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Abstract

The original semantics of Evaluation Logic in [Mog93] relies on additional properties of strong
monads. This paper extends the original semantics by dropping all additional requirement on strong
monads, at the expense of stronger assumptions on the underlying category (consistently with Syn-
thetic Domain Theory). In addition, we investigate several canonical interpretations for necessity,
criteria for discriminating among them, and their relations with the original semantics of Evaluation
Logic and Reyes’ topos-theoretic semantics of Modal Logics.

Introduction

Evaluation logic ELT is a typed predicate logic (see [CP92, Pit91]) based on the metalanguage for
computational monads MLT (a typed calculus introduced in [Mog91]), which permits statements
about the evaluation of programs to values by the use of evaluation modalities. In particular, ELT

might be used for axiomatising computation-related properties of a monad or devising compu-
tationally adequate theories (see [Pit91]), and it appears useful when addressing the question of
logical principles for reasoning about the behaviour of programs. [Mog93] proposes a semantics for
the necessity modality of ELT (in Higher Order Logic possibility modality and evaluation predi-
cate are definable from necessity), which relies on additional properties of strong monads. More
precisely, given a category C with finite products, a dominion M and a strong endofunctor (T, t),
if T preserves pullbacks of monos in M along morphisms in C, then interpretation of necessity is

Γ, x:A ` φ = [m] ∈ M[Γ×A]
Γ, c:TA ` [x⇐c]φ = t∗Γ,A[Tm] ∈ M[Γ×TA]

and the interpretation commutes with substitution of variables in Γ.
In a left exact category, there are two obvious choices for M: the class of all monos, and the class
of regular monos (in a topos they coincide). The latter choice is the minimal one for interpreting a
LCF-like logic based on conditional equations – in the category Cpo of predomains regular monos
correspond to inductive subsets. Most computational monads over Cpo satisfy the additional
properties required in [Mog93], when M is the class of regular monos. But there are also strong
monads (used in Denotational Semantics), which do not satisfy these additional properties:

• continuations Σ(ΣX), where Σ is the cpo classifying open subsets;

• Plotkin’s powerdomain Pp(X⊥), where Pp(X) is the free binary semi-lattice over X (similar
problems arise with the other powerdomains).

Proposition 0.1 In Cpo exists a regular mono m s.t. Tm is not monic, when T is the monad of
continuations or Plotkin’s powerdomain.

Proof Let L ∼= (1 +L)⊥ be the domain of lazy natural numbers, whose elements are: sn(0), sn(⊥)
and ∞. The order on L is generated by sn(⊥) < sn+1(⊥), sn(0),∞ for every n ∈ N . m is the
inductive subset of maximal elements, i.e. the equalizer of s, s′:L→ L, where s(sn(⊥)) = sn+1(⊥),
s(sn(0)) = s′(sn(0)) = sn+1(0) and are the identity otherwise.
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In looking for a more general semantics of necessity, we have been motivated by the desire to
integrate Evaluation Logic with Synthetic Domain Theory SDT (see [Hyl91, Tay91]) rather than
Classical Domain Theory. In line with this objective, we have tried to extend the semantics of
necessity (proposed in [Mog93]), by dropping any additional requirement on T , at the expense of
making stronger assumptions on C and M (consistently with SDT ). The main results are:

• an investigation of possible canonical interpretations for necessity, and criteria for discriminating
among them;

• a study of the relations between these interpretations and those proposed in [Mog93, RZ91];

• simpler definitions for some of these semantics under additional assumptions on C and M.

If we want to stick to a standard semantics for formulas, i.e. formulas over A are interpreted
by subobjects of A (this is not the case in [Pit91, RZ91]), then only one among the possible
interpretations for necessity seems to work in general.

1 Modalities

This is a technical section, giving the basic definitions and properties regarding modalities in
the setting of indexed posets. For the sake of generality, modalities are identified with families
2X :P1[X ] → P2[X ] of monotonic maps between indexed posets. However, in the other sections
we consider only Pi of the form Fi ;M, where M is a (fixed) indexed poset of subobjects in C and
Fi:B → C are functors.

Definition 1.1 (Modalities) Given indexed posets P1,P2: C
op → PoSet, we say that 2 is a

modality from P1 to P2 (2:P1 → P2 for short) if it is an indexed family 2X :P1[X ] → P2[X ] of
monotonic maps. Given 2,2′:P1 → P2 and R ∈ {≤,=,≥}, we say that

• 2 is a R-modality
∆

⇐⇒ 2Y (f∗φ)Rf∗(2Xφ) for any f :Y → X in C and φ ∈ P1[X ]

• 2 ≤ 2
′ ∆
⇐⇒ 2Xφ ≤ 2

′
Xφ for any X ∈ C and φ ∈ P1[X ].

When they exist, we write

• 2
R for the biggest R-modality s.t. 2

R ≤ 2

• R
2 for the smallest R-modality s.t. 2 ≤ R

2.

We define the following constructions of modalities

• if F :B → C is a functor, then (2F ):F ; P1 → F ; P2 is given by

(2F )X(φ)
∆
= 2FX(φ) for any X in B and φ ∈ P1[FX ]

• if σ:G
.
→ F :B → C is a natural transformation, then P1[σ]:F ; P1 → G ; P1 is given by

(P1[σ])X (φ)
∆
= σ∗

Xφ for any X in B and φ ∈ P1[FX ]

• if 3:P2 → P3 is a modality, then (32):P1 → P3 is given by

(32)X (φ)
∆
= 3X(2X (φ)) for any X in C and φ ∈ P1[X ].

Lemma 1.2 Given a functor F , a natural transformation σ and modalities 2 and 3 as in Defi-
nition 1.1, the following closure properties hold:

• P1[σ] is an =-modality

• if 2 is an R-modality, then so is 2F

• if 2 and 3 are R-modalities, then so is 32
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Given R ∈ {≤,=,≥}, when the expressions involved are defined, the following inequalities hold:

• 2
= ≤ 2

R ≤ 2 ≤ R
2 ≤ =

2

• (2R)F ≤ (2F )R and R(2F ) ≤ (R
2)F

• (3R)(2R) ≤ (32)R and (32)R ≤ (3R)(2R)

• 2
R ≤ 3

R and R
2 ≤ R

3, when 2 ≤ 3

The study of =-modalities is greatly simplified, when C has enough points for P .

Definition 1.3 Given a category C with a terminal object 1 and P : Cop → PoSet, we say that C
has enough points for P iff for every X ∈ C and φ, ψ ∈ P [X ]

• φ ≤ ψ in P [X ] ⇐⇒ ∀x: 1 → X.x∗φ ≤ x∗ψ in P [1].

Lemma 1.4 Given a category C with finite products and P : Cop → PoSet, if C has enough points

for P, then C has enough points for PA: Cop → PoSet, where PA[X ]
∆
= P [X×A] (for any A ∈ C).

Proof Given X ∈ C and φ, ψ ∈ PA[X ] we have the following equivalences:

• φ ≤ ψ in PA[X ]
∆

⇐⇒

• φ ≤ ψ in P [X×A] ⇐⇒ because C has enough points for P

• ∀x: 1 → X, a: 1 → A.〈x, a〉∗φ ≤ 〈x, a〉∗ψ in P [1] ⇐⇒
because C has enough points for P and 〈x, a〉 = 〈id1, a〉 ; (x×idA)

• ∀x: 1 → X.(x×idA)∗φ ≤ (x×idA)∗ψ in P [1×A]
∆

⇐⇒

• ∀x: 1 → X.x∗φ ≤ x∗ψ in PA[1].

Lemma 1.5 If C has enough points for P2 and 2:P1 → P2 is an =-modality, then

• (2Xφ)Rψ ⇐⇒ ∀x: 1 → X.21(x
∗φ)R(x∗ψ)

for any X ∈ C, φ ∈ P1[X ], ψ ∈ P2[X ] and R ∈ {≤,=,≥}.

Proof The claim is a consequence of the following equivalences:

• (2Xφ)Rψ ⇐⇒ because C has enough points for P

• ∀x: 1 → X.x∗(2Xφ)R(x∗ψ) ⇐⇒ because 2 is a =-modality

• ∀x: 1 → X.21(x
∗φ)R(x∗ψ).

We are particularly interested in modalities of the form 2
=. The following result give sufficient

conditions for the existence of R
2 and 2

R, but no effective way of computing them. However,
under additional assumptions on P amd 2, there is an effective way of computing 2

=.

Definition 1.6 Given P : Cop → PoSet, we say that

• P is closed under
∧

iff each fibre has arbitrary meets and they are preserved by substitution;
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• P is closed under ∀ iff (C has finite limits and) for every f :U → X in C exists the right adjoint
∀f to substitution f∗ and it satisfies the Beck-Chevalley condition

Y
g

> X
∧ ∧

h f

V
k

> U

implies

P [X ]
g∗

> P [Y ]
∧ ∧

∀f ∀h

P [U ]
k∗

> P [V ]

The properties “P is closed under
∨

/∃” are defined in the dual way.

Lemma 1.7 Given (categories B and C with finite limits,) a functor F :B → C and an indexed
poset P : Cop → PoSet, the following implications hold:

• if P is closed under
∧

/
∨

, then so is F ; P

• if F preserves pullbacks and P is closed under ∀/∃, then so is F ; P.

Lemma 1.8 If P2 is closed under
∧

, then modalities/R-modalities from P1 to P2 are closed under

arbitrary meets, namely (
∧

i∈I

2i)Xφ =
∧

i∈I

(2iXφ), and R
2 exists for any 2:P1 → P2.

Dual results hold when P2 is closed under
∨

.

Theorem 1.9 (Stabilisation) If (C is a category with finite limits,) P2: Cop → PoSet is closed
under

∧

and ∀, and 2:P1 → P2 is a ≤-modality, then 2
= exists and is given by

2
=
Xφ = 2

s
Xφ

∆
=

∧

f :Y →X

∀f (2Y (f∗φ))

Only to prove that 2
s is a ≤-modality, we use that 2 is a ≤-modality (and substitution commutes

with arbitrary meets and universal quantification).
Also the dual result =

2Xφ =
∨

f :Y →X ∃f (2Y (f∗φ)) holds, but for our purposes the dual version
is not applicable.

Proof It is immediate from the definition that 2
s is a modality and that 2 ≤ 3 implies 2

s ≤ 3
s.

Therefore, to prove that 2
= = 2

s it is enough to establish the following facts:

• 2
s ≤ 2. In fact

2
s
Xφ

∆
=

∧

f :Y →X ∀f (2Y (f∗φ)) ≤ by taking f = idX

∀idX
(2X (id∗

Xφ)) = 2Xφ

• 2 =-modality implies 2 ≤ 2
s. This is a consequence of the following equivalences:

– 2Xφ ≤ 2
s
Xφ

∆
⇐⇒

– 2Xφ ≤
∧

f :Y →X ∀f (2Y (f∗φ)) ⇐⇒ by definition of
∧

– 2Xφ ≤ ∀f (2Y (f∗φ)) for every f :Y → X ⇐⇒ by f∗ a ∀f

– f∗(2Xφ) ≤ 2Y (f∗φ) for every f :Y → X

which is the inequality saying that 2 is a ≥-modality

• 2
s is a ≥-modality, i.e. 2

s
Y (f∗φ) ≥ f∗(2s

Xφ) for any f :Y → X and φ ∈ P1[X ]. This is a
consequence of the following equivalences:

– f∗(2s
Xφ) ≤ 2

s
Y (f∗φ)

∆
⇐⇒
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– f∗(2s
Xφ) ≤

∧

g:Z→Y ∀g(2Z((g ; f)∗φ)) ⇐⇒ by definition of
∧

– f∗(2s
Xφ) ≤ ∀g(2Z((g ; f)∗φ)) for every g:Z → Y ⇐⇒ by f∗ a ∀f

– 2
s
Xφ) ≤ ∀g;f (2Z((g ; f)∗φ)) for every g:Z → Y

which is true by definition of 2
s
Xφ.

• 2 ≤-modality implies 2
s ≤-modality, i.e. 2

s
Y (f∗φ) ≤ f∗(2s

Xφ) for any f :Y → X and φ ∈ P1[X ].
This is a consequence of the following equivalences:

– 2
s
Y (f∗φ) ≤ f∗(2s

Xφ)
∆

⇐⇒

– 2
s
Y (f∗φ) ≤ f∗(

∧

g:U→X ∀g(2U (g∗φ))) ⇐⇒ because f∗ preserves
∧

– 2
s
Y (f∗φ) ≤ f∗(∀g(2U (g∗φ))) for every g:U → X ⇐⇒ by Beck-Chevalley applied to

U
g

> X
∧ ∧

h f

V
k

> Y

– 2
s
Y (f∗φ) ≤ ∀kh

∗(2U (g∗φ)) for every

U
g

> X
∧ ∧

h f

V
k

> Y

which is true by the following sequence of inequalities:
2

s
Y (f∗φ) ≤ by definition of 2

s
Y φ

∀k(2V ((k ; f)∗φ)) = because k ; f = h ; g
∀k(2V ((h ; g)∗φ)) ≤ because 2 is a ≤-modality
∀kh

∗(2U (g∗φ)).

Theorem 1.10 Under the assumptions of Theorem 1.9, if C has enough points for P2, then

• (2s
Xφ)Rψ ⇐⇒ ∀x: 1 → X.21(x

∗φ)R(x∗ψ)

for any X ∈ C, φ ∈ P1[X ], ψ ∈ P2[X ] and R ∈ {≤,=,≥}.

Proof Because of Lemma 1.5, it is enough to prove that 2
s
1φ = 21φ. By Theorem 1.9 we know

already that 2
s
1φ ≤ 21φ, so we need to prove only that 21φ ≤ 2

s
1φ. This is a consequence of the

following equivalences:

• 21φ ≤ 2
s
1φ

∆
⇐⇒

• 21φ ≤
∧

!:X→1 ∀!(2X(!∗φ)) ⇐⇒ by definition of
∧

• 21φ ≤ ∀!(2X(!∗φ)) for every !:X → 1 ⇐⇒ by f∗ a ∀f

• !∗(21φ) ≤ 2X (!∗φ) for every !:X → 1 ⇐⇒ by C has enough points for P2

• (x;!)∗(21φ) ≤ x∗(2X(!∗φ)) for every !:X → 1 and x: 1 → X ⇐⇒ by x;! = id1

• 21(x
∗(!∗φ)) ≤ x∗(2X (!∗φ)) for every !:X → 1 and x: 1 → X

which is true because 2X is a ≤-modality.

A similar result should hold when 1 is replaced by a full sub-category B of generators, and 21 is
replaced by the stabilisation of 2 over B.
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2 A general semantics of necessity

Throughout this section we fix: a category C with finite limits, a factorisation system (E ,M) with
the unique fill-in property s.t. M: Cop → PoSet is closed under

∧

and ∀f , a strong endofunctor
(T, t) over C. Our aim is to associate to (T, t) (and every A ∈ C) an =-modality 2

s
,A:MA → MTA

for interpreting necessity.

Definition 2.1 Under the assumptions above, we can define the following modalities:

• 2:M → T ;M s.t. 2X([m]) is the image of Tm, i.e.

2X([m:X ′ → X ])
∆
= [m′], where (e′,m′) is the factorisation of Tm:TX ′ → TX in (E ,M)

• 2 ,A:MA → MTA is 2X,Aφ
∆
= t∗X,A(2X×Aφ)

• 2
s
,A:MA → MTA is the stabilisation of 2 ,A (see Theorem 1.9).

Theorem 2.2 2 and 2 ,A are ≤-modalities, while 2
s
,A is an =-modality.

Proof If 2 is a ≤-modality, the other claims follow by Lemma 1.2 and Theorem 1.9.
To prove that 2 is a ≤-modality, we show that for every pullback square

B
f

> A
∧ ∧

m′

∪ ∪

m ∈ M

B′

f ′

> A′

if (e, n) and (e′, n′) are the factorisations of Tm and Tm′, then exists (unique) g s.t. n′ ;Tf = g ;n

• Tm′ ; Tf = Tf ′ ; Tm, because m′ ; f = f ′ ;m

• e′ ; (n′ ; Tf) = (Tf ′ ; e) ;m, because Tm′ = e′ ; n′ and Tm = e ; n

• exists unique g s.t. n′ ; Tf = g ; n and Tf ′ ; e = e′ ; g, by the unique fill-in property.

Corollary 2.3 If C has enough points for M, then for any φ ∈ M[X×A] and ψ ∈ M[X×TA]

(2s
X,Aφ)Rψ ⇐⇒ ∀x: 1 → X.(2Aφx)Rψx

where φx
∆
= 〈! ; x, idA〉∗φ when !:A→ 1, x: 1 → X and φ ∈ M[X×A].

Proof By Lemma 1.4 and Theorem 1.10 we know that for any φ ∈ M[X×A] and ψ ∈ M[X×TA]

(2s
X,Aφ)Rψ ⇐⇒ ∀x: 1 → X.21,A((x×idA)∗φ)R(x×idTA)∗ψ

Therefore the claim is a consequence of the following equivalences:

• 21,A((x×idA)∗φ)R(x×idTA)∗ψ ⇐⇒
by M[1×A] ∼= M[A] via φ 7→ 〈!, idA〉∗φ and by definition of ψx

• 〈!, idTA〉
∗(21,A((x×idA)∗φ))Rψx ⇐⇒

by definition of 2X,A and 〈!, idTA〉 ; t1,A = T 〈!, idA〉

• (T 〈!, idA〉)∗(21×A((x×idA)∗φ))Rψx ⇐⇒
since T 〈!, idA〉:TA→ T (1×A) is iso and 2A is a ≤-modality

• 2A(〈! ; x, idA〉∗φ)Rψx ⇐⇒ by definition of φx

• 2A(φx)Rψx.
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2.1 A test case for necessity

In the setting of Section 2, there are several ways of constructing a =-modality from MA to MTA

starting from a modality 2:M → T ; M. Since M: Cop → PoSet is closed under
∧

and
∨

, we
can construct =-modalities by applying either =( ) or ( )= (see Lemma 1.8). In particular, the
=-modality 2

s
,A of Definition 2.1 is given by (32F )=, where F : C → C is the functor ( ×A), and

3X :M[T (X×A)] → M[X×TA] is the =-modality s.t. 3X(φ) = t∗X,Aφ. By applying ( )= at a
different stage and/or by replacing it with =( ), we obtain six (possibly different) =-modalities:

3(2=)F ≤ 3(2F )= ≤ (32F )= = 2
s
,A ≤ 2 ,A = 32F ≤ =(32F ) ≤ 3

=(2F ) ≤ 3(=2)F

Here we consider a specific choice of C, M and (T, t):

• C is the category PoSet of posets and monotonic maps, PoSet is complete and cartesian closed;

• M is the class of regular monos, regular monos and surjective (monotonic) maps form a stable
factorisation system, and the regular subobjects of X

¯
= (X,≤X) are in one-one correspondence

with the subsets of X (with the induced partial order);

• (T, t) is the strong functor given by T (X) = 2(2X).

For this specific choice, we show that all =-modalities above, apart from (32F )=, are trivial (i.e.
they are families of constant functions). We take for granted the following facts about PoSet.

Proposition 2.4 PoSet and Set are related via the following adjunctions

Set

< π
⊥

⊂ ∆
⊥

< U

> PoSet

U is the forgetful functor mapping a poset X
¯

to its underlying set, ∆ is the full embedding mapping a
set X to the discrete order on X, π is the functor mapping X

¯
to the set of its connected components.

Set is a full reflective sub-category of PoSet and the reflection π preserves finite products, therefore

Set is an exponential ideal of PoSet and T factors through ∆, namely T (X) ∼= ∆(2(2π(X))).

Lemma 2.5 (2F )=X(φ) = > ∈ M[T0] when A = 0, and (2F )=X(φ) = ⊥ ∈ M[T (X×A)] otherwise,
for every X ∈ C and φ ∈ M[X×A].

Proof Given X ∈ C and φ ∈ M[X×A], we have the following pullback squares

X×A
η⊥X×A

> X⊥×A <
⊥X×A

1×A
∧ ∧ ∧

∪ ∪ ∪

φ > φ < 0

Since (2F )= is an =-modality, then we have the following pullback squares

T (X×A)
T (η⊥X×A)

> T (X⊥×A) <
T (⊥X×A)

T (1×A)
∧ ∧ ∧

∪ ∪ ∪

(2F )=X(φ) > (2F )=X⊥
(φ) < (2F )=1 (0)

7



T (⊥X×A):T (1×A) → T (X⊥×A) is an isomorphism, because X⊥ has one connected component,
moreover (2F )=X(φ) does not depend on φ, because

T (X×A)
T (!X×A)

> T (1×A)
∧ ∧

∪ ∪

(2F )=X(φ) > (2F )=1 (0)

Let ψ
∆
= (2F )=1 (0). If A = 0, then T (X×A) = T0 and clearly ψ = >.

In the case A 6= 0, we prove that (2F )=X (φ) = ⊥ by showing that ψ = ⊥. We have that ψ ≤

(2F )1(0) = {λk: 2(1×A).r|r ∈ 2}, because (2F )= ≤ 2F . Therefore, there are only four possible
choices for ψ: ∅ ⊂ {λk: 2(1×A).r} ⊂ {λk: 2(1×A).r|r ∈ 2}. To prove that ψ = ∅, we show that the
choice ψ = {λk: 2(1×A).r} is too big, i.e. (T (!2×A))∗ψ 6≤ (2F )2(∅):

• (2F )2(∅)
∆
= {λk: 2(2×A).r|r ∈ 2}

• c ∈ (T (!2×A))∗ψ
∆

⇐⇒ ∀k: 2A.c(λx: 2, a:A.ka) = r

• fix an a ∈ A and let c ∈ T (2×A) be c(k)
∆
=

{

r if k(0, a) = k(1, a)
k(r, a) otherwise

• c ∈ (T (!2×A))∗ψ, by definition

• c 6∈ (2F )2(∅), because c(k) 6= c(k′) when k(x, y)
∆
= x and k′(x, y)

∆
= ¬x.

Lemma 2.6 =(32F )X(φ) = > ∈ M[X×TA], for every X ∈ C and φ ∈ M[X×A].

Proof Since C has enough points for M and =(32F ) is an =-modality, then (by Lemma 1.5) the
claim follows from =(32F )1(φ) = > for every φ ∈ M[1×A].
Given φ ∈ M[1×A], let ψ ∈ M[Σ×A] be ({∗}×φ) ∪ ({⊥}×A), then =(32F )1(φ) = > because of
the following facts:

• φ = (η⊥1 ×A)∗ψ, by definition of ψ

• (32F )Σ(ψ) = >, because 2Σ×A(ψ) = >. In fact, let m:ψ ↪→ Σ×A be the canonical mono
representing ψ, then πm and Tm are iso, because each connected component of Σ×A has one
element in ψ (of the form 〈⊥, a〉)

• > = (32F )Σ(ψ) ≤ =(32F )Σ(ψ), by definition of R( )

• =(32F )1(φ) = (η⊥1 ×TA)∗(=(32F )Σ(ψ)) = >, because =(32F ) is an =-modality.

Proposition 2.7 3(2=)F = 3(2F )= = ⊥ (if A 6= 0) and > = =(32F ) = 3
=(2F ) = 3(=2)F .

Proof The first equalities follow from 3(2=)F ≤ 3(2F )= and Lemma 2.5. The second equalities
follow from =(32F ) ≤ 3

=(2F ) ≤ 3(=2)F and Lemma 2.6.

In Cpo regular monos are not closed under
∨

.
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3 Related approaches

In the setting of [Mog93], where T preserves pullbacks of monos in M along morphisms in C, the
modality 2 of Definition 2.1 is given by 2X([m]) = [Tm] and is already an =-modality. Therefore,
the six =-modalities considered in Section 2.1 are all equal to 2 ,A.

The approach of [RZ91] defines necessity in terms of a geometric morphism S
∆
⊥

< Γ

>
E where

∆ is left exact (i.e. preserves finite limits). The geometric morphism induces a left exact comonad
G = Γ ; ∆ over E and a left exact (and therefore strong) monad T = ∆ ; Γ over S. Since ∆ and Γ
preserves pullbacks, the adjunction ∆ a Γ lifts to a fibred adjunction

MS

∆̃
⊥

< Γ̃

>
ME

π

∨ ∨

π

S
∆
⊥

< Γ

>
E

where π:MC → C is the posetal fibration (we freely switch between indexed posets and posetal
fibrations) of subobjects of C, when C is left exact. This fibred adjunction induces two =-modalities:
2

T :MS → T ;MS and 2
G:ME → G ;ME . The interpretation of necessity proposed in [RZ91] is

the =-modality 2:P → P defined as follows:

• P = ∆ ;ME :Sop → PoSet

• 2X(φ) = (∆ηX )∗(2G
∆Xφ), for any X ∈ S and φ ∈ P [X ] = ME [∆X ]

where ηX :X → TX is the unit of the adjunction ∆ a Γ, and 2
G
∆Xφ ∈ P [TX ] because ∆;G = T ;∆.

Remark 3.1 The approach of [RZ91] is related to that in [Mog93]. In fact, 2
G is obtained from

G as proposed in [Mog93], when C = E and M = ME , since G is left exact. However, there is one
important difference in the logical setting: [Mog93] sticks to a standard semantics of formulas (i.e.
formulas are interpreted as subobjects in the base category), while [RZ91] adopts a non standard
semantics based on P . It may be worth investigating whether a combination of [Mog93] and [RZ91]
can place the non-standard semantics of Evaluation Logic proposed in [Pit91] into a wider context.

3.1 A semantics of necessity based on fibred adjunctions

For interpreting necessity the setting of [RZ91] is excessive. In fact, a fibred adjunction

M1

F̃
⊥

< Ũ

>
M2

π

∨ ∨

π

C1

F
⊥

< U

>
C2

is all we need to define (mutatis mutandis) P and 2:P → P as sketched above. Also the semantics
proposed in [Mog93] can be recast in terms of a fibred adjunction.
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Definition 3.2 Given a category C, a dominion M and a monad T , we write MT for the dominion

over the category CT of Eilenberg-Moore T -algebras s.t. m:α′ → α ∈ MT ∆
⇐⇒

TA
α

> A
∧ ∧

Tm

∪

m ∈ M

TA′

α′

> A′

MT is closed under pullbacks, because U : CT → C creates limits.

Proposition 3.3 The forgetful functor U : CT → C lifts to a fibred functor from MT to M.

In fact, U preserves limits and maps monos in MT into M (by definition of MT ).

Remark 3.4 Consider C
F
⊥

< U

>
CT where FA = (µA:T 2A → TA) and U(α:TA → A) = A.

When T preserves pullbacks of monos in M, then F lifts to a fibred functor from M to MT , which
is left adjoint to the lifting of U

M
F̃
⊥

< Ũ

>
MT

π

∨ ∨

π

C
F
⊥

< U

>
CT

In this case the =-modality 2:M → T ;M of Definition 2.1 is simply F̃ ; Ũ .

In general, a fibred left adjoint (F, F̃ ) to (U, Ũ) may not exists, but when it does, it induces an

=-modality 2
′ ∆

= F̃ ; Ũ :M → T ; M. The following proposition relates 2
′ to the modalities

introduced in Definition 2.1.

Proposition 3.5 Under the assumptions of Definition 2.1, if 2
′ is defined, then 2 ≤ 2

′.

Proof 2A([m:A′ ↪→ A]) is the image of Tm (w.r.t. M) and 2
′
A([m]) ∈ M[TA] by definition,

therefore 2A([m]) ≤ 2
′
A([m]) iff Tm factors through 2

′
A([m]). Moreover, from the definition of 2

′

one can easily prove that 2
′
A([m:A′ ↪→ A]) = F̃A([m]) ∈ MT [µA:T 2A → TA], and that 2

′
A([m])

enjoys the following universal property

[m] ≤ f∗[n] ⇐⇒ 2
′
A([m]) ≤ ((Tf) ; β)∗[n]

for every f :A→ B and n ∈ MT [β:TB → B]. To prove that Tm factors through 2
′
A([m]) consider

the following commuting squares

A
ηA

> TA
∧ ∧

m

∪ ∪

2
′
Am

· > ·

T 2A
µA

> TA
∧ ∧

T (2′
Am)

∪

2
′
Am

· > ·

The first square commutes because of (TηA ; µA = idTA and) the universal property applied to
f = ηA, β = µA and [n] = 2

′
A([m]), while the second amounts to 2

′
Am ∈ MT [µA:T 2A → TA].
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By applying T to the first square, and then composing the result with the second square we get

TA
TηA

> T 2A
µA

> TA
∧ ∧ ∧

Tm T (2′
Am)

∪

2
′
Am

· > · > ·

which amounts to say that Tm factors through 2
′
A([m]), since TηA ; µA = idTA.

In conclusion, when 2 is not an =-modality, the interpretation of necessity based on 2
′ differs

from that using 2
s, and (when 2

′ is defined) it has the same problems (established in Section 2.1)
of the three semantics of necessity defined using =( ).

Further Research

There are three research directions we would like to pursue:

• To find logical principles sound and complete for this extended semantics of necessity. Unfortu-
nately, the techniques in [Mog93] do not seem immediately applicable.

• To extend our treatment to indexed monads. This should provide a semantic understanding of
Evaluation Logic in the presence of dependent types.

• To fit into a wider context the non-standard semantics of Evaluation Logic proposed in [Pit91].
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