
A General Semantics for Evaluation Logic

Eugenio Moggi∗

moggi@disi.unige.it

DISI, Univ. of Genova

v.le Benedetto XV 3, 16132 Genova, ITALY

Abstract

The semantics of Evaluation Logic proposed in [14]
relies on additional properties of monads. This pa-
per proposes an alternative semantics, which drops
all additional requirement on monads, at the expense
of stronger assumptions on the underlying category.
These assumptions are satisfied by any topos, but not
by the category of cpos. However, in the setting of
Synthetic Domain Theory (see [7, 23]) it is possible
to reconcile the needs of Denotational Semantics with
those of Logic.

1 Introduction

Evaluation logic (ELT) is a typed predicate logic
originally proposed by [18], which is based on the met-
alanguage MLT for computational monads (see [12])
and permits statements about the evaluation of pro-
grams to values by the use of evaluation modalities:
necessity and possibility. In particular, ELT might be
used for axiomatizing computation-related properties
of a monad or devising computationally adequate the-
ories (see [18]), and it appears useful when addressing
the question of logical principles for reasoning about
the behavior of programs. ELT provides a framework
for presenting programming languages and program
logics in analogy with LCF (see [4]), but with the
additional abstraction mechanism given by computa-
tional types.

[18] adopts a very general notion of model for ELT

based on indexed posets, where the interpretation of
evaluation modalities is not canonical (i.e. it is not de-
termined by the underlying monad). In this way, the

∗This work is supported by ESPRIT BRA 6811 (Categori-
cal Logic In Computer Science II) and EC SCIENCE twinning
ERBSC1*CT920795 (Progr. Lang. Semantics and Program
Logics).

modalities have to be interpreted on a case by case ba-
sis. To overcome this problem, [14] proposes a canon-
ical semantics of necessity, under the assumption that
the monad satisfies some additional properties. Un-
fortunately, these properties are not satisfied by some
monads used in Denotational Semantics.

This paper proposes a canonical semantics of ne-
cessity, which makes no assumptions on the monad T
(which must be fibered), but it requires the underlying
category C to have finite limits and a stable and proper
factorization system. The latter requirement is not an
issue in toposes or regular categories, but cannot be
satisfied in the category of cpos. However, it is pos-
sible to reconcile the needs of Denotational Semantics
with those for interpreting ELT . In fact, Synthetic
Domain Theory (SDT) provides several models con-
sisting of a logical universe C (usually a topos) and
a full reflective sub-category D of C, which is as good
as the category of cpos for the purposes of Denota-
tional Semantics. Therefore, any monad T over D,
used for interpreting some programming language (but
not ELT), may be extended (via the reflection) to the
whole of C, and used for interpreting ELT . Moreover,
when the typed predicate logic is sufficiently expres-
sive (i.e. it allows formation of subtypes and has equal-
ity and existential quantification), necessity is defin-
able and axioms for it may be proved sound formally,
without referring to the categorical semantics.

The rest of the paper is organized as follows: Sec-
tion 2 gives the syntax of ELT and exemplifies its
new semantics; Section 3 discusses limitations of the
semantics proposed in [14]; Section 4 presents the new
semantics in full generality and gives further exam-
ples; Section 5 explains how, in the setting of SDT , it
is possible to define an interpretation of ELT starting
from an interpretation of a programming language;
Section 6 relates the new semantics to the previous
one; Section 7 shows that necessity is definable in
terms of subset types, existential quantification and
equality, and gives sound axioms for necessity.

2 Syntax and informal semantics

ELT is a (conservative) extension of typed predi-
cate logic with equality. MLT is the term language
of ELT , therefore MLT is a (conservative) extension
of typed equational logic. As typed predicate logic
one may take logics such as First Order Logic (FOL),
Higher Order Logic (HOL) or LCF ([22, 18]). One
may also consider a predicate logic with dependent
types. In fact, we need to consider such a logic to be
able to express the modalities of ELT .

2.1 Key features of MLT and ELT

The syntactic categories of ELT are types, terms
and formulas (as in first order logic with dependent
types).

• We write Γ ` τ type for “τ is a well formed type in
context Γ”. Types are closed under the formation
rule

(T)
Γ ` τ type

Γ ` Tτ type

Tτ is called a computational type, and terms of
type Tτ should be thought of as programs which
return values of type τ .

A context Γ is a sequence x1: τ1, . . . , xn: τn, where xi

are distinct variables and τi are well formed types.

• We write Γ ` e: τ for “e is a well formed term of
type τ in context Γ”. Terms are closed under the
formation rules

(lift)
Γ ` e: τ

Γ ` [e]:Tτ

(let)
Γ ` e1:Tτ1 Γ, x: τ1 ` e2:Tτ2

Γ ` (let x⇐e1 in e2):Tτ2
x 6∈ τ2

Intuitively the program [e] simply returns the value
e, while (let x⇐e1 in e2) first evaluates e1 and binds
the result to x, then evaluates e2.

• We write Γ ` φ prop for “φ is a well formed for-
mula in context Γ”. Formulas are closed under the
formation rules

(necessity)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` [x⇐e]φ prop

(possibility)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` 〈x⇐e〉φ prop

(evaluation)
Γ ` e:Tτ Γ ` v: τ

Γ ` e⇓v prop

Intuitively the formula [x⇐e]φ means that every
possible result of program e satisfies φ, 〈x⇐e〉φ
means that some possible result of program e satis-
fies φ, and e⇓v means that v is one possible result
of program e.

• We write Γ ` Φ =⇒ φ for “Φ entails φ”.

Remark 2.1 In the formation rule (let) it is unclear
what type should be assigned to (let x⇐e1 in e2), with-
out the side-condition x 6∈ τ2 (i.e. x is not among the
free variables of τ2).

2.2 A set-theoretic semantics of ELT

In this section we specialize the categorical seman-
tics of ELT to the category Set of sets. Since Set is a
topos, we can take as typed predicate calculus HOL
with dependent types:

• a context Γ is interpreted by a set I ∈ Set

• a type Γ ` τ type is interpreted by an I-indexed
family X = 〈Xi|i ∈ I〉 of sets

• a term Γ ` e: τ is interpreted by an I-indexed family
x = 〈xi ∈ Xi|i ∈ I〉 of elements

• a formula Γ ` φ prop is interpreted by a subset of I .

To extend the interpretation of HOL with depen-
dent types to MLT , one need a fibered monad on
Set fibered over itself. But in Set fibered mon-
ads correspond to ordinary monads, namely a monad
(T, η, µ) induces the fibered monad TI(〈Xi|i ∈ I〉) =
〈T (Xi)|i ∈ I〉 (and any fibered monad is obtained in
this way). Therefore, given a monad (T, η, µ) over Set
the interpretation can be extended to MLT as follows
(compare with [12]):

[[Γ ` τ type]] = 〈Xi|i ∈ I〉
[[Γ ` Tτ type]] = 〈TXi|i ∈ I〉

[[Γ ` e: τ]] = 〈xi ∈ Xi|i ∈ I〉
[[Γ ` [e]:Tτ]] = 〈ηXi

(xi) ∈ TXi|i ∈ I〉

[[Γ ` e1:Tτ1]] = 〈ci ∈ TXi|i ∈ I〉
[[Γ, x: τ1 ` e2:Tτ2]] = 〈fix ∈ TYi|i ∈ I, x ∈ Xi〉
[[Γ ` (let x⇐e1 in e2):Tτ2]] = 〈f∗

i (ci) ∈ TYi|i ∈ I〉

where f∗ = (Tf) ; µY :TX → TY when f :X → TY .
In HOL one can define evaluation predicate and

possibility in terms of necessity (see [14]):

• Γ ` (e⇓v)
∆
≡ ∀X : Ωτ .([x⇐e]X(x)) ⊃ X(v)

• Γ ` (〈x⇐e〉φ)
∆
≡ ∀w: Ω.([x⇐e](φ ⊃ w)) ⊃ w

where Ω is the type of truth values. In classical logic
possibility is simply ¬([x⇐e]¬φ).

In FOL over MLT with subset types necessity
is definable as follow (see Theorem 7.4):

• Γ ` ([x⇐e]φ)
∆
≡ ∃c:T ({x: τ |φ}).e =Tτ T ic, where

Γ, x: {x: τ |φ} ` i(x): τ is the inclusion of {x: τ |φ}
into τ and T ic stands for the term let x⇐c in [i(x)].

Example 2.2 In the following examples of monad
(T, η, µ) over Set we give TA and the meaning of
c⇓a, [x⇐c]p(i, x) and 〈x⇐c〉p(i, x), where i: I , a:Ai,
c:T (Ai) and p is a predicate over Σi: I.Ai.

• exceptions TA = A+E, E set of exceptions

c⇓a iff c = [a], i.e. c = in1(a)

[x⇐c]p(i, x) iff ∀x:Ai.c⇓x ⊃ p(i, x)

〈x⇐c〉p(i, x) iff ∃x:Ai.c⇓x ∧ p(i, x);

• non-determinism TA = Pfin(A)

c⇓a iff a ∈ c, while the modalities are defined like
for exceptions;

• side-effects TA = Pfin(A×S)S , S set of states

c⇓a iff ∃s, s′:S.〈a, s′〉 ∈ cs, while the modalities are
defined like for exceptions;

• resumptions TA = µX.Pfin(A + X), i.e. the set
of finite trees with leaves labeled by elements of A

c⇓a iff “at least one leaf of c is labeled by a”, while
the modalities are defined like for exceptions;

• continuations TA = R(RA), R set of results

[x⇐c]p(i, x) iff ∀k, k′:RAi .(∀x:Ai.p(i, x) ⊃ kx =
k′x) ⊃ ck = ck′, i.e. “ck = ck′ if k, k′:RAi agree
on {x:Ai|p(i, x)}”

〈x⇐c〉p(i, x) iff ¬[x⇐c]¬p(i, x), i.e. “there exist k
and k′ that may differ only on {x:Ai|p(i, x)} and
s.t. ck 6= ck′”

c⇓a iff 〈x⇐c〉(x =Ai
a), i.e. “there exist k and k′

differing only on a and s.t. ck 6= ck′”

3 Counter-examples

The semantics of necessity (for ELT without de-
pendent types) in [14] relies on additional properties
of strong monads. If

• C is a category with finite products, used for inter-
preting types and terms

• M is a class of monos stable under pullback, used
for interpreting formulas

• (T, t) is a strong endofunctor, used for interpreting
computational types, s.t. T preserves monos in M,
i.e. m ∈ M implies Tm ∈ M

then the interpretation of necessity is

[[Γ, x: τ ` φ prop]] = [m] ∈ M[Γ×τ]
[[Γ, c:Tτ ` [x⇐c]φ prop]] = t∗Γ,τ [Tm] ∈ M[Γ×Tτ]

where [m] is the subobject corresponding to the mono
m, and f∗[m] is the inverse image of [m] ∈ M[Y] along
f :X → Y .

Remark 3.1 One further assumption on (T, t) is
needed to show that the interpretation commutes with
substitution of variables in Γ (see [14]).

In a category C with finite limits, there are two
obvious choices for M: the class of all monos, and the
class of regular monos (i.e. equalizers of parallel pairs)
closed under composition. The first choice is maximal,
the second is minimal at least for interpreting equality
predicates, and in a topos the two choices coincide. In
the category Cpo of cpos (i.e. posets with lubs of ω-
chains) regular monos correspond to inductive subsets
(i.e. subsets of a cpo closed under lubs of ω-chains).

Example 3.2 In Set every monad (but not every end-
ofunctor) preserves monos, and for the monads consid-
ered in Example 2.2 the two interpretations of neces-
sity agree (see Theorem 6.4).

Most of the strong monads over Cpo used in De-
notational Semantics satisfy the additional properties
requested in [14], when M is the class of inductive
subsets. However, there are two important counter-
examples:

• Σ-continuations TX = Σ(ΣX), where Σ is the cpo
which classifies Scott-open subsets;

• Plotkin’s powerdomain TX = Pp(X⊥), where
Pp(X) is the free binary semi-lattice over X .

Remark 3.3 TX = 2(2X), where 2 is the flat poset
with two elements, is already a counter-example (even
in the category of posets). But it is not used in De-
notational Semantics, as TX does not have a least
element. Other counter-examples, based on monads
for dynamic allocation over a category of parametric
functors (see [15, 19]), are too complex to be described
here.

Proposition 3.4 In Cpo there is a regular mono m
s.t. Tm is not monic, when T is the monad of Σ-
continuations or Plotkin’s powerdomain.

Proof Let L ∼= (1 + L)⊥ be the cpo of lazy nat-
ural numbers, whose elements are: sn(0), sn(⊥)
and ∞. The order on L is generated by sn(⊥) <
sn+1(⊥), sn(0),∞ for every n ∈ N . The mono m cor-
responds to the inductive subset M of maximal ele-
ments {sn(0)|n ∈ N}∪{∞}. m can be described as the
equalizer of s, s′:L → L, where s(sn(⊥)) = sn+1(⊥),
s(sn(0)) = s′(sn(0)) = sn+1(0) and are the identity
otherwise.

Consider the case TX = Σ(ΣX) first. Since ΣX is
isomorphic to the lattice of open subsets of X , then
the elements of TX may be thought as open subsets of
open subsets of X . Since M is a flat cpo every subset

of M is open. Let O
∆
= {U ⊆M |∃n:N.sn(0) ∈ U} and

O′ ∆
= O∪{{∞}}, then O and O′ are distinct elements

of TM . However, Tm maps O and O′ to the same

element in TX , namely O′′ ∆
= {V ∈ ΣL|∃n:N.sn(0) ∈

V }. In fact, when V is an open subset of L and ∞ ∈ V ,
then sn(0) ∈ V for some n ∈ N .

To prove that Tm is not monic, when TX =
Pp(X⊥), one has to use the explicit description of
Plotkin’s powerdomain available for SFPs. We skip
the details.

4 A new semantics of ELT

In this section we consider a semantics for the ne-
cessity modality of ELT , which is based on different
assumptions about C, M and T . We briefly recall the
necessary background about fibrations and factoriza-
tion systems, and refer to [1, 9] and [2, 5] for more
details.

Definition 4.1 (Fibrations) Given p: C → B, we
say that

• f ∈ C(Y,X) is p-cartesian
∆

⇐⇒ for every g ∈
C(Z,X) and h′ ∈ B(pZ, pY) s.t. pg = h′ ;(pf) exists
unique h ∈ C(Z, Y) s.t. g = h ; f and h′ = ph

• p: C → B is a fibration (over B)
∆

⇐⇒ for every
X ∈ C and f ′ ∈ B(Y ′, pX) exists f ∈ C(Y,X) s.t. f
is p-cartesian and f ′ = pf .

Fibrations over B form a 2-category Fib(B) with
fibered functors as 1-cells and vertical natural trans-
formations as 2-cells:

• given two fibrations p: C → B and q:D → B, F : C →

D is a fibered functor from p to q
∆

⇐⇒ p = F ; q
and F takes p-cartesian maps to q-cartesian maps

• given two fibered functors F,G: C → D from p to q,
σ:F

.
→ G is a vertical natural transformation

from F to G
∆

⇐⇒ ∀c ∈ C.q(σc) = idpc.

Notation 4.2 Given two fibrations p: C → B and
q:D → B, fibered functors F,G: p→ q, a vertical nat-
ural transformation σ:F

.
→ G, and I ∈ B, we write

• CI for the fiber of p over I , i.e. the sub-category of
C s.t. f :X → Y in CI iff pf = idI

• FI for the functor from CI to DI s.t. FIf = Ff

• σI for the natural transformation from FI to GI s.t.
σI,c = σc.

Remark 4.3 Since Fib(B) is a 2-category, fibered
monads and fibered adjunctions can be defined in the
2-categorical way. If C is a category with finite lim-
its, then cod: C→ → C is a fibration, called C fibered
over itself, and the fiber over I is denoted by C/I .
Moreover, a class M of monos in C stable under pull-
back induces a posetal fibration M over C, s.t. the fiber
M[I] over I is the poset of subobjects of I represented
by monos in M.

Remark 4.4 C and M as above can be used for in-
terpreting a predicate calculus with dependent types:

• a context Γ is interpreted by an object I ∈ C

• a type Γ ` τ type is interpreted by a π:X → I , i.e.
an object π ∈ C/I , and Γ, x: τ is interpreted by X

• a term Γ ` e: τ is interpreted by a section x of π,
i.e. an x: I → X in C s.t. x ;π = idI , or equivalently
an element x: 1 → π of π in C/I

• a formula Γ ` φ prop is interpreted by a subobject
[m] ∈ M[I].

There are subtle problems in defining such an in-
terpretation, due to the lack of canonical choices. A
simple way out is to replace the fibration cod with a

category with attributes D

G

⇓ p

π

>

>
C, where π is

a discrete split fibration and p is a cartesian natural
transformation (see [11]), so that:

• Γ is interpreted by an object I ∈ C

• Γ ` τ type is interpreted by an object X ∈ DI , and
Γ, x: τ is interpreted by G(X)

• Γ ` e: τ is interpreted by a section x of pX .

Further canonical choices are needed for interpret-
ing subset types {x: τ |φ}. For the sake of presentation,
we ignore canonical choices as far as possible. Never-
theless, all examples of C we consider admit simple
canonical choices.

Definition 4.5 (Factorization systems) Given a
category C with pullbacks, we say that a class

D of morphisms is stable
∆

⇐⇒ d ∈ D and

X ′
f

> X
∧ ∧

d′ d

Y ′

f ′

> Y

implies d′ ∈ D;

(E ,M) is a factorization system
∆

⇐⇒

• E and M are classes of morphisms containing all
isos and closed under composition,

• for every morphism f in C exist e ∈ E and m ∈ M
s.t. f = e ;m, and the factorization (e,m) is unique
up to isomorphism.

Moreover, (E ,M) is called stable if E and M are
stable, and proper if each e ∈ E is epi and each m ∈
M is mono.

Notation 4.6 Given a morphism f :Y → X in C with
proper factorization (e,m), we write imgM(f) for the
subobject [m] ∈ M[X].

Remark 4.7 In a factorization system the class M
is always stable. Moreover, E can be recovered from
M (and conversely). Therefore a class of monos M
identifies at most one (stable and) proper factorization
system (E ,M).

The new semantics of ELT (with dependent types)
relies on the following assumptions, if

• C is a category with finite limits

• (E ,M) is a stable and proper factorization system

• T is a fibered endofunctor over cod: C→ → C

then the interpretation of computational types and
necessity is

[[Γ ` τ type]] = (π: Γ, τ → Γ) ∈ C/Γ
[[Γ ` Tτ type]] = (TΓπ: Γ, T τ → Γ) ∈ C/Γ

[[Γ, x: τ ` φ prop]] = [m] ∈ M[Γ, τ]
[[Γ, c:Tτ ` [x⇐c]φ prop]] = imgM(TΓm) ∈ M[Γ, T τ]

where

·
TΓm

> Γ, T τ

@
@
@

@
@
@R ∨

Γ

= TΓ

·
m

> Γ, τ

@
@
@

@
@
@R ∨

π

Γ

(One can show that the interpretation commutes with
substitution of variables in Γ.)

Remark 4.8 The assumptions on C and M are
stronger than those made in [14]. A fibered endofunc-
tor T over cod: C→ → C induces a strong endofunctor
over C, which may not preserve monos in M.

Example 4.9 In Set there is only one stable and
proper factorization system: E = the class of all epis
and M = the class of all monos. In fact, this is true
in any other topos.

The fiber Set/I is equivalent to the category SetI

of I-indexed families of sets.

Fibered endofunctors over cod:Set→ → Set cor-
respond to endofunctors over Set. In fact, an end-
ofunctor T over Set induces the fibered endofunctor
s.t. TI(〈Xi|i ∈ I〉) = 〈TXi|i ∈ I〉.

Example 4.10 An ω-set X
¯

is a pair (X, ‖−X), where
X is a set and ‖−X ⊆ N×X (see [10, 17]). A
morphism f : X

¯
→ Y

¯
is a function f :X → Y s.t.

∃e:N.∀x:X.∀m:N.m‖−Xx ⊃ e ·m‖−Y f(x), e is called
a realizer of f (e‖−f for short).

In the category ωSet of ω-sets there are two canon-
ical stable and proper factorization systems: either
E = the class of all epis and M = the class of regular
monos, or E = the class of regular epis and M = the
class of all monos. In fact, this is true in any other
quasi-topos (see [24]).

The fiber ωSet/I
¯
, where I

¯
= (I, ‖−I), is equiva-

lent to the sub-category of ωSetI whose morphisms
are realizable families, where 〈fi: X

¯ i → Y
¯ i|i ∈ I〉 is

realizable
∆

⇐⇒ ∃e:N.∀i: I.∀m:N.m‖−I i ⊃ e ·m‖−fi.

Fibered endofunctors over cod:ωSet→ → ωSet cor-
respond to realizable endofunctors over ωSet, where
T is realizable iff there exists e ∈ N s.t. e · n‖−Tf

when n‖−f (see [3]). The fibered endofunctor corre-
sponding to a realizable endofunctor T over ωSet is
defined by analogy with Set.

Remark 4.11 In Cpo there is a proper factorization
system: E = the class of all epis and M = the class of
regular monos. However, it is not stable.

5 Synthetic Domain Theory setting

The proposed semantics for ELT is drastically at
odds with classical Domain Theory. Anyway, when
looking for an expressive logic (including FOL) we
are forced to leave the category of cpos, as only a
fragment of FOL may be interpreted in Cpo. For-
tunately, one may reconcile the needs of Denotational
Semantics with an expressive logic by moving to the
SDT setting (see [7, 23]).

Definition 5.1 Given two fibrations p: C → B and
q:D → B, we say that q is a full reflective sub-

fibration of p
∆

⇐⇒ there is a full and faithful fibered
functor i: q → p with a fibered left adjoint r a i.

For our purposes the main result of SDT is:

there are quasi-toposes C (more generally left-
exact categories with a stable and proper fac-
torization system) with a full reflective sub-
fibration q:D → C of cod: C→ → C, which has
all the desiderata for Denotational Seman-
tics, in particular the objects of D look like (in-
dexed families of) cpos.

We are left to show that, given a semantics for a pro-
gramming language PL in the fiber D1 over 1, we can
construct a fibered monad T over cod (so that one can
interpret ELT).

• Usually the semantics of PL can be given via trans-
lation in a typed metalanguage ML for Denota-
tional Semantics, which has an intended interpre-
tation in any reasonable category for Denotational
Semantics, in particular in D1.

• According to the monadic approach (see [12]) the
translation from PL to ML should factor through
a metalanguage MLT (Σ) for computational mon-
ads. Therefore, one has a monad over D1, which is
expressible in ML.

• Under reasonable assumptions about ML and q, a
syntactic description of a monad in ML induces a
fibered monad T over q.

• Finally, any fibered monad T over q extends, via the
fibered adjunction r a i, to a fibered monad r ; T ; i
over the fibration cod.

In conclusion, we have argued that it is possible to sat-
isfy the assumptions for the new semantics of ELT ,
whenever one starts from a semantics of PL in D1

given via translation into a metalanguage for Denota-
tional Semantics.

Remark 5.2 In the literature there are several ways
of constructing D from C: the category of complete
extensional PERs of [3, 21]), the category of complete
Σ-spaces of [16], the category of Σ-replete objects (see
[7, 23]).

Example 5.3 We show that the category ExP of
complete extensional PERs can be turned into a full
reflective sub-fibration of ωSet fibered over itself.

• Consider the small category PER of partial equiv-
alence relations (PERs) and its full reflective sub-
categoryExP of complete extensional PERs defined
in [3].

• PER and ExP can be turned into internal cate-
gories in ωSet (indeed they are full internal sub-
categories of ωSet).

• The reflection r a i defined in [3] can be made in-
ternal, i.e. the relevant functors and natural trans-
formations are realizable ([3] provides all the neces-
sary information to prove this). Therefore, ExP is a
full reflective sub-category of PER in the 2-category
Cat(ωSet) of internal categories in ωSet.

• The externalization 2-functor (from Cat(ωSet) to
the 2-category of fibrations over ωSet) turns PER
into a (split) fibration over ωSet and ExP into a
full reflective sub-fibration of PER. Since PER is
a full reflective sub-fibration of ωSet fibered over
itself (see [8]), so is ExP .

The result cannot be improved by replacing ωSet with
the Effective Topos Eff , because PER is not a full
reflective sub-fibration of Eff fibered over itself.

6 Relation to previous semantics

In this section we give sufficient conditions to ensure
that the new semantics of necessity agrees with that
proposed in [14]. But first we need some auxiliary
results.

Proposition 6.1 If C is a category with finite limits,
then C/I has finite limits and any stable class M (of
monos) on C induces a stable class M/I (of monos)
on C/I given by

X ′ m
> X

@
@
@

@
@
@R ∨

I

∈ M/I
∆

⇐⇒ m ∈ M

Proposition 6.2 If C is a category with finite limits
and T is a fibered endofunctor over cod: C→ → C, then
TI has a tensorial strength tI .

Proof Given (α:A → I) and (β:B → I) objects of
C/I , the tensorial strength tI,α,β is

·
tI,α,β

> ·

@
@
@

α×TI(β) @
@
@R

TI(α×β)

∨
I

∆
= T

·
id

> ·

π1

∨

α×β

∨
A

α
> I

where the product of α and β in C/I is given by

·
π2

> B

π1

∨

@
@
@
α×β@

@
@R ∨

β

A
α

> I

Remark 6.3 Since C is isomorphic to the fiber C/1,
then a fibered endofunctor T on cod induced a strong
endofunctor over C corresponding to (T1, t1) .

Theorem 6.4 If the assumptions required by the new
semantics of necessity are satisfied, and moreover for
every I ∈ C the functor TI preserves pullbacks of
monos in M/I, i.e. in C/I

·
f

> ·
∧ ∧

n m ∈ M/I

·
f ′

> ·

=⇒

·
TIf

> ·
∧ ∧

TIn TIm ∈ M/I

·
TIf

′

> ·

then, the semantics of necessity according to [14] is
defined and agrees with the new semantics.

7 Definability and sound axioms

In this section we give axioms for necessity sound
w.r.t. the new semantics. These axioms are a sub-
set of those considered in [14]. The simplest way to
validate them is to express necessity in terms of stan-
dard logical constants, and then use the familiar rules
satisfied by these logical constants.

Proposition 7.1 If C has finite limits and M is a
stable class of monos, then one can interpret subset
types

({|})
Γ, x: τ ` φ prop

Γ ` {x: τ |φ} type
(i)

Γ ` e: {x: τ |φ}

Γ ` ix:τ.φ(e): τ

(j)
Γ ` e: τ Γ, x: τ ` φ prop Γ ` [e/x]φ

Γ ` jx:τ.φ(e): {x: τ |φ}

Proof Given Γ ` τ type and Γ, x: τ ` φ prop, inter-
preted by (π: Γ, τ → Γ) ∈ C/Γ and [m:φ ↪→ Γ, τ] ∈
M[Γ, τ] respectively, then

• the interpretation of Γ ` {x: τ |φ} type is given by
(m ; π:φ → Γ) ∈ C/Γ

• the interpretation of Γ ` i(e): τ is given by f ; m,
when Γ ` e: {x: τ |φ} is interpreted by f : Γ → φ s.t.
f ; (m ; π) = id.

• the interpretation of Γ ` j(e): {x: τ |φ} is given by
the unique f ′ s.t. f = f ′ ; m, when Γ ` e: τ is
interpreted by f s.t. f ; π = id and f∗[m] = [idΓ].

Remark 7.2 The term constructors ix:τ.φ and jx:τ.φ

play the role of explicit coercions, and it is often con-
venient to leave them implicit.

A correct interpretation of subset types relies on
canonical choices of representative for each subobject
[m] ∈ M[I]. More precisely, we need a category with

attributes D

G

⇓ p

π

>

>
C, (see Remark 4.4) with

units and sums (see [11]) and a fibered embedding
ι: |M| → π s.t. [m] = [pι([m])]. Intuitively, ι maps the
interpretation of φ to the interpretation of the subset
{∗: 1|φ} of the unit type 1. In the examples based on
sets and ω-sets, ι is easy to define.

Proposition 7.3 If C has finite limits and (E ,M) is
a stable and proper factorization system, then one can

interpret equality and existential quantification

(=)

Γ ` τ type
Γ ` ei: τ

Γ ` e1 =τ e2 prop
(∃)

Γ, x: τ ` φ prop

Γ ` ∃x: τ.φ prop

Proof Given a type Γ ` τ type whose interpretation
is (π: Γ, τ → Γ) ∈ C/Γ, the interpretation of equality
over τ (according to Categorical Logic) is the diagonal
∆:π ↪→ π×Γπ in C/Γ. We need to show that ∆ ∈ M:

• ∆ is a regular mono in C, e.g. is the equalizer of the
two projections π1, π2:π×Γπ → π in C/Γ

Γ, τ

@
@
@
∆@

@
@R

HHHHH id
HHHHHj

A
A
A
A
A
A

id A
A
A
A
A
AU

Γ, τ×τ
π1

> Γ, τ

π2

∨ ∨

π

Γ, τ
π

> Γ

• every regular mono is in M. More precisely, if m is
the equalizer of f and g, then [m] = imgM(m).

Let (e, n) be the (E ,M)-factorization of m, then
m factors through n (as m = e ; n), while n factors
through m because n equalizes f and g (as e;n;f =
m ; f = m ; g = e ; n ; g and e is epi).

The interpretation of existential quantification
along π: Γ, τ → Γ is given by the left adjoint ∃π

to π∗:M[Γ] → M[Γ, τ], which must also satisfy the
Beck-Chevalley. It is easy to show that:

• ∃π([m]) = imgM(m ; π)

• the Beck-Chevalley condition holds, since the fac-
torization system (E ,M) is stable.

Theorem 7.4 If the assumptions required for inter-
preting necessity according to the new semantics are
satisfied, then

(2)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` [x⇐e]φ⇐⇒ ∃c′:T ({x: τ |φ}).e =Tτ T ic
′

where T ic′ stands for the term let x′⇐c′ in [i(x′)].

Proof Let [[Γ ` τ type]] = π: Γ, τ → Γ and
[[Γ, x: τ ` φ prop]] = [m:φ ↪→ Γ, τ], then

• [[Γ ` {x: τ |φ} type]] = (m ; π:φ → Γ)

• [[Γ, c:Tτ ` [x⇐c]φ prop]] = imgM(TΓm)

• [[Γ, x: {x: τ |φ} ` i(x): τ]] = i, where

φ

@
@
@
i@

@
@R

HHHHH id
HHHHHj

A
A
A
A
A
A

m A
A
A
A
A
AU

· p1 > φ

p2

∨ ∨

m ; π

Γ, τ
π

> Γ

• [[Γ, c:Tτ, c′:T ({x: τ |φ}) ` c = T ic′ prop]] = [n],
where

·

@
@
@
n@

@
@R

HHHHH id
HHHHHj

A
A
A
A
A
A

TΓm A
A
A
A
A
AU

· q1 > ·

q2

∨ ∨

TΓ(m ; π)

Γ, T τ
TΓπ

> Γ

• [[Γ, c:Tτ ` ∃c′:T ({x: τ |φ}).c = T ic′ prop]] =
∃q2

([n])

Therefore, we must prove that
∃q2

([n]) = imgM(TΓm):

• ∃q2
([n]) = by definition of ∃f (see Proposition 7.3)

• imgM(n ; q2) = by definition of n

• imgM(TΓm)

With the characterization of necessity given above,
it is quite easy to derive rules for necessity from those
for existential quantification, equality predicate, sub-
set and computational types.

Corollary 7.5 The following rules are sound w.r.t.
the new semantics of ELT :

• (2->*)
Γ ` τ type

Γ, c:Tτ ` > =⇒ [x⇐c]>

• (2-=⇒)

Γ ` e: τ
Γ, x: τ ` Φ, φ =⇒ ψ

Γ ` Φ, [x⇐e]φ =⇒ [x⇐e]ψ
x 6∈ Φ

• (2-T)

Γ, x: τ1 ` e: τ2 Γ, x: τ2 ` φ prop
Γ, c:Tτ1 ` Φ =⇒ [x⇐c]([e/x]φ)

Γ, c:Tτ1 ` Φ =⇒ [x⇐(let x⇐c in [e])]φ

• (2-=)

Γ ` e:Tτ1 Γ, x: τ1 ` ei: τ2
Γ ` Φ =⇒ ([x⇐e]e1 =τ2

e2)

Γ ` Φ =⇒ T (x.e1)e =Tτ2
T (x.e2)e

x 6∈ τ2

where T (x.ei)e stand for the term let x⇐e in [ei]

• (2-η)
Γ, x: τ ` φ prop

Γ, x: τ ` φ =⇒ [x⇐[x]]φ

Proof As a example we derive the rule (2-=⇒). First,
we restrict to the case Φ = ∅, by applying the bi-rule

(`)
Γ ` φ,Φ =⇒ ψ

Γ, x: {x: 1|φ} ` Φ =⇒ ψ
x 6∈ Γ

where 1 is the unit type.

Therefore, from Γ, x: τ ` φ1 =⇒ φ2 we must derive
Γ ` ∃c1:Tτ1.e = T i1c1 =⇒ ∃c2:Tτ2.e = T i2c2, where
τi and ii stand for {x: τ |φi} and ix:τ.φi

. For simplicity,
let us assume that Γ = ∅:

• x: τ1 ` φ1(i1(x)), by rules for i

• x: τ1 ` φ2(i1(x)), by the assumption

• x: τ1 ` i1(x) = i2(j2(x)), where j2 stand for jx:τ.φ2
,

by rules for j

• c1:Tτ1 `=⇒ T i1c1 = T i2(T (x: τ1.j2(x))c1), by
equational rules for computational types

• c1:Tτ1 ` e = T i1c1 =⇒ e = T i2(T (x: τ1.j2(x))c1)

• c1:Tτ1 ` e = T i1c1 =⇒ ∃c2:Tτ2.e = T i2c2

• ` ∃c1:Tτ1.e = T i1c1 =⇒ ∃c2:Tτ2.e = T i2c2

Remark 7.6 Commutativity of necessity with con-
junction [x⇐c](φ1 ∧ φ2) ⇐⇒ ([x⇐c]φ1) ∧ ([x⇐c]φ2)
fails in the new semantics.

We don’t know any model which does not satisfy
[y⇐c][x⇐y]φ =⇒ [x⇐(let y⇐c in y)]φ.

8 Conclusions

Most program logics are tide up to specific pro-
gramming languages, look rather ad hoc, and stan-
dard logical axioms may be unsound. This state of af-
fairs is not very satisfactory, since it is time-consuming
(even for logicians) to get acquainted with new logics
and develop good proof strategies. It would be nice
if standard predicate logic were enough for reasoning
about programs (including non-functional ones), and
if proofs could be kept simple with a clever choice of
language and axioms.

Synthetic Domain Theory has given an important
contribution towards this ideal situation, by showing
that the slogan “domains are sets” makes sense. Based
on this, we show that a reasonable semantics of a
programming language PL in a model C of SDT in-
duces an interpretation of computational types over
the whole C, and therefore an interpretation of ELT

(definable in standard predicate logic).

In a companion paper (see [13]) we give evidence of
the expressiveness of ELT , by showing that the pro-
gram logic V TLoE (a Dynamic Predicate Logic for an
untyped call-by-value functional language with refer-
ences introduced in [6]) has a simple translation into
ELT and most of its axioms are formally derivable
in ELT . At a category-theoretic level, there seems
to be close relations between the new semantics of
ELT and the topos-theoretic semantics of Modal Log-
ics proposed by Reyes (see [20]).

Acknowledgements

I would like to thank A. Kock for suggesting to use
indexed monads, M. Hyland, P. Rosolini, T. Streicher,
P. Taylor for discussions on SDT related issues, B.
Jacobs and J. Power for advice on fibrations, and P.
Cenciarelli for comments.

References

[1] J. Benabou. Fibred categories and the founda-
tion of naive category theory. Journal of Symbolic
Logic, 50, 1985.

[2] P. Freyd and G.M. Kelly. Categories of contin-
uous functors, i. Journal of Pure and Applied
Algebra, 2, 1972.

[3] P. Freyd, P. Mulry, G. Rosolini, and D. Scott.
Extensional pers. In 5th LICS Conf. IEEE, 1990.

[4] M.J.C. Gordon, R. Milner, and C.P. Wadsworth.
Edinburgh LCF: A Mechanized Logic of Compu-
tation, volume 78 of LNCS. Springer Verlag,
1979.

[5] H. Herrlich and E. Strecker. Category Theory.
Heldermann Verlag, 1979.

[6] F. Honsell, I.A. Mason, S.F. Smith, and C. Tal-
cott. A variable typed logic of effects. Information
and Computation, to appear.

[7] J.M.E. Hyland. First steps in synthetic do-
main theory. In A. Carboni, C. Pedicchio, and
G. Rosolini, editors, Conference on Category
Theory ’90, volume 1488 of LNM. Springer Ver-
lag, 1991.

[8] J.M.E. Hyland, E.P. Robinson, and G. Rosolini.
The discrete objects in the effective topos. Proc.
London Math. Soc., 60, 1990.

[9] B. Jacobs. Categorical Type Theory. PhD thesis,
University of Nijmegen, 1991.

[10] G. Longo and E. Moggi. Constructive natural
deduction and its modest interpretation. Mathe-
matical Structures in Computer Science, 1, 1991.

[11] E. Moggi. A category-theoretic account of pro-
gram modules. Mathematical Structures in Com-
puter Science, 1, 1991.

[12] E. Moggi. Notions of computation and monads.
Information and Computation, 93(1), 1991.

[13] E. Moggi. Representing V TLoE in evaluation
logic. Available via FTP from theory.doc.ic.ac.uk
as /theory/papers/Moggi/elt-vtloe.dvi.Z, 1994.

[14] E. Moggi. A semantics for evaluation logic. Fun-
damenta Informaticae, 22(1/2), 1994.

[15] P.W. O’Hearn and R.D. Tennent. Relational
parametricity and local variables. In 20th POPL.
ACM, 1993.

[16] W. Phoa. Effective domains and intrinsic struc-
ture. In 5th LICS Conf. IEEE, 1990.

[17] W. Phoa. An introduction to fibrations, topos
theory, the effective topos and modest sets.
Technical Report ECS-LFCS-92-208, Edinburgh
Univ., Dept. of Comp. Sci., 1992.

[18] A.M. Pitts. Evaluation logic. In G. Birtwistle,
editor, IVth Higher Order Workshop, Banff 1990,
volume 283 of Workshops in Computing. Springer
Verlag, 1991.

[19] A.M. Pitts and I.D.B. Stark. Observable prop-
erties of higher order functions that dynamically
create local names, or: What’s new? In Math.
Found. of Comp. Sci. ’93, volume 711 of LNCS.
Springer Verlag, 1993.

[20] G.E. Reyes and H. Zolfaghari. Topos-theoretic
approaches to modalities. In A. Carboni,
C. Pedicchio, and G. Rosolini, editors, Confer-
ence on Category Theory ’90, volume 1488 of
LNM. Springer Verlag, 1991.

[21] G. Rosolini. An exper model for quest. In
S. Brookes, editor, Mathematical Foundations of
Programming Semantics, LNCS. Springer-Verlag,
1992.

[22] D.S. Scott. A type-theoretic alternative to
CUCH, ISWIM, OWHY. Oxford notes, 1969.

[23] P. Taylor. The fixed point property in synthetic
domain theory. In 6th LICS Conf. IEEE, 1991.

[24] O. Wyler. Are there topoi in topology? In Cat-
egorical Topology, volume 540 of LNM. Springer
Verlag, 1976.

