
Monadic Encapsulation of Effects:

a Revised Approach (Extended Version)

E.Moggi and F.Palumbo∗

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy

August 20, 1999

Abstract

Launchbury and Peyton-Jones came up with an ingenious idea for embedding regions of

imperative programming in a pure functional language like Haskell. The key idea was based

on a simple modification of Hindley-Milner’s type system. Our first contribution is to propose

a more natural encapsulation construct exploiting higher-order kinds, which achieves the same

encapsulation effect, but avoids the bogus type parameter of the original proposal. The second

contribution is a stronger type safety result, namely encapsulation of strict state in higher-

order lambda-calculus. We formalise the intended implementation as a very simple big-step

operational semantics on untyped terms, which captures interesting implementation details

not captured by the reduction semantics proposed previously.

Introduction

Launchbury and Peyton-Jones (see [LP95]) came up with an ingenious idea for encapsulating re-
gions of imperative programming in a pure functional language. More specifically, they introduced
a simple modification of Hindley-Milner’s type system, and proved (using logical relations) that if
a program is well-typed (in a restricted system, where all locations contain expressions of a fixed
base type), then different state threads don’t interfere. Subsequently Launchbury and Sabry (see
[LS97]) gave a formal account of type safety (for the whole system), by proving subject reduction
for a reduction semantics. Unfortunately, there is a bug in the proof of type safety in [LS97],
which “can be traced to the complicated semantics of lazy state threads” (see [SS99]). However,
Sabry and Semmelroth are able to adapt the formal developments in [LS97] to prove type safety
for monadic encapsulation of strict state.

Our goals are very similar to those stated in [SS99], while we differ substantially in the methodology
and strength of the results. We formalise the intended implementation as a big-step operational
semantics (which will be referred to as the dynamic semantics), then we prove soundness of β-
equivalence and type safety. The dynamic semantics is substantially simpler than the reduction
semantics in [SS99], and we argue that it formalises certain implementation details more accurately,
such as deallocation of local state and leakage of locations referring to a deallocated state. On the
other hand, reduction semantics provides a more direct support for sound equational reasoning.

Methodology and techniques. We follow a standard approach for proving soundness of equa-
tional reasoning and type safety. The techniques used are fairly elementary and well-established:

• the dynamic behaviour of programs is specified operationally with an SOS;

∗Research partially supported by MURST progetto cofinanziato “Tecniche formali per la specifica, l’analisi e la

trasformazione di sistemi software”, ESPRIT WG APPSEM.

1

• soundness of β-equivalence w.r.t. observational congruence is proved by a non-trivial adap-
tation of the syntactic techniques used in [Plo75];

• type systems are presented a la Church (see [Bar91, Car97]), which make explicit information
not used at run-time, but easy to remove by erasure;

• type safety is established for an instrumented SOS, which handles also type and region
information, and performs additional run-time checks.

These techniques are quite robust w.r.t. language extensions such as recursive definitions of terms
and types, therefore we ignore such desirable (but technically easy) extensions.

Summary. The paper is structured as follows. Section 1 gives a big-step operational semantics
(dynamic semantics) for an untyped λ-calculus with a run-construct, describing the intended
implementation, including what constitutes a run-time error. We prove that β-conversion is sound
for establishing observational congruence of program fragments. We have refrained from using
a reduction semantics along the lines of [WF94, LS97, SS99], because it fails to capture certain
low-level implementations details (see Remark 1.1 and 1.2).

Section 2 introduces a type system a la Church, basically higher-order λ-calculus with constants.
The expressiveness of the type systems allows us

• to adopt a more natural encapsulation construct, which avoids the bogus type parameter
introduced by [LP95, LS97, SS99] for monadic types and operations. Our construct relies
on higher-order kinds, but it can be easily added to Haskell and also to SML (since only
first-order kinds are needed);

• to establish a stronger type safety result, since more untyped terms are typable (but one
must restrict to Haskell, to get a type inference algorithm).

Section 3 introduces an instrumented semantics for the pseudo-expressions of the type system a la
Church. The instrumented semantics makes explicit the two-dimensional structure of the address
space, typical of region-based memory management (see [TT97]), and enables a more accurate
description of improper program behaviour. We prove type safety for the instrumented semantics,
by exploiting region information in a crucial way. Then we relate the instrumented and dynamic
semantics independently from well-typedness assumptions (in general the instrumented semantics
does not agree with the dynamic semantics, e.g. the former does not permit to access the state of
a thread with a location generated by another thread, while the latter semantics does). Finally,
we derive type safety for the dynamic semantics, namely the erasure of a well-typed term cannot
cause a run-time error.

Section 4 draws some conclusions and discusses related and future work.

Notation. We summarise some conventions for λ-calculi used throughout:

• an overline, e.g. e, indicates a sequence (of terms), and |e| denotes its length

• We write e e/λx.e for iterated application/abstraction (similarly for other binary constructs
and binders, e.g. τ → τ and ∀X : K.τ)

• terms are treated up to α-conversion, and e[x: = e] stands for parallel substitution with
renaming of bound variables

• Γ stands for a typing context, i.e. a sequence of declarations x: τ (and X : K) without
repetitions of variables; we write x: τ for declaring several variables of the same type.

Acknowledgements. We would like to thanks the referees for their comments and criticisms,
J.Launchbury and A.Sabry for enlightening discussions.

2

1 Dynamic semantics and β-conversion

We extend the pure untyped λ-calculus with a run-construct run x.e. Intuitively speaking, when
an interpreter for the λ-calculus meets run x.e, it calls a monadic interpreter, which interprets e in
an environment where the variables x are bound to internal implementations, and then evaluates
the term returned by the monadic interpreter. One can envisage different monadic interpreters,
to which the same abstract code x.e could be passed.

To define the dynamic semantics for such a language, we introduce auxiliary semantic domains
and extend the syntax for terms with additional constants.

• names m, n ∈ N, e.g. natural numbers, for naming locations

• term operators o ∈ Op
∆
= {ret, do, new, get, set} with the following arities

#ret = 1 #do = 2 #new = 1 #get = 1 #set = 2

• constants c ∈ Const: : = o | `m

• terms e ∈ E: : = c | x | λx.e | e1 e2 | run x.e where |x| = |Op|;

we write E0 for the set of closed terms

• values v ∈ Val: : = λx.e | `m | o e where |e| ≤ #o

• stores µ ∈ S
∆
= N

fin
→ E0, i.e. partial maps from N to E0 with finite domain;

we write Locµ for the set {`m|m ∈ dom(µ)} of locations in µ

• descriptions d ∈ D: : = e | (µ, e) | err.

The dynamic semantics is given in terms of two mutually recursive interpreters, which evaluate
closed terms and may also raise run-time errors. We have two evaluation judgements:

• e =⇒ v | err says that evaluation of e ∈ E0 by the pure interpreter returns v ∈ Val0 (or
raises an error);

• µ, e =⇒ µ′, e′ | err says that evaluation of e ∈ E0 in local store µ by the monadic interpreter
returns e′ ∈ E0 and changes the store to µ′ (or raises an error).

Figure 1 gives the evaluation rules for the dynamic semantics.

Remark 1.1 On pure λ-terms pure evaluation coincides with CBN (Call-by-Name) evaluation.
Pure evaluation treats locations `m as values (like nil for the empty list) and term operators o

as term-constructors (like cons). Monadic evaluation proceeds very much like evaluation for an
imperative language, but sequencing and termination of monadic evaluation are made explicit
through do and ret. Moreover, monadic evaluation calls pure evaluation, whenever it needs the
value of a term. The dynamic semantics is non-deterministic, since we don’t fix a deterministic
strategy for choosing an m 6∈ dom(µ). Finally, evaluation is rather permissive:

• locations referring to a deallocated state can be returned as values, e.g. run x.xnew 0 =⇒ `m

where xnew is the variable in x which get bound to new and m can be any name;

• new can be implemented by a local name server, which does not require communication
with other threads, e.g. run x.xnew `m =⇒ `n where n can be any name (including m);

• there is no check on whether a location generated by a thread is used to access the state
of another, e.g. run y.ydo (ynew 1) (λ .yget (run x.xnew 0)) may evaluate to 1 or err. 1
is returned when the name servers for the two threads choose the same name, while the
run-time error occurs if they choose different names.

3

Pure Evaluation

v =⇒ v
e1 =⇒ λx.e e[x: = e2] =⇒ v

e1 e2 =⇒ v

e1 =⇒ o e

e1 e2 =⇒ o e e2

|e| < #o
∅, e[x: = Op] =⇒ µ, e′ e′ =⇒ v

run x.e =⇒ v

Monadic Evaluation
e =⇒ ret e′

µ, e =⇒ µ, e′
e =⇒ do e0 e1 µ0, e0 =⇒ µ1, e

′
0 µ1, e1 e′0 =⇒ µ2, e

′

µ0, e =⇒ µ2, e
′

e =⇒ new e0

µ, e =⇒ µ{m = e0}, `m

m 6∈ dom(µ)

e =⇒ get e0 e0 =⇒ `m

µ, e =⇒ µ, e′
e′ = µ(m)

e =⇒ set e0 e1 e0 =⇒ `m

µ, e =⇒ µ{m = e1}, `m

m ∈ dom(µ)

Pure and Monadic Run-Time Errors
Besides the obvious rules for error propagation, there are the following rules for error generation

e1 =⇒ v

e1 e2 =⇒ err
v 6≡ λx.e or v 6≡ o e with |e| < #o

e =⇒ v

µ, e =⇒ err
v 6≡ o e with |e| = #o

e =⇒ get e0 e0 =⇒ v

µ, e =⇒ err
v 6∈ Locµ

e =⇒ set e0 e1 e0 =⇒ v

µ, e =⇒ err
v 6∈ Locµ

Figure 1: Evaluation Rules for Dynamic Semantics

Remark 1.2 [LP95, LS97, SS99] adopt a run-construct run e, instead of our run x.e. However, it
is straightforward to accommodate run e in our dynamic semantics by adding the evaluation rule
∅, e =⇒ µ, e′ e′ =⇒ v

run e =⇒ v
.

In the untyped language the two run-constructs are interdefinable: run x.e ≡ run (e[x: = Op]) and
run e ≡ run x.e provided x do not occur free in e. However, they are no longer interdefinable in
the typed language.

There are important differences between our dynamic semantics and the reduction semantics of
[LS97, SS99]. The latter introduce an auxiliary construct sto(µ, e) (and sto(µ, e) in [SS99]), which
roughly speaking corresponds to the configuration (µ, e) for our monadic interpreter. However,
in sto(µ, e) the locations in µ are considered bound variables (while for us they are constants),
therefore one has that

• reduction e −→ e′ has to be defined on open terms (and thus it is convenient to identify
terms modulo α-conversion), while our dynamic semantics is given on closed terms;

• the reduction sto(µ, ret e) −→ e makes no sense when sto(µ, e) is a binder (unless no locations
in µ occur in e), so one has to postpone deallocation of the local store (in a lazy state
semantics there are other reasons why one may have to postpone deallocation);

• the reduction sto(µ, do (new e0) e1) −→ sto(µ{m = e0}, e1 `m) is correct only if (m 6∈ dom(µ)
and) `m is not free in e and µ, so the name server has to look at the whole term.

One can device a reduction semantics providing a faithful account of store deallocation, but other
implementation details (e.g. name generation) seem beyond the descriptive abilities of reduction
semantics. On the other hand, reduction semantics is directly related to sound equational reasoning.

We briefly discuss how to extend the dynamic semantics with a fix-point operation fix and a test

4

∅, e[x, x: = Op, eq] =⇒ µ, e′

e′ =⇒ v

run x, x.e =⇒ v

e1 =⇒ fix

e2 (fix e2) =⇒ v

e1 e2 =⇒ v

e =⇒ eq

e e0 =⇒ eq e0

e =⇒ eq e0

e0 =⇒ `m

e1 =⇒ `m

e e1 =⇒ λx, y.x

e =⇒ eq e0

e0 =⇒ `m

e1 =⇒ `n

e e1 =⇒ λx, y.y
m 6= n

e =⇒ eq e0

ei =⇒ v

e e1 =⇒ err
v 6∈ Loc

Figure 2: Additional Evaluation Rules in the presence of fix and eq

for equality of locations eq. However, we do not consider these extensions in the subsequent formal
developments, but they are interesting (though unproblematic) for the following reasons:

• fix is independent from the run-construct (like many other extensions one could envisage);

• eq is a peculiar operation, in fact its type involves the type constructor for locations (so it
should be introduced by the run-construct), but its result type does not involve the type
constructor for computational types (so it should be evaluated by the pure interpreter).

The changes to the syntactic categories are as follows

• constants c ∈ Const: : = fix | eq | o | `m, i.e. we have added two new constants; we write
Loc for the set {`m|m ∈ N} of locations

• untyped terms e ∈ E: : = c | x | λx.e | e1 e2 | run x, x.e where |x| = |Op|, thus we modify the
monadic interpreter so that it binds the new variable x to eq

• values v ∈ Val: : = λx.e | fix | eq | eq e | `m | o e where |e| ≤ #o.

Figure 2 gives the additional evaluation rules, and that for the modified run.

The dynamic semantics induces an observational congruence ≈ on open terms. We have decided
to observe as much as allowed by the dynamic semantics, i.e. both successful termination and run-
time errors. On the other hand, the given dynamic semantics does not allow to observe whether
the evaluation of a term e must always terminate. Therefore, our observational congruence suffers
of the same weaknesses as may testing (see [dH84]).

Definition 1.3 Given e ∈ E0, the set O(e) ⊆ {ok, err} of possible observations is s.t. err ∈

O(e)
∆

⇐⇒ e =⇒ err and ok ∈ O(e)
∆

⇐⇒ ∃v ∈ Val.e =⇒ v.

Two terms e1, e2 ∈ E are observationally equivalent (e1 ≈ e2 for short)
∆

⇐⇒ O(C[e1]) =
O(C[e2]) for every closing context C[].

The following result says that β-conversion is a safe transformation regardless of well-formedness
of terms. Of course, if one would consider only well-formed terms and contexts, then the resulting
observational congruence would identify more (well-formed) terms, and more transformations could
be proved safe.

Theorem 1.4 (soundness of β) If e1 −→β e2, then e1 ≈ e2.

Proof. The proof adapts the technique used by Plotkin (see [Plo75]) for proving that λN ` e1 = e2

implies e1 ≈N e2. There are some additional complications due to the possibility of run-time errors,
the non-determinism of evaluation, and the fact that β-reduction does not subsume evaluation.
Technical details of the proof are given in Appendix A.

5

2 Type system a la Church

We formalise the type system as an higher-order λ-calculus a la Church (see [Bar91, Geu93]). For
convenience, we distinguish between constants (declared in signatures) and variables (declared in
contexts). The type system uses the following syntactic categories:

• constructor constants C ∈ CONST and constructor variables X ∈ VAR,
(term) constants c ∈ Const and (term) variables x ∈ Var;

these sets are assumed to be infinite and mutually disjoint

• kinds K ∈ K: : = ∗ | K1 → K2; ∗ is the kind of all types

• constructors u, τ ∈ U: : = C | X | τ1 → τ2 | ∀X : K.τ | ΛX : K.u | u1[u2];

we write τ for a constructor that is expected to have kind ∗

• terms e ∈ E∗: : = c | x | λx: τ.e | e1 e2 | ΛX : K.e | e[u] |
run XM , XR, xret, xdo, xnew , xget, xset.e with τ

• signatures Σ ∈ Sig: : = ∅ | Σ, C: K | Σ, c: τ

• contexts ∆, Γ ∈ Ctx: : = ∅ | Γ, X : K | Γ, x: τ

Notation 2.1 There are several notions of reduction one may consider:

• (ΛX : K.u′)[u] −→u
β u′[X : = u] and (ΛX : K.u[X]) −→u

η u when X 6∈ FV(u)

• (ΛX : K.e)[u] −→∀

β e[X : = u] and (ΛX : K.e[X]) −→∀
η e when X 6∈ FV(e)

• (λx: τ.e′) e −→e
β e′[x: = e] and (λx: τ.e x) −→e

η e when x 6∈ FV(e)

The only notion of reduction needed for defining the type system is −→u
βη, i.e. the union of −→u

β

and −→u
η . With some abuse of notation we denote with −→u

βη also the reduction induced by the
notion of reduction −→u

βη (on constructors), i.e. the compatible closure of −→u
βη (on any syntactic

category). Moreover, we denote with =u
βη the reflexive, symmetric and transitive closure of the

reduction −→u
βη (and similarly for other notions of reduction).

Figure 3 gives the rules of the type system for deriving judgements of the form

• Σ `, i.e. Σ is a well-formed signature

• Σ; Γ `, i.e. Γ is a well-formed context

• Σ; Γ ` u: K, i.e. u is a well-formed constructor of kind K

• Σ; Γ ` e: τ , i.e. e is a well-formed term of type τ .

2.1 Intermezzo: types for encapsulation

This section, which is irrelevant for the following developments, compares our proposal for encap-
sulation of effects with the original one and existential types.

Instead of the run-with construct we could have introduced a constant run of a suitable type,
and define (run X, x.e with τ) as derived notation. For the instrumented semantics it is more
convenient to take run-with as primitive. In this section we describe the alternative presentation
in terms of run, since it is easier to relate to runST of [LP95] and existential types (see [MP88]).

For conciseness, we use the derived notation in Figure 4 defined by induction on the structure of
a context ∆ or a sequence ρ, where sequences are given by the BNF ρ, θ ∈ Seq: : = ∅ | ρ, u | ρ, e.

6

Signatures and Contexts : Σ ` and Σ; Γ `

∅-Σ
∅ `

C-Σ
Σ `

Σ, C: K `
C fresh in Σ c-Σ

Σ; ∅ ` τ : ∗

Σ, c: τ `
c fresh in Σ

∅-Γ
Σ `

Σ; ∅ `
X-Γ

Σ; Γ `

Σ; Γ, X : K `
X fresh in Γ x-Γ

Σ; Γ ` τ : ∗

Σ; Γ, x: τ `
x fresh in Γ

Constructors : Σ; Γ ` u: K

C
Σ; Γ `

Σ; Γ ` C: K
C: K ∈ Σ X

Σ; Γ `

Σ; Γ ` X : K
X : K ∈ Γ

Λ
Σ; Γ, X : K1 ` u: K2

Σ; Γ ` ΛX : K1.u: (K1 → K2)
app

Σ; Γ ` u1: K1 → K2 Σ; Γ ` u2: K1

Σ; Γ ` u1[u2]: K2

∀
Σ; Γ, X : K ` τ : ∗

Σ; Γ ` (∀X : K.τ): ∗
→

Σ; Γ ` τ1: ∗ Σ; Γ ` τ2: ∗

Σ; Γ ` (τ1 → τ2): ∗

Term : Σ; Γ ` e: τ

c
Σ; Γ `

Σ; Γ ` c: τ
c: τ ∈ Σ x

Σ; Γ `

Σ; Γ ` x: τ
x: τ ∈ Γ conv

Σ; Γ ` e: τ1

Σ; Γ ` τ2: ∗

Σ; Γ ` e: τ2

τ1 =u
βη τ2

→I
Σ; Γ, x: τ1 ` e: τ2

Σ; Γ ` λx: τ1.e: (τ1 → τ2)
→E

Σ; Γ ` e1: (τ1 → τ2) Σ; Γ ` e2: τ1

Σ; Γ ` e1 e2: τ2

∀I
Σ; Γ, X : K ` e: τ

Σ; Γ ` ΛX : K.e: (∀X : K.τ)
∀E

Σ; Γ ` e: (∀X : K.τ) Σ; Γ ` u: K

Σ; Γ ` e[u]: τ [X : = u]

run
Σ; Γ ` τ : ∗ Σ; Γ, ΓM ` e: XM [τ]

Σ; Γ ` (run X, x.e with τ): τ
X, x ≡ |ΓM |

where ΓM ≡ XM , XR: ∗ → ∗ ,
xret: ∀X : ∗.X → XM [X] ,
xdo: ∀X, Y : ∗.XM [X], (X → XM [Y]) → XM [Y] ,
xnew : ∀X : ∗.X → XM [XR[X]] ,
xget: ∀X : ∗.XR[X] → XM [X] ,
xset: ∀X : ∗.XR[X], X,→ XM [XR[X]]

and |ΓM | ≡ XM , XR, xret, xdo, xnew , xget, xset

Figure 3: Formation rules for type system

7

∆ ∅ X : K ′, ∆′ x: τ ′, ∆′

ρ ∅ u′, ρ′ e′, ρ′

derived notation for
kinds ∆ → K K K ′ → ∆′ → K ∆′ → K

constructors Λ∆.u u ΛX : K ′.Λ∆′.u Λ∆′.u

u(ρ) u u[u′](ρ′) u(ρ′)
∀∆.τ τ ∀X : K ′.∀∆′.τ τ ′ → ∀∆′.τ

terms Λ∆.e e ΛX : K ′.Λ∆′.e λx: τ ′.Λ∆′.e

e(ρ) e e[u′](ρ′) e e′(ρ′)
signatures/contexts ΠΓ.∆ ∅ X : Γ → K ′, ΠΓ.∆′[X : = X(|Γ|)] x: ∀Γ.τ ′, ΠΓ.∆′

sequences |∆| ∅ X, |∆′| x, |∆′|
λΓ.ρ ∅ ΛΓ.u′, λΓ.ρ′ ΛΓ.e′, λΓ.ρ′

ρ(θ) ∅ u′(θ), ρ′(θ) e′(θ), ρ′(θ)

The two top lines recall the three cases of the inductive definitions of ∆ and ρ, while the others
introduce notation defined by induction on the structure of ∆ or ρ.
For instance, line 3 defines ∆ → K (first entry), namely the last three entries give the three cases
of the inductive definition of ∆ → K, i.e.

∅ → K
∆

≡ K, (X : K ′, ∆′) → K
∆

≡ K ′ → ∆′ → K and (x: τ ′, ∆′) → K
∆

≡ ∆′ → K.

Figure 4: Derived notation

Run-with as a constant. We can replace the run-with construct with a constant run of type
∀X : ∗.(∀ΓM .XM [X]) → X , where

ΓM ≡ XM , XR: ∗ → ∗ ,
xret: ∀X : ∗.X → XM [X] ,
xdo: ∀X, Y : ∗.XM [X], (X → XM [Y]) → XM [Y] ,
xnew: ∀X : ∗.X → XM [XR[X]] ,
xget: ∀X : ∗.XR[X] → XM [X] ,
xset: ∀X : ∗.XR[X], X → XM [XR[X]]

More precisely, one can define run-with in terms of run and conversely:

(run XM , XR, xret, xdo, xnew , xget, xset.e with τ)
∆

≡ run [τ] (ΛΓM .e)

run
∆

≡ (ΛX : ∗. λx: (∀ΓM .XM [X]). run |ΓM |.x (|ΓM |) with X)

A more appealing way of writing the type for run is ∀X : ∗.(M [X]) → X , where the type con-
structor M is defined as M ≡ ΛX : ∗.∀ΓM .XM [X] : ∗ → ∗ , intuitively M [X] is the type of
monadic code (in higher-order abstract syntax).

One can almost define an initial algebra for the specification ΓM . In second-order λ-calculus one
can represent initial algebras for algebraic specifications. For instance, given the specification
ΓN ≡ XN : ∗, xzero: XN , xsucc: XN → XN of the natural numbers, one can define the type
N ≡ ∀ΓN .XN (of Church’s numerals), which has the structure of a weakly initial algebra (see
[RP93]). The specification ΓM is not algebraic, but one can mimic the definition of the initial
algebra given in [RP93], except for the operation new (and set), since the type ∀X : ∗.X → M [R[X]]
of new has a nesting of M and R.

M ≡ ΛX : ∗.∀ΓM .XM [X] : ∗ → ∗
R ≡ ΛX : ∗.∀ΓM .XR[X] : ∗ → ∗

ret ≡ ΛX : ∗.λx: X.ΛΓM .xret[X] x : ∀X : ∗.X → M [X]
new ≡ ???? ∀X : ∗.X → M [R[X]]
get ≡ ΛX : ∗.λx: R[X].(ΛΓM .xget[X] (x(|ΓM |)) : ∀X : ∗.R[X] → M [X]

8

Comparison with existential types. With the notation of Figure 4 one can define the existen-
tial type ∃∆ as ∀X : ∗.(∀∆.X) → X . The type ∀X : ∗.(∀ΓM .XM [X]) → X of run is very similar to
the existential type ∃ΓM ≡ ∀X : ∗.(∀ΓM .X) → X . This suggest a common generalisation, namely
∀X : ∗.(∀∆.τ) → X , where Σ; Γ, X : ∗, ∆ ` τ : ∗. In the type of run one takes τ ≡ XM [X], while in
∃∆ one takes τ ≡ X . This generalisation does not seem to have a logical reading, but it subsumes
also the type of runST .

Comparison with runST . It is easy to recast the original proposal of [LP95] in higher-order
λ-calculus, and thus compare its expressiveness with that of our run. The type system of [LP95]
introduces several constants. If we write ΣM for ΓM viewed as a signature (we write M in place
of XM , etc.), then the constants of [LP95] are those declared in

Σ′

M , runST : ∀X : ∗.(∀α: ∗.M(α, X)) → X where Σ′

M

∆

≡ Πα: ∗.ΣM

(every constant in Σ′

M takes an extra type parameter w.r.t. the corresponding constant in ΣM).
In higher-order λ-calculus one can define our run in terms of the constants in [LP95]

run
∆

≡ ΛX : ∗. λx: (∀ΓM .XM [X]). runST [X] (Λα: ∗.x (|Σ′

M | (α)))

In other words, run[X] x first specialises the monadic code x with the constants in Σ′

M applied
to a generic type parameter α, i.e.

Σ′

M ; X : ∗, x: ∀ΓM .XM [X], α: ∗ ` x (|Σ′

M | (α)): M(α, X) ,

then applies runST to the abstraction of the specialised code w.r.t. α.

Remark 2.2 We conjecture that runST cannot be defined in terms of run (and the other constants
in Σ′

M). Even if the original proposal seems to be more expressive than ours, we expect it to enjoy
similar safety properties (in the framework of higher-order λ-calculus). We advocate run in place
of runST because it avoids the bogus type parameter α, and thus it complies with standard
monadic programming style. Moreover, we have given an intuitive reading for the type of run in
terms of the definable type constructor for monadic code.

3 Instrumented semantics

The instrumented semantics is a refinement of the dynamic semantics of Section 1 which uses
terms of the type system a la Church described in Section 2 instead of untyped λ-terms. The
instrumented semantics serves two technical purposes: to give a more accurate description of
improper program behaviour, to prove type safety for the dynamic semantics. In order to transfer
the type safety result from the instrumented to the dynamic semantics, one has to establish a
compatibility result linking dynamic and instrumented semantics.

To define the instrumented semantics, we introduce auxiliary semantic domains and syntactic
categories. Most of them are analogues of those introduced for the dynamic semantics, and are
indicated by a superscript ?.

• names m, n, r ∈ N, e.g. natural numbers, for naming regions and locations inside a region

• type operators O ∈ OP
∆
= {M, R}

• term operators o ∈ Op
∆
= {ret, do, new, get, set} with type- and term-arities

term operator o ret do new get set

type-arity 2o 1 2 1 1 1
term-arity #o 1 2 1 1 2

9

• type- and term-constants, kinds, constructors and terms

C : : = Cm | Or

c ∈ Const? : : = or | `r,m

K : : = ∗ | K1 → K2

u : : = C | X | u1 → u2 | ∀X : K.u | ΛX : K.u | u1[u2]

e ∈ E? : : = c | x | λx: u.e | e1 e2 | ΛX : K.e | e[u] |

run X, x.e with u where |X| = |OP| and |x| = |Op|

we write OPr for {Or|O ∈ OP} and Opr for {or|o ∈ Op}

• values v ∈ Val? : : = λx: u.e | `r,m | or[u] where |u| < 2o

| or[u] e where |u| = 2o and |e| ≤ #o

• stores µ ∈ S? ∆
= N

fin
→ E?

0;

we write Locr,µ for the set of location {`r,m|m ∈ dom(µ)}

• dynamic signatures Σ ∈ Sig: : = ∅ | Σ, C: K | Σ, c: u
and static signatures ∆: : = ∅ | ∆, Cm: K

• descriptions d ∈ D?: : = (∆|Σ; e) | (Σ; µ, e) | err.

Remark 3.1 Notice that the values in Val? do not include polymorphic terms ΛX : K.e, therefore
the instrumented semantics has to account for evaluation under Λ. More specifically, to evaluate
ΛX : K.e we replace X with a fresh Cm, and evaluate e[X : = Cm]. In certain cases we will blur the
difference between constants and variables, in particular we will write e[Cm: = u] and ΛCm: K.e

for substitution and binding of a constant.

One can obtain a term in E from a term in E? by erasing types and regions.

Definition 3.2 Given e ∈ E
? its erasure |e| ∈ E is defined by induction as

|or| = o |`r,m| = `m |x| = x |λx: u.e| = λx.|e| |e1 e2| = |e1| |e2|

|ΛX : K.e| = |e[u]| = |e| |run X, x.e with u| = run x.|e|

Erasure is extended to stores µ ∈ S
? and descriptions d ∈ D

? as follows

|µ|(m) = |µ(m)| |(∆|Σ; e)| = |e| |(Σ; µ, e)| = (|µ|, |e|)

Proposition 3.3 Erasure satisfies the following properties:

• |e[X : = u]| = |e| and |e[x: = e′]| = |e|[x: = |e′|]

• v ∈ Val
? implies |v| ∈ Val

• e −→u∀
βη e′ implies |e| ≡ |e′|.

The instrumented semantics (like the dynamic one) is given in terms of two mutually recursive
interpreters, which evaluate closed terms and may also raise run-time errors:

• ∆|Σ; e =⇒ ∆′|Σ′; v | err says that evaluation of e ∈ E?
0 by the pure interpreter returns

v ∈ Val?0 and extends the dynamic signature from Σ to Σ′ (or raises an error); moreover the
polymorphism of e is made explicit by extending the static signature ∆ with ∆′;

• ∆|Σ; µ, e
r

=⇒ Σ′; µ′, e′ | err says that evaluation of e ∈ E?
0 in local store µ by the monadic

interpreter for region r returns e′ ∈ E?
0, changes the store to µ′ and extends the dynamic

signature from Σ to Σ′ (or raises an error).

10

Figure 5 gives the evaluation rules for the instrumented semantics. Each of these rules is either
the counterpart of an evaluation rule for the dynamic semantics (as given in Figure 1) or is for
evaluating terms of the form e[u] and ΛX : K.e. The rule for evaluating ΛX : K.e is the one forcing
the introduction of static signatures ∆ and ∆′.

Proposition 3.4

• ∆|Σ; e =⇒ ∆′|Σ′; v implies Σ ⊆ Σ′ and v ∈ Val
?
0

• ∆|Σ; µ, e
r

=⇒ Σ′; µ′, e′ implies Σ ⊆ Σ′, dom(µ) ⊆ dom(µ′) and e′ ∈ E
?
0

Proof. By induction on the derivation of an evaluation judgement.

3.1 Type safety and compatibility

We show that well-formed programs cannot go wrong, which amounts to prove subject reduction
for the instrumented semantics.

Notation 3.5 We introduce auxiliary definitions useful in stating type safety.

• ∆, Σ |= J
∆

⇐⇒ ∆, Σ ` J and for all constants C and c declared in Σ

– C ≡ Mr implies C: ∗ → ∗ in Σ

– C ≡ Rr implies C: ∗ → ∗ in Σ

– c ≡ retr implies c: ∀X : ∗.X → Mr[X] in Σ

– c ≡ dor implies c: ∀X, Y : ∗.Mr[X], (X → Mr[Y]) → Mr[Y] in Σ

– c ≡ newr implies c: ∀X : ∗.X → Mr[Rr[X]] in Σ

– c ≡ getr implies c: ∀X : ∗.Rr[X] → Mr[X] in Σ

– c ≡ setr implies c: ∀X : ∗.Rr[X], X → Mr[Rr[X]] in Σ

– c ≡ `r,m implies c: Rr[τ] in Σ for some τ

• RegΣ is the set of regions in Σ, i.e.

r ∈ RegΣ

∆
⇐⇒ at least one Or is declared in Σ.

• Locr,Σ is the set of locations of region r in Σ, i.e.

`r,m ∈ Locr,Σ
∆

⇐⇒ `r,m is declared in Σ.

• Σ ⊂ - Σ′ ∆
⇐⇒ Σ ⊆ Σ′ and ∀n ∈ RegΣ.Locn,Σ = Locn,Σ′ , i.e.

Σ′ extends Σ but the set of locations in pre-existing regions does not change.

• Σ ⊂
r
- Σ′ ∆

⇐⇒ Σ ⊆ Σ′ and ∀n ∈ RegΣ − {r}.Locn,Σ = Locn,Σ′ , i.e.

Σ′ extends Σ but the set of locations in pre-existing regions, except region r, does not change.

• ∆, Σ |=r µ
∆

⇐⇒ ∆, Σ |= and Locr,µ = Locr,Σ and for all names m ∈ N

`r,m: Rr[τ] in Σ and e ≡ µ(m) imply ∆, Σ ` e: τ

To establish type safety one has to prove a much stronger result, which involves in an essential
way regions, namely pure evaluation does not add new locations to pre-existing regions, while
monadic evaluation can add new locations to the active region r, but not to other pre-existing
regions. However, both evaluations may add new locations to newly generated regions.

11

Pure Evaluation

∆|Σ; v =⇒ ∅|Σ; v
∆|Σ0; e1 =⇒ ∅|Σ1; λx: u.e ∆|Σ1; e[x: = e2] =⇒ ∆′|Σ2; v

∆|Σ0; e1 e2 =⇒ ∆′|Σ2; v

∆|Σ; e =⇒ ∅|Σ′; or[u]

∆|Σ; e[u] =⇒ ∅|Σ′; or[u u]
|u| < 2o

∆|Σ; e1 =⇒ ∅|Σ′; or[u] e

∆|Σ; e1 e2 =⇒ ∅|Σ′; or[u] e e2

|u| = 2o ∧ |e| < #o

∆|Σ; e =⇒ Cm: K, ∆′|Σ′; v

∆|Σ; e[u] =⇒ ∆′|(Σ′; v)[Cm: = u]

∆, Cm: K|Σ; e[X : = Cm] =⇒ ∆′|Σ′; v

∆|Σ; ΛX : K.e =⇒ Cm: K, ∆′|Σ′; v
m fresh

∆|Σ0 + Σop
r ; ∅, e[X, x: = OPr, Opr]

r
=⇒ Σ1; µ, e′ ∆|Σ1; e

′ =⇒ ∆′|Σ2; v

∆|Σ0; run X, x.e with u =⇒ ∆′|Σ2; v
r fresh

where Σop
r

∆

≡ Mr, Rr: ∗ → ∗ ,
retr: ∀X : ∗.X → Mr[X] ,
dor: ∀X, Y : ∗.Mr[X], (X → Mr[Y]) → Mr[Y] ,
newr: ∀X : ∗.X → Mr[Rr[X]] ,
getr: ∀X : ∗.Rr[X] → Mr[X] ,
setr: ∀X : ∗.Rr[X], X → Mr[Rr[X]]

Monadic Evaluation

∆|Σ; e =⇒ ∅|Σ′; retr[u] e′

∆|Σ; µ, e
r

=⇒ Σ′; µ, e′

∆|Σ0; e =⇒ ∅|Σ1; dor[u0 u1] e0 e1

∆|Σ1; µ0, e0

r
=⇒ Σ2; µ1, e

′
0

∆|Σ2; µ1, e1 e′0
r

=⇒ Σ3; µ2, e
′

∆|Σ0; µ0, e
r

=⇒ Σ3; µ2, e
′

∆|Σ; e =⇒ ∅|Σ′; newr[u] e0

∆|Σ; µ, e
r

=⇒ Σ′ + Σm
r,u; µ{m = e0}, `r,m

m 6∈ dom(µ)

where Σm
r,u is the dynamic signature `r,m: Rru

∆|Σ0; e =⇒ ∅|Σ1; getr[u] e0 ∆|Σ1; e0 =⇒ ∅|Σ2; `r,m

∆|Σ0; µ, e
r

=⇒ Σ2; µ, e′
e′ = µ(m)

∆|Σ0; e =⇒ ∅|Σ1; setr[u] e0 e1 ∆|Σ1; e0 =⇒ ∅|Σ2; `r,m

∆|Σ0; µ, e
r

=⇒ Σ2; µ{m = e1}, `r,m

m ∈ dom(µ)

Pure and Monadic Run-Time Errors
Besides the obvious rules for error propagation, there are the following rules for error generation

∆|Σ; e1 =⇒ ∆′|Σ′; v

∆|Σ; e1 e2 =⇒ err
∆′ 6≡ ∅ or v 6≡ λx: u.e or v 6≡ or[u] e with |u| = 2o ∧ |e| < #o

∆|Σ; e =⇒ ∅|Σ′; v

∆|Σ; e[u] =⇒ err
v 6≡ or[u] with |u| < 2o

∆|Σ; e =⇒ ∆′|Σ′; v

∆|Σ; µ, e
r

=⇒ err
∆′ 6≡ ∅ or v 6≡ or[u] e with |u| = 2o ∧ |e| = #o

∆|Σ; e =⇒ ∅|Σ′; getr[u] e0 ∆|Σ′; e0 =⇒ ∆′|Σ′′; v

∆|Σ; µ, e
r

=⇒ err
∆′ 6≡ ∅ or v 6∈ Locr,µ

∆|Σ; e =⇒ ∅|Σ′; setr[u] e0 e1 ∆|Σ′; e0 =⇒ ∆′|Σ′′; v

∆|Σ; µ, e
r

=⇒ err
∆′ 6≡ ∅ or v 6∈ Locr,µ

Figure 5: Evaluation Rules for Instrumented Semantics

12

Theorem 3.6 (type safety for instrumented sem.)

1. If ∆|Σ; e =⇒ d and ∆, Σ |= e: τ , then exist ∆′, Σ′, v and τ ′ s.t.
d ≡ (∆′|Σ′; v) , τ =u

βη ∀∆′.τ ′ , Σ ⊂ - Σ′ and ∆, ∆′, Σ′ |= v: τ ′

The type ∀∆′.τ ′ is defined by induction on ∆′ (see Figure 4), and by blurring the distinction
between constants and variables (see Remark 3.1)

2. If ∆|Σ; µ, e
r

=⇒ d , ∆, Σ |=r µ and ∆, Σ |= e: Mr[τ], then

exist Σ′, µ′ and e′ s.t. d ≡ (Σ′; µ′, e′) , Σ ⊂
r
- Σ′ , ∆, Σ′ |=r µ′ and ∆, Σ′ |= e′: τ

Proof. By induction on the derivation of an evaluation judgement, and by applying the generation
lemma to the typing assumption. The details for some cases are given in Appendix C.

The following theorem says that the instrumented semantics is compatible with the dynamic se-
mantics modulo erasure, more precisely: if e may terminate properly so does |e|, if |e| may raise an
error so does e, if |e| may terminate properly then e may do the same or raise an error. When e may
raise an error, we cannot say anything about the behaviour of |e|, it may even fail to terminate.

Theorem 3.7 (compatibility) For every ∆, Σ, e, µ, r and d′ the following implications hold

• |e| =⇒ d′ implies exists d s.t. ∆|Σ; e =⇒ d and (d′ ≡ |d| or d ≡ err)

• |µ|, |e| =⇒ d′ implies exists d s.t. ∆|Σ; µ, e
r

=⇒ d and (d′ ≡ |d| or d ≡ err)

Proof. The implications are proved by lexicographic induction on the derivation of an evaluation
judgement |e| =⇒ d′ / |µ|, |e| =⇒ d′ for the dynamic semantics, and the size of e / (µ, e). The
details for some cases are given in in Appendix C.

Corollary 3.8 (type safety for dynamic sem.) If ∆, Σ |= e: τ and |e| =⇒ d′, then d′ 6≡ err.

Proof. By compatibility we know that exists d s.t. ∆|Σ; e =⇒ d and (d′ ≡ |d| or d ≡ err). By
type safety for the instrumented semantics we know that d 6≡ err, therefore d′ ≡ |d| 6≡ err.

4 Conclusions and related work

In this section we discuss what we have done, also in the light of related work, and point out
possible future developments.

• Lazy versus Strict state semantics. We have focused on strict state because we are
mainly interested in identifying generic mechanisms for encapsulating a programming style
into another (and mainstream imperative languages handle the state in a strict way). How-
ever, one may ask whether our approach can be adapted to prove type safety for lazy state.

Some preliminary attempts in collaboration with A.Sabry seem to indicate that this can be
done. but the dynamic semantics for lazy state is substantially more complex, and it does
not allow the simple deallocation strategy typical of region-based memory management.

• CBV, CBN and lazy semantics. We have adopted a CBN semantics for the pure inter-
preter (following [LP95, LS97]), while [SS99] adopts a CBV semantics. Technically speaking,
it does not make much of a difference if the pure interpreter adopts CBN or CBV.

However, CBN is very inefficient, so it would be interesting to adopt a lazy semantics for the
pure interpreter, and then prove that it would induce the same observational congruence ≈
of the pure CBN interpreter.

13

• Effect Masking and Monadic Encapsulation. [SS99] shows that runST implements a
cheap form of effect masking (see [LG88, TJ92]), thus extending the relation between effects
and monads established in [Wad98]. More precisely they give a translation from a type
system with effects and regions (EML) to one with runST (MML).

It seems plausible that the translation given in [SS99] can be adapted so that the target
language (MML) uses our run-with construct instead of runST . Indeed, replacing runST

by run-with might help to establish a reverse translation from MML to EML.

• Relations to region-based memory management. While the languages we consider
do not have syntactic categories of effects and regions, the instrumented semantics exhibits
certain similarities with region-based memory management (see [TT97]), namely the two-
dimensional structure of the address space, and the store deallocation strategy.

In the paper we have also pointed out what we believe to be intrinsic limitations of reduction
semantics (as advocated by [WF94]), which prevent the formalisation of certain implementation
details. On the other hand, substantially more work is needed to establish soundness of equational
reasoning w.r.t. our dynamic semantics (even for something as unsurprising as β-equivalence).

References

[Bar91] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science. Oxford University
Press, 1991.

[Car97] L. Cardelli. Type systems. In Jr Allen B. Tucker, editor, The Computer Science and
Engineering Handbook. CRC Press, 1997.

[dH84] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes (concurrent
programming). Theoretical Computer Science, 34(1-2):83–133, November 1984.

[Geu93] H. Geuvers. Logics and Type Systems. PhD thesis, Computer Science Institute,
Katholieke Univ. Nijmegen, 1993.

[LG88] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In ACM, editor, POPL
’88. Proceedings of the conference on Principles of programming languages, January 13–
15, 1988, San Diego, CA, pages 47–57. ACM Press, 1988.

[LP95] J. Launchbury and S.L. Peyton Jones. State in Haskell. Lisp and Symbolic Computation,
8(4), December 1995.

[LS97] J. Launchbury and A. Sabry. Monadic state: Axiomatization and type safety. In Proc.
of the 1997 Int. Conf. on Functional Programming, Amsterdam, The Netherlands, 9–11
June 1997.

[MP88] J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. ACM Trans. on
Programming Languages and Systems, 10(3):470–502, 1988.

[Plo75] G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Sci-
ence, 1(2), 1975.

[RP93] J. C. Reynolds and G. D. Plotkin. On functors expressible in the polymorphic lambda
calculus. Information and Computation, 105:1–29, 1993.

[SS99] M. Semmelroth and A. Sabry. Monadic encapsulation in ML. In Proc. of the 1999 Int.
Conf. on Functional Programming, Paris, France, 27–29 September 1999.

14

[TJ92] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal of
Functional Programming, 2(3):245–271, 1992.

[TT97] M. Tofte and J.P. Talpin. Region-based memory management. Information and Com-
putation, 132:109–176, 1997.

[Wad98] P. Wadler. The marriage of effects and monads. In International Conference on Func-
tional Programming, pages 63–74, Baltimore, September 1998. ACM.

[WF94] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115:38–94, 1994.

A Proof of soundness of β-conversion

Lemma A.1 If e −→β e′ and e ∈ Val, then e′ ∈ Val and has the same top-level structure of e.

Definition A.2 (1-step parallel reduction) 1-step parallel reduction e >p e′ is the relation on
E induced by the following inference rules

e >p e
e >p e′

λx.e >p λx.e′
e >p e′

run x.e >p run x.e′

e1 >p e′1
e2 >p e′2

e1 e2 >p e′1 e′2

e >p e′

e2 >p e′2

(λx.e) e2 >p e′[x: = e′2]

1-step parallel reduction is extended in the obvious way to stores µ ∈ S and descriptions d ∈ D, in

particular µ >p µ′ ∆
⇐⇒ dom(µ) = dom(µ′) and ∀m ∈ dom(µ).µ(m) >p µ′(m).

The following are well-known facts about 1-step parallel reduction.

Lemma A.3 substitutivity
e1 >p e′1 e2 >p e′2

e1[x: = e2] >p e′1[x: = e′2]
is admissible. e −→∗

β e′ iff e >∗
p e′.

Proposition A.4 If d1 >p d′1 and d1 =⇒ d2, then exists d′
2 s.t. d2 >p d′2 and d′1 =⇒ d′2.

Proof. By induction on the derivation of d1 =⇒ d2 and case analysis on the derivation of d1 >p d′1.
We consider the inductive steps covering the case of d1 being an application. If d1 ≡ d′1, then the
proof is immediate.

If
e1 =⇒ λx.e e[x: = e2] =⇒ d2

d1 ≡ e1 e2 =⇒ d2

and
e1 >p e′1 e2 >p e′2

d1 ≡ e1 e2 >p e′1 e′2 ≡ d′1
, then

• exists e′ s.t. e >p e′ and e′1 =⇒ λx.e′, by IH for e1 =⇒ λx.e

• e[x: = e2] >p e′[x: = e′2], by substitutivity for >p

• exists d′
2 s.t. d2 >p d′2 and d′1 =⇒ d′2, by IH for e[x: = e2] =⇒ d2 (and definition of

evaluation).

If
λx.e =⇒ λx.e e[x: = e2] =⇒ d2

d1 ≡ (λx.e) e2 =⇒ d2

and
e >p e′ e2 >p e′2

d1 ≡ (λx.e) e2 >p e′[x: = e′2] ≡ d′1
, then

• e[x: = e2] >p e′[x: = e′2] ≡ d′1, by substitutivity for >p

• exists d′
2 s.t. d2 >p d′2 and d′1 =⇒ d′2, by IH for e[x: = e2] =⇒ d2.

15

Definition A.5 (CBN and standard reduction) CBN reduction e >n e′ is the (functional)
relation induced by the following inference rules

(λx.e1) e2 >n e1[x: = e2]
e1 >n e′1

e1 e2 >n e′1 e2

Standard reduction e >s e′ is the relation induced by the following inference rules

x >s x c >s c
e >s e′

λx.e >s λx.e′
e >s e′

run x.e >s run x.e′

e >n e′

e′ >s e′′

e >s e′′

e1 >s e′1
e2 >s e′2

e1 e2 >s e′1 e′2

Standard reduction is extended in the obvious way to stores µ ∈ S and descriptions d ∈ D, in

particular µ >s µ′ ∆
⇐⇒ dom(µ) = dom(µ′) and ∀m ∈ dom(µ).µ(m) >s µ′(m).

Lemma A.6 (standardisation) e −→∗

β e′ iff e >s e′.

Proposition A.7 If e >n e′ and e′ =⇒ d, then e =⇒ d.

Proof. By induction on the derivation of e >n e′.

Proposition A.8 If d1 >s d′1 and d′1 =⇒ d′2, then exists d2 s.t. d2 >s d′2 and d1 =⇒ d2.

Proof. By lexicographic induction on the derivation of d′
1 =⇒ d′2 and on the derivation of d1 >s d′1.

We consider the inductive steps covering the case of d1 being an application.

If
e′1 =⇒ λx.e′ e′[x: = e′2] =⇒ d′2

d′1 ≡ e′1 e′2 =⇒ d′2
and

e1 >s e′1 e2 >s e′2

d1 ≡ e1 e2 >s e′1 e′2 ≡ d′1
, then

• exists e s.t. e >s e′ and e1 =⇒ λx.e, by IH for e′1 =⇒ λx.e′ and e1 >s e′1 (and Lemma A.1)

• e[x: = e2] >s e′[x: = e′2], by substitutivity for >s/−→∗

β

• exists d2 s.t. d2 >s d′2 and d1 =⇒ d2, by IH for e′[x: = e′2] =⇒ d′2 and e[x: = e2] >s e′[x: = e′2]
(and definition of evaluation).

If
e′1 =⇒ λx.e′ e′[x: = e′2] =⇒ d′2

d′1 ≡ e′1 e′2 =⇒ d′2
and

d1 >n d d >s d′1

d1 >s d′1
, then

• exists d2 s.t. d2 >s d′2 and d1 =⇒ d2, by IH for d′
1 =⇒ d′2 and d >s d′1 (and Lemma A.7).

B Basic properties of the type system

This sections states some properties of the type system.

Proposition B.1 < .1
Σ, Σ′ `

Σ `
< .2

Σ, Σ′; Γ ` J

Σ `
< .3

Σ; Γ, Γ′ ` J

Σ; Γ `

Proposition B.2 (Thinning)

T.Σ
Σ; Γ ` J Σ′ `

Σ′; Γ ` J
Σ ⊆ Σ′ T.Γ

Σ; Γ, ∆ ` J Σ; Γ′ `

Σ; Γ′, ∆ ` J
Γ ⊆ Γ′ ∧ dom(Γ′) ∩ dom(∆) = ∅

16

Proposition B.3 (Substitution)

S.X
Σ; Γ1, X : K, Γ2 ` J Σ; Γ1 ` u: K

Σ; Γ1, Γ2[X : = u] ` J [X : = u]
S.x

Σ; Γ1, x: u, Γ2 ` J Σ; Γ1 ` e: u

Σ; Γ1, Γ2 ` J [x: = e]

Proposition B.4 (Proper typing)
Σ; Γ ` e: τ

Σ; Γ ` τ : ∗

Proposition B.5 (Generation Lemma for Terms) The following implications hold

1. Σ; Γ ` c: τ ⇒ ∃τ ′.[Σ; Γ ` ∧c: τ ′ ∈ Σ ∧ τ =u
βη τ ′]

2. Σ; Γ ` x: τ ⇒ ∃τ ′.[Σ; Γ ` ∧x: τ ′ ∈ Γ ∧ τ =u
βη τ ′]

3. Σ; Γ ` (λx: τ1.e): τ ⇒ ∃τ2.[Σ; Γ, x: τ1 ` e: τ2 ∧ τ =u
βη (τ1 → τ2)]

4. Σ; Γ ` (e1e2): τ ⇒ ∃τ1, τ2.[Σ; Γ ` e1: (τ1 → τ2) ∧ Σ; Γ ` e2: τ1 ∧ τ =u
βη τ2]

5. Σ; Γ ` (ΛX : K.e): τ ⇒ ∃τ ′.[Σ; Γ, X : K ` e: τ ′ ∧ τ =u
βη (∀X : K.τ ′)]

6. Σ; Γ ` (e[u]): τ ⇒ ∃X, K, τ ′.[Σ; Γ ` e: (∀X : K.τ ′) ∧ Σ; Γ ` u: K ∧ τ =u
βη τ ′[X : = u]]

7. Σ; Γ ` (run X, x.e with τ): τ ′ ⇒ [Σ; Γ ` τ : ∗ ∧ Σ; Γ, ΓM ` e: XM [τ] ∧ τ =u
βη τ ′]

where X, x ≡ |ΓM | and ΓM is given in Figure 3.

C Proofs of type safety and compatibility

Theorem C.1 (type safety for instrumented sem.)

1. If ∆|Σ; e =⇒ d and ∆, Σ |= e: τ , then exist ∆′, Σ′, v and τ ′ s.t.

d ≡ (∆′|Σ′; v) and τ =u
βη ∀∆′.τ ′ and Σ ⊂ - Σ′ and ∆, ∆′, Σ′ |= v: τ ′

The type ∀∆′.τ ′ is defined by induction on the structure of ∆′ (see Figure 4), and by blurring
the distinction between constants and variables (as indicated in Remark 3.1)

2. If ∆|Σ; µ, e
r

=⇒ d and ∆, Σ |=r µ and ∆, Σ |= e: Mr[τ] then exist Σ′, µ′ and e′ s.t.

d ≡ (Σ′; µ′, e′) and Σ ⊂
r
- Σ′ and ∆, Σ′ |=r µ′ and ∆, Σ′ |= e′: τ

Proof. By induction on the derivation of an evaluation judgement, and by applying the generation
lemma to the typing assumption. We consider in detail few cases.

•
(1) ∆|Σ; e =⇒ ∅|Σ′; or [u]

∆|Σ; e [u] =⇒ ∅|Σ′; or [u u]
|u| < 2o

from the assumption ∆, Σ |= e[u]: τ and the generation lemma exist X , K, τ1 such that:

(2) ∆, Σ |= e: (∀X : K.τ1) (3) ∆, Σ |= u: K (4) τ =u
βη τ1[X : = u]

from (2) and the IH for (1) exists τ2 such that

(5) ∆, Σ′ |= or[u]: τ2 (6) (∀X : K.τ1) =u
βη τ2 (7) Σ ⊂ - Σ′

from (5) and (6) by the formation rule (conv) one has

(8) ∆, Σ′ |= or[u]: (∀X : K.τ1)

from (3) by thinning one has

(9) ∆, Σ′ |= u: K

from (8) and (9) by the formation rule (∀E) follows

(10) ∆, Σ′ |= or[u u]: τ1[X : = u]

from (4), (10) and (7), taking τ ′ ≡ τ1[X : = u], follows the thesis.

17

•
(1) ∆|Σ; e =⇒ ∅|Σ′; v

∆|Σ; e[u] =⇒ err
v 6≡ or[u] with |u| < 2o

from the assumption ∆, Σ |= e[u]: τ and the generation lemma exist X , K, τ1 such that:

(2) ∆, Σ |= e: (∀X : K.τ1) (3) ∆, Σ |= u: K (4) τ =u
βη τ1[X : = u]

from (2) and the IH for (1) exists τ2 such that

(5) ∆, Σ′ |= v: τ2 (6) (∀X : K.τ1) =u
βη τ2 (7) Σ ⊂ - Σ′

from (5) and (6) by the formation rule (conv) one has

(8) ∆, Σ′ |= v: (∀X : K.τ1)

however (8) is in contradiction with the assumption v 6≡ or[u] with |u| < 2o.

In fact the remaining possibilities for v, i.e.

λx: u.e | `r,m | or[u] e where |u| = 2o and |e| ≤ #o

cannot have a polymorphic type, only a functional type or one of the form Rr[τ] or Mr[τ].

Therefore the thesis follows, because this case of the proof by induction cannot occur.

•
(1) ∆, Cm: K|Σ; e[X : = Cm] =⇒ ∆′|Σ′; v

∆|Σ; ΛX : K.e =⇒ Cm: K, ∆′|Σ′; v
(2) m fresh

from the assumption ∆, Σ |= ΛX : K.e: τ and the generation lemma exists τ1 such that:

(3) ∆, Σ; X : K |= e: τ1 (4) τ =u
βη (∀X : K.τ1)

from (3) and (2) by the substitution lemma

(5) ∆, Cm: K, Σ |= e[X : = Cm]: τ1[X : = Cm]

from (5) and the IH for (1) exists τ2 such that

(6) τ1[X : = Cm] =u
βη (∀∆′.τ2) (7) ∆, Cm: K, ∆′, Σ′ |= v: τ2 (8) Σ ⊂ - Σ′

from (4) and (6) by properties of =u
βη

(9) τ =u
βη (∀Cm: K, ∆′.τ2)

from (9), (7) and (8), taking τ ′ ≡ τ2, follows the thesis.

•
(1) ∆|Σ; e =⇒ ∅|Σ′; retr[τ

′] e′

∆|Σ; µ, e
r

=⇒ Σ′; µ, e′

from the assumption ∆, Σ |= e: Mr[τ] and the IH for (1) exists τ1 such that:

(2) Mr[τ] =u
βη τ1 (3) ∆, Σ′ |= retr [τ

′] e′: τ1 (4) Σ ⊂ - Σ′

from (2) and (3) by the generation lemma (and properties of =u
βη

(5) ∆; Σ′ |= e′: τ ′ (6) τ ′ =u
βη τ

from (3), (4) and the assumption ∆, Σ |=r µ follows that

(7) ∆, Σ′ |=r µ

from (5) and (6) by the formation rule (conv) one has

(8) ∆, Σ′ |= e′: τ

from (4), since Σ ⊂ - Σ′ implies Σ ⊂
r
- Σ′, follows that

(9) Σ ⊂
r
- Σ′

from (9), (7) and (8) follows the thesis.

Theorem C.2 (compatibility) For every ∆, Σ, e, µ, r and d′ the following implications hold

18

• |e| =⇒ d′ implies exists d s.t. ∆|Σ; e =⇒ d and (d′ ≡ |d| or d ≡ err)

• |µ|, |e| =⇒ d′ implies exists d s.t. ∆|Σ; µ, e
r

=⇒ d and (d′ ≡ |d| or d ≡ err)

Proof. The implications are proved by lexicographic induction on the derivation of an evaluation
judgement |e| =⇒ d′ |µ|, |e| =⇒ d′ for the dynamic semantics, and the size of e (µ, e). We
consider in detail one case, to illustrate why we need the lexicographic induction.

Suppose that |e| ≡ e′1 e′2 and
e′1 =⇒ λx.e′ e′[x: = e′2] =⇒ d′

e′1 e′2 =⇒ d′
there are 3 possibilities for e

e1 e2 therefore |e1| ≡ e′1and |e2| ≡ e′2. In this case we apply the IH to ∆, Σ, e1 and (λx.e′). In
fact, the derivation of the dynamic evaluation judgement e′1 =⇒ λx.e′ is shorter.

Therefore we have a d s.t. ∆|Σ; e1 =⇒ d and (d′ ≡ |d| or d ≡ err).

If d ≡ (∅|Σ1; λx: u.e) and thus |e| = e′, then we proceed (and reach the desired conclusion)
by applying the IH to ∆, Σ1, e[x: = e2] and d′. In fact, |e[x: = e2]| ≡ e′[x: = e′2] and the
derivation of the dynamic evaluation judgement e′[x: = e′2] =⇒ d′ is shorter.

In all the other cases, namely d ≡ err or d ≡ (∆′|Σ1; λx: u.e) with ∆′ 6≡ ∅, we get
∆|Σ; e1 e2 =⇒ err.

ΛX : K.e therefore |e| ≡ e′1 e′2. In this case we apply the IH to ∆, Cm: K (with m fresh), Σ, e[X : = Cm]
and d′. In fact, we have reduced the size of the term (from ΛX : K.e to e[X : = Cm]), while
the dynamic evaluation judgement is unchanged (since |ΛX : K.e| ≡ |e[X : = Cm]|).

Therefore we have a d s.t. ∆, Cm: K|Σ; e[X : = Cm] =⇒ d and (d′ ≡ |d| or d ≡ err).

If d ≡ (∆′|Σ′; v) and |d| = d′, then we derive ∆|Σ; ΛX : K.e =⇒ Cm: K, ∆′|Σ′; v, and obvi-
ously |Cm: K, ∆′|Σ′; v| ≡ d′. Otherwise we get ∆|Σ; ΛX : K.e =⇒ err.

e[u] therefore |e| ≡ e′1 e′2. In this case we apply the IH to ∆, Σ, e and d′. In fact, we have reduced
the size of the term (from e[u] to e), while the dynamic evaluation judgement is unchanged
(since |e[u]| ≡ |e|).

Therefore we have a d s.t. ∆|Σ; e =⇒ d and (d′ ≡ |d| or d ≡ err).

If d ≡ (Cm: K, ∆′|Σ′; v) and |d| = d′, then we derive ∆|Σ; e[u] =⇒ ∆′|(Σ′; v)[Cm: = u], and
obviously |∆′|(Σ′; v)[Cm: = u]| ≡ d′. Otherwise we get ∆|Σ; e[u] =⇒ err.

Contents

1 Dynamic semantics and β-conversion 3

2 Type system a la Church 6

2.1 Intermezzo: types for encapsulation . 6

3 Instrumented semantics 9

3.1 Type safety and compatibility . 11

4 Conclusions and related work 13

A Proof of soundness of β-conversion 15

B Basic properties of the type system 16

C Proofs of type safety and compatibility 17

19

