
A Fresh Calculus for Name Management

D.Ancona, E.Moggi

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
email: {davide,moggi}@disi.unige.it

Abstract. We define a basic calculus for name management, which is obtained by an appro-
priate combination of three ingredients: extensible records (in a simplified form), names (as
in FreshML), computational types (to allow computational effects, including generation of
fresh names). The calculus supports the use of symbolic names for programming in-the-large,
e.g. it subsumes Ancona and Zucca’s calculus for module systems, and for meta-programming
(but not the intensional analysis of object level terms supported by FreshML), e.g. it sub-
sumes (and improves) Nanevski and Pfenning’s calculus for meta-programming with names
and necessity. Moreover, it models some aspects of Java’s class loaders.

1 Introduction

We introduce a basic calculus, called MMLN
ν , providing name management abilities, like those

needed for programming in-the-large [Car97,AZ02]. In MMLN
ν names play the same role as in CMS

[AZ02] (and in record calculi): they are used to name components of a module and to refer to
external components which need to be provided from the outside (by a name resolver).

In CMS (and record calculi) names are taken from some infinite set N. In MMLN
ν the idea

is to move from ordinary set theory to Fraenkel and Mostowski’s set theory, where there is an
alternative choice for N, namely the FM-set of atoms (which is potentially infinite). By taking N
as the FM-set of atoms, we can have, as in FreshML [SPG03], a construct that generates a fresh
name. In FreshML names are terms (and there is a type of names), so generation of a fresh name
is denoted by νx.e, where x is a term variable which gets bound to the fresh name, and e is the
term where the fresh name can be used. In MMLN

ν names occur both in types and in terms, and
using x in place of a name X would entail a type system with dependent types (which would be
problematic), thus we must use a different binder νX.e for names.

To understand the type system and operational semantics of MMLN
ν (and FreshML) there is no

need to be acquainted with FM-sets [GP99]. However, some key mathematical properties of FM-
sets, like equivariance (i.e. invariance w.r.t. name permutations), are manifest in the type system
and the operational semantics. Besides names X ∈ N, the calculus has

– terms e ∈ E, a closed term corresponds to an executable program;
– name resolvers, mapping names to terms, more specifically they denote partial functions N

fin→ E
with finite domain. We write r.X for the term obtained by applying r to resolve name X.

Terms include fragments b(r)e, i.e. terms abstracted w.r.t. a resolver r, which denote functions

(N
fin→ E)→ E. We write e〈r〉 for the term obtained by linking fragment e using resolver r.

Remark 1. If resolvers were included in terms, we would get a λ-calculus with extensible records
[CM94], indeed a record amounts to a partial function mapping names (of components) to their
values. More precisely, b(r)e would become an abstraction λr.e and e〈r〉 an application e r. We
would also gain in expressivity. The main reasons for considering resolvers as second class terms,
is to have a simpler type system (no need of subtyping), and to show that the embedding of CMS
(and ν�) is possible under very limited assumptions about resolvers.

The ability to generate a fresh name is essential to prevent accidental overriding of a resolver. If
we know in advance what names need to be resolved within a fragment (we call such a fragment
closed), then we can statically choose a name which is fresh (for that fragment). However, generic
functions manipulating open fragments will have to generate fresh names at run-time. There are
several reasons for working with open fragments: increase reusability, reduce the need for naming
conventions (between independent developers), delay decisions.

MMLN
ν is able to express also run-time code generation (as formalized in [DP01,Nan02]), partial

evaluation [JGS93,Dav96] and staging [Tah99,She01] (but formal embedding results appear difficult
to establish). On the other hand, the calculus does not support the manipulation of object language
syntax modulo α-conversion typical of FreshML, which relies on atom abstraction and concretion1.

We present MMLN
ν as a monadic metalanguage, i.e. its type system makes explicit which terms

have computational effects. Its operational semantics is given according to the general pattern
proposed in [MF03], namely we give local simplification rules applicable non-deterministically
(because semantic preserving), and computation steps executed in a deterministic order (because
they may have computational effects). Generation of fresh names is a computational effect (this is
the case also in the current version of FreshML2), thus typing νX.e requires computational types.
However, we consider other monadic operations (for imperative computations), for two reasons:

– to show that generation of fresh names co-exists smoothly with other computational effects;
– to allow arbitrary interleaving of software assembly activities (such as linking) and normal

computational activities.

The calculus MMLN
ν subsumes the name management features of CMS and ν�, while overcoming

some deficiencies and (unnecessary) complexities. We mention briefly the main differences with
these two calculi (for the benefit of those already familiar with them).

– In CMS there is an infinite set of names (but a program uses only finitely many of them). CMS
is a pure calculus (without computational effects), thus we could restrict to the fragment of
MMLN

ν without computational types (and monadic operations), called MLN .
In CMS recursion is bundled in mixin, and removing it results in a very inexpressive calculus.
On the contrary, MLN is an interesting calculus even without recursion, and one can add
recursion to it following standard approaches (in Section 3 we add mutual recursive declarations
let ρ in e), which are orthogonal to the name management facilities.

– In ν� the typing rules for �-types (related to those for necessity of S4 modal logic) are quite
restrictive. Without these restrictions substitution would be unsound in the type system of
ν�. In fact, when forming a fragment in ν� all names occurring in the body are implicitly
abstracted. Such restrictions have no reason to exist in MMLN

ν , because we allow multiple name
resolvers, and fragments b(r)e are formed by abstracting over one name resolver. Furthermore,
making name resolvers explicit, avoid the need to introduce non-standard forms of substitution.
In ν� types are assigned to names at name generation time, while MMLN

ν follows the approach
of mainstream module languages (that don’t have generation of fresh names), i.e. different
modules can assign to the same name different types (and values). Therefore, programming in
ν� forces an overuse of name generation, because the language restricts name reuse.

Finally, some aspects of Java multiple loaders [LY99] can be encoded naturally in MMLN
ν . More

precisely, loaders are modeled by resolvers, whereas class loading is encoded by using the link
construct of MMLN

ν . In this way, it is possible to mimic situations, where a class file can be loaded

1 The main obstacle to include all name management abilities of FreshML is a language design issue,
namely how to avoid dependent types.

2 A previous version of FreshML [PG00] uses a more elaborate type system, which is able to mask the
computational effects due to generation of fresh names.

2

several times by different user-defined loaders, and the same symbolic reference in the class file can
be resolved in different ways throughout the execution of the program.

Summary. Section 2 presents syntax, type system and operational semantics of MMLN
ν , a monadic

metalanguage for name management (and imperative computations). Section 3 introduces MLN
Σ , a

sub-extension of MMLN
ν with records and recursive definitions, and shows that in it one recovers in a

natural way all (mixin) module operations of CMS. Section 4 gives several programming examples:
programming with open fragments, benchmark examples for comparison with other calculi, and
sample encoding of Java class loaders. Finally, Section 5 discusses related calculi.

Notation. In the paper we use the following notations and conventions.

– m range over the set N of natural numbers. Furthermore, m ∈ N is identified with the set
{i ∈ N|i < m} of its predecessors.

– Term equivalence, written ≡, is α-conversion. FV(e) is the set of variables free in e, while
e[xi : ei | i ∈ m] denotes parallel capture avoiding substitution.

– f : A
fin→ B means that f is a partial function from A to B with a finite domain, written dom(f).

A → B denotes the set of total functions from A to B. We use the following operations on
partial (and total) functions:
• {ai : bi|i ∈ m} is the partial function mapping ai to bi (where the ai must be different, i.e.

ai = aj implies i = j); in particular ∅ is the everywhere undefined partial function;
• f\a denotes the partial function f ′ defined as follows: f ′(a′) = b iff b = f(a′) and a′ 6= a;
• f{a : b} denotes the (partial) function f ′ s.t. f ′(a) = b and f ′(a′) = f(a′) otherwise;
• f, f ′ denotes the union of two partial functions with disjoint domains.

– X#X ′ means that the sets X and X ′ are disjoint.

2 A basic calculus with names: MMLN
ν

This section introduces a monadic metalanguage MMLN
ν with names. Names X are syntactically

pervasive, i.e. they occur both in types and in terms. Moreover, the term νX.e allows to generate a
fresh name for private use within e. Following FreshML [SPG03], we consider generation of a fresh
name a computational effect, therefore for typing νX.e we need computational types. In order to
investigate the interactions of names with other computational effects, the metalanguage supports
also imperative computations.

We parameterize typing judgements w.r.t. a finite set of names, namely those that can occur
(free) in the judgement. The theoretical underpinning for manipulating names is provided by
[GP99]. In particular, names can be permuted (but not unified), which suffices to consider terms
up to α-conversion of bound names.

The operational semantics is given according to the general pattern proposed in [MF03], namely
Section 2.3 specifies a confluent simplification relation > (defined as the compatible closure
of a set of rewrite rules), and Section 2.4 specifies a computation relation > describing how
configurations may evolve. Most of the technical properties of MMLN

ν (and their proofs) are similar
to those given in [MF03] for MML. Therefore, we shall skip most of the proof details.

The syntax is abstracted over symbolic names X ∈ N, basic types b, locations l ∈ L, term
variables x ∈ X and resolver variables r ∈ R. The syntactic category of types and signatures (i.e.
the types of resolvers) is parameterized w.r.t. a finite set X ⊆fin N of names that can occur in the
types and signatures.

– τ ∈ TX ::= b | τ1 → τ2 | [Σ|τ] | Mτ | Rτ X -types, where

Σ ∈ ΣX
∆= X fin→ TX is a X -signature {Xi : τi|i ∈ m}

3

– e ∈ E ::= x | λx.e | e1 e2 | θ.X | e〈θ〉 | b(r)e |
ret e | do x← e1; e2 | νX.e |
l | get e | set e1 e2 | ref e

terms, where

θ ∈ ER ::= r | ? | θ{X : e} is a name resolver term.

We give an informal semantics of the language (and refer to Section 4 for examples).

– The type [Σ|τ] classifies fragments which produce a term of type τ when linked with a resolver
for Σ. The terms θ.X and e〈θ〉 use θ to resolve name X and to link fragment e. The term
b(r)e represents the fragment obtained by abstracting e w.r.t. r.

– The resolver ? cannot resolve any name, while θ{X : e} resolves X with e and delegates the
resolution of other names to θ.

– The monadic type Mτ classifies programs computing values of type τ . The terms ret e and
do x← e1; e2 are used to terminate and sequence computations, νX.e generates a fresh name
for use within the computation e.

– The reference type Rτ classifies locations with values of type τ (locations l are instrumental to
the operational semantics). The following monadic operations act on locations: get e returns
the contents of a location, set e1 e2 updates the contents of location e1 with e2, and ref e
generates a new location with e as initial value.

As a simple example, let us consider the fragment b(r)(r.X*r.X) which can be correctly linked
by resolvers mapping X to integer expressions and whose type is [X:int|int]. Then we can link
the fragment with the resolver ?{X:2}, as in b(r)(r.X*r.X)<?{X:2}>, and obtain 2*2 of type int.
Note that b(r)(r.X*r.X) is not equivalent to b(r)(r.Y*r.Y), whose type is [Y:int|int]. This is
in clear contrast with what happens with variables and λ-abstractions: \x->x*x and \y->y*y are
equivalent and have the same type. The sequel of this section is devoted to the formal definition
of MMLN

ν . More interesting examples (with informal explanatory text) can be found in Section 4.
One can define (by induction on τ , e and θ) the following syntactic functions:

– the set FV() ⊆fin N] X] R of free names and variables in , in particular
FV({Xi : τi|i ∈ m}) = (∪i∈mFV(τi)) ∪ {Xi|i ∈ m}

– the capture-avoiding substitution [x0 : e0] for term variable x0.
– the capture-avoiding substitution [r0 : θ0] for resolver variable r0.
– the action [π] of a name permutation π (with finite support) on .

2.1 Type system

The typing judgments are X ;Π;Γ `Ω e : τ (i.e. e has type τ) and X ;Π;Γ `Ω θ : Σ (i.e. θ resolves
the names in the domain of Σ, and only them, with terms of the assigned type), where

– τ is a X -type and Σ is a X -signature
– Π : R

fin→ ΣX is a X -signature assignment {ri : Σi|i ∈ m} for resolver variables

– Γ : X
fin→ TX is a X -type assignment {xi : τi|i ∈ m} for term variables

– Ω : L
fin→ TX is an assignment of X -types to locations.

The typing rules are given in Table 1. All the typing rules, except that for νX.e, use the same finite
set X of names in the premises and the conclusion. The typing rule for e〈θ〉 supports a limited form
of width subtyping, namely it allows to link a fragment e : [Σ|τ] with a resolver θ whose signature
Σ′ includes Σ. All the other rules are standard.

In the sequel we give the key properties of the type system needed for proving type safety. We
write J ::= e : τ | θ : Σ , when it is unnecessary to distinguish between terms and name resolvers.

4

x
Γ (x) = τ

X ; Π; Γ `Ω x : τ
lam

X ; Π; Γ, x : τ1 `Ω e : τ2

X ; Π; Γ `Ω λx.e : τ1 → τ2

app

X ; Π; Γ `Ω e1 : τ1 → τ2

X ; Π; Γ `Ω e2 : τ1

X ; Π; Γ `Ω e1e2 : τ2

resolve

X ; Π; Γ `Ω θ : Σ
τ = Σ(X)

X ; Π; Γ `Ω θ.X : τ
link

X ; Π; Γ `Ω e : [Σ|τ]
X ; Π; Γ `Ω θ : Σ′

X ; Π; Γ `Ω e〈θ〉 : τ
Σ ⊆ Σ′ box

X ; Π, r : Σ; Γ `Ω e : τ

X ; Π; Γ `Ω b(r)e : [Σ|τ]

r
Π(r) = Σ

X ; Π; Γ `Ω r : Σ
?
X ; Π; Γ `Ω? : ∅

extr
X ; Π; Γ `Ω θ : Σ X ; Π; Γ `Ω e : τ

X ; Π; Γ `Ω θ{X : e} : Σ{X : τ}

ret
X ; Π; Γ `Ω e : τ

X ; Π; Γ `Ω ret e : Mτ
do
X ; Π; Γ `Ω e1 : Mτ1 X ; Π; Γ, x : τ1 `Ω e2 : Mτ2

X ; Π; Γ `Ω do x← e1; e2 : Mτ2

ν
X , X; Π; Γ `Ω e : Mτ

X ; Π; Γ `Ω νX.e : Mτ
X /∈ FV(Ω, Π, Γ, τ) l

Ω(l) = τ

X ; Π; Γ `Ω l : Rτ
get

X ; Π; Γ `Ω e : Rτ

X ; Π; Γ `Ω get e : Mτ

set
X ; Π; Γ `Ω e1 : Rτ X ; Π; Γ `Ω e2 : τ

X ; Π; Γ `Ω set e1 e2 : M(Rτ)
new

X ; Π; Γ `Ω e : τ

X ; Π; Γ `Ω ref e : M(Rτ)

Table 1. Type System for MMLN
ν

Lemma 1 (Equivariance). If X ;Π;Γ `Ω J , then (X ;Π;Γ `Ω J)[π], with π name permutation.

Proof. By an easy induction on derivation of X ;Π;Γ `Ω J .

Equivariance is a key property of names (the action of a name permutation is extended in the
obvious way to typing judgments). The property cannot be improved, e.g. substitution of names
with names fails to preserve typability. In fact, if we replace X1 with X2 in the signature {X1 :
τ1, X2 : τ2} (for simplicity assume FV(τ1, τ2) = ∅) we get {X2 : τ1, X2 : τ2}, which is not a
signature. However, if we swap X1 and X2 we get the signature {X2 : τ1, X1 : τ2}.

Lemma 2 (Weakening). If X ⊆ X ′ Π ⊆ Π ′ : R
fin→ ΣX ′ , Γ ⊆ Γ ′ : X

fin→ TX ′ , Ω ⊆ Ω′ : L
fin→ TX ′

and X ;Π;Γ `Ω J , then X ′;Π ′;Γ ′ `Ω′ J

Proof. By induction on derivation of X ;Π;Γ `Ω J . In the case of binders the bound variable has
to be renamed to avoid clashes with X ′, Π ′ and Γ ′.

Weakening is a standard property of type systems. The statement is cumbersome, because we have
to ensure that Π ′, Γ ′ and Ω′ use only names in X ′.

Lemma 3 (Subsumption). The following rules are admissible

subsume-e If X ;Π, r : Σr;Γ `Ω e : τ and Σr ⊆ Σ′
r ∈ ΣX , then X ;Π, r : Σ′

r;Γ `Ω e : τ
subsume-θ If X ;Π, r : Σr;Γ `Ω θ : Σ and Σr ⊆ Σ′

r ∈ ΣX , then X ;Π, r : Σ′
r;Γ `Ω θ : Σ′ for

some Σ ⊆ Σ′ ∈ ΣX

Proof. By induction on derivation of X ;Π, r : Σ;Γ `Ω J . The cases (resolve) and (link) are the
only one that exploit directly the assumption Σr ⊆ Σ′

r.

Subsumption is peculiar of this type system, and is related to width subtyping.

5

Lemma 4 (Substitution). The following rules are admissible

Subx

X ;Π;Γ `Ω e0 : τ0

X ;Π;Γ, x0 : τ0 `Ω J

X ;Π;Γ `Ω e[x0 : e0] : τ
Subr

X ;Π;Γ `Ω θ0 : Σ0

X ;Π, r0 : Σ0;Γ `Ω J

X ;Π;Γ `Ω e[r0 : θ0] : τ

Proof. By induction on the derivation of the second premises. Most cases are immediate or rely on
the induction hypothesis (in combination with simple facts).

2.2 Polymorphic extension

Although the technical development will be restricted to the simply typed language, we sketch
how to extend the type system with polymorphism, since it is essential for the example on open
fragments generators (see Section 4). Basically we need to add type polymorphism (like that
available in ML and Haskell) and row polymorphism [Rém93] (available in O’Caml). First we add
type variables α and signature variables p ∈ P. Then we extend the BNF for types and signatures
and add the BNF for type schema:

– τ ∈ TX ::= b | α | τ1 → τ2 | [Σ|τ] | Mτ | Rτ

– Σ ∈ ΣX ::= {Xi : τi|i ∈ m} | p, {Xi : τi|i ∈ m} where Xi ∈ X and τi ∈ TX for any i ∈ m.

– σ ∈ SX ::= τ | ∀α.σ | ∀p#X ′.σ where X ′ ⊆ X .

Intuitively, p#X ′ means that p can be instantiated with a signature Σ provided dom(Σ)#X ′ (this
is like the sorting of row variables in [Rém93]). The typing judgments X ;∆;Π;Γ `Ω e : τ have
an additional component ∆ : P → Pfin(X), which assigns to every signature variable p its sort,

moreover Γ : X
fin→ SX assigns type schema instead of types. The typing rules of Table 1 are mostly

unchanged, in the sense that ∆ is the same in premises and conclusion, the only exceptions are

– the typing rule for a variable x, where one has to instantiate the type and signature variables

quantified in Γ (x). For instance x
Γ (x) = ∀p#X ′.τ

X ;∆;Π;Γ `Ω x : τ [p : Σ]
X ;∆ ` Σ#X ′

where X ;∆ ` Σ#X ′ means Σ ∈ ΣX and one of the following holds
• Σ ≡ {Xi : τi|i ∈ m} and {Xi|i ∈ m}#X ′, or
• Σ ≡ p, {Xi : τi|i ∈ m} and {Xi|i ∈ m}#X ′ ⊆ ∆(p).

The definition of [p : Σ] is fairly straightforward.

– link
X ;Π;Γ `Ω e : [Σ|τ] X ;Π;Γ `Ω θ : Σ′

X ;Π;Γ `Ω e〈θ〉 : τ
X ;∆ ` Σ ⊆ Σ′

where X ;∆ ` Σ ⊆ Σ′ holds only in one of the following cases
• Σ ≡ {Xi : τi|i ∈ m} and Σ′ ≡ {Xi : τi|i ∈ m + n}, or
• Σ ≡ {Xi : τi|i ∈ m} and Σ′ ≡ p, {Xi : τi|i ∈ m + n}, or
• Σ ≡ p, {Xi : τi|i ∈ m} and Σ′ ≡ p, {Xi : τi|i ∈ m + n} and Xm+j ∈ ∆(p) for any j ∈ n.

– ν
X , X;∆+X ;Π;Γ `Ω e : Mτ

X ;∆;Π;Γ `Ω νX.e : Mτ
X /∈ FV(Ω,Π, Γ, τ) where ∆+X(p) = ∆(p)] {X}.

Finally, we add the typing rule for let-binding. We give only an instance of it, to exemplify the

effect on ∆ let
X ;∆{p : X ′};Π;Γ `Ω e : τ X ;∆;Π;Γ, x : ∀p#X ′.τ `Ω e′ : τ ′

X ;Π;Γ `Ω let x = e in e′ : τ ′
p 6∈ FV(Π,Γ, Ω).

6

2.3 Simplification

We define a confluent relation on terms, called simplification. There is no need to define a deter-
ministic simplification strategy, since computational effects are insensitive to further simplification.
Simplification > is the compatible closure of the following rules

beta) (λx.e2) e1 > e2[x : e1]
resolve) (θ{X : e}).X > e
delegate) (θ{X : e}).X ′ > θ.X ′ if X ′ 6= X
link) (b(r)e)〈θ〉 > e[r : θ]

Simplification enjoys the following properties.

Theorem 1 (CR). The simplification relation > is confluent.

Theorem 2 (SR).

– If X ;Π;Γ `Ω e : τ and e > e′, then X ;Π;Γ `Ω e′ : τ .
– If X ;Π;Γ `Ω θ : Σ and θ > θ′, then X ;Π;Γ `Ω θ′ : Σ.

2.4 Computation

The computation relation Id > Id′ | done is defined using evaluation contexts, stores and
configurations Id ∈ Conf. A configuration records the current name space as a finite set X of
names. The computation rules (see Table 2) consist of those given in [MF03] for the monadic
metalanguage MML (these rules do not change the name space) plus generation of a fresh name
(this is the only rule that extends the name space).

– E ∈ EC ::= � | E[do x← �; e] evaluation contexts

– µ ∈ S
∆= L

fin→ E stores map locations to their contents
– (X|µ, e, E) ∈ Conf

∆= Pfin(N) × S × E × EC configurations consist of the current name space
X (which may grow as computation progresses), the current store µ, the program fragment e
under consideration, and its evaluation context E

– rc ∈ RC ::= ret e | do x← e1; e2 | νX.e | get l | set l e | ref e computational redexes.

Simplification > is extended in the obvious way to a confluent relation on configura-
tions (and related notions). The Bisimulation property, i.e. computation is insensitive to further
simplification, is like that stated in [MF03] for MML.

Theorem 3 (Bisimulation). If Id ≡ (X|µ, e, E) with e ∈ RC and Id
∗
> Id′, then

1. Id > D implies ∃D′ s.t. Id′ > D′ and D
∗
> D′

2. Id′ > D′ implies ∃D s.t. Id > D and D
∗
> D′

where D and D′ range over Conf ∪ {done}.

One can also show that the simplification and computation relations are equivariant, i.e.

– if Id > Id′, then Id[π] > Id′[π];
– if Id > D, then Id[π] > D[π].

7

Administrative steps

(A.0) (X|µ, ret e, �) > done
(A.1) (X|µ, do x← e1; e2, E) > (X|µ, e1, E[do x← �; e2])
(A.2) (X|µ, ret e1, E[do x← �; e2]) > (X|µ, e2[x : e1], E)

Name generation step

(ν) (X|µ, νX.e, E) > (X , X|µ, e, E) with X renamed to avoid clashes, i.e. X /∈ X

Imperative steps

(new) (X|µ, ref e, E) > (X|µ{l : e}, ret l, E) where l /∈ dom(µ)
(get) (X|µ, get l, E) > (X|µ, ret e, E) with e = µ(l)
(set) (X|µ, set l e, E) > (X|µ{l = e}, ret l, E) with l ∈ dom(µ)

Table 2. Computation Relation

�
X ; � : Mτ `Ω � : Mτ

X ; � : Mτ2 `Ω E : Mτ ′ X ; ∅; x : τ1 `Ω e : Mτ2

X ; � : Mτ1 `Ω E[do x← �; e] : Mτ ′

where X ; � : Mτ `Ω E : Mτ ′ is such that τ and τ ′ are X -types and Ω : L
fin→ TX .

Table 3. Well-formed Evaluation Contexts

2.5 Type Safety

Type safety, i.e. Subject Reduction and Progress properties, is like that established for MML in
[MF03]. We expand only the case for νX.e, which relies on the equivariance property.

Definition 1 (Well-formed configuration). `Ω (X|µ, e, E) : τ ′
∆⇐⇒

– exists τ ∈ TX s.t. X ; ∅; ∅ `Ω e : Mτ and X ;� : Mτ `Ω E : Mτ ′ (see Table 3).
– X ; ∅; ∅ `Ω el : τl is derivable when el = µ(l) and τl = Ω(l)

Lemma 5 (Equivariance). If X ;� : Mτ `Ω E : Mτ ′, then (X ;� : Mτ `Ω E : Mτ ′)[π].

Lemma 6 (Weakening). If X ⊆ X ′, Ω ⊆ Ω′ : L
fin→ TX ′ and X ;� : Mτ `Ω E : Mτ ′, then

X ′;� : Mτ `Ω′ E : Mτ ′.

Theorem 4 (SR).

– If `Ω Id1 : τ ′ and Id1 > Id2, then `Ω Id2 : τ ′.
– If `Ω1 Id1 : τ ′ and Id1 > Id2, then exists Ω2 ⊇ Ω1 s.t. `Ω2 Id2 : τ ′.

Proof. The second implication is proved by case analysis on the derivation of Id1 > Id2. For
the case (ν) we have `Ω1 Id1 : τ ′ and Id1 ≡ (X|µ, νX.e, E) > (X , X|µ, e, E) ≡ Id2. Therefore,
we should take Ω2 = Ω1 and derive `Ω2 Id2 : τ ′ by weakening (Lemma 2 and 6).

Lemma 7. If X ; ∅; ∅ `Ω e′ : τ ′, then e′ > or one of the following holds

1. τ ′ ≡ τ1 → τ2 and e′ ≡ λx.e
2. τ ′ ≡ [Σ|τ] and e′ ≡ b(r)e

8

3. τ ′ ≡ Rτ and e′ ∈ L
4. τ ′ ≡Mτ and e′ ∈ RC

If X ; ∅; ∅ `Ω θ : Σ, then dom(Σ) = dom(θ), where dom(θ) ⊆fin N is defined by induction on θ

dom(r) is undefined dom(?) = ∅ dom(θ{X : e}) = dom(θ) ∪ {X}

Theorem 5 (Progress). If `Ω (X|µ, e, E) : τ ′, then

1. either e 6∈ RC and e >
2. or e ∈ RC and (X|µ, e, E) >

Proof. The second implication is proved by case analysis on e ∈ RC. For the case νX.e the proof
is immediate, since the computation rule (ν) has no side-conditions.

3 Relating MMLN
ν with CMS

In this section we introduce MLN
Σ a sub-extension of MMLN

ν . Then we define a translation of CMS in
MLN

Σ preserving CMS typing and reduction up to Ariola’s equational axioms [AB02] for recursion.
The syntax of MLN

Σ is defined in two steps. First, we remove from MMLN
ν computational and

reference types (and consequently monadic operations, like νX.e, and locations). In the resulting
calculus, called MLN , the computation relation disappears (CMS is a pure calculus and its reduction
semantics corresponds to simplification), the typing judgements are simplified X ;Π;Γ ` e : τ
(there is no need to have a type assignment to locations), and X could be left implicit, since the
typing judgements of a derivation must use the same X . Then we add records and mutual recursion:

– τ ∈ TX+ = Σ types, where Σ ∈ ΣX
∆= X fin→ TX is a X -signature {Xi : τi|i ∈ m}

– e ∈ E+ = o | e.X | e1 + e2 | e \X | let ρ in e terms, where

o : N
fin→ E is a record {Xi : ei|i ∈ m} and ρ : X

fin→ E is a (recursive) binding {xi : ei|i ∈ m}.

The type Σ ≡ {Xi : τi|i ∈ m} classifies records of the form {Xi : ei|i ∈ m}, i.e. with a fixed
set of components. Notice that records should not be confused with resolvers. In particular, a
fragment of type [Σ|τ] can be linked to a resolver of any signature Σ′ ⊇ Σ. The operations on
records correspond to the CMS primitives for mixins: e.X selects the component named X, e1 + e2

concatenates two records (provided their component names are disjoint), and e \ X removes the
component named X (if present). The let construct allows mutually recursive declarations, which
are needed for modeling the local components of a CMS module. The order of record components
and mutually recursive declarations are immaterial, therefore o and ρ are not sequences (of binding)
but functions (with finite domain).

Table 4 gives the typing rules for the new constructs. The properties of the type system in Sec-
tion 2 extend in the obvious way to MLN

Σ . We define simplification > for MLN
Σ as the compatible

closure of the simplification rules for MMLN
ν (see Section 2.3) and the following simplification rules

for record operations and mutually recursive declarations:

select) o.X > e if e ≡ o(X)
plus) o1 + o2 > o1, o2 if dom(o1)#dom(o2)
delete) o \X > o\X
unfolding) let ρ in e > e[x : let ρ in ρ(x) | x ∈ dom(ρ)]

Also simplification for MLN
Σ enjoys confluence (Theorem 1) and subject reduction (Theorem 2).

9

o
{X ; Π; Γ ` ei : τi | i ∈ m}

X ; Π; Γ ` {Xi : ei|i ∈ m} : {Xi : τi|i ∈ m}
select

Σ(X) = τ X ; Π; Γ ` e : Σ

X ; Π; Γ ` e.X : τ

plus
X ; Π; Γ ` e1 : Σ1 X ; Π; Γ ` e2 : Σ2

X ; Π; Γ ` e1 + e2 : Σ1, Σ2

dom(Σ1)#dom(Σ2) delete
X ; Π; Γ ` e : Σ

X ; Π; Γ ` e \X : Σ \X

rec
{X ; Π; Γ, Γ ′ ` ρ(x) : Γ ′(x) | x ∈ dom(ρ)} X ; Π; Γ, Γ ′ ` e : τ

X ; Π; Γ ` let ρ in e : τ
dom(Γ ′) = dom(ρ)

Table 4. Additional Typing Rules for MLN
Σ

CMS typing MLN
Σ typing

Γ `CMS E : τ X ; ∅; Γ ′ ` E′ : τ ′

CMS type MLN
Σ type

[Σ1; Σ2] [Σ′
1|Σ′

2]

CMS term MLN
Σ term

x x

[ι; o; ρ] b(r)(let ρ′ in o′)[x : r.X | ι(x) = X]

E1 + E2 b(r)E′
1〈r〉+ E′

2〈r〉
E \X b(r)E′〈r〉 \X

E.X E′〈?〉.X
E!X b(r)let {x1 : x2.X, x2 : E′〈r{X : x1}〉} in x2

C{ρ} C′[ρ′]

the translations of Γ , Σ, o and ρ are defined pointwise.

Table 5. Translation of CMS in MLN
Σ

3.1 Translation of CMS into MLN
Σ

We refer to the Appendix (and [AZ99,AZ02]) for the definition of the CMS calculus. The key idea
of the translation consists in translating a mixin type [Σ1;Σ2] in [Σ′

1|Σ′
2], in this way we obtain

a compositional translation of CMS terms. In contrast, a translation based on functional types,
where [Σ1;Σ2] is translated in Σ′

1 → Σ′
2, is not compositional (the problem is in the translation

of e1 + e2, which must be driven by the type of e1 and e2).
Table 5 gives the translation of CMS in MLN

Σ . Since CMS is parametric in the core language,
the translation depends on the translation of core terms and types.

In the translation of a basic mixin [ι; o; ρ] the variables x in dom(ι) (called deferred) are re-
placed with the resolution r.X of the corresponding name X = ι(x), whereas the variables x in
dom(ρ) (called local) are bound by the let construct for mutually recursive declarations. (A similar
translation would not work in ν�, because of the limitations in typing discussed in Section 5).

The translation of selection E.X uses the empty resolver ?, since in CMS selection is allowed
only for mixins without deferred components.

The freeze operator E!X resolves a deferred component X with the corresponding output
component. This resolution may introduce a recursive definition, since the output component X
could be defined in terms of the corresponding deferred component. Therefore, the translation
defines the record x2 by resolving the name X with the X component of the record x2 itself.

The typing preservation property of the translation can be proved easily, under the assumption
that the property holds at the core level.

10

Theorem 6 (Typing preservation). If Γ `C C : cτ implies ∅;Γ ′ ` C ′ : cτ ′ for every typing at
the core level, then Γ `CMS E : τ implies X ; ∅;Γ ′ ` E′ : τ ′, where X includes all names occurring
in the derivation of Γ `CMS E : τ .

The translation preserves also the reduction semantics of CMS, but this can be proved only up
to some equational axioms for mutually recursive declarations

C[let ρ in e] = let ρ in C[e] (lift)
let ρ1, x : (let ρ2 in e2) in e1 = let ρ1, ρ2, x : e2 in e1 (merge)
let ρ, x : e1 in e2 = let ρ[x : e1] in e2[x : e1] if x 6∈ FV(e1) (sub)

The (lift) axiom corresponds to Ariola’s lift axioms, in principle it can be instantiated with any
MLN

Σ context C[], but for proving Theorem 7 it suffices to consider only the following contexts
C[] ::= � + e | e + � | � \X | �.X . The (merge) axiom is Ariola’s internal merge, whereas (sub)

is derivable from Ariola’s axioms.
Let R denotes the set of the three axioms above, and S denotes the set of equational axioms

corresponding to the simplification rules for MLN
Σ ; then the translation is proved to preserve the

CMS reduction up to =S∪R (i.e. the congruence induced by the axioms in S ∪R).

Theorem 7 (Semantics preservation). If E1
CMS

> E2, then E′
1 =S∪R E′

2.

The translation of the non-recursive subset of CMS (i.e. no local declarations ρ and no freeze E!X)
is a lot simpler, moreover its reductions are mapped to plain MLN

Σ simplifications. However, non-
recursive CMS is very in-expressive, e.g. one cannot translate the λ-calculus in it. On the contrary,
we can define a translation ′ of the λ-calculus in MLN without functional types as shown below:

λ MLN without functional types
τ1 → τ2 [X : τ ′1|τ ′2]
x x
λx.e b(r)e′[x : r.X]
e1 e2 e′1〈?{X : e′2}〉

4 Programming examples

We demonstrate the use and expressivity of MMLN
ν with few paradigmatic examples:

– the first exemplifies programming with open fragments;
– the second and third are classical examples, to allow a comparison with other calculi for run-

time code generation and staging;
– the forth exemplifies the analogies with Java class loaders.

To improve readability we use ML-like functional notation (note that in monadic metalanguages
β-reduction is a sound simplification), ML-syntax for operations on references (ref e, !e, e1:=e2)
and Haskell’s do-notation do {x1 <- e1; ...; xn <- en; e}. In the sequence of commands of
a do-expression we allow computations ei whose value is not bound to a variable (because it is not
used by other commands) and non-recursive let-bindings like xi = ei (which amounts to replace
xi with ei in the commands following the let-binding).

Example 1. We consider an example of generative programming, which motivates the use for fresh
name generation. In our calculus a component can be identified with a fragment of type [Σ|τ],
where Σ specifies what are the parameters that need to be provided for deployment. Generative
programming support the dynamic manufacturing of customized components from elementary

11

(highly reusable) components. In our calculus the most appropriate building block for generative
programming are polymorphic functions of type G : ∀p.[p, Σi|τi] → M [p, Σ|τ]. The result type of
G is computational, because generation may require computational activities, while the signature
variable p classifies the information passed to the arguments of G, but not directly used or provided
by G itself. Applications of G may instantiate p with different signatures, thus we say that G
manipulates open fragments.

An over-simplified example of open fragment generator is

Ac: [p|a->a] -> M[p|{add: a -> M unit, update: M unit}]

it creates a data structure to maintain an (initially empty) set of accounts. Since we don’t really
need to know the structure of an account, we use a type variable a. The generator makes available
two functionalities for operating on a set (of accounts): add inserts a new account in the set, and
update modifies all the accounts in the set by applying a function of type a->a, which depends on
certain parameters (e.g. interest rate) represented by the signature variable p. These parameters
are decided by the bank after the data structure has been created, and they change over time. In
many countries bank accounts are taxed, according to criteria set out by local authorities. So we
need to provide a more refined generator

TaxedAc: [p’|a->a] -> [p|a->a] -> M[p’|[p|{add: a -> M unit, update: M unit}]]

the extra parameter computes the new balance based on the state of the account after the bank’s
update. We could define TaxedAc in terms of Ac as follows

fun TaxedAc tax upd = nu Tax.
do {m <- Ac(b(r2) fn x => r2.Tax (upd<r2> x));

ret (b(r’) b(r1) m<r1{Tax:tax<r’>}>)};

Note that it is essential that the name Tax is fresh and private to TaxedAc, otherwise we may
override some information in r1, which is needed by upd. In fact, TaxedAc is an open fragment
generator that does not know in advance how the signature variable p could be instantiated. On
the other hand, with closed fragment generators G : [Σi|τi]→M [Σ|τ] the problem does not arise,
but reusability is impaired. For instance, it is not reasonable to expect that all banks will use the
same parameters to update the accounts of their customers.

Example 2. We consider the classical power function exp:int->real->M real, which takes an
exponent n and a base x, then it computes xn by making recursive calls. Then we show how to
get specialized versions (for fixed n) by unfolding the recursion at specialization time. The result
type of exp is computational, because we consider recursion a computational effect.

(* standard power function *)
fun exp n x = if n=0 then ret(1.0) else do {x’ <- (exp (n-1) x); ret(x*x’)};
> exp = ... : int -> real -> M real
(* exp_c generates a fragment with hook X for base, its type reflects

the fact that exp_c makes the recursive call at fragment generation time *)
fun exp_c n = if n=0 then ret(b(r) 1.0)

else do {u <- exp_c (n-1); ret(b(r) (r.X * u<r>))};
> exp_c = ... : int -> M[X:real | real]
(* optimized power function exp_o, its type is slightly different from

that of exp, to reflects the different timing of recursive calls *)
fun exp_o n = do {u <- exp_c n; ret(fn x => u<?{X:x}>)};
> exp_o = ... : int -> M(real -> real)
do sq <- exp_o 2; (* performs the unfolding of recursive calls to exp_c *)
> sq = (fn x => x*(x*1.0)) : real -> real

12

In comparison to [NP03, Example 3], we don’t need fresh names and support polymorphism to give
a simple definition of exp_c (in fact, we could avoid the use of names altogether). In comparison
to MetaML [CMS03], we don’t face the problems due to execution of potentially open code.

Example 3. We consider the imperative power function p:int->real->(real ref)->M unit, and
show that we can recover the specialized version given in [CMS03, Section 4.1] without facing
the problems due to scope extrusion (which were the main motivation for the introduction of
closed types). The function p takes an exponent n, a base x and a reference y, then it initializes
y with 1.0 and repeatedly multiplying the content of y with x until it becomes xn. Therefore, the
computational effects used by the imperative power function are recursion and side-effects.

(* imperative power function *)
fun p n x y = if n=0 then y:=1.0 else do {p (n-1) x y; y’ <- !y; y:=x*y’};
> p = ... : int -> real -> (R real) -> M unit
(* p_c generates a fragment with hooks X and Y for base and location,

its type reflects the fact that p_c makes the recursive call at
fragment generation time, while the side-effects take place after
the hooks have been resolved *)

fun p_c n = if n=0 then ret(b(r) r.Y:=1.0)
else do {u <- p_c (n-1);

ret(b(r) do {u<r>; y’ <-!r.Y; r.Y:=r.X*y’})};
> p_c = ... : int -> M [X:real, Y:R real | M unit]
(* optimized imperative power function p_o, its type is slightly

different from that of exp, to reflects the different timing of
recursive calls *)

fun p_o n = do u <- p_c n in (fn x,y. u<?{X:x, Y:y}>);
> p_o = ... : int -> M(real -> (R real) -> M unit)
do sq_i <- p_o 2; (* performs the unfolding of recursive calls to p_c *)
> sq_i = (fn x,y => do {y:=1.0; y’ <- !y; y:=x*y’; y’ <- !y; y:=x*y’})

: real -> (R real) -> M unit

Example 4. This example establishes a correspondence between our calculus and some key concepts
behind Java class loaders [LY99]. Loaders are a powerful mechanism which allows dynamic linkage
of code fragments, management of multiple name spaces and code instrumentation [LB98]. Some of
the basic notions concerning Java multiple loaders can be encoded naturally in MMLN

ν , as suggested
by the following table (we identify a class file f with a location containing a fragment):

Java MMLN
ν

a loader a resolver θ
loader delegation θ{X : e}
the content of a class file b(r)e
a symbolic reference to a class X r.X
loading of class file f with initiating loader θ do u← get f ;u〈θ〉

As shown in the table, MMLN
ν resolvers play the role of class loaders which replace symbolic refer-

ences with (concrete references [LY99] to) classes, and the ability to extend resolvers corresponds
to a primitive form of delegation between loaders. As an example, consider the following code,
where class files contain fragments of type M int, rather than class declarations.

(* create three class files *)
do f1 <- ref (b(r) return 1);
> f1 = ... : R [| M int]

13

do f2 <- ref (b(r) return 2);
> f2 = ... : R [| M int]

f3 <- ref (b(r) do {x <- r.X; y <- r.Y; return (x+y)});
> f3 = ... : R [X:M int, Y:M int | M int]
(* load class file f3 *)
do u <- !f3;
> u = ... : [X:M int, Y:M int | M int]
(* with initiating loader ?{X:c1, Y:c3} *)
do {c1 = do {u <- !f1; u<?>};

c3 = do {u <- !f3;
c2 = do {u <- !f2; u<?>};
u<?{X:c2, Y:c2}>};

u<?{X:c1, Y:c3}>};
> 5

There are three class files, f1, f2 and f3; the execution of the program starts from class file f3.
The initiating loader [LB98] for the main program is defined by ?{X:c1, Y:c3}. According to the
standard definition [LY99], the initiating loader of a given loaded class file f is the loader that will
eventually try to resolve all symbolic references contained in f . Note that the same class file can be
loaded more than once for resolving different symbolic references as happens in Java. For instance,
in the program above the class file f3 is loaded twice; the first time for starting execution of the
main program, the second for resolving the symbolic reference X in the main program. Indeed, the
two loaded code fragments are kept distinct and represent different entities as happens in Java
when the same class is loaded by two different loaders. In this case the same symbolic reference
in the same class file can be resolved in different ways. For instance, in the program above Y is
resolved with f1 in the main program and with f2 when f3 is loaded again.

A clear advantage of modeling Java loaders in MMLN
ν is a better support for code instrumen-

tation (that is, the ability to change class bytecode at load-time), since in Java this feature is
implemented at a very low level and basically consists in arbitrary and uncontrolled manipulation
of bytecode. However not all aspects of Java loaders can be modeled in MMLN

ν , for instance there
is no counterpart to dynamic typing.

5 Conclusions and related work

This section compares MMLN
ν with related calculi (ν� and MMML).

The ν� calculus of [Nan02,NP03] is a refinement of λ� [DP01], which provides better support
for symbolic manipulation. The stated aim is to combine safely the best features of λ� (the abil-
ity to execute closed code) and λ© [Dav96] (the ability to manipulate open code). The work on
MetaML has similar aims, but adopt the opposite strategy, i.e. it starts from λ©. The monadic met-
alanguage MMML of [MF03] provides an operational semantics sufficiently detailed for analyzing
subtle aspects of multi-stage programming [Tah99,She01,CMS03]), in particular the interactions
between code generation and computational effects.

Comparison with ν�. The typing judgments of ν� take the form Σ;∆;Γ ` e : τ [X] where X ⊆
dom(Σ) includes the names occurring free in e, and ∆ has declarations of the form ui : τi[Xi]
with Xi ⊆ dom(Σ). Therefore, in ν� the type of a name X is fixed globally (when the name is
declared). This is a bad name space management policy, which goes against common practice in
programming language design (e.g. modules and records).

In ν� terms includes names, so our θ.X is replaced by X, in other words there is a default
resolver which is left implicit. Linking u〈Θ〉 uses a function Θ ≡ 〈Xi → ei|i ∈ m〉 to modify the

14

default resolver. The typing judgments for explicit substitutions take the form Σ;∆;Γ ` Θ : X [X ′],
where X ′ includes the names used by the modified resolver to resolve the names in X , e.g. X ⊆ X ′
when Θ is empty. The following explicit substitution principle is admissible

Σ;∆;Γ ` Θ : X [X ′] Σ;∆;Γ ` e : τ [X]
Σ;∆;Γ ` e[Θ] : τ [X ′]

Our type [Σ|τ] is replaced by �X τ , where X = dom(Σ). The introduction rule for �X τ is

Σ;∆; ∅ ` e : τ [X]
Σ;∆;Γ ` box e : �X τ [X ′]

This rule (inspired by modal logic) is very restrictive: it forbids having free term variables x in e,
and acts like an implicit binder for the free names X of e (i.e. it binds the default resolver for e).

The observations above are formalized by a CBV translation ′ of ν�-terms3 into MMLN
ν , where

the resolver variable r corresponds to the default resolver, which is implicit in ν�.

e ∈ ν� e′ ∈ MMLN
ν

x ret x
λx : τ.e ret (λx.e′)
e1 e2 do x1 ← e′1;x2 ← e′2;x1x2

νX : τ.e νX.e′

e ∈ ν� e′ ∈ MMLN
ν

X r.X
u〈Xi → ei〉 u〈r{Xi : e′i}〉
box e ret (b(r)e′)
let box u = e1 in e2 do u← e′1; e

′
2

We do not define the translation on types and assignments, since in ν� the definition of well-formed
signatures Σ ` and types Σ ` τ is non-trivial.

In conclusion, the key novelty of MMLN
ν is to make name resolvers explicit and to allow a

multiplicity of them, as a consequence we gain in simplicity and expressivity. Moreover, by build-
ing on top of a fairly simple form of extensible records, we are better placed to exploit existing
programming language implementations (like O’Caml).

Comparison with MMML. We compare MMML and MMLN
ν at the level of the operational semantics.

At the level of types, one expects an MMML code type 〈τ〉 to correspond to a fragment type [Σ|τ],
but it is unclear what signature Σ one should take.

In MMLN
ν linking e〈θ〉 and name resolution θ.X affect only the simplification relation. On the

other hand in MMML code generation, e.g. λMx.e, affects the computation relation, i.e. it requires
the generation of fresh names (moreover compilation may cause a run-time error, but this could
be viewed as a weakness of the type system of MMML). In our calculus the computational effects
due to code generation can be expressed as follows

– λMx.e is a computation generating code for a λ-abstraction. In MMLN
ν it becomes

νX.do u← e[x : (b(r′)r′.X)]; ret (b(r)λx.u〈r{X : x}〉)

This term first computes a fragment u by evaluating e with x replaced by a fragment needing
a resolver r′ for the fresh name X (and possibly other names), then it returns a fragment for a
λ-abstraction. Note that r does not have to resolve X, since u is linked to the modified resolver
r{X : x} (one also expects r′ to be replaced by the modified resolver).

– opM (e), where op is a unary operation, is a computation generating code for a term of the form
op(. . .), and does not generate fresh names. Thus in MMLN

ν it becomes do u← e;b(r)op(u〈r〉).
Note that in this case u is linked directly to r.

3 In [NP03] the operational semantics (and the typing) of νX.e differs from that adopted by (us and)
FreshML. To avoid unnecessary complications, we work as if ν� is FreshML compliant.

15

However, it is unclear how to device a whole translation from these two examples. Another feature
of MMML (and MetaML) is cross-stage persistence up(e), a.k.a. binary inclusion. The terms 0V

and up(0) of code type 〈int〉 are different, i.e. they cannot be simplified to a common term, and
in intentional analysis one wants to distinguish them, since up(e) is a black box for intentional
analysis. In MMLN

ν it seems impossible to capture this difference. In conclusion, MMLN
ν might be

as expressive as MMML, and its operational semantics appears to be at a lower level of detail.

References

[AB02] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec. Annals of pure
and applied logic, 117(1-3):95–178, 2002.

[AZ99] Davide Ancona and Elena Zucca. A primitive calculus for module systems. In Proc. Int’l Conf.
Principles & Practice Declarative Programming, volume 1702 of LNCS, pages 62–79. Springer-
Verlag, 1999.

[AZ02] D. Ancona and E. Zucca. A calculus of module systems. J. Funct. Programming, 12(2):91–132,
March 2002. Extended version of [AZ99].

[Car97] Luca Cardelli. Program fragments, linking, and modularization. In Conf. Rec. POPL ’97: 24th
ACM Symp. Princ. of Prog. Langs., pages 266–277, 1997.

[CM94] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter and J. C. Mitchell,
editors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and Language
Design, pages 295–350. The MIT Press, Cambridge, MA, 1994.

[CMS03] C. Calcagno, E. Moggi, and T. Sheard. Closed types for a safe imperative MetaML. J. Funct.
Programming, 13(3):545–571, 2003.

[Dav96] R. Davies. A temporal-logic approach to binding-time analysis. In the Symposium on Logic in
Computer Science (LICS ’96), pages 184–195, New Brunswick, 1996. IEEE Computer Society
Press.

[DP01] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the
ACM, 48(3):555–604, 2001.

[GP99] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving binders.
In Proc. 14th Ann. IEEE Symp. Logic in Comput. Sci., pages 214–224, July 1999.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

[LB98] S. Liang and G. Bracha. Dynamic class loading in the Java Virtual Machine. In ACM Symp.
on Object-Oriented Programming: Systems, Languages and Applications 1998, volume 33(10) of
Sigplan Notices, pages 36–44. ACM Press, October 1998.

[LY99] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java Series. Addison-
Wesley, Second edition, 1999.

[MF03] E. Moggi and S. Fagorzi. A monadic multi-stage metalanguage. In Proc. FoSSaCS ’03, volume
2620 of LNCS. Springer-Verlag, 2003.

[Nan02] Aleksandar Nanevski. Meta-programming with names and necessity. In Proceedings of the Sev-
enth ACM SIGPLAN International Conference on Functional Programming (ICFP-02), ACM
SIGPLAN notices, New York, October 2002. ACM Press.

[NP03] A. Nanevski and F. Pfenning. Meta-programming with names and necessity. Submitted, 2003.
[Ore] Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR 97291-1000,USA.

Available online from ftp://cse.ogi.edu/pub/tech-reports/README.html. Last viewed August
1999.

[PG00] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with bound names
modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Proc. Mathematics of Program
Construction, 5th Int’l Conf. (MPC 2000), volume 1837 of LNCS, pages 230–255, Ponte de Lima,
Portugal, July 2000. Springer-Verlag.

[Rém93] Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming: Types, Semantics
and Language Design. MIT Press, 1993.

16

[She01] T. Sheard. Accomplishments and research challenges in meta-programming. In W. Taha, editor,
Proc. of the Int. Work. on Semantics, Applications, and Implementations of Program Generation
(SAIG), volume 2196 of LNCS, pages 2–46. Springer-Verlag, 2001.

[SPG03] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. Freshml: Programming with
binders made simple. In Proc. 8th Int’l Conf. Functional Programming. ACM Press, 2003.

[Tah99] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate
Institute of Science and Technology, 1999. Available from [Ore].

17

A Definition of CMS

Terms
E ∈ CMSE ::= x | C{ρ} | [ι; o; ρ] | E1 + E2 | E \X | E!X | E.X

C ∈ CE ::= x | . . .
where

x ∈ X and X ∈ N (as in MLN), ι : X
fin→ N, o : N

fin→ CMSE and ρ : X
fin→ CMSE

Free variables are defined as follows (we omit the trivial cases):
FV(C{ρ}) = FV(ρ), FV([ι; o; ρ]) = (FV(o) ∪ FV(ρ)) \ (dom(ι) ∪ dom(ρ)).
We assume the following implicit conditions for well-formed terms:
FV(C) ⊆ dom(ρ) in C{ρ}, and dom(ι)#dom(ρ) in [ι; o; ρ].
Such conditions are omitted in typing rule (mixin) and reduction rules (sub) and (plus).

Types τ ∈ CMST ::= cτ | [Σ1;Σ2] where Σ : N
fin→ CMST

Typing judgments
Γ `CMS E : τ (module level)
Γ `C C : cτ (core level) where Γ : X

fin→ CMST.

Typing rules

Two signatures Σ1 and Σ2 are compatible iff Σ1(X) = Σ2(X) for all X ∈ dom(Σ1) ∩ dom(Σ2).

(var)
Γ `CMS x : τ

Γ (x) = τ (delete)
Γ `CMS e : [Σ1;Σ2]

Γ `CMS e \X : [Σ1;Σ2 \X]

(core)
{Γ `CMS ρ(x) : cτx | x ∈ dom(ρ)} {x : cτx | x ∈ dom(ρ)} `C C : cτ

Γ `CMS C{ρ} : cτ

(mixin)

{Γ, Γ1, Γ2 `CMS o(X) : Σ2(X) | X ∈ dom(o)}
{Γ, Γ1, Γ2 `CMS ρ(x) : Γ2(x) | x ∈ dom(ρ)}

Γ `CMS [ι; o; ρ] : [Σ1;Σ2]

dom(Γ2) = dom(ρ)
dom(Σ1) = img(ι) and Γ1 = Σ1 ◦ ι
dom(Σ2) = dom(o)

(plus)
Γ `CMS e1 : [Σ1

1 ;Σ1
2] Γ `CMS e2 : [Σ2

1 ;Σ2
2]

Γ `CMS e1 + e2 : [Σ1
1 , Σ2

1 ;Σ1
2 , Σ2

2]
Σ1

1 compatible with Σ2
1

dom(Σ1
2)#dom(Σ2

2)

(freeze)
Γ `CMS e : [Σ1;Σ2]

Γ `CMS e!X : [Σ1 \X;Σ2]
Σ1(X) = Σ2(X) (select)

Γ `CMS e : [∅;Σ]
Γ `CMS e.X : τ

τ = Σ(X)

Reduction rules

The one step reduction relation
CMS

> is closed under arbitrary contexts CMSC with one hole

(context)
E1

CMS
> E2

CMSC[E1]
CMS

> CMSC[E2]
(we omit to spell out the definition of such contexts)

(sub) C1{ρ1, x : C2{ρ2}}
CMS

> C1[x : C2]{ρ1, ρ2}

(plus) [ι1; o1; ρ1] + [ι2; o2; ρ2]
CMS

> [ι1, ι2; o1, o2; ρ1, ρ2] if dom(o1)#dom(o2)

(delete) [ι; o; ρ] \X
CMS

> [ι; o\X ; ρ]

(freeze) [ι, {x : X}; o, {X : E}; ρ]!X
CMS

> [ι; o, {X : E}; ρ, {x : E}]

(select) [; o, {X : E}; ρ].X
CMS

> E[x : [; X : ρ(x); ρ].X | x ∈ dom(ρ)]

18

