, µ) over C. For each of them we give the strongest properties (among those defined above)
satisfied by (T, t), η and µ, and the interpretation of necessity (see also Example 1.1).

• T (A) = A+E exceptions. T is an M-functor, η and µ are M-cartesian

[x⇐c]φ iff ∀x:A.[x] = c ⊃ φ).

• T (A) = (A×S)S side-effects (S non trivial). T is an M-functor, η is M-cartesian, but µ is not

[x⇐c]φ iff ∀s, s′:S, x:A.〈x, s′〉 = c(s) ⊃ φ).

• T (A) = Pfin(A) non-determinism. T is an M-functor, η and µ are M-cartesian

[x⇐c]φ iff ∀x:A.x ∈A c ⊃ φ).

• T (A) = Ω(ΩA) continuations. T is meet and strongly mono preserving, η is M-cartesian, but
µ is not

[x⇐c]φ iff ∀k, k′: ΩA.(∀x:A.φ ⊃ kx =Ω k′x) ⊃ ck =Ω ck′.

These properties of T continue to hold, when Ω is replaced by an R s.t. Ω � R.

• T (A) = A×N complexity (N monoid). T is an M-functor, η and µ are M-cartesian

[x⇐c]φ iff ∀n:N, x:A.〈x, n〉 = c ⊃ φ).

• T (A) = 1 trivial. T is an M-functor, µ is M-cartesian, but η is not

[x⇐c]φ iff >.

In all examples above, except for continuations, necessity commutes with implication and universal
quantification, i.e. (2-⊃*) and (2-∀*) are valid. In the case of continuations, one can find counter-
examples to both axioms.

19

Example 4.10 Monads for continuations T (A) = R(RA) provide easy counter-examples to preser-
vation of monos.

• In the Effective Topos (see [Hyl91]) there are several Σ ⊂ Ω s.t. 2 ⊆ Σ ∼= ΣΩ. If R is any of such
Σ, then T (2 ↪→ Ω) cannot be monic.

• In the category of posets and monotonic functions there are three possible dominances: 1 ∈ 2
for decidable subobjects, > ∈ Σ for open subobjects and ⊥ ∈ Σ for closed subobjects (where 2
is the flat poset with two elements and Σ is the poset with two elements ⊥ < >).

– If R is 2, then 2 ↪→ 2⊥ is an open subobject, but T2 6↪→ T (2⊥), since |T2| = 16 and |T (2⊥)| = 4.
However, T preserves decidable subobjects.

– If R is Σ, then 2 ↪→ Σ is a subobject, but T2 6↪→ TΣ, since |T2| = 6 and |TΣ| = 4. However, T
preserves regular subobjects.

In the category of cpos and continuous functions there are similar results for 2(2X), but not for

TX = Σ(ΣX). In fact, T does not preserves regular subobjects (i.e. inclusive subsets). More
precisely, there is a regular mono m s.t. Tm is not monic.

Example 4.11 Let W be the category of state shapes (see [Ole85]), i.e.

• an object is a non-empty set W ,

• a morphism from W to X is a pair (l, u), where l:X → W (l for lookup) and u:W×X → X (u
for update) satisfy the equations u(l(x), x) = x, l(u(w, x)) = w and u(w, u(w′, x)) = u(w, x)

in particular, X ∼= W×V (for some V) and l is the first projection

• composition of (l1, u1):W → X followed by (l2, u2):X → Y is
the pair (l, u):W → Y s.t. l(y) = l1(l2(y)) and u(w, y) = u2(u1(w, l2(y)), y).

Let (T, t) be the strong functor (part of a strong monad) over the topos SetW s.t.

• for every A ∈ SetW and (l, u):W → X in W

– TAW = (A(W)×W)W ,

– TA(l, u)cx = 〈A(l, u)a, u(w, x)〉, where c ∈ TAW , x ∈ X and 〈a, w〉 = c(l(x))

• for every σ:A
.
→ B in SetW and W ∈ W

(Tσ)W cw = 〈σW a, w′〉, where c ∈ TAW , w ∈ W and 〈a, w′〉 = c(w)

• for every A,B ∈ SetW and W ∈ W

tA,B,W (a, c)w = 〈〈a, b〉, w′〉, where a ∈ AW , c ∈ TBW , w ∈ W and 〈b, w′〉 = cw

Since T preserves pullbacks, necessity can be interpreted according to the internal semantics

W‖−[a⇐c]p(x, a) iff ∀w,w′:W,a:AW.〈a, w′〉 = c(w) ⊃W‖−p(x, a)

for every X,A ∈ SetW , p predicate over X×A, W ∈ W , c ∈ TAW and x ∈ XW .
Necessity commutes with implication and universal quantification, and the interpretation of the
evaluation predicate and possibility is

• W‖−〈a⇐c〉p(x, a) iff ∃w,w′:W,a:AW.〈a, w′〉 = c(w) ∧W‖−p(x, a)

• W‖−c⇓a iff ∃w,w′:W.〈a, w′〉 = c(w).

One can consider a monad for local variables better than T , by working with parametric functors
and parametric natural transformations (see [OT93]). This monad seems to enjoy properties similar
to those of T , but it is not known whether the category of parametric functors is a topos.

20

Example 4.12 Let I be the category of finite cardinals and injective maps, and let (T, t) be the
strong functor over the topos SetI (see [Mog89]) s.t.

• for every A ∈ SetI and f :m→ n in I

– TAm = Σk:N.A(m+ k)

– TAf〈k, a〉 = 〈k,A(f + k)a〉 where 〈k, a〉 ∈ TAm

• for every σ:A
.
→ B in SetI and m ∈ I

(Tσ)m〈k, a〉 = 〈k, σm+ka〉, where 〈k, a〉 ∈ TAm

• for every A,B ∈ SetI and m ∈ I

tA,B,m(a, 〈k, b〉) = 〈k, 〈A(m ↪→ m+ k)a, b〉〉, where a ∈ Am and 〈k, b〉 ∈ TBm

Since T preserves pullbacks, necessity can be interpreted according to the internal semantics

m‖−[a⇐c]p(x, a) iff ∀k:N, a:A(m+ k).〈k, a〉 = c ⊃ m+ k‖−p(X(m ↪→ m+ k)x, a)

for every X,A ∈ SetI , p predicate over X×A, m ∈ I, c ∈ TAm and x ∈ Xm.
Necessity commutes with neither implication nor universal quantification, and the interpretation
of the evaluation predicate and possibility is

• m‖−〈a⇐c〉p(x, a) iff ∃a:A(m).〈0, a〉 = c ∧m‖−p(x, a)

• m‖−c⇓a iff ∃a:A(m).〈0, a〉 = c.

Unfortunately, the interpretation of possibility cannot express observational judgements such as
termination, i.e. m‖−c⇓ iff ∃k:N, a:A(m+ k).〈k, a〉 = c.
One way to avoid this problem is to consider the sub-topos (SetI)¬¬ of sheaves for the double-
negation topology, which coincide with pullback preserving functors from I to Set. In fact, (T, t)
cuts down to a strong functor over (SetI)¬¬, necessity commutes with implication (but not with
universal quantification), and the interpretation of the evaluation predicate and possibility becomes

• m‖−〈a⇐c〉p(x, a) iff ∃k:N, a:A(m+ k).〈k, a〉 = c ∧m+ k‖−p(X(m ↪→ m+ k)x, a)

• m‖−c⇓a iff ∃k:N, a:A(m+ k).〈k,A(m ↪→ m+ k)a〉 = c.

One can consider monads for dynamic allocation better than T , by replacing coproducts with
a different form of colimit (see [Mog89]), but they fail to be M-functors without restricting to
(SetI)¬¬. More recently, [PS93] considers also monads for dynamic allocation in categories of
parametric functors. These monads do not preserve monos, indeed there is a regular mono m s.t.
Tm is not monic.

5 Completeness results

In this section we prove completeness results for some typed predicate logics with necessity (in-
troduced in Section 2) w.r.t. the internal semantics (defined in Section 3.3). First we establish
completeness w.r.t. the external semantics. Then we define suitable constructions for transforming
external models into internal models with the same theory, so that one can turn completeness
results w.r.t. the external semantics into completeness results w.r.t. the internal semantics. In
summary, we have the following completeness results:

Theorem 5.1

1. MLT [2] is complete w.r.t. internal interpretations in categories C with finite products equipped
with a dominion M and a strong monad (T, t, η, µ) s.t. T is a M-functor;

2. MLT [=,2,2-=] is complete w.r.t. internal interpretations in categories C with finite products
equipped with a dominion M and a strong monad (T, t, η, µ) s.t. M has equalities and T is a
M-functor;

21

3. HMLT [2,2-=,Comp-P ,Comp-T] is complete w.r.t. internal interpretations in toposes C equipped
with a strong monad (T, t, η, µ) s.t. T is a M-functor, where M is the dominion of all monos.

By restricting the internal interpretations to those C with (enough) exponentials and/or those
M with (enough) implications and universal quantifications along first projections, then one has
completeness also for: MLT⇒[⊃, ∀,2] , MLT⇒[=,⊃, ∀,2,=-λ,2-=] and
HMLT⇒[2,2-=,Comp-P ,Comp-⇒,Comp-T].

Proof By completeness w.r.t. external interpretations, and then by applying the properties of the
constructions described in Section 5.2.1, 5.2.2 and 5.2.3.

5.1 Completeness w.r.t. the external semantics

The simplest way of proving completeness of a logic w.r.t. a class of models, is to show that for
every theory Th there is a generic model M(Th), whose theory is exactly Th. In this section we
adapt the construction of a classifying hyperdoctrine P and a generic model M(Th) for a
first order theory Th (see [KR77, Pit89]) to theories in one of the typed predicate logics considered
in Section 2. The key property of M(Th) is that a well formed equation or sequent is in Th iff it is
true in M(Th). The classifying hyperdoctrine P is only instrumental to the definition of M(Th).

5.1.1 Generic models

Given a theory Th for ML(Σ), one can define an indexed meet semi-lattice P : Cop → PoSet from
the syntax and prove that it satisfies the necessary properties, by appealing to closure of Th w.r.t.
the inference rules of ML(Σ), including those for finite products and conjunctions, namely:

• C is the category with products induced by the equations of Th, i.e. objects are well formed types,
morphisms from τ1 to τ2 are equivalence classes of well formed terms x: τ1 ` e: τ2 modulo provable
equality, i.e. x: τ1 ` e1 = e2: τ2 is in Th, and composition is given by syntactic substitution.

The terminal object of C is the unit type 1, and the binary product τ1×τ2 is the product type
τ1×τ2 with projections given by [x: τ1×τ2 ` πi(x): τi].

• P [τ] is the meet semi-lattice of formulas over τ , i.e. elements are equivalence classes of well
formed formulas x: τ ` φ prop modulo provable equivalence, i.e. x: τ ` φ1 ⇐⇒ φ2 is in Th, and
the partial order is given by provable entailment, i.e. x: τ ` φ1 =⇒ φ2 is in Th.

The top element of Pτ is [x: τ ` > prop] and the binary meet [x: τ ` φ1 prop]∧ [x: τ ` φ2 prop]
is [x: τ ` φ1 ∧ φ2 prop].

• f∗:P [τ2] → P [τ1], when f = [x: τ1 ` e: τ2], is given by f∗[x: τ2 ` φ prop] = [x: τ1 ` [e/x]φ prop]

When Th is a theory for an extension of ML(Σ) (obtained by adding functional types, implication,
universal quantification and/or equality predicates) or for HML(Σ) one can proceeds similarly, by
showing that the indexed meet semi-lattice P (defined above) is equipped with additional structure,
suitable for interpreting the typed predicate logic under consideration, namely:

• if Th has functional types, then the exponential τ2
τ1 in C is the functional type τ1⇒τ2 with

evaluation given by [x: (τ1⇒τ2)×τ1 ` π1(x)(π2x): τ2].

• if Th has implication, then the pseudo-complement [x: τ ` φ1 prop] ⊃ [x: τ ` φ2 prop] in P [τ] is
given by [x: τ ` φ1 ⊃ φ2 prop]

• if Th has universal quantification, then the universal quantification along π1: τ1×τ → τ1 of
[x: τ1×τ ` φ prop] is given by [x: τ1 ` ∀y: τ.[〈x, y〉/x]φ prop]

• if Th has equality over τ , then P has equality over τ given by [x: τ×τ ` π1(x) =τ π2(x) prop]

• if Th is a theory for HML(Σ), then [X : Ω ` X prop] is a generic predicate, and the exponential
Ωτ in C is the powerset type Pτ with evaluation given by [x: (Pτ)×τ ` (π2x) ∈τ (π1x): Ω].

22

The generic model M(Th) of Th is obtained by choosing a suitable interpretation in P of the
symbols in Σ, namely: A ∈ Σt is interpreted by A ∈ C, f ∈ Σf

τ1,τ2
is interpreted by the morphism

[x: τ1 ` f(x): τ2]: τ1 → τ2, and p ∈ Στ is interpreted by [x: τ ` p(x) prop] ∈ P [τ]. In this way the
following properties hold:

• the interpretation of a type τ is τ ,

• the interpretation of a context Γ ≡ x1: τ1, . . . , xn: τn is the type τΓ = 1×τ1× . . .×τn (where
association is on the left),

• the interpretation of a term Γ ` e: τ is [x: τΓ ` [e/x]e: τ]: τΓ → τ (where ei selects the i-component
of x),

• the interpretation of a formula Γ ` φ prop is [x: τΓ ` [e/x]φ prop] ∈ P [τΓ].

From these properties one can prove that a well formed equational or entailment judgement is in
Th iff it is true in M(Th).

5.1.2 Generic models for necessity

In this section we extend the construction of generic models to theories involving necessity. How-
ever, we must first specify the additional structure on indexed meet-semilattices for interpreting
typed predicate logics with necessity.

Definition 5.2 Given a category C with finite products, a C-indexed meet semi-lattice P, and a
strong monad (T, t, η, µ) over C, then a box-modality 2 (for T over P) is a family of monotonic
functions 〈2A:P [A] → P [TA]|A ∈ C〉 s.t.

2T* 2B(f∗a) = (Tf)∗(2Aa), where f :B → A

2t a× (2Bb) ≤ t∗A,B(2A×B(a× b)), where
a× b is (π∗

1a) ∧ (π∗
2b) ∈ P [A×B] when a ∈ P [A] and b ∈ P [B].

2>* 2A> = >

2∧* 2A(a ∧ b) = (2Aa) ∧ (2Ab)

2η a ≤ η∗(2Aa)

2µ 2TA(2Aa) ≤ µ∗(2Aa)

If 2 is a box-modality for T over P , then the external interpretation of Section 3.2.1 can be
extended to formulas with necessity by
Γ, x:A ` φ prop = φ ∈ P [Γ×A]
Γ, c:TA ` [x⇐c]φ prop = t∗Γ,A(2Γ×Aφ) ∈ P [Γ×TA]

When P is the indexed meet-semilattice induced by a dominion M, and (T, t, η, µ) is s.t. T is a
M-functor, then it is easy to show that 2A[m] = [Tm] is a box-modality for T over P .

Remark 5.3 Box-modalities are related to T -modalities of [Pit91], i.e. families 2A,B :P [A×B] →
P [A×TB] of monotonic functions satisfying certain equations. First of all (under mild assumptions)
there is a 1-1 correspondence between families of the form 2A and those of the form 2A,B , namely:
2A,Ba = t∗A,B(2A×Ba) and 2Aa = 〈!A, idA〉∗(21,A(π∗

2a)). Modulo this correspondence, Pitts’
T -modalities are those families 2A of monotonic functions satisfying: (2η), (2µ) and (2T*), but
with ≤ replaced by =. The properties (2>*) and (2∧*) are specific to necessity, while property
(2t) is not required by Pitts, even for necessity, since it fails in the non-standard model of ELT

for side-effects (see Example 1.3).

Theorem 5.4 If Th is a theory for MLT [2](Σ), then the indexed meet semi-lattice P : Cop →
PoSet, defined in Section 5.1.1, is equipped with a strong monad (T, t, η, µ) over C (see [Mog91])
and a box-modality 2 for T over P given by 2τ ([x: τ ` φ prop]) = [c:Tτ ` [x⇐c]φ prop].

23

Proof 2τ is well defined and monotonic because of (entail). We have to prove (by derivation) that
2 satisfies the properties in Definition 5.2:

2> it amounts to (2->);

2∧ it amounts to (2-∧);

2η it amounts to (2-lift), since ητ = [x: τ ` [x]:Tτ];

2µ 2TA(2Aa) ≤ µ∗(2Aa) is an instance of (2-let), since
µτ = [c:T 2τ ` let x⇐c inx:Tτ];

2T it amounts to (2-T), since
T ([x: τ1 ` e: τ2]) = [c:Tτ1 ` let x⇐c in [e]:Tτ2]

2t it amounts to prove the assertion

x:A, c:TB ` φ ∧ [y⇐c]ψ =⇒ [〈x, y〉⇐(let y⇐c in [〈x, y〉])](φ ∧ ψ)

for every x:A ` φ prop and y:B ` ψ prop.

x:A, c:TB ` [〈x, y〉⇐(let y⇐c in [〈x, y〉])](φ ∧ ψ) ⇐⇒ by axiom (2-t)
x:A, c:TB ` [y⇐c](φ ∧ ψ) ⇐⇒ by axiom (2-∧)
x:A, c:TB ` ([y⇐c]φ) ∧ ([y⇐c]ψ) prop.

The assertion follows immediately from x:A, c:TB ` φ prop[y⇐c]φ, which is an instance of
(2-D1) derived in Lemma 2.7.

Using the additional structure defined in the previous theorem, it is easy to construct generic
models for theories involving also necessity.

5.2 From external to internal models

We introduce three constructions for transforming external models into internal models with the
same theory (over some suitable language). The first and second are based on the Grothendieck
construction (see [Gra66]), while the third is studied in [Pit81, HJP80]. In general, these con-
structions take a category B and a B-indexed meet semi-lattice P (but further properties may be
needed), and produce

• a category C and a structure preserving functor U C :B → C,

• a dominion MC over C and a B-indexed isomorphism IC :P → UC ;MC.

They differ mainly in the requirements on B and P needed for performing the construction, and
how additional properties or structures on B and P are reflected on C, MC, UC and IC .
We investigate which additional properties or structures on B and P induce similar properties or
structures on C and MC and ensure good preservation properties of UC and IC . In particular,
we consider those properties and additional structures for interpreting the typed predicate logics
introduced in Section 2. More precisely, the categories with dominions (G,MG), (E ,ME) and
(T ,MT) produced by the three constructions (when defined) are related via functors

B
<

π

UG
> G

ε
> E

ι

<
S

>
T

and the following properties hold:

• G has finite products, UG is full and faithful, π is faithful and left exact (i.e. it preserves finite
products), π a UG (i.e. π is left adjoint to UG), P is isomorphic to UG ;MG ;

24

• if P has equality, then E has finite limits, ε is full, bijective on objects, and preserves products,
ME has equalities, MG is isomorphic to ε ;ME ;

• if P is a tripos satisfying (Comp-P), then T is a topos, S is full and faithful, ι is faithful and left
exact, ι a S, MT is equivalent to the dominion of all monos in T , ME is isomorphic to ι ;MT ,
MT is isomorphic to S ;ME .

Remark 5.5 The key properties of indexed isomorphisms is that they commute with the interpre-
tation of logical constants defined in terms of universal properties. In general, this is does not
imply that they commute with the interpretation of formulas of a given predicate logic, unless the
functors between base categories preserve the relevant structure for that predicate logic.

5.2.1 The Grothendieck construction

The Grothendieck construction transforms indexed categories into categories, but we apply it only
to indexed meet semi-lattices. Throughout this section we fix a category B with finite products, a
B-indexed meet semi-lattice P , a strong monad T over B and a box-modality 2 for T over P .

Definition 5.6 Given the assumptions above we can define:

• a category G with finite products s.t.

– an object is a pair 〈A, a〉 s.t. A ∈ B and a ∈ P [A],

– a morphism from 〈A, a〉 to 〈B, b〉 is an f :A→ B in B s.t. a ≤ f ∗b in P [A],

– composition is induced by composition in B;

• a functor π:G → B s.t. π(〈A, a〉) = A and π(f : 〈A, a〉 → 〈B, b〉) = f :A→ B;

• a functor UG :B → G s.t. UGA = 〈A,>〉 and UG(f :A→ B) = f : 〈A,>〉 → 〈B,>〉;

• a dominion MG over G with elements idA: 〈A, a′〉 → 〈A, a〉 s.t. A ∈ B and a′ ≤ a in P [A];

• a B-indexed isomorphism IG :P → UG ;MG s.t. IG [A]a = [idA: 〈A, a〉 → 〈A,>〉] ∈ MG [UGA];

• a strong monad T G over G s.t.

– T G(〈A, a〉) = 〈TA,2Aa〉 and T G(f : 〈A, a〉 → 〈B, b〉) = Tf

– tTG

〈A,a〉,〈B,b〉 = tT
A,B

– ηTG

〈A,a〉 = ηT
A

– µTG

〈A,a〉 = µT
A

The following theorem establishes key properties of the previous construction.

Theorem 5.7 The construction in 5.6 satisfies the following properties:

1. π a UG;

2. π is faithful, and it preserves and weakly creates finite limits;

3. G has finite products;

4. UG is full and faithful, and it preserves exponentials;

5. MG is a dominion over G;

6. IG is a B-indexed isomorphism;

7. T G is a strong monad over G;

8. UG commutes with computational types, i.e. (UG , id):T → T G is a strong monad morphism;

25

9. T G is an MG-functor;

10. IG commutes with necessity, i.e. IG [TA](2Aa) = [T Gm] when [m] = IG [A]a.

The main consequence of Theorem 5.7 (and completeness w.r.t. the external semantics) is com-
pleteness ofMLT [2](Σ) w.r.t. the internal semantics. Using Theorem 5.9 (see below) one can easily
extend this completeness result also to MLT [⊃,2](Σ), MLT [⊃, ∀,2](Σ) and MLT⇒[⊃, ∀,2](Σ).

Lemma 5.8 If D is a class of display maps over B and P is closed under universal quantification
along d ∈ D, then E = {d: 〈A′, d∗a〉 → 〈A, a〉|d:A′ → A ∈ D, a ∈ P [A]} is a class of display maps
over G and the G-indexed meet semi-lattice MG is closed under universal quantification along E.

Theorem 5.9

1. If P is closed under implication, then the indexed meet semi-lattice MG is closed under universal
quantification along MG.

2. If P is closed under universal quantification over A ∈ B, then MG is closed under universal
quantification over UGA ∈ G.

3. If P is closed under implication and universal quantification along projections, then MG is closed
under universal quantification along projections.

4. If B has exponentials and P is closed under implication and universal quantification along pro-
jections, then G has exponentials.

5.2.2 The modified Grothendieck construction

The construction of Section 5.2.1 does not produce a dominion with equalities, when applied to an
external model with equalities. However, this problem is overcome by quotienting w.r.t. a suitable
congruence. Throughout this section we fix a category B with finite products, a B-indexed meet
semi-lattice P with equalities, a strong monad T over B and a box-modality 2 for T over P .

Definition 5.10 Given the assumptions above and 2 satisfying (2-=) we can define a congruence
≡ on the morphisms of G given by f ≡ g iff x:A ` a(x) =⇒ fx =B gx, for every f, g: 〈A, a〉 →
〈B, b〉. Moreover, we can define:

• a category E given by the quotient G/ ≡;

• a functor ε:G → E mapping f : 〈A, a〉 → 〈B, b〉 to its equivalence class modulo ≡;

• a dominion ME over E given by the image of MG along ε;

• a G-indexed isomorphism J :MG → ε ;ME given by J [〈A, a〉]([m]) = [εm];

• a strong monad T E over E given by the quotient T G/ ≡, i.e.

– T E(〈A, a〉) = T G(〈A, a〉) and T E(εf) = ε(Tf)

– tTE

〈A,a〉,〈B,b〉 = ε(tTG

〈A,a〉,〈B,b〉)

– ηTE

〈A,a〉 = ε(ηTG

〈A,a〉)

– µTE

〈A,a〉 = ε(µTG

〈A,a〉)

Proof We prove that ≡ is an equivalence respected by composition. First, ≡ is an equivalence,
because =B satisfies the axioms for an equivalence. To prove that composition respects ≡, it is
enough to derive x:A ` a(x) =⇒ f ′(fx) =C g′(gx) from (1) x:A ` a(x) =⇒ fx =B gx, (2)
x:A ` a(x) =⇒ b(fx) and (3) y:B ` b(y) =⇒ f ′y =C g′y.

• y, y′:B ` b(y), y =B y′ =⇒ f ′y =C g′y′ by (3) and (=)

26

• x:A ` b(fx), fx =B gx =⇒ f ′(fx) =C g′(gx) by (subst)

• x:A ` a(x) =⇒ f ′(fx) =C g′(gx) by (1), (2) and (cut).

The following theorem establishes key properties of the previous construction.

Theorem 5.11 The construction in 5.10 satisfies the following properties:

1. ε is full and bijective on objects, and it preserves finite products and pullbacks of monos in MG;

2. E has finite limits;

3. ME is a dominion over E, and it has equalities;

4. J is a G-indexed isomorphism;

5. T E is a strong monad over E;

6. ε commutes with computational types, i.e. (ε, id):T G → T E is a strong monad morphism;

7. T E is an ME-functor;

8. J commutes with necessity, i.e. [ε(T Gm)]) = [T E(εm)] when m ∈ MG.

From the previous theorem it is easy to derive the key properties of the construction relating it
directly to B, P , T and 2.

Corollary 5.12 If UE = UG ; ε:B → E and IE :P → UE ; ME is the B-indexed isomorphism s.t.
IE [A]a = J [UGA](IG [A]a), then

1. UE is full and preserves finite products;

2. IE is a B-indexed isomorphism;

3. UE commutes with computational types, i.e. (UE , id):T → T E is a strong monad morphism;

4. IE commutes with necessity, i.e. IE [TA](2Aa) = [T Em] when [m] = IE [A]a.

Proof

1. UE is full and preserve finite products, since UG and ε do.

2. IE is an indexed isomorphism, since IG and J are.

3. (UE , id) is a strong monad morphism, because (UG , id) and (ε, id) are.

4. IE commutes with necessity, since IG and J do.

Theorem 5.13

1. If P is closed under implication, then the E-indexed meet semi-lattice ME is closed under uni-
versal quantification along ME (or equivalently implication).

2. If MG is closed under universal quantification over 〈A, a〉, then so is the E-indexed meet semi-
lattice ME .

3. If P is closed under implication and universal quantification along projections, then the E-indexed
meet semi-lattice ME is closed under universal quantification along projections.

4. If B has exponentials and P satisfies (=-λ), then ε preserves exponentials of the form 〈B, b〉(U
GA).

27

5.2.3 The Tripos construction

Throughout this section we fix a B-tripos P , a strong monad T over B and a box-modality 2 for T
over P . We freely use the internal logic of a tripos to describe constructions and prove properties.

Definition 5.14 ([Pit81]) Given a B-tripos P we can define:

• a category T s.t.

– an object is a pair 〈A,=a〉 s.t. A ∈ B and =a∈ P [A×A] is a partial equivalence relation
(per) on A, i.e.

() x, y:A ` x =a y =⇒ y =a x
() x, y, z:A ` x =a y, y =a z =⇒ x =a z

– a morphism from 〈A,=a〉 to 〈B,=b〉 is a functional relation F ∈ P [A×B], i.e.

(ext) x1, x2:A, y1, y2:B ` F (x1, y1), x1 =a x2, y1 =b y2 =⇒ F (x2, y2)
(strict) x:A, y:B ` F (x, y) =⇒ Ea(x) ∧ Eb(y)
(SV) x:A, y1, y2:B ` F (x, y1), F (x, y2) =⇒ y1 =b y2
(total) x:A ` Ea(x) =⇒ ∃y:B.F (x, y)

where Ea(x) ∈ P [A] stands for x =a x

– composition of F : 〈A,=a〉 → 〈B,=b〉 with G: 〈B,=b〉 → 〈C,=c〉 is relational composition,

i.e. x:A, z:C ` (F ;G)(x, z)
∆
≡ ∃y:B.F (x, y) ∧G(y, z);

• a functor ι: E → T s.t. ι(〈A, a〉) = 〈A,'a〉 and ι(ε(f): 〈A, a〉 → 〈B, b〉) = F : 〈A,'a〉 → 〈B,'b〉

where 'a∈ P [A×A] is Leibniz’ equality over A ∈ B restricted to a ∈ P [A], and

x:A, y:B ` F (x, y)
∆
≡ a(x) ∧ y 'b fx;

• a dominion MT with elements R: 〈A,R〉 → 〈A,=a〉 s.t.
R ∈ P [A×A] is a per s.t. =a ;R; =a≤ R ≤=a;

• a E-indexed isomorphism K:ME → ι ;MT given by K[〈A, a〉]([m]) = [ιm].

Theorem 5.15 ([Pit81]) The construction in 5.14 satisfies the following properties:

1. T is a topos;

2. ι is faithful and preserves finite limits;

3. MT is a dominion over T s.t. every subobject in T is represented by a unique mono in MT ;

4. K is a E-indexed isomorphism.

Proof The proof that T is a topos and that every subobject is represented by a unique mono in M
can be found in [Pit81]. It is immediate to verify that ι is faithful. While to prove that ι preserves
finite limits and K is an indexed isomorphism, one has to mimic the proof (given in [Pit81]) that
∆P :B → T preserves finite limits and P [A] and T [∆PA] are naturally isomorphic.

Corollary 5.16 ([Pit81]) Under the assumptions of Definition 5.14, if UT = UE ; ι:B → T and
IT :P → UT ;MT is the B-indexed isomorphism s.t. IT [A]a = K[UEA](IE [A]a), then

1. UT preserves finite limits;

2. IT is a B-indexed isomorphism.

Theorem 5.17 If B has exponentials and P is a B-tripos satisfying (Comp-⇒), then ι preserves

exponentials of the form 〈B, b〉(U
EA)

.

28

Proof For simplicity we assume that b = >B , and prove bijectivity of the canonical morphism

f :BA, R:P (A×B) ` F (f,R)
∆
≡ ∀x:A, y:B.R(x, y) ↔ y 'B fx from 〈BA,'A⇒B〉 (the image of

the exponential in E) to the exponential 〈P (A×B),'FR〉 in T (of the images), where R:P (A×B) `

FR(R)
∆
≡ ∀x:A.∃!y:B.R(x, y).

• FR(R) =⇒ ∃!f :BA.∀x:A.R(x, fx) by (Comp-⇒)

• FR(R), ∀x:A.R(x, fx) =⇒ R(x, y) ↔ y 'B fx by derivation in HML

• therefore R:P (A×B) ` FR(R) =⇒ ∃!f :BA.F (f,R), which is bijectivity of F .

Definition 5.18 Given a B-tripos P satisfying (Comp-P), we can define:

• a functor S: T → E s.t. S(〈A,=a〉) = 〈ΩA, Sa〉 and
S(F : 〈A,=a〉 → 〈B,=b〉) = (ε(f): 〈ΩA, Sa〉 → 〈ΩB , Sb〉)

where X :PA ` Sa(X)
∆
≡ ∃x:A.Ea(x) ∧ (∀x′:A.x′ ∈A X ↔ x′ =a x), and

f :PA→ PB s.t. X :PA, y:B ` Sa(X) =⇒ y ∈B fX ↔ (∃x:A.x ∈A X ∧ F (x, y))

• a T -indexed isomorphism L:MT → S ;ME given by L[〈A,=a〉]([m]) = [Sm];

Proof In the proof that S is well defined, we write X =e Y for (∀x: τ.x ∈τ X ↔ x ∈τ Y).

S is well defined, because X :PA ` f(X)
∆
≡ {y:B|Sa(X) ∧ (∃x:A.x ∈A X ∧ F (x, y))}:PB is a

witness for S(F), i.e. X :PA ` Sa(X) =⇒ Sb(fX) is derivable (without using (Comp-P)), and if
f ′ is another witness for S(F), then X :PA ` Sa(X) =⇒ fX 'PB f ′X is derivable:

• X :PA, y:B ` Sa(X) =⇒ y ∈B fX ↔ y ∈B f ′X by assumption on f and f ′,

• X :PA, y:B ` Sa(X) =⇒ fX =e f
′X by formal derivation,

• X :PA, y:B ` Sa(X) =⇒ fX 'PB f ′X by (ext-P) of Lemma 2.10.

Theorem 5.19 The construction in 5.18 satisfies the following properties:

1. ι a S;

2. S is full and faithful;

3. L is a T -indexed isomorphism;

4. S(zι(y)) is an exponential of S(z) to y (for y ∈ E and z ∈ T), and ι preserves such exponentials;

5. the functor S preserves exponentials;

6. ι(〈Ω,>〉) is a subobject classifier of T , and η〈Ω,>〉: 〈Ω,>〉 → S(ι(〈Ω,>〉)) is an isomorphism.

When (Comp-P) holds, we don’ t need to use pers to make a topos. In fact, T becomes equivalent
to the topos constructed in [LS86] to prove completeness of Type Theory.

Corollary 5.20 Under the assumptions of Definition 5.18 UT preserves powerobjects, i.e. UT (ΩA)
is isomorphic to P (UT (A)).

Proof First one shows that UE of Theorem 5.13 preserves exponentials of the form ΩA, in fact
(=-λ) for A⇒Ω is just a reformulation of (ext-P). Then, one has to apply Theorem 5.19.

Definition 5.21 Given a B-tripos P satisfying (Comp-P), a strong monad T over P and a box-
modality 2 for T over P satisfying (2-=) and (Comp-T), we can define:

29

• an inverse σ: ι ; S ; T E ; ι
.
→ T E ; ι to the natural transformation (T E ; ι)(η) s.t.

C:T (PA), c:TA ` σ〈A,a〉(C, c)
∆
≡ [x⇐c]a(x) ∧ C 'T (PA) (let x⇐c in [{x}])

• a strong monad T T over T s.t.

– T T = S ; T E ; ι

–

tTT

x,y = x×(S ; T E ; ι)y
ε−1
x ×id

∼
> ι(Sx)×ι((S ; T E)y)

∼= ι((Sx)×T E(Sy))
ι(tTE

Sx,Sy)
> (T E ; ι)(S(x)×S(y))

∼= (S ; T E ; ι)(x×y)

– ηTT

x = x
ε−1
x

∼
> ι(Sx)

ι(ηTE

Sx)
> (S ; T E ; ι)(x)

– µTT

= (S ; T E ; ι ; S ; T E ; ι)(x)
σTE (Sx)

∼
> (S ; T E ; T E ; ι)(x)

ι(µTE

Sx)
> (S ; T E ; ι)(x)

Proof To prove that σ is well defined and is a natural isomorphism, we use (Comp-T) for showing
that (T E ; ι)(η〈A,a〉) is invertible.

• η〈A,a〉: 〈A, a〉 → 〈PA, Sa〉, where X ; PA ` Sa(X)
∆
≡ ∃!x:A.a(x) ∧ x ∈A X , is given by the

equivalence class of (the interpretation of) x:A ` {x}:PA, hence

• (T E ; ι)(η〈A,a〉) is given by (the interpretation of) the predicate

c:TA,C:T (PA) ` F (c, C)
∆
≡ ([x⇐c]a(x)) ∧ C 'T (PA) (let x⇐c in [{x}]), and

• bijectivity of (T E ; ι)(η〈A,a〉) in T amounts to C:T (PA) ` [X⇐C]Sa(X) =⇒ ∃!c:TA.F (c, C),
which follows from

– [X⇐C]Sa(X) =⇒ ∃!c:TA.C 'T (PA) (let x⇐c in [{x}])

[X⇐C]Sa(X) =⇒ by (2-=⇒)
[X⇐C](∃!x:A.x ∈A X) =⇒ by (Comp-T)
∃!c:TA.C 'T (PA) (let x⇐c in [{x}])

– and [X⇐C]Sa(X), C 'T (PA) (let x⇐c in [{x}]) =⇒ [x⇐c]a(x)

[X⇐C]Sa(X), C 'T (PA) (let x⇐c in [{x}]) =⇒ by (=) and (subst)
[X⇐(let x⇐c in [{x}])]Sa(X) =⇒ by (2-T*)
[y⇐c]Sa({y}) =⇒ by (2-=⇒) and a(x), x ∈A {y} =⇒ a(y)
[x⇐c]a(x).

The definition of T T relies only on ι and S preserving finite limits (see Theorem 5.15 and 5.19),
and σ and ε being natural isomorphisms.

Theorem 5.22 The construction in 5.21 satisfies the following properties:

1. T T is a strong monad over T ;

2. ι commutes with computational types up to iso, i.e. (ι, σ):T E → T T is a strong monad morphism;

3. T T is an MT -functor;

4. K commutes with necessity up to iso, i.e. [ι(T Em)]) = σ∗
〈A,a〉[T

T (ιm)] when [m] ∈ ME [〈A, a〉].

Corollary 5.23 Under the assumptions of Definition 5.21

30

1. UT commutes with computational types up to iso, i.e.
(UT , UE ; σ):T → T T is a strong monad morphism;

2. IT commutes with necessity up to iso, i.e.
IT [TA](2Aa) = (UE ; σ)∗A[T T (ιm)] when [m] = IT [A]a.

Proof Immediate from Theorem 5.11 and 5.22.

Conclusions and further research

The main contribution of this paper are the formal systems introduced in Section 2, and their
soundness and completeness w.r.t. natural classes of models. We have tried to justify the generality
and flexibility of ELT by several examples. However, its usability can only be established by
applying it to large scale examples. More specific issues which need to be addressed are:

• To compare the expressiveness of ELT with that of other program logics. For instance, it is not
clear whether one can extend the translation of Dynamic Logic into ELT (given in Example 1.3)
to more complex program logics such as Reynolds’ Specification Logic or the one in [HMST92].

• To find additional properties of T to ensure the existence of powerful inductive and co-inductive
principles (see [Pit93]).

• To achieve a better integration of ELT with SDT (see Remark 2.1).

There is work in progress on finding models of SDT where TX = Σ(ΣX) and other computational
monads on R (including powerdomains) preserve regular monos. This should avoid the problems
mentioned in Example 4.10 regarding the category of cpos. We are also investigating alternative
internal semantics for necessity, which do not rely on additional properties of strong functors.

Acknowledgements

I would like to thanks Andy Pitts and Ian Stark for technical discussions, Pino Rosolini for com-
ments on a previous draft, and Paul Taylor for both.

References

[CP92] R.L. Crole and A.M. Pitts. New foundations for fixpoint computations: Fix hyperdoc-
trines and the fix logic. Information and Computation, 98, 1992.

[GMW79] M.J.C. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mechanized Logic
of Computation, volume 78 of Lecture Notes in Computer Science. Springer Verlag,
1979.

[Gra66] J.W. Gray. Fibred and cofibred categories. In S. Eilenberg et al., editors, Proc. Conf.
Categorical Algebra (La Jolla 1965). Springer Verlag, 1966.

[HJP80] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Math. Proc. Camb.
Phil. Soc., 88, 1980.

[HMST92] F. Honsell, I.A. Mason, S.F. Smith, and C. Talcott. A variable typed logic of effects. In
Proceedings 1992 Annual Conference of the European Association for Computer Science
Logic CSL92, San Miniato, volume to appear of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

[Hyl91] J.M.E. Hyland. First steps in synthetic domain theory. In A. Carboni, editor, Confer-
ence on Category Theory ’90, volume 1488 of Lecture Notes in Mathematics. Springer
Verlag, 1991.

31

[KR77] A. Kock and G.E. Reyes. Doctrines in categorical logic. In J. Barwise, editor, Handbook
of Mathematical Logic, volume 90 of Studies in Logic. North Holland, 1977.

[Law63] F.W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A.,
50, 1963.

[Law70] F.W. Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint
functor. In A. Heller, editor, New York Symp. on Applications of Categorical Algebra.
AMS, 1970.

[LS86] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic, volume 7 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.

[Mog89] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-
90-113, Edinburgh Univ., Dept. of Comp. Sci., 1989. Lecture Notes for course CS 359,
Stanford Univ.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation, 93(1),
1991.

[Ole85] F.J. Oles. Type algebras, functor categories and block structure. In M. Nivat and J.C.
Reynolds, editors, Algebraic Methods in Semantics, 1985.

[Osi73] G. Osius. The internal and external aspect of logic and set theory in elementary topoi.
Cahiers Top. Geom. Diff., 14, 1973.

[OT93] P.W. O’Hearn and R.D. Tennent. Relational parametricity and local variables. In 20th
POPL. ACM, 1993.

[Pit81] A.M. Pitts. The Theory of Triposes. PhD thesis, University of Cambridge, 1981.

[Pit88] A.M. Pitts. Categories and types. Lecture Notes for a course at the SERC Logic for
IT Summer School on Constructive Logics and Category Theory, August 1988.

[Pit89] A.M. Pitts. Notes on categorical logic. Lecture Notes for a graduate course in the
University of Cambridge Computer Laboratory, Lent Term, 1989.

[Pit91] A.M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher Order Workshop,
Banff 1990, volume 283 of Workshops in Computing. Springer Verlag, 1991.

[Pit93] A.M. Pitts. Relational properties of recursively defined datatypes. In 8th LICS Conf.
IEEE, 1993.

[PS78] R. Pare and D. Schumacher. Abstract families and the adjoint functor theorems. In
P.T. Johnstone and R. Pare, editors, Indexed Categories and their Applications, volume
661 of Lecture Notes in Mathematics. Springer Verlag, 1978.

[PS93] A.M. Pitts and I.D.B. Stark. On the observable properties of higher order functions
that dynamically create local names (preliminary report). In Workshop on State in
Programming Languages, Copenhagen, 1993. Yale Univ., Comp. Sci. Tech. Report.

[RR88] E. Robinson and G. Rosolini. Categories of partial maps. Information and Computation,
79(2), 1988.

[See87] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda calculus.
Journal of Symbolic Logic, 52(2), 1987.

[Tay87] P. Taylor. Recursive Domains, Indexed Category Theory and Polymorphism. PhD
thesis, University of Cambridge, 1987.

[TP90] P. Taylor and W. Phoa. The synthetic Plotkin powerdomain. draft, 1990.

32

Contents

1 Informal semantics of ELT 2
1.1 Key features of MLT and ELT . 2
1.2 A set-theoretic semantics of ELT . 2
1.3 Discussion on related semantics . 4

2 Typed predicate logics 5
2.1 The typed predicate logic ML(Σ) . 6
2.2 Additional types . 7

2.2.1 Computational types: T . 7
2.2.2 Functional types: ⇒ . 7

2.3 Logical constants . 8
2.3.1 Implication: ⊃ . 8
2.3.2 Universal quantification: ∀ . 8
2.3.3 Equality: = . 8
2.3.4 Additional axioms for = . 8
2.3.5 Necessity: 2 . 8
2.3.6 Additional axioms for 2 . 9

2.4 Higher Order Logic: HML . 9
2.5 Additional axioms for HML . 10

2.5.1 Comprehension for powersets: Comp-P . 10
2.5.2 Comprehension for functional types: Comp-⇒ 10
2.5.3 Comprehension for computational types: Comp-T 10

2.6 Formal consequences . 10

3 Categorical semantics 11
3.1 Strong monads . 12
3.2 External semantics . 12

3.2.1 External interpretation . 13
3.3 Internal semantics . 14

3.3.1 Internal interpretation . 16

4 Semantics for necessity 17
4.1 Properties of strong monads w.r.t. a dominion . 17
4.2 Soundness of rules for necessity . 19

5 Completeness results 21
5.1 Completeness w.r.t. the external semantics . 22

5.1.1 Generic models . 22
5.1.2 Generic models for necessity . 23

5.2 From external to internal models . 24
5.2.1 The Grothendieck construction . 25
5.2.2 The modified Grothendieck construction . 26
5.2.3 The Tripos construction . 28

A Appendix 34

33

A Appendix

Proof of 2.7.

1. Γ, x: τ ` φ,> =⇒ φ is true
Γ, c:Tτ ` φ, [x⇐c]> =⇒ [x⇐c]φ by (2-=⇒) and x 6∈ FV(φ)
Γ, c:Tτ ` φ =⇒ [x⇐c]φ by (2->*)

2. Γ, x: τ ` φ1 ∧ φ2 =⇒ φi is true
Γ, c:Tτ ` [x⇐c](φ1 ∧ φ2) =⇒ [x⇐c]φi by (2-=⇒)
from this one can easily derive the axiom

3. Γ, x: τ ` φ1, (φ1 ⊃ φ2) =⇒ φ2 is true
Γ, c:Tτ ` φ1, [x⇐c](φ1 ⊃ φ2) =⇒ [x⇐c]φ2 by (2-=⇒) and x 6∈ FV(φ1)
from this one can easily derive the axiom

4. Γ, x: τ1, y: τ2 ` ∀y: τ2.φ =⇒ φ is true
Γ, c:Tτ1, y: τ2 ` [x⇐c]∀y: τ2.φ =⇒ [x⇐c]φ by (2-=⇒)
from this and y 6∈ FV([x⇐c]∀y: τ2.φ) one can easily derive the axiom

5. the direction =⇒ is an instance of (2-T), so we derive the other entailment:

[y⇐(let x⇐c in [e])]φ =⇒ by (congr) using y = [e′/x]e and x 6∈ FV(φ)
[y⇐(let x⇐c in [e])][e′/x]([e/y]φ) =⇒ by (2-T)
[x⇐let y⇐(let x⇐c in [e]) in [e′]]([e/y]φ) =⇒ by (congr) using equational rules
[x⇐(let x⇐c in [[e/y]e′])]([e/y]φ) =⇒ by (congr) using x = [e/y]e′

[x⇐(let x⇐c in [x])]([e/y]φ) =⇒ by (congr) using equational rules
[x⇐c]([e/y]φ)

6. [x⇐c]([y⇐e]φ) =⇒ by (2-T)
[z⇐(let x⇐c in [e])]([y⇐z]φ) =⇒ by (2-µ)
[y⇐let z⇐(let x⇐c in [e]) in z]φ =⇒ by (congr) using equational rules
[y⇐(let x⇐c in e)]φ

Proof of 2.8

1. (2-t*) is (2-T*) applied to the term Γ, x: τ1, y: τ2 ` 〈x, y〉: τ1×τ2 and the formula Γ, x: τ1, z: τ1×τ2 `
φ prop

2. The derivation of (2-let*) is obtained from that of (2-let), given in Lemma 2.7, by replacing
=⇒ with ⇐⇒ and using the rules (2-T*) and (2-µ*).

Proof of 2.9.

1. The proof uses three sub-derivations:

• Γ, y: τ2 ` Φ, φ, y =τ2
[e′/x]e =⇒ [e′/x]([e/y]φ) by (=), (subst) and x 6∈ FV(φ)

Γ, y: τ2 ` Φ, φ =⇒ [e′/x]([e/y]φ)
by (cut) and the assumption Γ, y: τ2 ` Φ =⇒ y =τ2

[e′/x]e

Γ, c:Tτ1 ` Φ, [y⇐(let x⇐c in [e])]φ =⇒ [y⇐(let x⇐c in [e])][e′/x]([e/y]φ)
by (2-=⇒) and (subst)

• Γ, c:Tτ1 ` [y⇐(let x⇐c in [e])][e′/x]([e/y]φ) =⇒ [x⇐(let x⇐c in [[e/y]e′])]([e/y]φ)

by (2-T) and (congr) using equational rules

34

• Γ, x: τ1 ` Φ =⇒ x =τ1
[e/y]e′ by assumption

Γ, c:Tτ1 ` Φ =⇒ [x⇐c]x =τ1
[e/y]e′ by (2-=⇒) and (2->*)

Γ, c:Tτ1 ` Φ =⇒ (let x⇐c in [[e/y]e′]) =Tτ1
(let x⇐c in [x]) by (2-=) and (cut)

Γ, c:Tτ1 ` Φ =⇒ (let x⇐c in [[e/y]e′]) =Tτ1
c by (congr) and equational rules

Γ, c:Tτ1 ` Φ, [x⇐(let x⇐c in [[e/y]e′])]([e/y]φ) =⇒ [x⇐c]([e/y]φ)
by (=), (subst) and (cut)

2. [x⇐c](e1 =Tτ2
e2) =⇒ by (2-=⇒) and Γ, x: τ1 ` e1 =Tτ2

e2 =⇒ [e1] =T 2τ2
[e2]

[x⇐c]([e1] =T 2τ2
[e2]) =⇒ by (2-=)

(let x⇐c in [e1]) =T 2τ2
(let x⇐c in [e2]) =⇒ by (=) and (subst)

let y⇐(let x⇐c in [e1]) in y =Tτ2
let y⇐(let x⇐c in [e2]) in y =⇒ by (congr) using equational rules

(let x⇐c in e1) =Tτ ′ (let x⇐c in e2)

3. Γ, x: τ ` Φ,> =⇒ e′1 =Tτ ′ e′2 is an assumption
Γ, c:Tτ ` Φ =⇒ [x⇐c](e′1 =Tτ ′ e′2) by (2-=⇒) and (2->*)
Γ, c:Tτ ` Φ =⇒ (let x⇐c in e′1) =Tτ ′ (let x⇐c in e′2) by (2+-=)
Γ ` Φ, e1 =Tτ e2 =⇒ (let x⇐e1 in e′1) =Tτ ′ (let x⇐e2 in e′2) by (=) and (subst)
Γ ` Φ =⇒ (let x⇐e1 in e′1) =Tτ ′ (let x⇐e2 in e′2) by (cut) and
the assumption Γ ` Φ =⇒ e1 =Tτ e2

Proof of 2.10.

1. Under the assumption (∀x: τ.x ∈τ X ↔ x ∈τ Y) both X and Y satisfy

(∀x: τ.φ ↔ x ∈τ), where φ
∆
≡ (x ∈τ X).

Therefore, they must be equal because of (Comp-P).

2. Under the assumption X both {x: 1|X} and {x: 1|>} satisfy
(∀x: τ.X ↔ x ∈τ) because of (congr) and (P.β).
Therefore, they must be equal because of (Comp-P).

Now consider the following derivation:
X : Ω ` {x: 1|X} 'P1 {x: 1|>} =⇒ (∗ ∈1 {x: 1|X}) 'Ω (∗ ∈1 {x: 1|>})
by (=) and (subst)
X : Ω ` {x: 1|X} 'P1 {x: 1|>} =⇒ X 'Ω > by (congr) and (P.β).

Proof of 2.11. If Φ and (∀x: τ1.e1 =τ2
e2), then both (λx: τ1.e1) and (λx: τ1.e2) satisfy

(∀x: τ1.φ(x, (x)), where φ(x, y)
∆
≡ (y =τ2

e1), because of (⇒.β) and (congr).
Moreover, any φ(x, y) ≡ (y 'τ2

e) s.t. y 6∈ FV(e) satisfies ∀x: τ1.∃!y: τ2.φ(x, y).
Therefore, they must be equal because of (Comp-⇒).

Proof of 2.12. We prove a cycle of implications.

1. [x⇐c]φ =⇒ by (ext-Ω) and (2-=⇒)
[x⇐c](φ =Ω >) =⇒ by (2-=)
(let x⇐c in [φ]) =TΩ (let x⇐c in [>])

2. (let x⇐c in [φ]) =TΩ (let x⇐c in [>]) =⇒
by (cut), (=) and 2(let x⇐c in [>])
2(let x⇐c in [φ])

so we have to derive 2(let x⇐c in [>]):
[x⇐c]> by (2->*)
[X⇐(let x⇐c in [>])]X by (2-T)

35

3. 2(let x⇐c in [φ]) =⇒ by definition of 2(c)
[X⇐(let x⇐c in [φ])]X =⇒ by (2-T*)
[x⇐c]φ.

Proof of 2.13.

1. ∀X :Pτ.([x⇐c]x ∈τ X) ⊃ ([v⇐c]v ∈τ X) is true by α-conversion
∀X :Pτ.[v⇐c](([x⇐c]x ∈τ X) ⊃ v ∈τ X) by (2-⊃*) and v 6∈ FV([x⇐c]x ∈τ X)
[v⇐c](∀X :Pτ.([x⇐c]x ∈τ X) ⊃ v ∈τ X) by (2-∀*)

2. we derive the entailment judgements Γ, c:Tτ, x: τ ` ([x⇐c]φ), c⇓x =⇒ φ and
Γ, c:Tτ ` (∀x: τ.c⇓x ⊃ φ) =⇒ ([x⇐c]φ).

Γ, c:Tτ, x: τ,X :Pτ ` ([x⇐c]φ), c⇓x, ([x⇐c]x ∈τ X) =⇒ x ∈τ X
by (assume), (∀) and (⊃)
Γ, c:Tτ, x: τ ` ([x⇐c]φ), c⇓x, ([x⇐c]x ∈τ {x: τ |φ}) =⇒ x ∈τ {x: τ |φ} by (subst)
Γ, c:Tτ, x: τ ` ([x⇐c]φ), c⇓x =⇒ φ by (congr) and (P.β)

Γ, c:Tτ, x: τ ` (∀x: τ.c⇓x ⊃ φ), c⇓x =⇒ φ by (assume), (∀) and (⊃)
Γ, c:Tτ ` (∀x: τ.c⇓x ⊃ φ), [x⇐c]c⇓x =⇒ ([x⇐c]φ) by (2-=⇒) and (subst)
Γ, c:Tτ ` (∀x: τ.c⇓x ⊃ φ) =⇒ ([x⇐c]φ) by (cut) and [x⇐c]c⇓x

3. we establish a sequence of equivalences

(〈x⇐c〉φ) ⇐⇒ by definition
(∀w: Ω.([x⇐c](φ ⊃ w)) ⊃ w) ⇐⇒ by ([x⇐c]φ) ↔ (∀x: τ.c⇓x ⊃ φ)
(∀w: Ω.(∀x: τ.c⇓x ⊃ (φ ⊃ w)) ⊃ w) ⇐⇒ by φ1 ⊃ (φ2 ⊃ φ3) ↔ (φ1 ∧ φ2) ⊃ φ3

(∀w: Ω.(∀x: τ.(c⇓x ∧ φ) ⊃ w) ⊃ w) ⇐⇒
by (∃x: τ.φ) ↔ (∀w: Ω.(∀x: τ.(φ ⊃ w)) ⊃ w)
(∃x: τ.c⇓x ∧ φ)

4. we establish a sequence of equivalences

(〈x⇐c〉(x =τ v)) ⇐⇒ by (〈x⇐c〉φ) ↔ (∃x: τ.c⇓x ∧ φ)
(∃x: τ.c⇓x ∧ x =τ v) ⇐⇒ by (∃x: τ.φ ∧ x =τ v) ↔ [v/x]φ
(c⇓v)

Proof of 4.8. For convenience, we indicate in the same way a well formed syntactic entity and its
interpretation; we may write φ for a mono m, when the subobject [m] is the interpretation of the
formula φ; we may apply the operation 2X,A[m] = t∗X,A[m] also on monos, with the requirement
that [2X,Am] = 2X,A[m]. When proving the soundness of a rule, we will mark in boldface the use
of an additional assumption on strong monads.

(2->*) It is enough to show that [idΓ×Tτ] = t∗Γ,τ [T idΓ×τ].
The assertion follows immediately from T idX = idTX (functoriality of T) and [idX] = f∗[idY] (by
general properties of pullbacks).

(2-=⇒) We have to show that [Φ×idτ] ∧ φ ≤ ψ implies [Φ×idTτ] ∧ 2Γ,τφ ≤ 2Γ,τψ.
Given m:X → Y and a, b ∈ M[Y], the assertions [m] ∧ a ≤ b and m∗a ≤ m∗b are equivalent
(by general properties of pullbacks). Therefore, the above implication rewrites to (Φ×idτ)∗φ ≤
(Φ×idτ)∗ψ implies (Φ×idTτ)∗(2Γ,τφ) ≤ (Φ×idTτ)∗(2Γ,τψ).
Since T is strongly mono preserving, then the conclusion is equivalent to 2Γ,τ ((Φ×idτ)∗φ) ≤
2Γ,τ ((Φ×idτ)∗ψ).
Given a, b ∈ M[X, τ], one has a ≤ b implies 2X,τa ≤ 2X,τb (by general properties of pullbacks).
Therefore, by a suitable instantiation of a and b, we get the desired implication.

36

(2-T) We have to show that 2Γ,τ1
[n] ≤ [m], where [n] = 〈π1, e〉∗φ and [m] = 〈π1, tΓ,τ1

;
Te〉∗(2Γ,τ2

φ).
Since [m] = (〈π1, tΓ,τ1

; Te〉 ; tΓ,τ2
)∗[Tφ], we have only to find some f (necessarily unique) s.t.

Γ×Tτ1
〈π1, tΓ,τ1

; Te〉 ; tΓ,τ2

> T (Γ×τ2)
∧ ∧

2Γ,τ1
n

∪

Tφ

∪

·
f

> TX

Let us consider the following sequence of commuting squares:

Γ×Tτ1
tΓ,τ1

> T (Γ×τ1)
T (〈π1, e〉)

> T (Γ×τ2)
∧ ∧ ∧

2Γ,τ1
n

∪

(1) Tn

∪

(2) Tφ

∪

· > · > TX

the justifications for commutativity are: (1) is the pullback defining 2Γ,τ1
n, (2) is T applied to the

pullback defining n.
Therefore, we need only to prove that 〈π1, tΓ,τ1

; Te〉 ; tΓ,τ2
= tΓ,τ1

; T (〈π1, e〉), which amounts to
the following equation in MLT

u: Γ, c:Tτ1 ` let y⇐(let x⇐c in [e]) in [〈u, y〉] =
let x⇐c in [〈u, e〉] ; T (Γ×τ2)

(2-T*) We have to show that 2Γ,τ1
[n] = [m], where [n] = 〈π1, e〉

∗φ and [m] = 〈π1, tΓ,τ1
;

Te〉∗(2Γ,τ2
φ).

The assertion follows from the proof of (2-T) by observing that the commuting squares are pull-
backs: (1) is the pullback defining 2Γ,Tτn, (2) is T applied to the pullback defining n (and T is
an M-functor).

(2-t*) We have to show that (idΓ×tτ1,τ2
)∗(2Γ,τ1×τ2

φ) = 2Γ×τ1,τ2
φ (we leave implicit the isomor-

phisms corresponding to associativity of products), or equivalently ((idΓ×tτ1,τ2
) ; tΓ,τ1×τ2

)∗[Tφ] =
t∗
Γ×τ1,τ2

[Tφ].

The assertion follows immediately from (idΓ×tτ1,τ2
) ; tΓ,τ1×τ2

= tΓ×τ1,τ2
(see definition 3.1 of

strong functor).

(2-η) We have to show that φ ≤ (idΓ×ητ)∗(2Γ,τφ), or equivalently φ ≤ ((idΓ×ητ) ; tΓ,τ)∗[Tφ].
The assertion follows by general properties of pullbacks from (idΓ×ητ) ; tΓ,τ = ηΓ×τ (η is strong)

and

Γ×τ
ηΓ×τ

> T (Γ×τ)
∧ ∧

φ

∪ ∪

Tφ

X
ηX

> TX

(2-η*) We have to show that φ = (idΓ×ητ)∗(2Γ,τφ).
The assertion follows from the proof of (2-η) by observing that the commuting square is a pullback
(η is M-cartesian).

37

(2-µ) We have to show that 2Γ,Tτ [n] ≤ (idΓ×µτ)∗(2Γ,τφ) = [m], where [n] = 2Γ,τφ.
Since [m] = ((idΓ×µτ) ; tΓ,τ)∗[Tφ], we have only to find some f (necessarily unique) s.t.

Γ×T 2τ
(idΓ×µτ) ; tΓ,τ

> T (Γ×τ)
∧ ∧

2Γ,Tτ [n]

∪

Tφ

∪

·
f

> TX

Let us consider the following sequence of commuting squares:

Γ×T 2τ
tΓ,Tτ

> T (Γ×Tτ)
T tΓ,τ

> T 2(Γ×τ)
µΓ×τ

> T (Γ×τ)
∧ ∧ ∧ ∧

2Γ,Tτn

∪

(1) Tn

∪

(2) T 2φ

∪

(3) Tφ

∪

· > · > T 2X
µX

> TX

the justifications for commutativity are: (1) is the pullback defining 2Γ,Tτn, (2) is T applied to
the pullback defining n. (3) commutes by naturality of µ.
Therefore, we need only to prove that tΓ,Tτ ; (T tΓ,τ) ; µΓ×τ = (idΓ×µτ) ; tΓ,Tτ , which amounts to
µ being strong.

(2-µ*) We have to show that 2Γ,Tτ [n] = (idΓ×µτ)∗(2Γ,τφ) = [m], where [n] = 2Γ,τφ.
The assertion follows from the proof of (2-µ) by observing that the commuting squares are pull-
backs: (1) is the pullback defining 2Γ,Tτn, (2) is T applied to the pullback defining n (and T is
an M-functor), (3) is a pullback (µ is M-cartesian).

(2-∧*) Let [m] = φ1 ∧ φ2, We have to show that t∗Γ,τ [Tm] = (t∗Γ,τ [Tφ1]) ∧ (t∗Γ,τ [Tφ2]).
The assertion follows immediately from [Tm] = [Tφ1]∧ [Tφ2] (T is meet preserving) and preser-
vation of meets by substitution functors.

(2-⊃*) Letm:X ↪→ Γ s.t. [m] = φ1 ∈ M[Γ], then we have to show that ∀midT τ
((midTτ)∗(2Γ,τφ2)) =

2Γ,τ (∀midτ
((midτ)∗φ2)), because of the way implication is interpreted in terms of universal quan-

tification along m ∈ M.
The lhs rewrites to ∀midT τ

(2X,τ ((midτ)∗φ2)), because T is strongly mono preserving.
Then, the equality follows immediately from commutativity of necessity with universal quantifi-
cation along m ∈ M.

(2-∀*) The proof is similar to that of (2-⊃*).

(2-=) We have to show that 2Γ,τ1
[m] ≤ 〈tΓ,τ1

;Te1, tΓ,τ1
;Te2〉∗[∆Tτ2

], where [m] = 〈e1, e2〉∗[∆τ2
].

We have only to find some f (necessarily unique) s.t.

Γ×Tτ1
tΓ,τ1

; 〈Te1, T e2〉
> Tτ2×Tτ2

∧ ∧

2Γ,τ1
m

∪

∆Tτ2

∪

·
f

> Tτ2

38

Let us consider the following sequence of commuting squares:

Γ×Tτ1
tΓ,τ1

> T (Γ×τ1)
T (〈e1, e2〉)

> T (Tτ2×Tτ2)
〈Tπ1, Tπ2〉

> Tτ2×Tτ2
∧ ∧ ∧ ∧

2Γ,τ1
m

∪

(1) Tm

∪

(2) T∆τ2

∪

(3) ∆Tτ2

∪

· > · > Tτ2
idTτ2

> Tτ2

the justifications for commutativity are: (1) is the pullback defining 2Γ,τ1
m, (2) is T applied to

the pullback defining m, (3) commutes because of ∆ = 〈id, id〉 (and a simple calculation).
Therefore, we need only to prove that tΓ,τ1

; 〈Te1, T e2〉 = tΓ,τ1
; T (〈e1, e2〉) ; 〈Tπ1, Tπ2〉, which

follows immediately from 〈Te1, T e2〉 = T (〈e1, e2〉) ; 〈Tπ1, Tπ2〉.

(Comp-T) Because of the assumptions on C and M we have:

• Leibniz’ equality x 'τ y is interpreted by [∆τ] ∈ M[τ×τ];

• X :Pτ ` ∃!x: τ.x ∈τ X ⇐⇒ ∃!x: τ.{x} 'τ X holds;

• x: τ ` {x}:Pτ is interpreted by a mono m: τ → Pτ ;

• x:Tτ ` let x⇐c in [{x}]:T (Pτ) is interpreted by Tm, which is mono (since T is mono preserving);

• if x: τ1 ` e: τ2 is interpreted by a mono m: τ1 ↪→ τ2, then
y: τ2 ` ∃!x: τ1.e 'τ y prop is interpreted by [m] ∈ M[τ2];

so both sides of the equivalence are interpreted by [Tm] ∈ M[T (Pτ)].

Proof of 5.7.

1. The adjunction π a UG follows from G(〈A, a〉, 〈B,>〉) = B(A,B).

2. π is clearly faithful. We prove only that π preserves and weakly creates binary products, since
this proof can be easily extended to the general case:

• preservation let πi: 〈B, b〉 → 〈Ai, ai〉 be a product diagram in G, we have to show that πi:B →
Ai is a product diagram in B. In fact, if fi:C → Ai, then fi: 〈C, f∗

1 a1 ∧ f∗
2 a2〉 → 〈Ai, ai〉,

therefore exists (unique) f : 〈C, f∗
1 a1 ∧ f∗

2a2〉 → 〈B, b〉 s.t. f ; πi = fi. Moreover, if f ;πi = g ;πi

(for i = 1, 2) in B, then f = g because of the universal property for products in G and
f, g: 〈C, f∗b ∧ g∗b〉 → 〈B, b〉

• weak creation let πi:B → Ai be a product diagram in B, then πi: 〈B, π∗
1a1 ∧π∗

2a2〉 → 〈Ai, ai〉
is a product diagram in G, for every a1 ∈ P [A1] and a2 ∈ P [A2].

3. G has finite products, because B does and π weakly creates finite limits.

4. It is immediate from the definition that UG is full and faithful. UG preserves limits, because

π a UG . In order to prove that UG preserves exponentials, suppose that B(×A,B)
.
∼= B(, BA)

and consider the following natural isomorphisms:

G(〈X, x〉×UGA,UGB) = by π a UG and π preserves finite limits

B(X×A,B)
.
∼= by assumption

B(X,BA) = by π a UG

G(〈X, x〉, UG(BA)).

39

5. It is immediate from the definition that MG is closed under identities and composition. To prove
that MG is closed under pullbacks, observe that

〈B, b〉
f
> 〈A, a〉

∧ ∧

idB

∪ ∪

idA

〈B, b ∧ f∗a′〉
f
> 〈A, a′〉

(because pullbacks of identities in B always exist, and because of the way π weakly creates finite
limits).

6. IG [A] is an isomorphism, because subobjects in MG [〈A, a〉] are uniquely represented by monos
in MG (and there is a clear 1-1 correspondence between P [A] and monos in MG with codomain
UGA). Moreover, IG commutes with substitution, i.e. IG [B](f∗a) = [idB : 〈B, f∗b〉 → 〈B,>〉] for
every f :B → A and a ∈ P [A], because of the way pullbacks of monos in MG are computed.

7. The only thing to verify is that the relevant morphisms have the expected domain and codomain,
since T G satisfies the equational axioms for strong monads iff T does (because of T G’s definition):

• f : 〈A, a〉 → 〈B, b〉 implies Tf : 〈TA,2Aa〉 → 〈TB,2Bb〉, or equivalently
a ≤ f∗b implies 2Aa ≤ (Tf)∗(2Bb), in fact

(Tf)∗(2Bb) = by (2T*) of Definition 5.2
2A(f∗b) ≥ by the assumption and monotonicity of 2A

2Aa

• tT
A,B : 〈A, a〉×〈TB,2Bb〉 → 〈T (A×B),2A×B(a× b)〉, which amounts to (2t)

• ηT
A: 〈A, a〉 → 〈TA,2Aa〉, which amounts to (2η)

• µT
A: 〈T 2A,2TA(2Aa)〉 → 〈TA,2Aa〉, which amounts to (2µ).

8. Since T and T G coincide on morphisms, (UG , id) is a strong monad morphism from T to T G, pro-
vided T G(UGA) = 〈TA,2A>〉 = 〈TA,>〉 = UG(TA), which follows immediately from property
(2>*) of Definition 5.2.

9. T G is an MG-functor, provided for every f :B → A, a, a′ ∈ P [A] and b ∈ P [B] s.t. b ≤ f∗a and
a′ ≤ a

〈TB,2Bb〉
Tf

> 〈TA,2Aa〉
∧ ∧

idB

∪ ∪

idA

〈TB,2B(b ∧ f∗a′)〉
Tf
> 〈TA,2Aa

′〉

i.e. 2B(b ∧ f∗a′) = (2Bb) ∧ (Tf)∗(2Aa
′). In fact

2B(b ∧ f∗a′) = by property (2∧*) of Definition 5.2
(2Bb) ∧ 2B(f∗a′) = by property (2T*)
(2Bb) ∧ (Tf)∗(2Aa

′).

10. Given a ∈ P [A] the only m ∈ MG s.t. [m] = IG [A]a is m = idA〈A, a〉 ↪→ 〈A,>〉, therefore
IG [TA](2Aa) = [T Gm] is equivalent to [idTA: 〈TA,2Aa〉 ↪→ 〈TA,>〉] = [idTA: 〈TA,2Aa〉 ↪→
〈TA,2A>〉], or more simply > = 2A>, which follows from property (2>*) of Definition 5.2.

40

Proof of 5.8. First we prove that E is a class of display maps over G, i.e. is closed under pullbacks.
In fact, for every f : 〈B, b〉 → 〈A, a〉

B
f

> A
∧ ∧

d2 d1

B′

g
> A′

in B implies

〈B, b〉
f

> 〈A, a〉
∧ ∧

d2 d1

〈B′, d∗2b〉
g
> 〈A′, d∗1a〉

in G

(since d∗2b = d∗2b ∧ g
∗(d∗1a), because of g∗(d∗1a) = d∗2(f

∗a) ≥ d∗2b).
Given e = d: 〈A′, d∗a〉 → 〈A, a〉 ∈ E and b ∈ MG [〈A, d∗a〉], define ∀e(b) = (∀db) ∧ a ∈ MG [〈A, a〉].
We verify that ∀e is right adjoint to e∗, i.e. d∗a′∧d∗a ≤ b iff a′ ≤ (∀db)∧a for every a′ ∈ MG [〈A, a〉]
and b ∈ MG [〈A, d∗a〉].

• d∗a′ ∧ d∗a ≤ b iff (since a′ ≤ a)

• d∗a′ ≤ b iff (by definition of universal quantification)

• a′ ≤ (∀db) iff (since a′ ≤ a)

• a′ ≤ (∀db) ∧ a.

The verification of the Beck-Chevalley condition is left to the reader.

Proof of 5.9.

1. Since MG [〈A, a〉] is isomorphic to P [A] restricted to the elements below a, we write a′ ∈
MG [〈A, a〉] for [idA: 〈A, a′〉 → 〈A, a〉]. Let m = idA: 〈A, a1〉 → 〈A, a〉 ∈ MG , and a′1 ∈
MG [〈A, a1〉], then ∀m(a′1) = (a1 ⊃ a′1) ∧ a ∈ MG [〈A, a〉]. We verify that ∀m is right adjoint to
m∗, i.e. a′ ∧ a1 ≤ a′1 iff a′ ≤ (a1 ⊃ a′1) ∧ a for every a′ ∈ MG [〈A, a〉] and a′1 ∈ MG [〈A, a1〉].

• a′ ∧ a1 ≤ a′1 iff (by definition of pseudo-complement)

• a′ ≤ (a1 ⊃ a′1) iff (since a′ ≤ a)

• a′ ≤ (a1 ⊃ a′1) ∧ a.

The Beck-Chevalley condition amounts to prove that ((b ∧ f ∗a1) ⊃ (b ∧ f∗a′1)) ∧ b = f∗((a1 ⊃
a′1)∧a)∧b in P [B] for every idA: 〈A, a1〉 → 〈A, a〉 ∈ MG , f : 〈B, b〉 → 〈A, a〉 and a′1 ∈ MG [〈A, a1〉].
Its verification is left to the reader.

2. Let DA be the class of display maps DA = {π1:B×A → B|B ∈ B} and similarly for DUGA,
then we want to prove that P closed under universal quantification along DA implies MG closed
under universal quantification along DUGA. In fact, in Lemma 5.8 E = DUGA, when D = DA.

3. Let D be the class of first projections in B, then π1: 〈X, x〉×〈A, a〉 → 〈X, x〉 in G can be de-
composed as a mono m ∈ MG followed by a map e ∈ E (as defined in Lemma 5.8), namely
m = idX×A: 〈X×A, π∗

1x ∧ π∗
2a〉 → 〈X×A, π∗

1x〉 ∈ MG and e = π1: 〈X×A, π∗
1x〉 → 〈X, x〉 ∈ E .

Since ∀m and ∀e exist (by the first two claims of this theorem), then universal quantification
along π1: 〈X, x〉×〈A, a〉 → 〈X, x〉 is given by ∀m ; ∀e.

4. The exponential 〈B, b〉〈A,a〉
can be defined as 〈BA, ba〉, where ba ∈ P [BA] is the interpretation

of f :A⇒B ` ∀x:A.a(x) ⊃ b(fx) prop.

Proof of 5.11.

41

1. ε is bijective on objects and full, because the congruence ≡ relates only morphisms with the
same domain and codomain. In fact, we may take ε to be the identity on objects.

ε preserves the terminal object and binary products, because ε is full, bijective on objects and
the following sequents are derivable in the internal logic:

• x1, y1:B1, x2, y2:B2 ` x1 =B1
y1, x2 =B2

y2 =⇒ 〈x1, y1〉 =B1×B2
〈x2, y2〉

• x, y:B1×B2 ` x =B1×B2
y =⇒ πi(x) =Bi

πi(y)

Finally, we prove that ε preserves pullbacks of monos in MG , i.e. for every f : 〈B, b〉 → 〈A, a〉
and a′ ≤ a

〈B, b〉
ε(f)

> 〈A, a〉
∧ ∧

ε(idB) ε(idA)

〈B, b ∧ f∗a′〉
ε(f)

> 〈A, a′〉

First of all ε(idB) is mono because of the way ≡ is defined. Therefore, we need to check only
the existence property. Suppose that

〈B, b〉
ε(f)

> 〈A, a〉
∧ ∧

ε(g) ε(idA)

〈C, c〉
ε(h)

> 〈A, a′〉

then g: 〈C, c〉 → 〈B, b ∧ f∗a′〉, since x:C ` c(x) =⇒ a′(f(gx)) is derivable from x:C ` c(x) =⇒
hx =A f(gx) and x:C ` c(x) =⇒ a′(hx) in the internal logic. Therefore

〈B, b〉 <
ε(idB)

〈B, b ∧ f∗a′〉
∧

ε(g)

�
�
� ε(g)

�
�
��

∨

ε(f)

〈C, c〉
ε(h)

> 〈A, a′〉

2. Since ε is bijective on objects and preserves finite products, then E has finite products, and we
are left to show that it has also equalisers. In fact, the equaliser of ε(f), ε(g): 〈A, a〉 → 〈B, b〉
is given by ε(idA): 〈A, a ∧ eq(f, g)〉 → 〈A, a〉, where eq(f, g) ∈ P [A] is the interpretation of
x:A ` fx =A gx prop.

3. Since ε is bijective on objects, ME is closed under identities and composition. Since ε is full and
bijective on objects and preserves pullbacks of monos in MG , then ME is closed under pullbacks.

To prove that ME has equalities, we have to show that [∆〈A,a〉] ∈ ME [〈A, a〉]. More precisely, we
prove that ε(〈idA, idA〉: 〈A, a〉 → 〈A×A, a×a〉) is equivalent to the mono ε(idA×A: 〈A×A, (a×a)∧ =A

〉 → 〈A×A, a×a〉) in ME . This amounts to prove in the internal logic that the following sequents
are true:

• x:A ` a(x) =⇒ a(πi(〈x, x〉))

• x:A ` a(x) =⇒ x =A x,

42

• y:A×A ` a(π1y), a(π2y), π1y =A π2y =⇒ a(π1y)

• y:A×A ` a(π1y), a(π2y), π1y =A π2y =⇒ y =A×A 〈π1y, π1y〉

Only the proof of the last sequent uses rule (=).

4. We know (from Definition 5.6) that MG [〈A, a〉] is isomorphic to the sub-poset P [A] consisting of
the elements below a, and the isomorphism is given by F : a′ 7→ [idA: 〈A, a′〉 → 〈A, a〉]. Therefore,
to prove that J [〈A, a〉] is an isomorphism it is enough to show that G: a′ 7→ [ε(idA: 〈A, a′〉 →
〈A, a〉)] is an isomorphism. Clearly, G is monotonic and surjective, so we need to prove only that
Ga1 ≤ Ga2 implies a1 ≤ a2. In the internal logic Ga1 ≤ Ga2 means that for some f :A→ A the
following sequents are true

• x:A ` a1(x) =⇒ a2(fx)

• x:A ` a1(x) =⇒ x =A fx

therefore x:A ` a1(x) =⇒ a2(x) is true, i.e. a1 ≤ a2.

5. Since T G is a strong monad over G and ε is full, bijective on objects and preserves finite products,
we need only to check that T G respects the congruence ≡ over G, i.e. f ≡ g implies T Gf ≡ T Gg
for every f, g: 〈A, a〉 → 〈B, b〉. In the internal logic this amounts to prove that

()
x:A ` a(x) =⇒ b(fx)

c:TA ` [x⇐c]a(x) =⇒ [y⇐let x⇐c in [fx]]b(y)

and

()
x:A ` a(x) =⇒ fx =B gx

c:TA ` [x⇐c]a(x) =⇒ let x⇐c in [fx] =TB let x⇐c in [gx]

The first rule is derivable using (2-=⇒) and (2-T), while the second is derivable using (2-=⇒)
and (2-=).

6. This follows immediately from the definition of T E and the fact that ε preserves finite products.

7. T E is an ME-functor, because T G is an MG-functor, and ε commutes with computational types
and maps pullbacks of monos in MG onto pullbacks of monos in ME .

8. This follows immediately from the definition of J and T E .

Proof of 5.13.

1. By Theorem 5.9, MG [〈A, a〉] is cartesian closed. Since J [〈A, a〉] is an isomorphism, then also
ME [〈A, a〉] is cartesian closed. Moreover, implication in ME commutes with substitution, be-
cause implication in MG does and ε is full.

2. The proof is similar to that of Theorem 5.9. However, to prove that the Beck-Chevalley condition
we need the following facts:

• ε preserves projections and pullbacks of projections, because it preserves finite products;

• the pullback square of a projection ε(π1) along a morphism ε(f) in E can be chosen to be the
image of a pullback square of π1 along f in G, because ε is bijective on objects and full.

3. The proof uses the first two claim of this theorem, and proceeds like that of Theorem 5.9.

4. Since ε is full and preserves products, the only thing to prove is uniqueness of Λ(ε(f)), which
amounts to the following instance of (=-λ)

()
z:C, x:A ` c(z) =⇒ f(z, x) =B g(z, x)

z:C ` c(z) =⇒ λx:A.f(z, x) =A⇒B λx:A.g(z, x)

for every f, g:C×A→ B in B and c ∈ P [C].

43

Proof of 5.19.

1. The unit and counit of the adjunction are given by x:A ` η〈A,a〉(x)
∆
≡ {x}:PA and X :PA, x:A `

ε〈A,=a〉(X, x)
∆
≡ Sa(X) ∧ x ∈A X . To prove that they are well defined, i.e. x, y:A ` a(x) ∧ x 'A

y =⇒ {x} 'PA {y} and ε〈A,=a〉 is strict (in his first argument), we need to use (ext-P).

It is left to the reader to check that this forms an adjunction, in particular that the natural
isomorphism between ε(f) ∈ E(〈A, a〉, S(〈B,=b〉)) and F ∈ T (ι(〈A, a〉), 〈B,=b〉) is given by
x:A, y:B ` F (x, y) ⇐⇒ a(x) ∧ y ∈B fx.

2. “S is full and faithful” is equivalent to “the counit ε〈A,=a〉 is a natural isomorphism”. The latter
is an immediate consequence of x:A ` Ea(x) =⇒ Sa({x′|x′ =a x}) ∧ x ∈A {x′|x′ =a x} and
x, y:A ` Ea(x), Ea(y), {x′|x′ =a x} 'PA {x′|x′ =a y} =⇒ x =a y.

3. We give a sequence of natural isomorphisms from MT [〈A,=a〉] to ME [S(〈A,=a〉)]:

MT [〈A,=a〉]
.
∼= by ε〈A,=a〉 iso

MT [ι(S(〈A,=a〉))]
.
∼= see Section 2.6 in [Pit81]

{a′ ∈ P [PA]|a′ ≤ Sa} by Theorem 5.11
ME [〈PA, Sa〉].

We leave the check that L[〈A,=a〉] is the composite of the natural isomorphisms given above.

4. We prove that E(x×y, S(z))
.
∼= E(x, S(zι(y))) for every x, y ∈ E and z ∈ T

E(x×y, S(z))
.
∼= because ι a S

T (ι(x×y), z)
.
∼= because ι preserves finite limits

T (ι(x)×ι(y), z)
.
∼= by definition of exponential

T (ι(x), zι(y)) because ι a S
E(x, S(zι(y))).

Finally we prove that ι(S(zι(y))) is an exponential of ι(S(z)) to ι(y) in T , i.e. it is isomorphic

to ι(S(z))
ι(y)

ι(S(zι(y))) ∼= because εx: ι(S(x)) → x is an iso
zι(y)) ∼= because εz: ι(S(z)) → z is an iso

ι(S(z))ι(y).

5. S preserves exponentials, because εy: ι(S(y)) → y is an iso, and therefore S(zy) is isomorphic to
the exponential S(zι(S(y))) of S(z) to S(y) in E .

6. The subobject classifier of T is P (〈1,>〉), i.e. (P1,=e) (see [Pit81]). So we have to prove that
ι(〈Ω,>〉) ∼= 〈P1,=e〉

ι(〈Ω,>〉) ∼= because Ω ∼= P1 in B
ι(〈P1,>〉) = 〈P1,'P1〉 = by (ext-P)
〈P1,=e〉.

To prove that η〈Ω,>〉 is an isomorphism, show that X :PΩ ` f(X)
∆
≡ > ∈Ω X : Ω is its inverse.

In particular one has to derive X :PΩ ` S(X) =⇒ X 'PΩ {> ∈Ω X}, where X :PΩ ` S(X)
∆
≡

∃x: Ω.X =e {x}

X :PΩ ` S(X) =⇒ X ' {> ∈ X} iff by (ext-P)
X :PΩ ` S(X) =⇒ X =e {> ∈ X} iff by definition of =e

X :PΩ, x: Ω ` S(X) =⇒ x ∈ X ↔ x ∈ {> ∈ X} iff by definition of x ∈ {y}
X :PΩ, x: Ω ` S(X) =⇒ x ∈ X ↔ x ' (> ∈ X) iff by an analogue of (ext-P) for Ω
X :PΩ, x: Ω ` S(X) =⇒ x ∈ X ↔ (x↔ (> ∈ X)) iff by x: Ω ` x ⇐⇒ x ' >
X :PΩ, x: Ω ` S(X) =⇒ x ∈ X ↔ ((x ' >) ↔ (> ∈ X)) which follows easily from the definition
of S(X).

44

Proof of 5.22.

1. T T is a strong monad, i.e. it satisfies the necessary equations, because T T is defined in terms of
T E using natural isomorphisms. We check the equations T (ηx) ; µx = idTx and leave the others
to the reader.

T T (ηTT

x) ; µTT

x = by definition

(S ; T E ; ι)(ε−1
x ; ι(ηTE

Sx)) ; σTE (Sx) ; ι(µTE

Sx) = by functoriality of S ; T E ; ι

(S ; T E ; ι)(ε−1
x) ; (ι ; S ; T E ; ι)(ηTE

Sx) ; σTE (Sx) ; ι(µTE

Sx) = by naturality of σ

(S ; T E ; ι)(ε−1
x) ; σSx ; (T E ; ι)(ηTE

Sx) ; ι(µTE

Sx) = by functoriality of ι

(S ; T E ; ι)(ε−1
x) ; σSx ; ι(T E(ηTE

Sx) ; µTE

Sx) = by T (ηx) ; µx = idTx for T E

(S ; T E ; ι)(ε−1
x) ; σSx = by functoriality of S ; T E ; ι and by definition of σ

((S ; T E ; ι)εx)−1 ; ((T E ; ι)ηSx)−1 = by functoriality of T E ; ι
((T E ; ι)(ηSx ; Sεx))−1 = by one of the two equations for adjunctions
((T E ; ι)idSx)−1 = idTT x.

2. The verification that (ι, σ) satisfy the equations of a strong monad morphism is similar to the
proof of T (ηx) ; µx = idTx for T T given above.

3. T T is a MT -functor, because S preserves finite limits and maps monos in MT to monos in ME

(see Theorem 5.19), T E is a ME-functor (see Theorem 5.11), ι preserves finite limits and maps
monos in ME to monos in MT (see Theorem 5.15).

4. K commutes with necessity up to iso, because the commuting square (corresponding to naturality
of σ)

T T (ιx)
σx

∼
> ι(T Ex)

∧ ∧

T T (ιm)

∪ ∪

ι(T Em)

T T (ιx′)
∼

σx′

> ι(T Ex′)

is a pullback, since σ is a natural isomorphism.

45

