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Abstract

In the Mobile Ambients of Cardelli and Gordon an ambient is a unit for mobility,
which may contain processes (data) and sub-ambients. Since the seminal work of
Cardelli and Gordon, several ambient-based calculi have been proposed (Seal, Box-
π, Safe Ambients, Secure Safe Ambients, Boxed Ambients), mainly for supporting
security. At the operational level these (box- and) ambient-based calculi differ only
in the capabilities of processes. We propose a way of extending ambient-based
calculi, which embodies two principles: an ambient is a unit for monitoring
and coordination, the name of an ambient determines its (monitoring and
coordination) policy. More specifically, to each ambient we attach a guardian,
which monitors the activity of sub-components (i.e. processes and sub-ambients)
and the interaction with the external environment. In our proposal, guardians
and processes play a dual role: guardians are centralized entities monitoring and
inhibiting actions, while processes are decentralized entities performing actions. We
exemplify the use of guardians for enforcing security properties.

1 Introduction

Specifying and verifying the security requirements of wide area network (WAN)
applications is a difficult task. A WAN application may integrate heteroge-
neous computing environments having different security requirements. More-
over, the security policy cannot make any decision using knowledge of the
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entire current state of the WAN application. Any realistic approach will iden-
tify which portion of the state of the WAN application is potentially relevant
and may affect or be affected by the security policy decisions. Lastly, security
policies are not static in general: the revocation of previously granted access
rights must be supported. Hence, formal models of security must provide
suitable mechanisms to specify and certify properties of a variety of security
policies, including policy changes and dynamic policies.

In the last years, several research activities have explored approaches where
security of WAN applications is enforced by programming language tech-
niques: language-based security. Following Schneider, Morrisett and Harper
[SMH00], we can basically distinguish two different approaches to language-
based security: Program analysis, and Program transformation.

The approach based on program analysis requires a full knowledge of
the code of the application. The code is analyzed (either statically or dy-
namically) against the security policy. The approach ensures that only the
code which does not violate the security policy will be granted the oppor-
tunity of being executed. The security types for access control of (see e.g.
[CGG02,DFPV00,HR98b]) provide nice examples of this approach. Another
interesting example is given by the (static and dynamic) techniques employed
in modeling Java security permissions (see e.g. [WAF00,PSS01,BDF01,GF01]).

In the approach based on program transformation the operations enforc-
ing the security policies are merged into the code of the application. The
underlying idea is that of a reference monitor which observes execution and
halts the application whenever the application violates some security require-
ments. Here we can distinguish between in-lined Reference Monitors (IRM)
and Execution Monitoring (EM). In the IRM approach the application code
is enriched with some additional code performing security checks at run-time.
This implies that the events that may affect the security policy are known in
advance [ES99]. Execution monitoring applies when the application code is
not available in advance. Hence the application code must be treated as a
black-box and it must be wrapped inside a reference monitor [FBF99].

This paper introduces a formal model capable of supporting specification
of multiple dynamic security policies. The basic idea of the model is the sepa-
ration between the computational mechanisms (communication and mobility
primitives) and the managers, we call them guardians, that enforce the security
policies. Each guardian basically defines a local security context that controls
only a portion of the current state. However, a certain degree of coordination
among guardians is needed to support inter-networking security policies. Our
proposal is closely related to the idea of execution monitoring and guardians
are like security automata [ES99] that specify the allowed interactions. The
novelty of our approach is given by guardian coordination. The coordination
of guardians enables to support a rich set of security policies. In other words,
the security policies are programmable distributed entities.

The main features of our approach are summarized as follows
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• The distinction between the computational mechanisms (processes act) and
the security supports (guardians allow and deny) permits describing a va-
riety of local security policies. Keeping the specification of actions and
that of permissions separate is important also from a software engineering
prospective.

• A guardian provides a unit to describe the local security policy: the set
of permissions that may be granted to the agents entering, exiting and
communicating in the monitored computational environment.

• Security decisions are the outcome of coordination activities among guardians
which are location-aware. The coordinated security decisions control the
propagation of access rights by ensuring that the permissions are in accor-
dance with the local security policies.

In this paper, to demonstrate the applicability of the approach we intro-
duce a calculus of guardians. We choose as starting point of our investigation
the Boxed Ambient (BA) [BCC01a,BCC01b]. This variant of the mobile am-
bients calculus [CG00b] drops the open capability and introduce fine-grain
mechanisms for ambient interactions (inspired by the Seal calculus [CV99]).
These changes provide better support for the specification of security policies.
The calculus of guardians preserves the distinctive features of Boxed Ambients
but it does not rely on a type system to enforce secure ambient interactions.
In our approach ambients are equipped with guardians which monitor the ac-
tivities of the components inside an ambient and their interactions with the
external operational environment. Hence, each guardian defines and enforces
a local security policy and guardian coordination fixes the permissions for
ambient movements.

To illustrate our approach, we present a simple example of resource access
control specified in BA. We consider a system s which consists of a resource
r and a mobile process n that wants to use r

s[Q | n[P ] | r[R]]

Let us assume that the resource r consists of a value v, thus R is the process
!〈v〉.0, and that using the resource amounts to read the value v. For instance,
process P is in r.(x)↑.P ′, i.e. n enters r and reads a value from the parent
ambient r. We attach a guardian Ga to each ambient a, therefore in our
calculus the system above becomes

s(Gs)[Q | n(Gn)[P ] | r(Gr)[R]]

The expression n(G)[P ] indicates that ambient n runs process P under the
control of guardian G. We exemplify the coordination among guardians by
considering what happens when process P tries to perform the in r action:

(i) Gn authorizes, within ambient s, migration (of ambient n) into r;

(ii) Gr authorizes, within ambient s, ambient n to enter inside (ambient r);

(iii) Gs authorizes the movement of ambient n inside ambient r.
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In other words, the permission granted for the ambient movement is the result
of a coordination step of four entities: the process asking for the service and the
three guardians Gn, Gr and Gs implementing the local security contexts of the
ambients involved in the action. The agreement among four entities needed to
perform ambient movements may appear to have a heavy run-time overhead.
However, if one considers a low-level description of an ambient move (e.g. see
[FLS00,SV01]), it involves exactly three ambients and the process performing
the movement action.

Notice that the coordination step adheres to the principles of subsidiarity,
i.e. only the ambients directly involved in the action can forbid it, and lo-
cation awareness, e.g. guardian Gn authorizes the movement only within the
enclosing ambient s. The outcome of the move action is

s(G′
s)[Q | r(G′

r)[n(G′
n)[(x)↑.P ′] | R]]

The reading of the value in r requires the coordination of four entities, namely
the processes and guardians in r and n. In particular, the guardian G′

r must
authorize the read from the child ambient n. The outcome of the read action
is

s(G′
s)[Q | r(G′′

r)[n(G′′
n)[P ′[x: = v]] | R]]

In this paper we will show that guardians are powerful enough to enforce
dynamically a variety of security policies. For instance, focusing on the re-
source access control example, the guardian Gr can

• prevent certain ambients to enter depending on their name,

• allow a very limited pattern of interaction, e.g. a protocol of the form read
only once and then exit (otherwise, the agent n could perform multiple
read),

• perform check for intrusion detection , e.g. the agent n could be used as a
Trojan horse by other ambients that want to enter r,

• discriminate among ambients having the same name by granting them dif-
ferent privileges.

The rest of the paper is organized as follows. In Section 2 we review
Boxed Ambients. Section 3 introduces the calculus of guardians for Boxed
Ambients and its basic semantic theory. Section 4 discusses several examples
that illustrate the expressive power of guardians to enforce a wide range of
security protocols. Finally, comparisons with related work are in Section 5.

2 Boxed Ambients: an ambient-based language

In this section we present Boxed Ambients [BCC01a] (BA, in the rest of the
paper), an ambient-based language inspired by Mobile Ambients [CG00b].
BA uses the same mobility primitives as Mobile Ambients, but relies on a
different communication model inspired by the Seal calculus [CV99]. This
model results from dropping the open primitive and permitting communication
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across ambient boundaries, between parent and children, in addition to local
communication. Our presentation of syntax and operational semantics of BA

differs from the original one for a few aspects, namely:

• We do not distinguish between the syntactic categories of values and (se-
quential) processes;

• We consider additional process actions corresponding to name, process and
ambient creation. This refinement makes a difference when we introduce
guardians that may forbid a process action to occur, even when in the
calculus without guardians the action was asynchronous and non-blocking.

• For better programmability, we introduce also sequential composition (which
subsumes concatenation of capabilities), conditional choice, and recursive
definitions (instead of replication).

• We define the transition relation for nets, i.e. processes modulo structural
congruence. Intuitively, sequential processes (i.e. values) are syntactic enti-
ties, while nets are semantic entities that describe the state of a system at
a given moment of the computation.

The syntax of the calculus is given by the following BNF

n ∈ Name: : = . . .

x ∈ Var: : = . . .

X ∈ PId: : = . . .

b ∈ Bool: : = ⊥ | b1 ∨ b2 | > | b1 ∧ b2 | ¬b | v1 = v2 name equality

a ∈ Act: : = new | spawn | box | in | out | wr | wrup | wrdn | rd | rdup | rddn

v, P ∈ Proc: : = n | x | a(v, ?x).P | P1;P2 | 1 | if b then P1 else P2 | X(v)

Syntactically, a process P may also be a name n or a variable x, of course
semantically these are values but not processes (thus they do not give rise
to process transitions). Action prefix a(v, ?x).P represents a process that
can perform action a: v is a sequence of values (actual parameters), and
x is a sequence of variables (formal parameters), which may occur free in
P . The formal parameters x are replaced by actual parameters v′ through
synchronization (with other processes), thus a(v, ?x).P binds the variables x
in P . P1; P2 is sequential composition, and 1 denotes successful termination.
Finally, we have conditional choice and process invocation X(v), where we
assume that for each process identifier X (of arity n) there exists a unique

defining equation X(x)
∆
= P (where x has length n).

With respect to the original presentation of BA, we use three additional
actions: new(?x).P is a request for a fresh name to a name generator, thus
it corresponds to (νx)P of BA; spawn(P1).P2 activates P1 in parallel with P2,
thus it corresponds to P1|P2 of BA; box(n, P1).P2 spawns P1 in a new ambient
named n, thus it corresponds to n[P1]|P2 of BA.
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The remaining actions directly correspond to those of BA. The actions
in(n).P and out(n).P are for ambients movement. The actions wr(v).P and
rd(?x).P are for local communication: wr(v).P outputs the sequence of val-
ues v, rd(?x).P inputs a sequence of values and binds them to the sequence
of variables x. The actions wrup(v).P and rdup(?x).P are the actions for
communication with the parent and work similarly, while wrdn(n, v).P and
rddn(n, ?x).P are for communication with a child named n.

In [BCC01a], the operational semantics of BA is defined in terms of a
structural congruence and a reduction relation over processes. Here, the op-
erational semantics is given by a transition relation ===⇒ over nets, where
a net N is basically a process modulo structural congruence. Net transitions

F, N ===⇒ F ′, N ′ are defined in term of process transitions P
a(v)

> P ′. This
distinction is convenient, since guardians are synchronized with process tran-
sitions (not with net transitions).

Process termination (denoted by P ↓) is a predicate which expresses whether
P may successfully terminate. This predicate is exploited for defining the
transitions of the sequential composition of processes.

1
1 ↓

rec
P [x: = v] ↓

X(v) ↓
if X(x)

∆
= P ;

P1 ↓ P2 ↓

P1; P2 ↓

ift
b true P1 ↓

if b then P1 else P2 ↓
iff

b false P2 ↓

if b then P1 else P2 ↓

Process transition P
a(v)

> P ′, where v is a sequence of closed values (i.e.
without free variables), is a predicate saying that P may perform action a(v)
and become P ′. The rules for action prefix are of the form

a
a(v, ?x).P

a(v,v′)
> P [x: = v′]

with restrictions on v and v′ that depend on a.

new
new(?x).P

new(n)
> P [x: = n]

spawn
spawn(P1).P2

spawn(P1)
> P2

box
box(n, P1).P2

box(n1,P1)
> P2

in
in(n).P

in(n)
> P

out
out(n).P

out(n)
> P
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wr
wr(v).P

wr(v)
> P

rd
rd(?x).P

rd(v)
> P [x: = v]

wrup
wrup(v).P

wrup(v)
> P

rdup
rdup(?x).P

rdup(v)
> P [x: = v]

wrdn
wrdn(n, v).P

wrdn(n,v)
> P

rddn
rddn(n, ?x).P

rddn(n,v)
> P [x: = v]

The rest of the rules are fairly standard.

rec
P [x: = v]

a(v)
> P ′

X(v)
a(v)

> P ′
if X(x)

∆
= P

;f
P1

a(v)
> P ′

1

P1; P2
a(v)

> P ′
1; P2

;c
P1 ↓ P2

a(v)
> P ′

2

P1; P2
a(v)

> P ′
2

ift
b true P1

a(v)
> P ′

1

if b then P1 else P2
a(v)

> P ′
1

iff
b false P2

a(v)
> P ′

2

if b then P1 else P2
a(v)

> P ′
2

The rules for conditional choice rely on the evaluation of boolean expressions
b. The rules for deriving b true and b false are obvious, only those for name
equality deserve to be mentioned

=t
n = n true

=f
n1 = n2 false

if n1 6= n2

Notice that the boolean expression v1 = v2 has a value only when v1 and
v2 are names, since in the other cases the comparison makes no sense.

Remark 2.1 We do not define an observational congruence on processes, but
any such congruence will validate at least the equations saying that (1, ; ) forms
a monoid. 2

We can now define net transitions for BA. Formally, a net N ∈ Net
∆
=

µ(Proc+(Name×Net)) is a multi-set of processes P and named sub-nets n[N ].
We define transitions on named nets n[N ], since we want to have always a top-
level ambient n (with an associated guardian) that overlooks the evolution of
the net (on the contrary in Ambient-like calculi, transitions are defined on
generic processes). Net transitions are defined over configurations of the form
F, n[N ], where F ⊆fin Name contains all the free names in n[N ]. F keeps
track of the names that are free in the whole net (i.e. names generated so
far) and is needed to ensure global freshness of names. When a transition
does not generate any fresh names, we write n[N ] ====⇒ n[N ′] instead of
F, n[N ] ===⇒ F, n[N ′]. Net transitions F, n[N ] ===⇒ F ′, n[N ′] are defined in
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terms of a structural rule

F, n2[N2] ===⇒ F ′, n2[N
′
2]

F, n1[N1, n2[N2]] ===⇒ F ′, n1[N1, n2[N
′
2]]

and basic net transitions induced by process transitions. For each of these
net transitions we name the ambients involved (actively or passively) in the
transition (an ambient is active when one of its processes takes part to the
action/interaction that causes the transition). The basic net transitions are
classified in three groups.

Asynchronous and non-blocking transitions:

new
P

new(n′)
> P ′

F, n[N,P ] ===⇒ F ∪ {n′}, n[N,P ′]
n′ 6∈ F n is active

spawn
P

spawn(P1)
> P2

n[N,P ] ===⇒ n[N,P1, P2]
n is active

box
P

box(n1,P1)
> P2

n[N,P ] ===⇒ n[N,n1[P1], P2]
n is active

Asynchronous and possibly blocking transitions:

in
P

in(n2)
> P ′

n[N,n1[P,N1], n2[N2]] ===⇒ n[N,n2[n1[P ′, N1], N2]]

out
P

out(n2)
> P ′

n[N,n2[n1[P,N1], N2]] ===⇒ n[N,n1[P ′, N1], n2[N2]]
In the rules above we assume that n1 is active, and n, n2 are passive.

Synchronous transitions:

comm
P1

wr(v)
> P ′

1 P2
rd(v)

> P ′
2

n[N,P1, P2] ===⇒ n[N,P ′
1, P

′
2]

n is active

rdup
P1

wr(v)
> P ′

1 P2
rdup(v)

> P ′
2

n1[N1, P1, n2[P2, N2]] ===⇒ n1[N1, P
′
1, n2[P ′

2, N2]]
n1 and n2 active

wrup
P1

rd(v)
> P ′

1 P2
wrup(v)

> P ′
2

n1[N1, P1, n2[P2, N2]] ===⇒ n1[N1, P
′
1, n2[P ′

2, N2]]
n1 and n2 active

rddn
P1

rddn(n2,v)
> P ′

1 P2
wr(v)

> P ′
2

n1[N1, P1, n2[P2, N2]] ===⇒ n1[N1, P
′
1, n2[P ′

2, N2]]
n1 and n2 active
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wrdn
P1

wrdn(n2,v)
> P ′

1 P2
rd(v)

> P ′
2

n1[N1, P1, n2[P2, N2]] ===⇒ n1[N1, P
′
1, n2[P ′

2, N2]]
n1 and n2 active

3 Guarded Boxed Ambients: an extension with guardians

In this section we describe Guarded Boxed Ambients (GBA for short), i.e.
the extension of BA with guardians. The basic idea is that a guardian G

perform transitions G
g(v)

> G′ (where v is a sequence of closed values) formally
similar to process transitions. However, a guardian transition amounts to a
permission for a process action (or interaction). The syntax of GBA is given
by the grammar below. Here, we show only the new and extended syntactic
categories, all the other categories are unchanged.

W ∈ GId: : = . . .

g ∈ Perm: : = new | spawn | box | in1 | in2 | in3 | out1 | out2 | out3 | comm

| rdup1 | rdup2 | wrup1 | wrup2 | rddn1 | rddn2 | wrdn1 | wrdn2

G ∈ Gard: : = g(x) when b then G | G1 ∨G2 | W (v) |

G\g(x) when b | ⊥ | > | G1 ∧G2

v, P ∈ Proc: : = . . . | G

Remark 3.1 Permissions are given by the syntactic category Perm. There is
one permission g for each basic net transition and each ambient n
involved in the transition. Intuitively, g(v) means that the guardian G (of
ambient n) permits the basic net transition, provided the parameters of the
transitions (and the names of the other ambients involved) are those specified
in v. Therefore, the role of guardians is exclusively to constrain the
actions (and interactions) of processes. 2

We take as basic construct for guardians g(x) when b then G, where g is a
permission, x is a sequence of variables bound by the construct, b is a boolean
expression, and G is a guardian. The other constructs for guardians are in-
spired by synchronous process calculi, like SCCS [Mil83]. Of course, there
are many other process algebra formalisms to choose from, but synchronous
calculi appear particularly appropriate for stressing the monolithic nature of
guardians, i.e. one guardian per ambient. A guardian G is fully specified by

giving a system of equations 〈Wi(x)
∆
= Gi | i ∈ I〉 defining the meaning of

every W used in G and the Gi.

Remark 3.2 For defining guardians the dynamic combinators given in the
first row of the BNF suffice. However, the static combinators given in the
second row are quite convenient derived forms. 2
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The syntactic category Proc of processes and values is extended with a new
production G, since values now include also guardians.

The operational semantics is given by a transition relation ==⇒ over nets

with guardians, which is defined in terms of process transitions P
a(v)

> P ′ and

guardian transitions G
g(v)

> G′.

• Process transitions are defined by the rules in Section 2, but the rule for
name creation is now

new
new(?x, G).P

new(n,G[x:=n])
> P [x: = n]

In GBA the prefix new(?x, G).P is a request for a fresh name, the guardian
G is like a type for the new name, and the association name-guardian obeys
the rules for static scoping.

• Guardian transitions are defined by the following rules

allow
b[x: = v] true

g(x) when b then G
g(v)

> G[x: = v]
v closed

or
Gi

g(v)
> G′

G1 ∨G2
g(v)

> G′
i ∈ {1, 2} W

G[x: = v′]
g(v)

> G′

W (v′)
g(v)

> G′
W (x)

∆
= G

deny1

¬b[x: = v] true G
g(v)

> G′

G\g(x) when b
g(v)

> G′\g(x) when b

deny2

G
g′(v)

> G′

G\g(x) when b
g′(v)

> G′\g(x) when b
g′ 6= g

and
G1

g(v)
> G′

1 G2
g(v)

> G′
2

G1 ∧G2
g(v)

> G′
1 ∧G′

2

>
> g(v)

> >
v closed

Remark 3.3 We do not define an observational congruence on guardians, but
any such congruence will validate at least the following equational properties:

• (⊥,∨) and (>,∧) form commutative idempotent monoids;

• distributivity of (⊥,∨) over ∧, i.e. ⊥ ∧G = ⊥ and
(G1 ∨G2) ∧G = (G1 ∧G) ∨ (G2 ∧G);

• commutativity of \g(x) when b with ⊥, ∨ and ∧, i.e. ⊥\g(x) when b = ⊥,
(G1∨G2)\g(x) when b = (G1\g(x) when b)∨(G2\g(x) when b), and similarly
for ∧.

2

We can now define net transitions for GBA. Formally, a net with guardians

M ∈ GNet
∆
= µ(Proc + (Name × Gard × GNet)) is a multi-set of processes P
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and named sub-nets n(G)[M ] with guardians. Net transitions are defined over

configurations of the form F, n(G)[M ], where F : Name
fin→ Gard associates a

guardian to the names generated so far. F is like a global environment, which
is extended when a fresh name is generated, and is looked up when a new
ambient is created (i.e. a box action is performed). When a transition does
not generate any fresh names, we write n(G)[M ] ===⇒ n(G′)[M ′] instead of
F, n(G)[M ] ===⇒ F ′, n(G′)[M ′].

Net transitions F, n(G)[M ] ===⇒ F ′, n(G′)[M ′] are defined in terms of a
structural rule (similar to that for BA)

sub-net
F, n2(G2)[M2] ===⇒ F ′, n2(G

′
2)[M

′
2]

F, n1(G1)[M1, n2(G2)[M2]] ===⇒ F ′, n1(G1)[M1, n2(G
′
2)[M

′
2]]

and basic net transitions, classified in three groups (as before), activated by
process transitions, but with additional premises corresponding to the permis-
sions granted by the guardians of ambients involved in the transition.

Asynchronous and non-blocking transitions:

new
P

new(n1,G1)
> P ′ G

new(n1,G1)
> G′

F, n(G)[M,P ] ===⇒ F [n1 7→ G1], n(G′)[M,P ′]
n1 6∈ dom(F )

spawn
P

spawn(P1)
> P2 G

spawn(P1)
> G′

n(G)[M,P ] ===⇒ n(G′)[M,P1, P2]

box
P

box(n1,P1)
> P2 G

box(n1,P1)
> G′

F, n(G)[M,P ] ===⇒ F, n(G′)[M,n1(G1)[P1], P2]
G1 = F (n1)

In (new) the process P requesting a fresh name must provide a guardian for
it, thus the association name-guardian is established at name-generation time
(and recorded in the partial function F ). In (box) the guardian for the new
ambient is recovered from F , while the process running in the new ambient is
fixed at ambient-generation-time.

Asynchronous and possibly blocking transitions:

in
P

in(n2)
> P ′ G1

in1(n,n2)
> G′

1 G2
in2(n,n1)

> G′
2 G

in3(n1,n2)
> G′

n(G)[M,n1(G1)[P,M1], n2(G2)[M2]] ===⇒ n(G′)[M,n2(G′
2)[n1(G′

1)[P
′,M1],M2]]

out
P

out(n2)
> P ′ G1

out1(n,n2)
> G′

1 G2
out2(n,n1)

> G′
2 G

out3(n1,n2)
> G′

n(G)[M,n2(G2)[n1(G1)[P,M1],M2]] ===⇒ n(G′)[M,n1(G′
1)[P

′,M1], n2(G′
2)[M2]]

Synchronous transitions:

comm
P1

wr(v)
> P ′

1 P2
rd(v)

> P ′
2 G

comm(v)
> G′

n(G)[M,P1, P2] ===⇒ n(G′)[M,P ′
1, P

′
2]

11
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rdup
P1

wr(v)
> P ′

1 P2
rdup(v)

> P ′
2 G1

rdup2(n2,v)
> G′

1 G2
rdup1(n1,v)

> G′
2

n1(G1)[N1, P1, n2(G2)[P2, N2]] ===⇒ n1(G′
1)[N1, P

′
1, n2(G′

2)[P
′
2, N2]]

wrup
P1

rd(v)
> P ′

1 P2
wrup(v)

> P ′
2 G1

wrup2(n2,v)
> G′

1 G2
wrup1(n1,v)

> G′
2

n1(G1)[N1, P1, n2(G2)[P2, N2]] ===⇒ n1(G′
1)[N1, P

′
1, n2(G′

2)[P
′
2, N2]]

rddn
P1

rddn(n2,v)
> P ′

1 P2
wr(v)

> P ′
2 G1

rddn1(n2,v)
> G′

1 G2
rddn2(n1,v)

> G′
2

n1(G1)[N1, P1, n2(G2)[P2, N2]] ===⇒ n1(G′
1)[N1, P

′
1, n2(G′

2)[P
′
2, N2]]

wrdn
P1

wrdn(n2,v)
> P ′

1 P2
rd(v)

> P ′
2 G1

wrdn1(n2,v)
> G′

1 G2
wrdn2(n1,v)

> G′
2

n1(G1)[N1, P1, n2(G2)[P2, N2]] ===⇒ n1(G′
1)[N1, P

′
1, n2(G′

2)[P
′
2, N2]]

Remark 3.4 In a net with guardians, when a new ambient with name n is
created (i.e. when a box action is performed), we must provide a guardian
for the new ambient. In GBA we have decided that the guardian for the new
ambient is provided by the process that created the name n (by performing
a new action). We review the alternatives, and discuss their pros and cons.
There are four entities that may provide the guardian for a new ambient:

(i) the process Pn that did the new action for creating n;

(ii) the guardian Gn for process Pn;

(iii) the process Pb that does the box action spawning n[P ];

(iv) the guardian Gb for process Pb.

Options i and iii make processes aware of guardians. Options i and ii require a
global environment to record the guardian to be used when an ambient named
n is created. Option ii is too generic, since Gn does not know how Pn plan
to use n, so it will provide a guardian that is the same for all new names.
Option iii appears the most flexible, since the guardian for the new ambient is
decided at ambient-generation-time. We have chosen option i, which is more
rigid, but also more secure, and it embodies the principle one name one
policy. 2

Definition 3.5 [Erasure] Given M ∈ GNet, the net |M | ∈ Net is obtained by
removing all guardians occurring in M .

|M | could be formally defined by induction on the structure of M . The fol-
lowing property says that the introduction of guardians has only an inhibitory
effect on net transitions.

Proposition 3.6 If M ===⇒ M ′, then |M |===⇒ |M ′|

We conclude this section by giving a few simple examples of guardians,
that are dynamic surrogates for static types:

• ⊥, nothing is permitted. In n(⊥)[M ] the sub-nets are still able to evolve,
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but in isolation.

• >, everything is permitted.

• Immobile = >\out1(x)\in1(x) forces immobility: the net n(Immobile)[M ]
cannot move.

• Shh = >\comm(x) forbid local communications,

• Comm(τ) = >\comm(x) when ¬x: τ restricts local communications to
values of type τ (we need a predicate : τ , that performs dynamic type-
checking).

There is no way to define a guardian corresponding to the single-thread types
of Safe Ambients [LS00], however one can prevent the creation of new threads
by forbidding the spawn action.

Remark 3.7 One may wonder how much run-time overhead is introduced
by the execution monitoring performed by guardians. In the case of ambient
movements (in) and (out), the agreement among four entities is a faithful rep-
resentation of what happens in the distributed abstract machines for Mobile
Ambients [FLS00] and for Safe Ambients [SV01]. The asynchronous message-
passing protocol of [FLS00] could be used to split the synchronization among
four entities required in rules (in) and (out) into multiple synchronization steps
each involving only two entities. The splitting could give rise to a number of
blocking situations, that were not present in the original semantics but can be
permissible because we are mainly interested to safety properties. Similarly,
the implementation of boxed ambient communications would require multi-
parts cooperations. In all other cases the synchronization with guardians
represents a real overhead. This overhead could be reduced by adopting asyn-
chronous communication, which amounts to having one data repository per
ambient (thus the synchronization with the guardian corresponds to the in-
teraction with the data repository).

The rules (new) and (box) introduce an overhead related to the extension
and access to the environment F mapping names to guardians. This envi-
ronment can be extended, but an association is never overwritten, thus some
simple caching technique can substantially reduce the overhead.

Finally, we discuss the rule (spawn). A BA/GBA process can be thought
of as a thread executing one action at a time. Therefore, the action spawn(P )
corresponds to a system call requesting to start a new thread executing P
(thus the synchronization with the guardian corresponds to the interaction
with the operating system). At present a guardian cannot discriminate be-
tween complex values (only between names). However, by extending boolean
expressions with new predicates on values (besides name equality), one could
envisage that the permission for spawning a new thread is based on a run-time
analysis of P . 2
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4 Examples

In this section we provide several examples that show the expressivity of
guardians to dynamically enforce security policies. To this purpose we will
describe in our calculus some ambient interaction protocols that have been
already discussed in the literature to point out and discuss advantages and
weaknesses of ambient-like calculi. In the examples, we may use the derived
forms g(p) then G and G\g(p), where p: : = x | n | are patterns. The meaning
of the derived forms is the obvious one, e.g.

• g(x) then G corresponds to g(x) when > then G

• g(n) then G corresponds to g(x) when x = n then G, with x 6∈ FV(G)

• g( ) then G corresponds to g(x) when > then G, with x 6∈ FV(G).

The guardians presented in the examples seem to fall into two classes:
everything is allowed unless explicitly forbidden (exploiting the “deny” com-
binator), only a very limited pattern of interaction is allowed (exploiting the
dynamic combinators: “allow”, “choice” and “recursion”). The “and” com-
binator is not used in the examples. It could be used to compose guardians
implementing elementary policies into more structured ones, as it is the case
for passive composition of wrappers [FBF99].

4.1 Firewall

The firewall protocol (see [CG99,LS00,BCC01b]) has been introduced to ex-
amine which are the activities needed to control accesses through a firewall.
In this protocol, ambient f describes a firewall and we assume that the name
of the firewall must always remain unknown. An external agent a can en-
ter the firewall f through a pilot ambient k, however the external agent has
no permissions to exit from the firewall f (thus carrying confidential infor-
mation, like the name f , outside). The following net (without guardians)
describes the initial configuration: a[in(k).out(k).Pa], f [k[Xk(f)], Pf ] where

Xk(f)
∆
= out(f).in(f).Xk(f). The intended behavior of the firewall protocol

corresponds to the following sequence of transitions:

a[in(k).out(k).Pa], f [k[Xk(f)], Pf ] k exits from f

a[in(k).out(k).Pa], k[in(f).Xk(f)], f [Pf ] a enters into k

k[a[out(k).Pa], in(f).Xk(f)], f [Pf ] k enters back into f

f [k[a[out(k).Pa], Xk(f)], Pf ] a exits from k

f [k[Xk(f)], a[Pa], Pf ] k is back in the initial state,

and a can interact with Pf

However, there are other sequences of transitions from the initial configuration
that give rise to a violation of the protocol. In particular a could get out of f
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(even if Pa does not know the name f) by getting a lift back from k.

We now describe two simple guardians for f and k (Wf and Wk) that
dynamically enforce the intended security policy. No assumptions are made
on the guardian for a, since a malicious agent may have also a malicious
guardian.

• Wk
∆
= out1( , xf ) then in2( , ) then in1( , xf ) then out2(xf , ) then Wk

The guardian Wk describes a security policy that forces the following se-
quencing of actions:

(i) k exits from the enclosing ambient f (and xf is bound to f)
(ii) k allows one ambient to enter
(iii) k goes back into the ambient f
(iv) k allows one ambient to exit (while staying within f)

When these actions are terminated the pilot ambient k is back in its original
state.

• Wf
∆
= Immobile\in2( , x) when x 6= k\out2( , x) when x 6= k

The guardian Wf ensures immobility of the firewall and that only ambients
with name k are allowed to cross the firewall.

Notice that Wk does not explicitly use the name f of the firewall, while Wf

uses the name k for pilot ambients. Since the association name-guardian is
made at name-generation-time, this means that the name k must be generated
before name f . However, this is not a strong constraint since we want to keep
f private, and thus it is better to generate it as late as possible, (i.e. just
before generating the ambient with name f).

One could argue that guardian Wf is too restrictive. In particular, one

could adopt a simpler guardian for the firewall f that does not use k, e.g. Wf
∆
=

Immobile. The requirement that the only ambient having the permission
to cross the firewall have name k might be ensured by other mechanisms.
However, this seems to require a careful design of Pf (having much more
global assumptions), hence it does not appear to us as a viable option.

4.2 Train Movement

The train protocol (see [Car99]) can be described as follows: there is a train
t moving between two stations a and b, a passenger p can get in and out of
the train when it is in a station, but not when it is moving between stations.
If passenger p wants to get off at a certain station, he needs to be informed
when the train has reached that station. In [Car99] the example is modeled
by exploiting a new primitive for ambient renaming. Intuitively, the train
ambient takes a suitable name to implicitly inform the passengers when it has
arrived at a certain station, while it takes a name unknown to passengers when
it is moving (in this way passengers cannot get in or out of the train). The
train protocol provides a nice pictorial example of access control in presence of
mobility. We will model the access control decision by a coordination activity
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with a suitable ambient called announcement. Passengers are informed of the
arrival at a certain station by the ambient announcement (@a or @b) that is
generated by the train when it arrives at a station (a or b respectively).

Remark 4.1 In Mobile Ambients [CG00b], ambient renaming can be ex-
pressed in terms of the calculus primitives, although the translation does not
preserve atomicity and can give rise to unwanted interferences. On the con-
trary, in GBA, ambient renaming is not internally representable in the calculus,
but we refrain from introducing it as a primitive since it is at odds with the
principle “one name one security policy”. 2

The following net (without guardians) describes the initial configuration:
a[], b[], t[Xt], p[X1], where

• Xt
∆
= in(a).box(@a, out(t).0).out(a).in(b).box(@b, out(t).0).out(b).Xt, i.e. the

train t moves between stations a and b.

• X1 models a generic passenger, e.g. X1
∆
= in(a).in(t).in(@b).out(@b).X2

means: enter station a, get on train t, listen for the announcements @b,
get off at station b. After this, the passenger could exit station b, or get
on another train, say t′, to reach a third station c. This second behavior is

modeled by X2
∆
= in(t′).in(@c).out(@c).X3.

We now describe three guardians: Ws for the stations a and b, W@s for the
announcements @a and @b, and Wt for the train t. No assumptions are made
on the guardian for a passenger p:

Ws
∆
= Immobile

W@s
∆
= in2( , ) then W@s∨

out1( , ) then W ′
@s

W ′
@s

∆
= out2( , ) then W ′

@s

The guardian W@s forces the following sequencing of actions: first passengers
enter @s, then @s moves out of the train, and finally passengers exit @s.

Wt
∆
= in1( , xs) then box(x@s, ) then Wt(xs, x@s)

Wt(xs, x@s)
∆
= in2( , ) then Wt(xs, x@s)∨

in3( , x@s) then Wt(xs, x@s)∨

out2( , x@s) then out1( , xs) then Wt

The guardian Wt describes the security policy of the train. First t arrives at
a station s and makes an announcement @s, then passengers get in (i.e. enter
t) or get off (i.e. enter @s), finally @s exit t and t leaves station s.
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4.3 Routable packet

In this protocol, from [CG00b,LS], a packet is used to drive some information
to various destinations. In our formulation, agent a uses a routable packet
p to be carried to its destination. The ambient p supports the following in-
teractions: it allows an agent a to enter p and to inform p of the route M
for reaching its final destination. Then p executes the sequence of movements
specified by M , upon completion a exits from p and p returns in its original
state.

The security requirements of this protocol are the following:

• The routable packet p cannot perform actions specified in M that are not
movement actions;

• The agent a should leave the packet only when the final destination has
been reached;

• No other agent should be allowed to enter inside the packet p until the
protocol has been completed.

The behavior of the agent and of the Routable packet are given below.

• Xa
∆
= in(p).wrup(M).out(p).P ,

where the action wrup spawns process M in the parent ambient of a (i.e.
in the routable packet p).

• Xp
∆
= rd(?x).new(?z,⊥).x; box(z, 1).Xp,

where the box action after x is exploited to inform the guardian Gp when
destination has been reached. Notice that since z is a fresh name, it is
unknown to x.

We now describe a guardian for the routable packet p. This guardian enforces
the sequencing of actions specified by the protocol, no matter how malicious
a is:

Gp = in2( , xa) then wrup2(xa) then new(z, ) then Gp(z, xa)

Gp(z, xa) = in1( , ) then Gp(z, xa) ∨
out1( , ) then Gp(z, xa) ∨
box1(z) then out2( , xa) then Gp

Gp guarantees that, e.g., two different routes cannot enter the packet p and
interfere with the path to follow. Gp is not able to guarantee that eventually
p reaches the destination specified by M , unless all the ambients that are used
by M are immobile. Indeed, we cannot rely on the agent a to ensure this
property. However, we can modify Gp to allow only movements in and out of
ambients that Gp knows to be immobile (this means that the names of such
ambients must have been created before the name p).
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5 Related work

Policy enforcement mechanisms.

Several alternative approaches have been exploited to enforce security poli-
cies in networked computing systems. The approaches may differ in the level of
trust required, the flexibility of the enforced security policy and their costs to
components producers and users. A comprehensive security framework could
result from the combination of complementary issues.

As pointed out in [SV02], approaches like code signing and sand-boxing (for
instance consider the Java implementation of these concepts [GF99,Gon99])
have low costs but cannot enforce flexible security policies (signed components
may behave in arbitrary ways and the user must trust the component producer,
sand-boxed components are isolated and cannot interact with each other).

Three sensible and flexible language-based techniques — type systems, in-
lined reference monitors, and certifying compilers — are pointed out and eval-
uated in [SMH00]. Type systems (like, e.g., those used in [VSI96,HR98a]) stat-
ically analyze the application code against the wanted security policy; they
require a full knowledge of the code, that must be written in conformance
with the type system, and usually do not need any run-time overhead. In-
lined reference monitors postpone (some of) the security checks at run-time,
by inserting additional code for enforcing the wanted security policy into the
target application. This technique has been used in Software Fault Isola-
tion (see, e.g., [WLAG93]), and two implementations using security automata
as a mechanism for specifying security policies are presented in [ES99]. In
[Thi01a,Thi01b], type specialization is used to remove (in some cases) all run
time safety checks from programs transformed for in-lined monitored execution
while guaranteeing the safety of the transformed code. Certifying compilers
produce object code along with a certificate, i.e. a machine checkable evidence
that the object code respects certain security policies. This technique has
been used, e.g, for generating Proof-Carrying Code [Nec97,NL98] and enforc-
ing standard security policies (like type and memory safety). In [Wal00], it is
shown that this technique can be used to enforce any security policy that can
be specified by a security automaton 4 (given a security automaton specifying
the policy to be enforced, it is shown how to insert run-time security checks
during program compilation and how to verify that the compiled code obeys
the security policy).

Execution monitoring (EM, [Sch00]) is a general class of enforcement mech-
anisms that work by monitoring execution steps of a target application and
by terminating execution that is about to violate the security policy being
enforced. EM mechanisms rely on security automata: the monitored applica-
tion is executed in tandem with a simulation of the automaton defining the
wanted security policy. EM mechanisms include, e.g., reference monitors and

4 Security automata are very expressive, in fact they can specify every safety property
[Sch00].
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security kernels, and are flexible and expressive (they permit to enforce at
best safety policies). EM mechanisms are rather flexible, since they are also
applicable to components for which only untyped object code is available and
whose internal structure cannot be analyzed.

Wrappers, i.e. code that encapsulates possibly untrusted components and
can intercept the communications between each such component and the rest
of the system, are significant examples (see, e.g., [FBF99,SV02]) of EM mech-
anisms. In [FBF99], a wrapper definition language for composing COTS soft-
ware components is defined along with a framework for wrappers management.
In [SV02], box-π, a process calculus obtained as a minimal extension of the π-
calculus with encapsulation, is defined and used for specifying wrappers that
rigorously implements security policies; a causal type system is then used for
statically capturing the allowed information flows between wrapped, possibly
badly typed, components. Our proposal is closely related to the idea of exe-
cution monitoring, and guardians are like security automata that specify the
allowed process actions and interactions.

Security techniques for Ambients-based languages.

A number of analysis techniques have been developed for the mobile ambi-
ents (MA, [CG00b]) and its variants. Some of these techniques are proof sys-
tems and modal logics [CG00a], abstract interpretation [HJNN99], control and
data flow analysis [NNHJ99,NN00,DLB00], denotational models [CD01,CD02].
However, the techniques closer to security policies enforcement are based on
type systems.

Many type disciplines have been developed for MA. In [CG99], exchange
types are introduced to discipline the exchange of values in communications.
In [CGG99], immobility and locking annotations have been used for ensuring
that only ambients that are deemed mobile will move and that only ambients
that are deemed openable will be opened. In [CGG00], by introducing the
notion of group names, the type of an ambient is refined to enable controlling
the set of ambients it can cross and the set of ambients it can open. Finally,
in [CGG02], all these type systems are reviewed and assessed in a common
framework.

The safe ambients calculus (SA, [LS00,LS]) is a variant of MA obtained
by adding co-capabilities to the base calculus thus enabling the ambient tar-
get of a movement or object of an open action to control the interaction. A
distributed implementation of SA is described in [SV01]. SA permits defining
powerful and accurate type systems for controlling mobility. In [LS00,LS],
a type discipline is introduced for controlling ambient mobility and remov-
ing grave interferences by relying on single-threaded ambients (i.e. ambients
which at every step offer at most one interaction with external and internal
ambients). In [DS00], a type discipline is introduced that, by relying on a
statically fixed hierarchy of security levels, ensures that ambients at a given
security level can only be crossed or opened by ambients at a greatest or equal
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security level. In [BC01], a type system for expressing and verifying behav-
ioral invariants of ambients (written in Secure SA, a typed variant of SA) is
defined, by accounting not only for immediate behavior but also for behavior
resulting from capabilities acquired by interacting with the surrounding en-
vironment. In order to develop equational theories to support reasoning on
SA terms, in [MH02], a labeled bisimilarity for a variant of SA enriched with
passwords (and with a different semantics for out) has been developed and
proved to coincide with barbed congruence.

The seal calculus [CV99] is variant of MA where the open primitive has
been dropped, ambient communication relies on located channels and can
also take place across ambient boundaries (between parent and children), and
ambient mobility is objective (an ambient is moved by a process in the parent
ambient) and implemented in terms of agents (higher-order) communication.
In [CGN01], interface types are introduced for describing the requests that an
ambient may accept from its surrounding environment and are then used to
type mobile ambients and “their mobility”, i.e., to allow one to declare, for
each ambient, the type of the ambients that can enter or exit it.

Finally, a few type disciplines have been developed also for the boxed ambi-
ents calculus. In [BCC01a], a type system is defined that permits to fully con-
trol the types of the values exchanged in ambients interactions. In [BCC01b],
a security type system is introduced that permits to control resources access
by implementing policies for mandatory access control that rely on a security
level associated to each ambient.

6 Conclusions and future work

In this paper we have presented GBA, an extension of Boxed Ambients with
guardians. Similar extensions can be given for other ambient-based calculi.
Indeed, we have massaged BA to make apparent the general pattern for these
extensions. Also the open primitive of Mobile Ambients can be handled con-
sistently with the general principle “one name one policy”, simply by dropping
the guardian of the ambient destroyed by open. We envisage three directions
for further research on GBA:

• Proof techniques for establishing security properties. More specifically, as-
suming complete knowledge of certain guardians and processes (the trusted
ones), we would like to derive properties of a complete system, which may
include unreliable processes and guardians. [SMH00] proposes a general
framework for defining security policies. Since guardians are a particular
case of execution monitoring, the only properties that we can hope to en-
force are safety properties.

• Implementation issues. The distributed abstract machines for Mobile Am-
bients [FLS00] and for Safe Ambients [SV01] represent useful starting point.
Probably, one may have to consider a more restricted language for guardians,
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identified after a more careful analysis of relevant examples.

• Language extensions with more powerful guardians. Two kinds of extension
appear of interest: increase the monitoring ability of guardians, give to
guardians the ability to act. In both cases the syntax for processes should
be unchanged, while the syntax of guardians (and nets with guardians)
may change. One could envisage another kind of extension, namely give to
processes the ability to modify guardians. However, this could introduce
security problems. In fact, guardians are the entities which dynamically
enforce security policies, thus it is dangerous to give to (untrusted) processes
the ability to modify (trusted) guardians.

We list some of the language extensions that make guardians more powerful:

• Associate to each sub-ambient a unique local stamp, which is visible only
to the guardian of the parent ambient, when an ambient moves it receives a
new local stamp from the destination ambient. In this way a guardian can
discriminate between sub-ambients with the same name.

• Partition processes into local regions, which are visible only to the guardian
of the ambient. In this way the guardian can give different privileges to
processes in different regions.

• Give to a guardian the ability to react to attempts by processes to perform
actions that are denied by it or other guardians.

• Give to a guardian the ability to spawn processes or to augment and trans-
form the actions of processes under its control.
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