An Abstract Monadic Semantics for Value Recursion

Eugenio Moggi* Amr Sabry'
DISI Department of Computer Science
Univ. di Genova Indiana University
moggi@disi.unige.it sabry@indiana.edu
Abstract

This paper proposes an operational semantics for value recursion in the context of monadic metalan-
guages. Our technique for combining value recursion with computational effects works uniformly for all
monads. The operational nature of our approach is related to the implementation of recursion in Scheme
and its monadic version proposed by Friedman and Sabry, but it defines a different semantics and does
not rely on assignments. When contrasted to the axiomatic approach proposed by Erkok and Launchbury,
our semantics for the continuation monad invalidates one of the axioms, adding to the evidence that this
axiom is problematic in the presence of continuations.

1 Introduction

How should recursive definitions interact with computational effects like assignments and jumps? Consider a
term fix x.e where fix is some fixed point operator and e is an expression whose evaluation has side-effects.
There are at least two natural meanings for the term:

1. the term is equivalent to the unfolding e{z = fix z.e}, and the side-effects are duplicated by the unfolding.

2. the side-effects are performed the first time e is evaluated to a value v and then the term becomes
equivalent to the unfolding v{z = fix z.v}.

The first meaning corresponds to the standard mathematical view [Bar84]. The second meaning corresponds
to the standard operational view defined since the SECD machine [Lan64] and as implemented in Scheme for
example [KCE98|. The two meanings are observationally equivalent in a pure functional language. When the
computational effects are expressed using monads, Erkok and Launchbury [Erk02, EL00, ELMO02] introduced
the phrase wvalue recursion in monadic computations for the second meaning and the name mfix for the
corresponding fixed-point operator. Since we also work in the context of monadic metalanguages, we adopt
the same terminology but use the capitalized name Mfix to distinguish our approach.

We propose a simple and uniform operational technique for combining monadic effects with value recursion.
Computing the result of Mfix x.e requires three rules:

1. A rule to initiate the computation of e. Since this computation happens under a binder, care must be
taken to rename any other bound instance of x that we might later encounter.

2. If the computation of e returns a value v, all free occurrences of x are replaced by fix x.v (where fix is
the standard mathematical fixed-point operator).

3. If the computation of e attempts to use z, we signal an error.

The three rules above are robust in the sense that they can be uniformly applied to a wide range of monads:
we give examples for the monads of state, non-determinism, parallelism, and continuations.

Our semantics is operational in nature but unlike the SECD and Scheme semantics, it doesn’t rely on assign-
ments to realize the second rule. The presence of assignments in the other operational approaches yields a
different semantics, complicates reasoning, and invalidates some equational axioms.

*Supported by MIUR project NAPOLI and EU project DART IST-2001-33477.
TThis material is based upon work supported by the NSF under Grants No. CCR 0196063 and CCR. 0204389.

T(x)=r1 Io:m ks emn I'tyeirp —m Ihyegn

abs app
'ty z:7 ks Azeemp — 1 I'Fx ejea:m
'ty er I'kFsep:Mmn T,ximbFxes:Mmy
ret do
I'bFxrete: M 'y dox <« ej;eq: Mo
¥() =Rt ks e I'ts e:RT I'tsei:Rr T'hgeo:t
—— X new get set
I'tx I:RT I s new e: M(R7) 'y get e: M7 I b5 set ey ea: M(RT)

Table 1: Type System for MML®

In contrast, the work by Erkok and Launchbury [EL00, Erk02] advocates an axiomatic approach to defining
value recursion by proposing several desirable axioms. In their approach one has to find for each given
monad over some category (or defined in Haskell [Jon99]) a fixed point operator that satisfy the axioms (up to
observational equivalence). The endeavor has to be repeated for each monad individually. For the continuation
monad there are no known fixed point operators that satisfy all the desired axioms.

Summary. Sections 2 and 3 illustrate the technique by taking an existing monadic metalanguage MML®
with ML-style references [MF03, Sec.3] and extending it with value recursion. Section 4 recalls the equational
axioms for value recursion in [Erk02], and when they are known to fail. Section 5 shows that the addition of
value recursion to MML® is robust with respect to the addition of other computational effects, namely non-
determinism and parallelism. Finally, Section 6 explains the full subtleties of value recursion in the presence
of continuations, outlines a proof of type safety, and discusses counter-examples to equational axioms.

2 A Monadic Metalanguage with References

We introduce a monadic metalanguage MML® for imperative computations, namely a subset of Haskell with
the IO-monad. Its operational semantics is given according to the general pattern proposed in [MF03], i.e. we
specify a confluent simplification relation —— (defined as the compatible closure of a set of rewrite rules),
and a computation relation ——=> describing how the configurations of the (closed) system may evolve. This is
possible because in a monadic metalanguage there is a clear distinction between term-constructors for building
terms of computational types, and the other term-constructors that are computationally irrelevant (i.e. have
no effects). For computationally relevant term-constructors we give an operational semantics that ensures the
correct sequencing of computational effects, e.g. by adopting some well-established technique for specifying
the operational semantics of programming languages (see [WF94]), while for computationally irrelevant term-
constructors it suffices to give local simplification rules, that can be applied non-deterministically (because
they are semantic preserving).

The syntax of MML? is abstracted over basic types b, variables x € X, and locations [€ L.

e Types TETZ:Zb‘T1—>TQ|MT|RT‘

e Terms| ecE ::= x| Ave|ees|rete|dox«—eg;ex |l | newe | gete| sete es

In addition to the basic types, we have function types 7 — 7, reference types R7 for locations containing
values of type 7, and computational types Mt for (effect-full) programs computing values of type 7. The
terms do x < eq;es and ret e are used to sequence and terminate computations, the other monadic operations
are: new e which creates a new reference, get e which returns the contents of a reference, and set e; es which
updates the contents of reference e; to be es. In order to specify the semantics of the language, the set of
terms also includes locations [.

Table 1 gives the typing rules (for deriving judgments of the form I’ by e:7 , where I': X ™ Tisa type
assignment for variables x: 7 and X: L ™ Tisa signature for locations I: R7.

The operational semantics is given by two relations (as outlined above): a simplification relation for pure
evaluation and a computation relation for monadic evaluation. Simplification —— 1is given by (-reduction,

Administrative steps

(A.0) (u,ret e,) ——> done

(A1) (u,do x «— e1;eq, E) —=> (p, e1, Eldo x «— O; e3])
(A.2) (p,ret ey, E[do x — O;ez]) —=> (p,ea{z:=e€1}, E)
Imperative steps
(new) (u,new e, E) —> (u{l:e}, ret I, E) where | & dom(u)
(get) (p,get I, E) —> (pu,ret e, E) with e = u(l)

(set) (u,setl e, E) —> (u{l = e}, ret |, E) with [€ dom(u)

Table 2: Computation Relation for MML®

i.e. the compatible closure of (Az.eg)e; —= eo{x:=e1}. The computation relation Id ——= Id’ | done (see
Table 2) is defined using the additional notions of evaluation contexts, stores and configurations I'd € Conf:

e Evaluation contexts ’ E € EC::=0] E[do z « O;e€] ‘ (or equivalently F ::=0 | do = < Eje).

e Stores 4 €S & fng map locations to their contents.

e Configurations (u,e, E) € Conf 2 S x E x EC consist of the current store u, the program fragment e
under consideration, and its evaluation context F.

3 Extension with Value Recursion

We now describe the monadic metalanguage MMLJ%:E obtained by extending MML? with two fixed point
constructs: fix x.e for ordinary recursion, and Mfix x.e for value recursion. The expression fix x.e simplifies to
its unfolding. For computing the value of Mfix z.e, the subexpression e is first evaluated to a monadic value
ret ¢/. This evaluation might perform computational effects but cannot use x. Then all occurrences of z in ¢’
are bound to the monadic value itself using fix so that any unfolding will not redo the computational effects.
The extension MML}%I is an instance of a general pattern (only the extension of the computation relation is
non-trivial), that will become clearer after considering other monadic metalanguages.

. Terms’e € E4+=fix z.e | Mfix x.e‘

e Evaluation contexts ’ E € EC += E[Mfix z.00] ‘

e Configurations (X|u, e, E) € Conf £ Pfin(X) x S x E x EC . The additional component X is a set which
records the recursive variables generated so far, thus X grows as the computation progresses.

Despite their different semantics, the two fixed points have similar typing rules:

Tx:Mrbye Mt NeMrbyge Mt
'ty fixxze: Mt 'ty Mfix x.e: Mt

The simplification relation is extended with the fix-unfolding rule fix z.e —> e{x:= fix z.e}.
The computation relation I'd —— Id' | done | err may now raise an error and is defined by the following rules:

e the rules in Table 2, modified to propagate the set X unchanged, and

e the following new rules for evaluating recursive monadic bindings Mfix x.e:

(M.1) (X|p, Mfix z.e, E) —> (X, z|p, e, E[Mfix x.00]) with z renamed to avoid clashes with X
(M.2) (X|u,ret e, E[Mfix x.0)) —=> (X|f, ret €, E) where ® stands for e{z: = fix z.ret e}

(err) (X|u,z, E) —> err where x € X (attempt to use an unresolved recursive variable)
In the context Mfix 2.0 the hole is within the scope of a binder, thus it requires evaluation of open terms:

e The rule (M.1) behaves like gensym, it ensures freshness of x. As the computation progresses & may
leak anywhere in the configuration (depending on the computational effects available in the language).

e The rule (M.2) does the reverse, it replaces all free occurrences of z in the configuration with the term
fix z.ret e, in which z is not free. This rule is quite subtle, because of E{x:= e} (see Definition 6.5).

In special cases [AFMZ02] it is possible to simplify (M.2) by treating X as a stack and enforcing the invariant
that FV(F) = (), but our aim is an operational semantics that works with arbitrary computational effects.
Indeed in the case of continuations (Section 6), neither of these invariants holds.

4 Axioms for Value Recursion

In [Erk02] the fixed point constructs have a slightly different typing:

Tx:tks e Mt
I'ts mfixx.e: Mt

This rule allows the use of x at type 7 before the recursion is resolved, as in (mfix z.set « 0): M (R int). In
[Erk02] this premature attempt to use z is identified with divergence, while but we consider it a monadic
error, which should be statically prevented by more refined type systems [BouOl1]. The difference of
typing reflects this desire and is not an intrinsic limitation of our approach.

where x is of type 7.

x:rthkger
BT requires recursive definitions at all types; we only require them at computational types.
I'bs fixxze:T

Two of the most notable proposed axioms for defining value recursion in [Erk02] are:

(Purity) mfix z.ret e = ret (fix z.e)
(Left-shrinking) mfix z.(do 1 < ey;e2) = doxy «— ey;mfix x.eg when z € FV(ep)

The purity axiom requires that mfix coincides with fix for pure computations. Because of the differences in
typing, the purity axiom in our case becomes:

(Purity) Mfix x.rete = fixz.rete

Left-shrinking states that computations which do not refer to the recursive variable can be moved outside
the recursive definition. This rewriting however is known to be incorrect in Scheme [Baw88] but it was
argued [Erk02] that the failure of left-shrinking is due to the idiosyncrasies of Scheme. In fact left-shrinking
is invalidated by our semantics and in other known combinations of value recursion and continuations [FS00,
Car03]. Indeed if one captures the continuation in e; then on the left-hand side this continuation has access
to free occurrences of x in e but not on the right-hand side. As Section 6.2 illustrates this can be exploited
to write a counterexample to left-shrinking.

5 Extensions with Non-Determinism and Parallelism

We consider two extensions to MML® (and MMLJ%:E): the first introduces non-deterministic choice e; or eg,
the second introduces a construct spawn e; es to spawn a thread of computation e; in parallel with the
continuation eg of the current thread.

Non-determinism. The typing rule for non-deterministic choice is:

Fl_zeliMT F}_E 62:M7’
I'bFsep ores: Mt

The configurations for MML® and MMLJS% are unchanged. The computation relations are modified to become
non-deterministic. More specifically,

e for MML®, we add the computation rules (1, e1 or es, E) —=> (p,e;, FE) for i =1,2;

e for MML? , we add the computation rules (X|u,e1 or es, E) —=> (X |p,e;, E) for 1 =1, 2.
fix K K

Parallelism. The typing rule for spawn is:

Fl_zellMTl F}_Z 621M7'2

I' Fx spawn e1 eq: My

In this case a configuration consists of a (finite) multi-set of parallel threads sharing the store p, where each
thread is represented by a pair (e, E).

For MML® the configurations become (1, N) € Conf 25 x Min (E x EC), i.e. instead of a thread (e, E') one
has a multi-set of threads, and the computation relation I'd ——= Id’ | done is defined by the following rules:

e Administrative steps: threads act independently, termination occurs when all threads have completed

(done) (u,0) —— done
(A.0) (u, (ret e,0)W N) —> (u, N)
(A1) (u,(dox «— ey;e9, EYWN) —=> (u, (e1, E[do x — O;ez]) W N)
(A.2) {(u,(ret er, E[do x — O;es]) W N) —> (u, (ea{z:=e€1}, E) U N)

e Imperative steps: each thread can operate on the shared store

(new) (u, (new e, E) W N) —=> (u{l:e}, (ret [, E) W N) where | ¢ dom(pu)

(
(get) (u, (get I,)W N) ——> (i, (ret e, E) W N) with e = u(l)
(set) (u,(setle, EYWN)—> (u{l =e}, (ret I, E) Y N) with | € dom(u)

e Step for spawning a new thread
(spawn) (u, (spawn ey ez, E) W N) —=> (u, (e1,0) W (e2, E) W N)

For MML%x the configurations become (X|u, N) € Conf 2 Prin(X) xS x u(Ex EC), i.e. the threads share the set

X which records the recursive variables generated so far, and the computation relation Id ——= Id’ | done | err
is defined by the rules above (modified to propagate the set X unchanged) and the following rules for recursive
monadic bindings:

(M.1) (X|p, (Mfix z.e, E)W N) —> (X, z|u, (e, E[Mfix .00]) ¥ N) with x renamed to avoid clashes with X
(M.2) (X|u, (ret e, E[Mfix z.0)) W N) —> (X|f, (ret €, E) W N) where ® stands for e{z: = fix z.ret e}
(err) (X|u, (z,E)W N) —> err where z € X

When a thread resolves a recursive variable x (M.2), the value of z is propagated to all other threads. When
an error occurs in a thread (err), the whole computation crashes.

L(z) =1 Fr:mibgem I'kFyeitmm—7m Dhgesmn e:Mrbse: Mt

r ——— abs app fix
ks a:r ks Av.e:mi — 1 I'bks eres:m I'bys fixx.e: Mt
T'kyer 'k ep:Mm T,x:mbxs e Mm e Mt e Mt
ret do Mfix -
I'bx ret e: Mt 'k dox—ej;eq: Mmy I'ts Mfix x.e: M1
() =Rt ks e I'ts e:RT I'tsei:Rr T'hkgeo:t
—— X new get set
I'tx I:R7 I s new e: M(R7) 'y get e: M7 I b set ey ea: M(RT)
Y(k) =Kr Io:Krbs e Mt I'btywe:Kr T'hs e MT
————— callcc throw ;
I'ks k: K7 I' by callec x.e: M T I' by throw ey eg: MT

Table 3: Type System for MML%?

6 A Monadic Metalanguage with References and Continuations

In this section we consider in full detail the monadic metalanguage I\/IMLJS%? , obtained from l\/ll\/lLZwﬂj by adding

continuations. Section 6.1 outlines a proof of type safety, and Section 6.2 shows the failure of the left-shrinking

axiom and discusses some differences with Scheme. The syntax of MML?Z;{ is abstracted over basic types b,

variables x € X, locations [€ L and continuations k € K:

e Types TETZI:b‘Tl—>TQ|MT|RT|KT‘

e€E ::= x| Azr.el|ee|fixze|rete| dox— er;es | Miix x.e |

o Terms l | newe | gete|seter es| k| callcc z.e | throw ejes

The type K7 is the type of continuations which can be invoked on arguments of type M7 (invoking the
continuation aborts the current context). The expression callcc x.e binds the current continuation to x; the
expression throw ejes has the dual effect of aborting the current continuation and using e; instead as the
current continuation. This effectively “jumps” to the point where the continuation e; was captured by callcc.

Table 3 gives the typing rules for deriving judgments of the form I'" ks e:7 , where I': X M Tis a type
assignment for variables z: 7 and X: LUK fin 1 is a signature for locations [: RT and continuations k: KT.
The simplification relation —— on terms is given by the compatible closure of the following rewrite rules:

B) (Ar.ez)er —> ea{z:=e1}
fix) fix x.e —> e{x:= fix z.e}

We write = for the equivalence induced by — | i.e. the reflexive, symmetric and transitive closure of — .
We state the properties of simplification relevant for our purposes.

Proposition 6.1 (Congr) The equivalence = induced by —> 1is a congruence.
Proposition 6.2 (CR) The simplification relation —> is confluent.
Proposition 6.3 (SR) IfTFkge:T ande —> €', then T Fyg e’: 7.

To define the computation relation Id —— Id' | done | err (see Table 4), we need the auxiliary notions of
evaluation contexts, stores, continuation environments, configurations I'd € Conf, and computational redexes:

e Evaluation contexts ’ E € EC::=0| E[do x < O;¢] | E[Mfix z.00] ‘ (or E::=0|dox « E;e| Mfixxz.E)

e Stores € S 2 | ™ E and continuation environments p € KE S mEC

e Configurations (X|u,p,e, E) € Conf 2 Prn(X) x S x KE x E x EC consist of the current store p and
continuation environment p, the program fragment e under consideration and its evaluation context F.
The set X records the recursive variables generated so far, thus X grows as the computation progresses.

Administrative steps

(A.0) (X|u,p,ret e,00) —=> done

(A1) (X[p, p,dox — er;e2, E) —=> (X|u, p,e1, E[do z — Uses))
(A.2) (X|u,p,ret er, E[do x «— O;eq]) —> (X|p, p, ea{z:=€1}, F)

Steps for recursive monadic binding

(M.1) (X|u, p, Mfix x.e, E) —=> (X, z|u, p, e, E[Mfix x.0J]) with x renamed to avoid clashes with X
(M.2) (X|u, p, ret e, E[Mfix x.0)) —=> (X |z, p, ret €, E) where ® stands for e{z: = fix z.ret e}
(the free occurrences of the recursive variable x are replaced anywhere in the configuration)
(err) (X|u,p,x, E) —> err where x € X (attempt to use an unresolved recursive variable)

Imperative steps
(new) (X|u, p,new e, E) —=> (X|u{l: e}, p,ret I, E) where | ¢ dom(u)
(get) (X|u,p,getl, E) —> (X|p, p, ret e, E) with e = u(l)
(set) (X|u,p,setle, E) —> (X|u{l = e}, p,ret I, F) with | € dom(u)
Control steps
(callee) (X|u, p, callecc x.e, E) —=> (X |u, p{k: E}, e{x: = k}, E) where k ¢ dom(p)

(throw) (X|u, p, throw k e, E) ——= (X|u, p, e, Ey) with Ep = p(k)

Table 4: Computation Relation for MML%?

e Computational redexes

TER:::rete|dox<—el;eg|Mﬁxm.e|newe|getl|setle|callccx.e\throwk:e‘

Remark 6.4 In the absence of Mfix x.e, the hole [J of an evaluation context F is never within the scope
of a binder. Therefore one can represent E as a A-abstraction \x.E[z]|, where z ¢ FV(FE). This is how
continuations are modeled in the A-calculus, in particular the operation El[e] of replacing the hole in E with a
term e becomes simplification of the S-redex (Az.E|x]) e. This representation of continuations is adopted also
in the reduction semantics of functional languages with control operators [WF94]. In such reduction semantics
there is no need keep a continuation environment p, because a continuation k with p(k) = E is represented
by the A-abstraction Az.E[z]. In the presence of Mfix x.e (or when modeling partial evaluation, multi-stage
programming, and call-by-need [AF97, AMOT95 MOW?98]), evaluation may take place within the scope of
a binder, and one can no longer represent an evaluation context with a A-abstraction, because the operation
Ele] may capture free variables in e. In this case, continuation environments are very convenient, since the
subtle issues regarding variable capture are confined to the level of configurations, and do not percolate in
terms and other syntactic categories.

In an evaluation context the hole [J can be within the scope of a binder, thus an evaluation context E has not
only a set of free variables, but also a set of captured variables. Moreover, the definition of E{x’: = ¢’} differs
from the capture-avoiding substitution e{z’: = €’} for terms, because captured variables cannot be renamed.

Definition 6.5 The sets CV(E) and FV(E) of captured and free variables and the substitution E{z':= €'}
are defined by induction on E:

e CV(M)EFV(D) 20 and O{a’:= ¢/} 20
e CV(doz « E;e) 2 CV(E) , FV(do = — E;e) 2 FV(E) U (FV(e) \ {z}) and
(do x «— Eje){a’:=¢€'} 2dox E{z":=¢'};e{a’:=¢'}
(the bound variable x can be renamed to be different from x’ and from any of the free variables of €’).

AOMrbs E:Mm Ajz:mbs e M
A O:M7lEy dox «— E;e: Mo

&) (do)

AOMrEs O M1

AO:Mrby E: M7
A,0: M7 by Mfix x.E: M7’

(Mfix) Ax) = M7

Table 5: Well-formed Evaluation Contexts for MMLSQIE

o CV(Mfix 2.E) 2 {x} UCV(E) , FV(Mfix 2.E) 2 FV(E) \ {2} and

/. oA Miixa.E ifv=a
(Mfix z.E){a’:= €'} = { Mfix x.E{z':= €'} otherwise

(the captured variable x cannot be renamed; free occurrences of x in €' may be captured.)

The confluent simplification relation ——= on terms extends in the obvious way to a confluent relation
(denoted ——) on stores, evaluation contexts, computational redexes and configurations.

Lemma 6.6
1. If (X|p, p, e, BE) —> (X'|W, p' ¢/, E') , then X = X', dom(y') = dom(u) , dom(p’) = dom(p) and

e FV(e/) CFV(e) , CV(E') =CV(E) and FV(E') CFV(E)
e FV(i/ 1) CFV(ul) forl € dom(u)
e CV(p' k) =CV(p k) and FV(p' k) CFV(p k) for k € dom(p)

2. If (X, pye, E) —= (X'|u/, p' ¢/, E") and FV(u,p,e, E)YUCV(p, E) C X , then
X C X', dom(p) Cdom(y') , dom(p) C dom(p’) and FV(u/, p', e/, E') UCV (o', E') C X".

Theorem 6.7 (Bisim) If Id = (X|u, p, e, E) with e € R and Id —= Id' , then
1. Id —> D implies 3D’ s.t. Id' —> D' and D ——=> D'

2. Id' —=> D’ implies 3D s.t. Id —> D and D ——> D'

where D and D" range over Conf U {done, err}.

6.1 Type Safety

The definitions of well-formed configurations A s, Id: 7/ and evaluation contexts A,(: M1 s E: M7 must
take into account the set X. Thus we need a type assignment A mapping x € X to computational types M.

Definition 6.8 A by (X|u,p, e, E): 7' & dom(X) = dom(u) Wdom(p) , dom(A) = X and exists T such that
e Abys e Mt is derivable
e A\[: M7ty E: M7’ is deriable (see Table 5)

e; = u(l) and Rmy = X(1) implies A byx ep:m

Ey = p(k) and K, = (k) implies A,0: M1y, bs Ej: M7'.

The formation rules of Table 5 for deriving A,0: M7 by E: M7’ ensure that A assigns a computational type
to all captured variables of . We can now formulate the SR and progress properties for MML]‘%;(.

Theorem 6.9 (SR)
1. If Atx Idy: 7" and Idy —> Ids , then A bx Idy: 7'
2. If Ay by, Idy: 7" and Idy ——> Idy , then exists Yo O X1 and Ay D Ay s.t. Ag by, Tday:7'.
Theorem 6.10 (Progress) If Ats (X|u,p,e, E): 7', then one of the following holds
I.e¢Rande —> , or

2. e€ R and (X|u,p, e, E) —>

6.2 Counter-examples
The left-shrinking property states that:
Mfix x.(do x1 < ey;e3) = do x1 «— eq; Mfix x.e9 when z € FV(eq)

It is instructive to consider how this property fails in M ML%? . Our example (inspired by examples by Bawden

and Carlsson) uses continuations in a way that requires recursive types which can be declared as follows in
Haskell syntax:

data XT m = Xfold (m (Int, XT m)) -- final result
data KT m = Kfold (K (RT m)) -- recursive continuations
data RT m = -- arguments to continuations

Final (XT m)
| Intermediate (Bool, KT m)

Now we consider the following instance of the left-hand side (again in Haskell syntax):

tl =
Mfix (\x ->
do p <- callcc (\k -> return (Intermediate (True, Kfold k)))
case p of
Intermediate (b, Kfold k) ->
if b
then

do Final v <- callcc (\c -> throw k (return (Intermediate (False, Kfold c))))
return (1,v)
else throw k (return (Final (Xfold x))))

In our semantics (extended with simplification rules for booleans, pairs, etc) the example evaluates as follows.
The pair p initially refers to a continuation which re-binds p. In the then-branch which is initially taken, this
continuation is invoked with a new pair containing the continuation c. This latter continuation expects a value
v which it includes in the final result (1,v). In the else-branch which is taken the second time, that value
v is bound to Final (Xfold x). Hence the return value of the body of the Mfix is (1,Final (Xfold x))
and the entire expression evaluates to the recursive pair of ones fix x. return (1, Final (Xfold x)).
However were we to move the first callcc-expression (which has no free occurrences of x) outside the Mfix, the
continuations k and ¢ would have no access to the variable x and the example would evaluate to return (1,x)
which would cause an error if the second component is needed. The fact that this result is an approximation
of the left-hand side does not generalize: with a slightly more complicated example, it is possible to get a
different observable value.

Our semantics also differs from the Scheme semantics. The difference in this case is due to the nature of
variables in both systems: in our setting variable are bound to expressions and locations must be created
and dereferenced explicitly. In Scheme variables implicitly refer to locations, which means that continuations
captured within the body of an Mfix not only have access to the free occurrences of the recursive variable
in the body of the recursive definition but also to the location in which the result is to be stored: this
additional expressiveness for continuations invalidates even more transformations like Mfix x.e = e when
x ¢ FV(e) [Baw88]. Such transformations should still be valid in our model.

Acknowledgments

We would like to thank Levent Erkok and Magnus Carlsson for very fruitful discussions and comments.

References

[AF97) Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. Journal of Functional
Programming, 7(3):265-301, May 1997.

[AFMZ02] D. Ancona, S. Fagorzi, E. Moggi, and E. Zucca. Mixin modules and computational effects. Sub-
mitted, 2002.

[AMO™95] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. A call-

[Bar84]

[Bawsg]
[Bou01]

[Car03)

[EL00]

[ELMO02]

[Erk02]

[FS00]

[Jon99]
[KCE98]

[Lan64]

[MF03]

[MOW9S]

[WF94]

by-need lambda calculus. In Conference record of POPL °95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: papers presented at the Symposium: San
Francisco, California, January 22-25, 1995, pages 233-246, New York, NY, USA, 1995. ACM
Press.

Hlendrik] P[ieter] Barendregt. The Lambda Calculus: Its Syntaz and Semantics. North-Holland,
revised edition, 1984.

Alan Bawden. Letrec and callcc implement references. Message to comp.lang.scheme, 1988.

Gérard Boudol. The recursive record semantics of objects revisited. Lecture Notes in Computer
Science, 2028:269-283, 2001.

Magnus Carlsson. Value recursion in the continuation monad. Unpublished Note, January 2003.

Levent Erkok and John Launchbury. Recursive monadic bindings. In Proceedings of the ACM
Sigplan International Conference on Functional Programming (ICFP-00), volume 35.9 of ACM
Sigplan Notices, pages 174-185, N.Y., September 18-21 2000. ACM Press.

Levent Erkok, John Launchbury, and Andrew Moran. Semantics of value recursion for monadic
input/output. Journal of Theoretical Informatics and Applications, 36(2):155-180, 2002.

Levent Erkok. Value Recursion in Monadic Computations. PhD thesis, OGI School of Science and
Engineering, OHSU, Portland, Oregon, 2002.

Daniel P. Friedman and Amr Sabry. Recursion is a computational effect. Technical Report 546,
Computer Science Department, Indiana University, December 2000.

Report on the programming language Haskell 98, February 1999.

Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised® report on the algorithmic
language Scheme. ACM SIGPLAN Notices, 33(9):26-76, September 1998.

Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308-320,
January 1964.

E. Moggi and S. Fagorzi. A monadic multi-stage metalanguage. In FoSSaCS 2003, LNCS. Springer-
Verlag, 2003.

John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. Journal of
Functional Programming, 8(3):275-317, May 1998.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38-94, 1994.

10

