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By data type one usually means a set of objects of the same kind, suitable for
manipulation by a computer program. Of course, computers actually manipulate
formal representations of objects. The purpose of the mathematical semantics of
programming languages, however, is to characterize data types (and functions on
them) in a way which is independent of any specific representation mechanism.
So the objects one deals with are mostly elements of structures borrowed from
different areas of mathematics, whose meaning is well understood and does not
depend on the practice of programming.

A categorical definition of data types, e.g. by universal properties, seems even
more suitable to this goal, because it allows us to abstract not only from a specific
computer representation, but also from the details of the mathematical structures.
Unfortunately, sometimes it’s not possible to give a categorical definition of a data
type, because some relevant concept related to it does not have a counterpart at
the abstract categorical level.

A concept, which is often ignored at a categorical level, is partiality. In Sec-
tion 1 we discuss the notion of partial map in very general terms. The usual
categorical definition is modified slightly to allow us to consider only those maps
whose domains are in a suitable sense admissible subobjects. A notion of partial
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cartesian closed category (pCCC ) is introduced, which provides the axiomatic
framework to discuss higher types containing partial maps. This, like the original
notion of cartesian closed category, is given by a strictly categorical definition,
and therefore is relevant to the consideration of partial maps between cpos and
other mathematical structures, as well as sets.

Quite often, in the mathematical semantics of programming languages we lose
the notion of effective computability, which has an intrinsic operational character.
This notion may be recovered by a suitable definition of computable element.
However, it is worth pursuing a general notion of effectiveness over abstract data
types, since computable elements and maps provide the regular interpretation of
programming constructs. Effectiveness for functions on natural numbers is well
understood, a simple way of extending it to abstract data types is to establish
a correspondence between natural numbers and the elements of an abstract data
type, so that the recursive functions R̊ induce a natural definition of effective
morphism:

Definition 1 Numbered Sets and Effective Morphisms

• A = (A, e̊A) is a numbered set
∆
⇐⇒ e̊A: ω → A is surjective

• If A and B are numbered sets, then a total function g: A→ B is an effect-

ive morphism from A to B
∆
⇐⇒ ∃f ∈ R̊.̊eB ◦ f = g ◦ e̊A

Since it’s technically more convenient to have also a counterpart for the empty
set, we will denote by E̊N the category of numbered sets and effective morphisms
extended with a strict initial object 0̊ (see [Ers75]). In the above definition of
numbered set we haven’t assumed any structure on A, so that E̊N may be con-
sidered the universe of all effective objects (independently from the meaning of
effectively given data type). For numbered sets there is a natural notion of partial
morphism, suggested by the partial recursive functions P̊R:

Definition 2 Partial Effective Morphisms
If A and B are numbered sets, then a partial function g: A ⇀ B is a partial

effective morphism from A to B
∆
⇐⇒ ∃f ∈ P̊R.̊eB ◦ f = g ◦ e̊A

The categories one needs for interpreting high level programming languages must
possess good closure properties so that the existence of objects, which are form-
ally given by general definitional tools, is a priori assured. For instance, we
require closure w.r.t. cartesian products, function spaces (and other data type
constructions), since these constructions are commonly used in the design of pro-
gramming languages. But unfortunately, E̊N doesn’t have function spaces. For
instance, there is no effective and uniform way of numbering E̊N (ω, ω) (where ω
is the numbered set (ω, i̊dω)). As a matter of fact E̊N is far from being cartesian
closed. For this reason, in Section 2 we extend (in a straightforward way) the
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definition of numbered set and (partial) effective morphism to obtain the pCCC
(as well as CCC ) G̊EN of generalized numbered sets, and show that it is a good
extension of E̊N . In that section we also abstract from the properties of partial
recursive functions, and relativize the notion of numbered sets to an acceptable
set of partial functions (see Def 24).

In [Mul81] there is another good extension of E̊N , the recursive topos R,
such that E̊N is embedded in R and the embedding preserves limits (finite colim-
its) and function spaces. In Section 4 we introduce a topos similar to R and give
a topos-theoretic characterization of G̊EN , following quite closely Chapter 6 of
[Ros86]. From this characterization and general facts in topos theory (see [Hyl82]
Section 5 and [Ros86] Chapter 6), one can easily derive the properties of G̊EN ,
that in Section 2 are proved by elementary means.

In Section 3 we compare a type structure in G̊EN with other ones, introduced
in connection with Recursion Theory in higher types. From this comparison it
turns out that morphisms in G̊EN are similar to Banach-Mazur functionals (see
[Rog67]), that is we lose the uniformity property of effective morphisms when we
extend E̊N to G̊EN .

A different proposal for a universe of effective objects is the Effective Topos F,
which is based on the realizability interpretation of logical connectives, and has
been extensively investigated in [Hyl82] and [McC84]. In F uniformity holds but
we have to give up numberings. E̊N can be identified with a full sub-category
of F, but the embedding of E̊N in F doesn’t seem to preserve function spaces.
A comparison between the Recursive and the Effective Topos can be found in
[Ros86].

Throughout the paper, category theory is used in a fairly elementary way
(see [BW85] Chapter 1), the only exception is Section 4, which relies on some
knowledge of Grothendieck toposes (see [MR77], [Joh77]).

Î ÏÑÐ ÈPÇXÍ Ð¢ÒÂÓ É¢È%ÔÖÕÖÍ�×PØ ×

When dealing with computable functions or with the semantics of programs parti-
ality arises naturally. In this section we develop an abstract framework for partial
functions, namely categories with domains (see Def 4). In defining partial morph-
isms we will simply mimic the set-theoretic definition of partial map (see also
[Obt86], [Ros86] and [Mog86]). In the literature there exist other approaches to
formalizing the concept of category of partial morphisms (see bibliography) and
an overview of them can be found in [RR86].

After the basic definitions and some examples of categories of partial morph-
isms we consider the relations between data types and partial morphisms. More
precisely, we investigate whether the operations associated to data types can be ex-
tended naturally to partial morphisms, and introduce new data types (lifting and
partial function spaces) in connection with partial morphisms. These data types
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have already been introduced in denotational semantics, but their definitions were
given by set-theoretic constructions, that work only in particular categories, and
do not stress their abstract properties. We define partial cartesian closed categor-
ies (pCCC ), that are the natural counterpart of cartesian closed categories, when
partial function spaces are considered. There is also a variant of the lambda-
calculus, the partial lambda-calculus, corresponding to the equational theory of
partial cartesian closed categories (see [Mog86], [Ros86], [CO87] and [Mog87]).

Another notion related to partial morphisms is that of complete object (see
Def 20), introduced in [Ers73]. Informally a complete object is like a set with an
element ⊥ to represent undefined.

An elementary approach to partial morphisms, complete objects and partial
function spaces (in concrete categories of partial morphisms) can be found in
[LM84a].

Ù�Ú+Ù ÛÝÜPÞ�ß�à�á'â�ãLß�äÃåWãÄÞbæèçéá'êëÜ�ãLì«ä
By analogy with the set-theoretic definition of partial map (from a to b) as a map
from a subset of a to b, in a category C, we will identify a partial morphism from
an object a to an object b with a morphism from a subobject of a to b.

Notation. We fix some notation, for basic categorical notions (see [BW85]
Chapter 1)

• i: a ↪→ b means that i is a mono from a to b

• [i: d ↪→ a] is the subobject of a corresponding to i, i.e. the class of monos
isomorphic to i. S̊ubObj(a) is the class of subobjects of a

• If f : a → b and [i: d ↪→ b] is a subobject of b, then f−1([i]) is the inverse

image of [i] along f , i.e. the subobject [i′] of a s.t.

a
i′

←↩ d′ f ′

→ d is a pullback of a
f
→ b

i
←↩ d for some f ′

Definition 3 Partial Morphisms in Categories
A witness for a partial morphism from a to b is a pair (i, f) s.t. i: d ↪→ a and

f : d→ b, for some object d; and two witnesses (i1, f1) and (i2, f2) are isomorphic
∆
⇐⇒ there exists an isomorphism i s.t. i1 = i2 ◦ i and f1 = f2 ◦ i.

A partial morphism from a to b is an equivalence class of isomorphic wit-
nesses for a partial morphism from a to b

It’s easy to show that if two witnesses are isomorphic, then the isomorphism i is
unique.

Notation. We fix some notation for partial morphisms

• g: a ⇀ b means that g is a partial morphism from a to b

• p̊(i, f) is the partial morphism corresponding to the witness (i, f)
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• p̊(i1, f1) ≤ p̊(i2, f2) iff there exists i s.t. i1 = i2 ◦ i and f1 = f2 ◦ i

If the i above exists, then it’s a mono and is unique. Moreover, ≤ is a partial
order

• the domain of a p̊(i, f): a ⇀ b is the subobject [i] of a

• the composition of p̊(i1, f1): a ⇀ b and p̊(i2, f2): b ⇀ c is the partial morph-
ism p̊(i1 ◦ i, f2 ◦ f): a ⇀ c

where d1
i
←↩ d

f
→ d2 is a pullback of d1

f1→ b
i2
←↩ d2 (therefore, composition is

well-defined iff such a pullback exists)

In general partial morphisms do not form a category, because composition may be
undefined. Moreover, they are usually more than the admissible ones, for instance
there are partial morphisms in E̊N that are not effective. The criteria we use to
describe the admissible partial morphisms is to impose some constraints on the
class of admissible subobjects. For these reasons categories of partial morphisms
will be defined by giving both a category and a domain structure, i.e. a collection
of subobjects with certain properties:

Definition 4 Domain Structure and Category of Partial Morphisms

M
∆
= 〈M(a)|a ∈ C〉 is a domain structure on C

∆
⇐⇒

1. M(a) ⊆ S̊ubObj(a)

2. [̊ida] ∈ M(a)

3. [i′: c ↪→ b] ∈ M(b), [i: b ↪→ a] ∈ M(a) =⇒ [i ◦ i′: c ↪→ a] ∈ M(a)

4. f : a→ b, m ∈ M(b) =⇒ f−1(m) ∈ M(a)

and therefore f−1(m) exists

(C,M) is called a category with domains (dC). P̊ (C,M) is the category of

partial morphisms (in C) with domain in M

When C and M are clear from the context, we write a í p̊ b for a is a retract of

b in P̊ (C,M).
The properties of a domain structure are (necessary and) sufficient to make

sure that P̊ (C,M) is a category. More precisely, properties (3) and (4) imply that
composition of partial morphisms in P̊ (C,M) is well-defined, while property (2)
implies that the identities p̊(̊ida, i̊da) are in P̊ (C,M) and that there is a canonical

embedding of C into P̊ (C,M), which maps f : a → b to p̊(̊ida, f): a ⇀ b. The
partial order ≤ on partial morphisms enjoys the following properties:

Proposition 5 If P̊ (C,M) is a category of partial morphisms, then

1. total morphisms (i.e. those of the form p̊(̊id, f)) are maximal
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2. composition ◦ : P̊ (C,M)(a, b)× P̊ (C,M)(b, c)→ P̊ (C,M)(a, c) of partial
morphisms is monotonic

Both Obtulowicz and Rosolini, starting from the simple-minded definition of
category of partial morphisms presented above, develop equational axiomatiza-
tions for categories of partial morphisms. In general the categories satisfying
these axioms are not of the form P̊ (C,M). However, they can always be em-
bedded fully and faithfully in a category of the form P̊ (C,M) (see [Ros86] and
[RR86] for details).

Any category C has a trivial domain structure, namely M(a) = {[̊ida]},
such that P̊ (C,M) is isomorphic to C.

Example. The simplest example of a non trivial category of partial morph-
isms is the category of sets and partial functions, which corresponds to the domain
structure 〈S̊ubObj(a)|a ∈ S̊ET 〉 over S̊ET . In fact, if C has all finite limits, then
〈S̊ubObj(a)|a ∈ C〉 is a domain structure over C, actually it’s the biggest.

Most of the categories C we consider are concrete, i.e. the behaviour of a
morphism is uniquely determined by its behaviour on global elements; so that
a morphism f : a → b in C can be identified with a function from C (̊1, a) to
C (̊1, b). For categories with domains, we strengthen the definition of concreteness
by requiring partial morphisms with domain inM (in particular total morphisms)
to be uniquely determined by their behaviour on global elements:

Definition 6 Concrete Category with Domains

(C,M) is a concrete dC
∆
⇐⇒ C has a terminal object 1̊ and

∀a, b ∈ C.∀f, g: a ⇀ b.(∀h: 1̊→ a.f ◦ h = g ◦ h) −→ f = g

If (C,M) is concrete, then P̊ (C,M) can be treated as a category of sets and
partial functions.

Example. In the category of numbered sets E̊N there is a natural counterpart
to the recursively enumerable (r.e.) sets, namely:

Definition 7 X ⊆ A is an r.e.-subset of A
∆
⇐⇒ e̊−1

A (X)(⊆ ω) is an r.e.-set

Every nonempty r.e.-subset X of A can be numbered by e̊A ◦ f , where f ∈ R̊

is an enumeration of e̊−1
A (X), so X

∆
= (X, e̊A ◦ f) becomes a numbered set and

[inclX : X ↪→ A] becomes a subobject of A. On the other hand, if X is empty
we can take the subobject [̊0A: 0̊ ↪→ A], where 0̊A is the unique morphism from
the strict initial object to A. Therefore, for every r.e.-subset X of A there is a
subobject of A, we call it the r.e.-subobject corresponding to X. It’s easy to
show that the collection Mr.e. of r.e.-subobjects is a domain structure and that
P̊ (E̊N ,Mr.e.) is isomorphic to the category of numbered sets and partial effective
morphisms.

Example. Another category with a natural domain structure on it is the
category of topological spaces T̊ op:
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Definition 8 If X is a topological space, then m is an open subobject of X
∆
⇐⇒ m is the subobject corresponding to an open subset of X with the induced
topology

It’s easy to show that the collectionMopen of open subobjects is a domain struc-

ture. A simple way to represent a partial morphism g: X ⇀ Y in P̊ (T̊ op,Mopen)
is by a partial map from X to Y s.t. the inverse image g−1(A) of an open subset
A of Y is an open subset of X. A full sub-category of T̊ op is the category C̊PO
of partial orders complete w.r.t. lubs of ω-chains and monotonic maps preserving
lubs of ω-chains (see [Plo85]). We don’t assume the existence of a least element in
a cpo, because we want an open subset of a cpo (with the induced partial order)
to be a cpo, so thatMopen restricted to C̊PO is a domain structure over C̊PO.

Ù�ÚÄî çéÜPÞ�ÜïÞ�ð�ñSß�äWÜ�ì òóñ·Ü�âjÞ�ã�Ü�ô0êõá�âAñ·æ�ã¡äjêõä
Having introduced partial morphisms, we have to check whether they fit into the
categorical constructions corresponding to the usual data types, or whether some
modifications are required. We will investigate the most relevant data types,
namely: products, function spaces, partial function spaces and lifting. Every
data type will be specified by a universal property. The categorical definitions
of product and function space are already familiar; however, the operations asso-
ciated with them need to be extended to partial morphisms in order to give an
interpretation of terms (programs) as partial morphisms in a denotational style.
This extension is not always possible for the abstraction operation Λ̊( ) associated
with function spaces, therefore, in the context of categories of partial morphisms,
function spaces will be replaced by partial function spaces. Throughout this sec-
tion (C,M) denotes a category with domains.

The usual data types are defined without any reference to partial morphisms,
and we recall their definition in order to fix the notation:

Definition 9 Standard data types

• 1̊ is a terminal object
∆
⇐⇒

for any a ∈ C there exists unique !: a→ 1̊

• a
π1← a× b

π2→ b is a product of a and b
∆
⇐⇒

for any f : c → a and f ′: c → b there exists unique 〈f, f ′〉: c → a × b s.t.
f = π1 ◦ 〈f, f ′〉 and f ′ = π2 ◦ 〈f, f ′〉.

• (a→ b)× a
e̊val
→ b is a function space from a to b

∆
⇐⇒

for any f : c × a → b there exists unique Λ̊(f): c → (a → b) s.t. f =
e̊val ◦ (Λ̊(f)× i̊da)
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In order to extend the operations on data types to partial morphisms we examine
what happens in the category of sets and partial functions. If g: c ⇀ a and g ′: c ⇀
b, then we take 〈g, g′〉 to be the most defined partial function h s.t. π1 ◦h ≤ g and
π2 ◦ h ≤ g′, i.e.

〈g, g′〉(x)
∆
=

{

〈g(x), g′(x)〉 if both g(x) and g′(x) are defined
undefined otherwise

In general

Definition 10 If p̊(i1, f1): c ⇀ a and p̊(i2, f2): c ⇀ b, then

〈p̊(i1, f1), p̊(i2, f2)〉
∆
= p̊(i, 〈f1 ◦ i′1, f2 ◦ i′2〉)

where d1

i′
1

←↩ d
i′
2

↪→ d2 is a pullback of d1
i1
↪→ c

i2
←↩ d2 and i

∆
= i1 ◦ i′1 = i2 ◦ i′2 (the

subobject [i] is called the intersection of [i1] and [i2])

The existence of these subobjects follows from properties 3 and 4 for a domain
structure (see Def 4). Products in P̊ (C,M) are quite different from those in C,
and they do not seem to be a natural data type. Unlike products, equalizers do
not present any problem, in fact equalizers in C are also equalizers in P̊ (C,M).
In S̊ET one can extend Λ̊( ) to partial morphisms, namely if g: c× a ⇀ b, then
we take Λ̊(g) to be the most defined partial function h s.t. e̊val(h× i̊da) ≤ g, i.e.

Λ̊(g)(x)
∆
=

{

λy: a.g(x, y) if g(x, y) is defined for all y ∈ a
undefined otherwise

However, in general it is not possible to extend Λ̊( ) to partial morphisms, so
that Λ̊(g: c × a ⇀ b) is the most defined h: c ⇀ (a → b) s.t. e̊val(h × i̊da) ≤ g,
and at the same time Λ̊( ) is natural in c, i.e. is a natural transformation from
P̊ (C,M)( ×a, b) to P̊ (C,M)( , a→ b). For instance, in C̊PO the first condition
implies that the domain of Λ̊(g:X × Y ⇀ Z) is the interior of {x ∈ X|∀y ∈
Y.g(x, y) is undefined}, but then Λ̊ cannot be natural, because the inverse image
of the interior of a subset S (along a continuous map f) is not necessarily the
interior of the inverse image of S. This problem does not arise in the case of
partial function spaces, because p̊Λ( ) is already defined on partial morphisms.

Definition 11 Partial function space and lifting

• (a ⇀ b)× a
p̊eval
⇀ b is a partial function space from a to b

∆
⇐⇒

for any g: c × a ⇀ b there exists unique p̊Λ(g): c → (a ⇀ b) s.t. g =
p̊eval ◦ (p̊Λ(g)× i̊da)

• b⊥
o̊pen
⇀ b is a lifting of b

∆
⇐⇒

for any g: c ⇀ b there exists unique g: c→ b⊥ s.t. g = o̊pen ◦ g
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The previous considerations concerning function spaces suggest that we re-
place them with partial function spaces and this leads to the following definition:

Definition 12 pCCC

(C,M) is a partial cartesian closed category (pCCC)
∆
⇐⇒ C has a ter-

minal object, products and partial function spaces

The familiar notion of CCC is just a degenerate instance of pCCC , corresponding
to a trivial domain structure.

In the category of sets and partial functions, partial function spaces are what
one expects and lifting corresponds to adding an extra element (representing
undefined) to a set. Lifting and partial function spaces can be defined one in
terms of the other, namely:

Proposition 13

• o̊pen
∆
= (̊1 ⇀ b)

〈̊id,!〉
→ (̊1 ⇀ b)× 1̊

p̊eval
⇀ b is a lifting of b

• p̊eval
∆
= (a→ b⊥)× a

e̊val
→ b⊥

o̊pen
⇀ b is a partial function space from a to b

We haven’t considered coproducts (more generally colimits) in relation to partial
morphisms, but they do not present any problem, and in fact

Proposition 14 Colimits and Partial Morphisms
If each object of C has a lifting, then the canonical embedding of C in P̊ (C,M)

has a right adjoint and therefore it preserves colimits

Proof

The right adjoint of the canonical embedding is the lifting functor ⊥: P̊ (C,M)→
C, s.t. ⊥: a 7→ a⊥ and ⊥: f 7→ f ◦ o̊pen

Proposition 15 In a pCCC with coproducts the following (natural) isomorph-
isms hold:

• a× (b + c) ∼= (a× b) + (a× c)

• a→ (b ⇀ c) ∼= (a× b) ⇀ c

• (a + b) ⇀ c ∼= (a ⇀ c)× (b ⇀ c)

If in the proposition above one replaces partial function spaces with function
spaces, one gets the usual isomorphisms that hold in cartesian closed categories
(see [LS86]), except a → (b × c) ∼= (a → b) × (a → c), which doesn’t have a
counterpart in pCCC .

Since the domain structureM plays a key role in defining partial morphisms,
it’s important to have a data type that representsM:



10

Definition 16 Dominance
A subobject true of Σ is a dominance

∆
⇐⇒ true ∈ M(Σ) and for any m ∈

M(a) there exists unique φm: a→ Σ s.t. m = φm
−1(true)

In the category of sets and partial functions a dominance is the same as a subobject
classifier. The characteristic feature of a dominance is the natural isomorphism
M( )

.
∼= C( , Σ), whereM is the functor from C o̊p to S̊ET s.t. M(f : a→ b): m ∈

M(b) 7→ f−1(m) ∈ M(a). A dominance is definable by more familiar data types:

Proposition 17 [̊id̊1: 1̊ ↪→ 1̊⊥] ∈ M(̊1⊥) is a dominance

Therefore a pCCC always has a dominance.
In [Sco80] the category S̊h(C) of presheaves over C is proposed as conservative

cartesian closed extension of C, because S̊h(C) has all (small) limits and function
spaces and the Yoneda embedding of C in S̊h(C) preserves limits and function
spaces that already exist in C. Therefore, a construction in C involving only
limits and function spaces gives the same result in S̊h(C). Moreover, if some
intermediate steps of a construction require limits or function spaces that do not
exist in C, then we can always imagine that it is carried out in S̊h(C). A similar
conservative extension is possible for categories with domains (see [Ros86]):

Proposition 18 Domain Structure over Presheaves
If (C,M) is a category with domains, then there exists a domain structure

S̊h(M) over the category S̊h(C) of presheaves on C s.t. (S̊h(C), S̊h(M)) has a
dominance and the Yoneda embedding Y̊ embedsM fully and faithfully in S̊h(M),
i.e. S̊h(M)(Y̊a) = {[Y̊i]|[i] ∈ M(a)}

In particular, the Yoneda embedding Y̊: C → S̊h(C) can be extended to partial
morphisms (Y̊: p̊(i, f) 7→ p̊(Y̊i, Y̊f)), so that it becomes a full and faithful em-
bedding of P̊ (C,M) in P̊ (S̊h(C), S̊h(M)). In a topos with a dominance one
can define lifting and partial function spaces (as shown in [Ros86]), therefore,
(S̊h(C), S̊h(M)) is a pCCC .

Proposition 19 The Yoneda embedding preserves lifting and partial function
spaces

Ù�Ú�ö ÛÝá'êïñ«ôLßDÞ�ß÷á�ø�ùGß�ú)ÞGä
A notion related to partial morphisms is that of complete object (see [Ers73]).
The characteristic feature of a complete object a is that every partial morphism
with codomain a can be extended to a total morphism. In set-theoretic terms this
means that a has an element representing undefined.

Definition 20 Complete Object

An object a of a dC (C,M) is complete
∆
⇐⇒

for all g: c ⇀ a there exists f : c→ a s.t. g ≤ f (i.e. f extends g)
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If we restrict attention to complete objects, partial morphisms become redundant,
because we can always extend them to total morphisms. The sub-category of
complete objects is closed w.r.t. most of the data type constructions:

Proposition 21 Complete Objects and Data Types

1. if a í b in C and b is complete, then so is a

2. if a and b are complete, then a× b is complete

3. if b is complete, then a→ b is complete

4. a ⇀ b is complete

Proof

• Suppose that a í b via (in, out). Given f : c ⇀ a, let g be an extension
of in ◦ f , then out ◦ g extends f

• Given f : c ⇀ a× b, let g be an extension of π1 ◦ f and h an extension
of π2 ◦ f , then 〈g, h〉 extends f

• Given f : c ⇀ (a → b), let g be an extension of e̊val ◦ (f × i̊da), then
Λ̊(g) extends f

• If f : c ⇀ (a ⇀ b), then p̊Λ(p̊eval ◦ (f × i̊da)) extends f

There is a simpler way of checking whether an object is complete, provided the
lifting exists:

Proposition 22 a is complete ⇐⇒ a í a⊥ in C

Proof

If a is complete, then there exists f : a⊥ → a extending o̊pen: a⊥ ⇀ a. But

i̊da = o̊pen ◦ i̊da ≤ f ◦ i̊da, because composition is monotonic; since i̊da is

maximal, the equality f ◦ i̊da = i̊da must hold. In other words a í a⊥ in C.

a⊥ is complete (by Prop 13 and Prop 21 (4)), therefore, by Prop 21 (1) and
a í a⊥, a is complete

In categories like E̊N and C̊PO, complete objects have particularly interesting
properties. For instance the complete objects in C̊PO are exactly the cpos with
a least element, and therefore they have a least fixpoint operator. In E̊N the
complete objects satisfy a property similar to the II Recursion Theorem for partial
functions:

• for all f : A→ A in E̊N there exists an a ∈ A s.t. f(a) = a
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This property is actually characteristic of the so called precomplete objects (see
[Ers73]):

Definition 23 An object A of E̊N is precomplete
∆
⇐⇒

for all g: ω ⇀ A there exists f : ω → A s.t. f extends g

Example. The numbered set (P̊R, φ) of partial recursive functions (φ is the
standard gödel-numbering, which maps an index for a partial recursive function
to the corresponding partial recursive function) is a complete object in E̊N .

Example. ([Vis80]) Take an elementary bijective coding d e of Λ (the set of
λ-terms) in ω. For any λ-theory T (considered as an equivalence relation over Λ)

the term model MT
∆
= Λ/T for T can be numbered by the function λT , which maps

the coding dMe for M to the equivalence class [M ]T . The resulting numbered set
(MT , λT ) is always precomplete, but in general is not complete.

û üóý Æ ý È Ð,Ò ÍHþ ý Ê ÿ Ë[Ø � ý È ý Ê � ý Ç�×

In the category of numbered sets E̊N , the lack of (partial) function spaces (and
also equalizers) is due to the fact that sometimes there is no onto numbering of
E̊N (A, B). For instance, in the case of total recursive functions we don’t have
an effective numbering, as for the partial ones. Nevertheless we have effective
functions from ω to R̊, like λx.λy.f(〈x, y〉) where f ∈ R̊ and 〈 , 〉 is some ef-
fective coding for pairs of natural numbers, but none of these functions can be
onto. This observation leads to the definition of Generalized Numbered Sets (see
[LM84a] and Def 29). In this section we prove that the category G̊EN of Gen-
eralized Numbered Sets is a pCCC with all limits, colimits and function spaces.
Moreover, we show that E̊N is embedded fully and faithfully in G̊EN and that the
embedding preserves limits, finite colimits and (partial) function spaces already
existing in E̊N . Therefore, G̊EN is a conservative extension of E̊N with good
closure properties.

The definitions of E̊N and G̊EN rely on few simple properties of partial
recursive functions, so we can relativize both of them w.r.t. an acceptable set L of
partial endofunctions on a set A. This leaves us with some degree of freedom in
choosing the set of computable functions. For instance the set of partial functions
representable in a Uniform Reflexive Structure1 is acceptable and can replace the
partial recursive functions.

Notation. In the sequel we use the following notational conventions

• A denotes a non-empty set

1i.e. a partial combinatory algebra with a combinator IF for testing equality (IFxyuv
∆
=

if x = y then u else v). URS were proposed to capture some properties of partial recursive
functions, like the s-m-n Theorem and the II Recursion Theorem
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• L denotes an acceptable set (see Def 24), unless stated otherwise

• If op is an n-ary operation, and X1, . . . , Xn are sets, then op(X1, . . . , Xn)
denotes the set {op(x1, . . . , xn)|x1 ∈ X1, . . . , xn ∈ Xn}. Sometimes we will
write x instead of singleton {x}

• K̊x is the constant function (λy ∈ Y.x), where the set Y will be apparent
from the context

Definition 24 Acceptable Set

L ⊆ A ⇀ A is acceptable
∆
⇐⇒

1. L is a monoid, i.e. L ◦ L ⊆ L and i̊dA ∈ L

2. L has all constants functions, i.e. K̊a ∈ L for any a ∈ A

3. there is an effective coding of pairs w.r.t. L, i.e. (A × A) í p̊ A via

(in×, out×) so that pi
∆
= πi ◦ out× ∈ L and in× ◦ 〈L, L〉 ⊆ L

ẘhen there is a coding of pairs, we will write 〈x, y〉 instead of
in×(〈x, y〉), and it will be apparent from the context whether 〈x, y〉
denotes a real pair or its coding

4. there is an effective coding of sum w.r.t. L, i.e. A+A í p̊ A via (in+, out+)

so that ini
∆
= in+ ◦ i̊nji ∈ L and (L t L) ◦ out+ ⊆ L

i̊f f and g are functions whose domain is included in A, then we
will write f ∨ g for (f t g) ◦ out+

5. L is closed w.r.t. definition by cases, i.e.

switch
∆
= in+ ◦ (in× + in×) ◦ α ◦ (out+ × i̊dA) ◦ out× ∈ L

where α: (A + A)× A → (A× A) + (A × A) is the canonical isomorphism
that maps 〈̊inji(a), b〉 to i̊nji(〈a, b〉)

It is easy to show that two effective codings, (in, out) and (in′, out′), are effectively
equivalent, i.e. there exist f and g in L s.t. out = out′ ◦ f and out′ = out ◦ g.
So we don’t care about which specific effective coding we are using. The name
“definition by cases”, given to the last property for an acceptable set, requires
some justification:

Proposition 25 If g, f1 and f2 are in L, then the partial function

h(a)
∆
=











f1(a) if out+(g(a)) ∈ i̊mg(̊inj1)
f2(a) if out+(g(a)) ∈ i̊mg(̊inj2)
undefined otherwise

is also in L
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Proof

h = ((f1 ◦ p2) ∨ (f2 ◦ p2)) ◦ switch ◦ in× ◦ 〈g, i̊dA〉

This property of L is essential in proving that G̊ENL has function spaces.
In the definition of L-numbered set (see Def 28), we cannot simply take a set

X together with a surjective total function e̊X : A → X, because on the resulting
category one cannot define the appropriate domain structure2. Therefore, we relax
the totality requirement for e̊X :

Definition 26 F (L) is the class of set-theoretic functions whose domain coin-
cides with the domain of some function in L, i.e.

F (L)
∆
= {f |∃g ∈ L.d̊om(f) = d̊om(g)}.

L-reducibility is the preorder over F (L) s.t. f ≤ g
∆
⇐⇒

there exists h ∈ L s.t. f = g ◦ h

The following property of F (L) is crucial in establishing most of the results about
G̊ENL:

Proposition 27 If f1 and f2 are in F (L), then f1 ∨ f2 is in F (L) and its a lub
of f1 and f2 w.r.t. the L-reducibility preorder

Proof

f1 ∨ f2 is clearly in F (L). fi ≤ f1 ∨ f2, because fi = (f1 ∨ f2) ◦ ini. If
fi = f ◦ gi, with gi in L, then f1 ∨ f2 = f ◦ (g1 ∨ g2)

Since L-reducibility is a preorder lubs are not unique.
Before introducing generalized numbered sets, we describe how numbered sets

are relativized to L:

Definition 28 The category E̊NL of L-numbered sets and L-effective morph-

isms is defined as follows:

• the objects are pairs X = (X, e̊X) s.t. e̊X ∈ F (L) and X is the image of e̊X

• f is a morphism from X to Y
∆
⇐⇒ f is a function from X to Y and there

exists an f ′ ∈ L s.t. f ◦ e̊X = e̊Y ◦ f ′

We can assume that f ′ and e̊X have the same domain

For instance, the category of numbered set (as defined in Def 1) without the strict
initial object is just E̊N R̊, while the category of numbered sets with the strict

initial object is equivalent to E̊N P̊R. In fact if X ∈ E̊N P̊R is not initial, then

there is a total recursive function f that enumerates d̊om(̊eX), so that (X, e̊X ◦ f)
is isomorphic to X in E̊N P̊R and e̊X ◦ f : ω → X is onto.

E̊NL is a concrete category with finite products and finite colimits, but it’s
neither a CCC nor a pCCC (see Def 29 for the definition of L-effective partial
morphisms).

2this kind of problem can be avoided by using the notion of p-category (see [Ros86])
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Definition 29 The category G̊ENL of generalized L-numbered sets and L-

effective morphisms is defined as follows:

• the objects are pairs X = (X, EX) s.t.

1. EX is a subset of F (L)

2. X =
⋃

{̊img(e)|e ∈ EX}

3. ∀f1, f2 ∈ EX .∃f ∈ EX .f1, f2 ≤ f , i.e. EX is directed

• f is a (partial) morphism from X to Y
∆
⇐⇒ f is a (partial) function from

X to Y and f ◦ EX ⊆ EY ◦ L

The intuition behind generalized numbered sets is that one cannot gödelize R̊, but
one can effectively enumerate it piecewise. It’s immediate from the definition that
the objects of G̊ENL are in one-one correspondence with the directed subsets
of F (L) and that E̊NL is a full subcategory of G̊ENL, by identifying the L-
numbered set (X, e̊X) with the generalized L-numbered set (X, {̊eX}). L-effective
partial morphisms are induced by the domain structure of L-subobjects:

Definition 30 ML

X ⊆ Y is an L-subset of Y ∈ G̊ENL
∆
⇐⇒ e−1(X) is the domain of a

function in L, for any e ∈ EY . The L-subobjects of Y are the equivalence

classes of monos inclX : X ↪→ Y , where X is an L-subset of Y and EX
∆
= {e ∈

EY ◦ L|̊img(e) ⊆ X}
ML is the domain structure of L-subobjects

The set A has a canonical L-numbered set structure, A
∆
= (A, i̊dA), so that L is

the set of L-effective partial endomorphisms on A.

Proposition 31 Properties of ML

• the familyML of L-subobjects is a domain structure on G̊ENL, and (G̊ENL,ML)
is a concrete category with domains

• f is an L-effective partial morphism from X to Y
∆
⇐⇒ Z

∆
= d̊om(f) is an

L-subset of X and f is an L-effective morphism from Z to Y

• If [i: X ↪→ Y ] is an L-subobject and Y is an L-numbered set, then X is
(isomorphic to) an L-numbered set

The last property means thatML can be restricted to E̊NL.
There are three functors that will be used in analysing the structure of G̊ENL:

the forgetful functor and two full and faithful embeddings of S̊ET in G̊ENL

Definition 32 Γ , ∆ and A
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• Γ : G̊ENL → S̊ET is the forgetful functor, i.e. Γ : X 7→ X

• ∆ : S̊ET → G̊ENL is the functor which maps X in (X, Emin
X ), where Emin

X

is the smallest ideal of F (L) s.t. (X, Emin
X ) is a generalized L-numbered set,

more explicitly

Emin
X = {f ∈ F (L)|∃X0 ⊆fin X.f ≤

∨

x∈X0

K̊x}

• A: S̊ET → G̊ENL is the functor which maps X in (X, Emax
X ), where Emax

X

is the biggest ideal of F (L) s.t. (X, Emax
X ) is a generalized L-numbered set,

more explicitly
Emax

X = {f ∈ F (L)|̊img(f) ⊆ X}

∆ and A are well defined, because lubs in F (L) exist and are well-behaved (see
Prop 27).

Lemma 33 ∆ and A are respectively left and right adjoints of Γ

The immediate consequence of this lemma is that Γ preserves both limits and
colimits. Now we show that G̊ENL is closed w.r.t. limits, colimits and (partial)
function spaces.

Theorem 34 G̊ENL has limits and colimits

Proof

If F : I → G̊ENL is a small diagram in G̊ENL and π: X
.
→ F is a limit

cone, then π: X
.
→ Γ ◦F must be a limit cone in S̊ET , because Γ preserves

limits (and is the identity on L-effective morphisms). So we are left to find
EX that makes π a limit cone in G̊ENL, let

EX = {f ∈ F (L)|̊img(f) ⊆ X ∧ ∀i ∈ I.πi ◦ f ∈ EFi ◦ L}

we have to check that:

• X is a generalized L-numbered set (see Def 29).

The first condition is obvious. The second is true, because all constant
functions K̊x (for x ∈ X) are in EX . The third follows, because if f
and g are in EX , then f ∨ g is in EX ; in fact

πi◦(f∨g) = πi◦(ftg)◦out+ = (πi◦ftπi◦g)◦out+ = (πi◦f)∨(πi◦g) ∈
EFi ◦ L, because EFi ◦ L is an ideal

• π is an L-effective morphism from X to Fi.

This follows immediately from the definition of EX
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• If η: Y
.
→ F is a cone in G̊ENL, then the mediating morphism f : Y →

X in S̊ET (s.t. η = π ◦ f) is an L-effective morphism from Y to X
(see Def 29)

If e ∈ EY , then f ◦ e ∈ EX , because
π ◦ (f ◦ e) = (π ◦ f) ◦ e = ηi ◦ e ∈ EFi

The uniqueness of the mediating morphism in G̊ENL follows from the faith-
fulness of Γ .

Similarly for colimits one shows that i̊nj : F
.
→ X is a colimit cone in G̊ENL

iff i̊nj : Γ ◦ F
.
→ X is a colimit cone in S̊ET and EX is the smallest ideal

containing i̊nji ◦EFi for all i ∈ I. In fact

• X is a generalized L-numbered set (see Def 29)

The first and third conditions are obvious. The second condition follows
from X =

⋃

{̊img(̊inji)|i ∈ I} and the second condition for EFi

• i̊nji is an L-effective morphism from Fi to X

This follows immediately from the definition of EX

• If η: F
.
→ Y is a cone in G̊ENL, then the mediating morphism f : X →

Y in S̊ET (s.t. η = f ◦ i̊nj) is an L-effective morphism from X to Y
(see Def 29)

In fact, f ◦ EX is the smallest ideal containing f ◦ i̊nji ◦ EFi for all
i ∈ I, but each of them is contained in the ideal EY ◦ L, therefore
f ◦ EX ⊆ EY ◦ L

Now we turn our attention to function spaces. There is a small full subcategory
of E̊NL, which plays an important role in the study of G̊ENL:

Definition 35 D̊omL is the full sub-category of E̊NL, whose objects are D
∆
=

(D, i̊dD), where D is an L-subset of A.
′ is the functor from G̊ENL to the category of presheaves over D̊omL given

by currying the functor (X, D) 7→ G̊ENL(D, X) from G̊ENL× D̊omL

op
to S̊ET

The main properties of the functor ′ are:

Lemma 36 The functor ′ is full and faithful, and preserves limits and function
spaces

Proof

faithfulness is obvious. Fix an element ∗ of A. If η: X ′ .
→ Y ′, let g(x)

∆
=

ηA(K̊x)(∗) for all x ∈ X, then for any D ∈ D̊omL, L-effective morphism
f : D → X and a ∈ D, the following equalities hold:

ηD(f)(a) = (ηD(f) ◦ K̊a)(∗) = ηD(f ◦ K̊a)(∗) = ηA(K̊fa)(∗) = g(fa)
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therefore ηD(f) = g ◦ f and to complete the proof of fullness we have to
show that g is an L-effective morphism, i.e. g ◦EX ⊆ EY ◦L. Take e ∈ EX ,
then e: D → X, where D is the domain of e, therefore

g ◦ e = ηD(e) ∈ G̊ENL(D, Y ) ⊆ EY ◦ L

Preservation of limits and function spaces is trivial

By this lemma, two generalized L-numbered sets are isomorphic iff as presheaves
they are isomorphic.

Theorem 37 G̊ENL has function spaces and partial function spaces

Proof

By Lemma 36, the only possible candidate for the function space from X to
Y is a generalized L-numbered set Z s.t. G̊ENL(D, Z)

.
∼= G̊ENL(D×X, Y ),

for all D ∈ D̊omL. Therefore, up to isomorphisms

EZ = {Λ̊(f)|∃D ∈ D̊omL.f ∈ G̊ENL(D ×X, Y )}

It’s immediate from the definition that EZ ⊂ F (L) and that the second
condition (in Def 29) is satisfied provided Z = G̊ENL(X, Y ). The third

condition will follow, if we show that F3
∆
= F1 ∨ F2 ∈ EZ whenever F1 and

F2 are in EZ .

Let Fi = Λ̊(fi), then ( when i is 1 or 2) fi ∈ G̊ENL(Di×X, Y ), where Di is

the domain of Fi. Let D3 be the domain of i̊dD1
∨ i̊dD2

, then D3 is in D̊omL

and we want to show that f3 ∈ G̊ENL(D3×X, Y ), i.e. f3 ◦ 〈g, e〉 ∈ EY ◦L

when g ∈ ED3
◦ L = i̊dD3

◦ L and e ∈ EX ◦ L

• let ei
∆
= fi ◦ 〈(̊idDi

∨ i̊dDi
) ◦ g, e〉, by the assumptions on fi,

ei ∈ EY ◦ L

• let h be the partial function s.t.

h(a)
∆
=











in1(a) if out+(g(a)) ∈ i̊mg(̊inj1)
in2(a) if out+(g(a)) ∈ i̊mg(̊inj2)
undefined otherwise

by Prop 25, h is in L

• f3 ◦ 〈g, e〉 = (e1 ∨ e2) ◦ h, in fact

(f3◦〈g, e〉)(a) = F3(ga)(ea) =

{

F1(a1)(ea) if out+(g(a)) = i̊nj1(a1)
F2(a2)(ea) if out+(g(a)) = i̊nj2(a2)

and

((e1 ∨ e2) ◦ h)(a) =

{

e1(a) = f1(a1, ea) if out+(g(a)) = i̊nj1(a1)
e2(a) = f2(a2, ea) if out+(g(a)) = i̊nj2(a2)
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and this completes the proof, because (e1 ∨ e2) ◦ h ∈ EY ◦ L

Similarly one shows that up to isomorphisms a partial function space Z from
X to Y is Z = P̊ (G̊ENL,ML)(X, Y ) and

EZ = {Λ̊(f)|∃D ∈ D̊omL.f ∈ P̊ (G̊ENL,ML)(D ×X, Y )}

The conditions required for L to be acceptable (see Def 24) have a counterpart
in G̊ENL:

Proposition 38

• A× A í p̊ A (coding of pairs)

• A + A í p̊ A (coding of sum)

• (X + Y )× Z ∼= (X × Z) + (Y × Z) (definition by cases)

Proof

• it’s an immediate consequence of coding of pairs

• it’s an immediate consequence of coding of sum

• ×Z is left-adjoint of Z → . Therefore, it preserves coproducts (more
geneally colimits), which means exactly the distributivity of binary
products over coproducts

The generalized L-numbered sets don’t have a uniform coding for their ele-
ments (as in the case of L-numbered sets), so we want to remain in E̊NL as far as
possible. This aim is not incompatible with working in G̊ENL, provided E̊NL is
embedded fully and faithfully in G̊ENL (which has been already established) and
every categorical construction that can be performed in E̊NL can be performed
in G̊ENL and yields the same result.

Theorem 39 The embedding of E̊NL in G̊ENL preserves limits and (partial)
function spaces

Proof

The proof makes essential use of Lemma 36. We consider only the case of
binary products, because the other cases are similar. Let Z be the product
of X and Y in E̊NL, then for any D ∈ D̊omL

G̊ENL(D, Z) = E̊NL(D, Z)
.
∼=

E̊NL(D, X)× E̊NL(D, Y ) = G̊ENL(D, X)× G̊ENL(D, Y )
.
∼=

G̊ENL(D, X × Y )
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therefore, Z ∼= X × Y

The embedding of E̊NL in G̊ENL, unlike the Yoneda embedding of a category
in the corresponding category of presheaves, preserves also some colimits:

Theorem 40 E̊NL has binary coproducts and coequalizers and they are preserved
by the embedding of E̊NL in G̊ENL

Proof

We already know how to compute colimits in G̊ENL, since E̊NL is a full
sub-category of G̊ENL, the claim amounts to showing that the colimit (ob-
ject) under consideration is in E̊NL

• X + Y = (X + Y, e̊X ∨ e̊Y )

• coeq(f, g) = (Z, h ◦ e̊Y ), where f, g: X → Y and h: Y → Z is the
coequaliser of f and g in S̊ET

However, the initial object of E̊NL (when it exists) is not preserved.
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The category G̊ENL of generalized L-numbered sets provides an alternative char-
acterization of the type structure {L̊n|n ∈ ω} of the Hereditary Partial Effective
Functionals over an acceptable set L, defined in [Lon82]:

Definition 41 (Longo) Hereditary Partial Effective Functionals
Let L ⊆ A ⇀ A be a monoid of partial functions, then the HPEF over L are

defined as follows:

• L̊0 = A

• L̊1 = L

• L̊n+1.5 = {g: L̊n → L̊n+1|∃f ∈ L̊n+1.∀x, y ∈ L̊n.g(x)(y) = f(〈x, y〉n)}

where 〈 , 〉n: L̊n×L̊n → L̊n is an effective coding of pairs for L̊n w.r.t. L̊n+1

(see Def 24)

• L̊n+2 = {f : L̊n+1 → L̊n+1|f ◦ L̊n+1.5 ⊆ L̊n+1.5}

The key idea in the definition above is that the functions in L̊n+1.5 gödelize L̊n+1

by L̊n, and the coding of pairs 〈 , 〉n is used to define the n + 1 level in the same
way as the effective coding of pairs for ω is used to define the Banach-Mazur
Functionals (see [Rog67]). In general the 〈 , 〉n may not exist. However, under
the assumption that L is acceptable, all codings of pairs required in the definition
of {L̊n|n ∈ ω} exist (see Lemma 48). In this section we show that the Hereditary
Partial Effective Functionals over L actually live in G̊ENL.
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Definition 42 Partial Functionals
Let C be a pCCC and a an object of C, then the type structure {Eσ|σ ∈ T}

of partial functionals over a in C is defined by induction on the functional types
T (T : : = 0|T → T ) as follows:

• E0 = a

• Eσ→0 = Eσ ⇀ a

• Eσ→τ = Eσ → Eτ if τ 6= 0

In the last case we use a function space, but if τ 6= 0, then Eτ
∼= x ⇀ a for some

x (the proof is by induction on τ ∈ T ), therefore Eσ → Eτ
∼= (Eσ × x) ⇀ a.

We will consider the Partial Functionals in G̊ENL and show that (over the
integer types n + 1 = n→ n) they correspond to the Hereditary Partial Effective
Functionals (see Def 41). In fact, the definition of L̊n+2 in terms of L̊n+1.5 is very
similar to the definition of G̊ENL(X, Y ) in terms of EX and EY . We have the
following general result, which relates {L̊n|n ∈ ω} with the {En|n ∈ ω} on A in
G̊ENL (see [LM84a]):

Theorem 43 Main Theorem

(n) L̊n = Γ En

(n + 1.5) L̊n+1.5 = G̊ENL(En, En+1)

where Γ is the forgetful functor from G̊ENL to S̊ET (see Def 32)

Although E̊N is not cartesian closed, in [Ers75] Ershov shows that the Partial
Functionals over ω are well-defined in E̊N , and calls them the Partial Com-

putable Functionals. In [Ers74] and [Ers77] these functionals are related to the
Hereditary Effective Operations (HEO) and to the Countable Functionals (see
[Kle59] and [Nor80]). By Theor 39 the Partial Computable Functionals and the
Partial Functionals over ω in G̊EN are the same, therefore, Theor 43 implies the
main result in [LM84b], namely the equivalence between the Hereditary Partial
Effective Functionals on P̊R and the Partial Computable Functionals of Ershov.

In order to prove Theor 43 we must define when a generalized numbered set
can be numbered by another generalized numbered set.

Definition 44 X factorizes Y
∆
⇐⇒ EY ⊆ G̊ENL(X, Y ) ◦ EX ◦ L

Proposition 45 If X factorizes Y , then

f ∈ G̊ENL(Y , Z)⇐⇒ f ◦ G̊ENL(X, Y ) ⊆ G̊ENL(X, Z)

for any Z ∈ G̊ENL and set-theoretic function f : Y → Z
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Proof

The implication from left to right is obvious, because morphisms are closed
w.r.t. composition. For the other implication, we have to show that f ◦EY ⊆
EZ ◦ L:
f ◦ EY ⊆ by X factorizes Y
f ◦ G̊ENL(X, Y ) ◦ EX ◦ L ⊆ by hypothesis
G̊ENL(X, Z) ◦ EX ◦ L ⊆ by definition of G̊ENL

EZ ◦ L ◦ L = EZ ◦ L

The following is a sufficient condition that implies factorization, and will be used
to show that En factorizes En+1:

Proposition 46 If A í p̊ X and Y is complete, then X factorizes Y

Proof

Let A í p̊ X via (in, out). Since Y is complete, then for all e ∈ EY (e is
also a partial L-effective morphism from A to Y ) there exists an extension
f : X → Y of the partial L-effective morphism e ◦ out. An easy check shows
that e = f ◦ (in ◦ i̊dd̊om(e)) ∈ EX ◦ L

In Prop 38 it is shown that the coding of pairs w.r.t. L corresponds to the
existence of a retraction in G̊ENL. In general in a concrete category (with do-
mains) a retraction a× a í a (a× a í p̊ a) corresponds to an effective coding of

pairing w.r.t. a suitable L. We state this correspondence in the case of G̊ENL:

Proposition 47 If X×X í X (X×X í p̊ X) via (in, out), then (in, out) is an

effective coding of pairs (for X) w.r.t. G̊ENL(X, X) (P̊ (G̊ENL,ML)(X, X))

Lemma 48

1. En+1 is complete

2. A í p̊ En+1

3. En+1 × En+1 í En+1

Proof

• By the remark after Def 42 En+1
∼= X ⇀ A for some X, therefore En+1

is complete (by Prop 21)

• Since A í p̊ A⊥, it’s enough to show that A⊥ í En+1 (by induction on
n):

(1) A⊥ = 1̊ ⇀ A í (by 1̊ í A)
A ⇀ A = E1
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(n + 1) A⊥
∼= 1̊→ A⊥ í (by 1̊ í En and inductive hypothesis)

En → En = En+1

• Also in this case the proof is by induction on n:

(1) E1 × E1
∼= (A ⇀ A)× (A ⇀ A) ∼= (by the following general fact:

(a + b) ⇀ c ∼= (a ⇀ c)× (b ⇀ c))
A + A ⇀ A í (by A + A í p̊ A and the following general fact: if
a í p̊ b, then a ⇀ c í b ⇀ c)
A ⇀ A

(n + 1) En+1 × En+1 = (En → En) × (En → En) ∼= (by the following
general fact: (a→ b)× (a→ c) ∼= a→ (b× c))
En → (En×En) í (by the inductive hypothesis and the following
general fact: if b í c, then a→ b í a→ c)
En → En

∼= En+1

The third part of Lemma 48 (together with Theor 43) means that there is an
effective coding of pairs (for L̊n) w.r.t. L̊n+1.

Corollary 49 En factorizes En+1

Proof

It follows from (1) and (2) in Lemma 48, and Prop 46

We can now prove Theor 43:
Proof

The proof is by induction, where the base steps are (0), (1) and (1.5) and
the inductive steps are (n + 1.5) (which uses (n) and (n + 1)) and (n + 2)
(which uses (n + 1) and (n + 1.5)):

(0) trivial

(1) trivial

(1.5) we have a retraction A×A í p̊ A (see Prop 38) which is also an effective

coding of pairs (for A = L̊0) w.r.t. P̊ (G̊ENL,ML)(A, A) = L (use
Lemma 47, (0) and (1) above), so that
L̊1.5 =
{f |∃g ∈ L.∀x, y ∈ A.f(x)(y) = g(〈x, y〉)} =
{f |∃g ∈ P̊ (G̊ENL,ML)(A, A).∀x, y ∈ A.f(x)(y) = g(〈x, y〉)} =
{f |∃g ∈ P̊ (G̊ENL,ML)(A× A, A).∀x, y ∈ A.f(x)(y) = g(x, y)} =
G̊ENL(A, A ⇀ A) =
G̊ENL(E0, E1)
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(n + 2) let f : L̊n+1 → L̊n+1:
f ∈ L̊n+2 ⇐⇒
f ◦ L̊n+1.5 ⊆ L̊n+1.5 ⇐⇒ by (n + 1.5)
f ◦ G̊ENL(En, En+1) ⊆ G̊ENL(En, En+1)⇐⇒ by Corr 49
f ∈ G̊ENL(En+1, En+1) = Γ En+2

(n + 2.5) similar to case (1.5), but using (3) of Lemma 48 instead of Prop 38
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Instead of introducing G̊ENL we could have used a more canonical cartesian
closed extension of E̊NL, namely the topos of presheaves over E̊NL (see [Sco80]).
Moreover, the Yoneda embedding preserves limits and (partial) function spaces,
so Theor 39 is for free. A more elaborate construction, that sometimes makes it
possible to preserve even more structure (e.g. colimits), is the topos of sheaves
for a subcanonical Grothendieck topology (for details, see [Joh77] Section 0.3 and
[MR77] Section 1.1). The latter approach is used in [Mul81] to define the recurs-
ive topos R, in which E̊N is embedded fully and faithfully and the embedding
preserves limits, finite colimits and function spaces. The relation between G̊EN
and the recursive topos is investigated in [Ros86], where it is shown that G̊EN
is the quasitopos of separated objects in R for the double-negation topology. This
characterization of G̊EN relativizes (somehow) to G̊ENL. More precisely, we
define a topos RL and show that G̊ENL is the quasitopos of separated objects in
RL for a suitable topology. When L is an acceptable set of total functions, this to-
pology has a logical nature, namely is the double-negation topology (see [Mul81]).
This characterization of G̊ENL, gives us a lot of information. For instance, that
G̊ENL has limits, colimits and function spaces. Moreover, one can relate the
internal logics in RL, G̊ENL and S̊ET , as described in [Hyl82] and [Ros86].

In the following we define a topology Jcan on G̊ENL and prove that it is the
canonical topology on G̊ENL. It’s important to note that the canonical topologies
on G̊ENL, E̊NL and D̊omL (see Def 35) may induce different toposes (e.g. when
L is the set of all total endofunctions on ω), although these toposes are actually
equivalent when L is the set of total recursive functions.

Definition 50 A sieve R over X is in Jcan(X)
∆
⇐⇒ EX is included in the ideal

generated by
⋃

{f ◦ EY |f : Y → X ∈ R}

Proposition 51 Jcan is a Grothendieck topology on G̊ENL

Proof

1. there is a topologically generating set (see [MR77] Definition 1.1.1),
namely the objects of D̊omL
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2. the maximum sieve over X is in Jcan(X)

3. If R ∈ Jcan(Y ), f : Y → X is a morphism in G̊ENL, then f−1(R)
∆
=

{g|f ◦ g ∈ R} ∈ Jcan(X). More explicitly, for any e ∈ EY we have
to find W ⊆fin f−1(R) and eg ∈ EZ (for any g: Z → Y ∈ W ) s.t.
e ≤

∨

{g ◦eg|g ∈ W}. The proof of this makes essential use of Prop 25.

Since f ◦ e is in EX ◦L and R is in Jcan(X), there exist V ⊆fin R and
eg ∈ EZ (for any g: Z → X ∈ V ) s.t. f ◦ e ≤

∨

{g ◦ eg|g ∈ V }. For
simplicity we assume that V has only two elements, g1 and g2, s.t.

• gi: Di → X

• f ◦ e = (g1 ∨ g2) ◦ h for some h ∈ L

• there exist ai and bi s.t. f(ai) = gi(bi)

Then we can define the following functions:

ei(x)
∆
=







e(x) if h(x) = ini(y) for some y
undefined if h(x) is undefined
ai otherwise

hi(x)
∆
=







y if h(x) = ini(y)
undefined if h(x) is undefined
bi otherwise

h′(x)
∆
=











in1(x) if h(x) = in1(y) for some y
in2(x) if h(x) = in2(y) for some y
undefined otherwise

It’s easy to check that f ◦ ei = gi ◦ hi, i.e. ei ∈ f−1(R), and e ≤
(e1 ∨ e2) ◦ h′, i.e. e is in the ideal generated by f−1(R)

4. If R ∈ Jcan(X) and S is a sieve over X s.t. f−1(S) ∈ Jcan(Y ) for any
f : Y → X ∈ R, then S ∈ Jcan(X). The proof is straightforward and is
left to the reader

Theorem 52 Jcan is the canonical topology on G̊ENL

Proof

It is easy to verify that Jcan is subcanonical. To complete the proof we
show that if a sieve R over X is not in Jcan(X), then there exists Y s.t. the
functor G̊ENL( , Y ) is not a sheaf for the least topology containing R.

Let Y
∆
= X and EY be the ideal generated by {f ◦ EZ |f : Z → X ∈ R}.

By assumption on R, EX 6⊆ EY ◦ L. Therefore, i̊dX is not an L-effective
morphism from X to Y . On the other hand, the R-indexed family {f : Z →
Y |f : Z → X ∈ R} is compatible

Since D̊omL is a topologically generating set, by a general result in topos the-
ory (see [MR77] Theorem 1.3.16 or [Ros86] Theorem 1.5.6), the topos S̊h(G̊ENL, Jcan)
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of Jcan-sheaves over G̊ENL is equivalent to the topos S̊h(D̊omL, J), where J is
the restriction of Jcan to D̊omL, i.e.

R ∈ J(D)
∆
⇐⇒ ∃S ∈ Jcan(D).R = {f : D′ → D|D′ ∈ D̊omL ∧ f ∈ S}

J in general is not the canonical topology on D̊omL.
We write RL for S̊h(D̊omL, J). The embedding ′ (see Def 35) of G̊ENL in

D̊om
op

L → S̊ET factors through RL, because Jcan is subcanonical. Therefore,
there is a full and faithful embedding of G̊ENL in RL, which preserves limits and
function spaces. So far we haven’t proved anything special about G̊ENL, to get
some really useful information we have to give a topos-theoretic characterization of
G̊ENL as a sub-category ofRL. We introduce a topology J ′ on D̊omL, s.t. G̊ENL

is equivalent to the full sub-category of RL, whose objects are J ′-separated:

Definition 53 A sieve R over D is in J ′(D)
∆
⇐⇒ the set D is equal to

⋃

{̊img(f)|f : Y →
D ∈ R}

Proposition 54 J ′ is a Grothendieck topology on D̊omL

Proof

A sieve R over D is in J ′(D) iff {K̊d: A→ D|d ∈ D} is included in R. From
this observation it follows easily that J ′ is a Grothendieck topology.

Theorem 55 G̊ENL is equivalent to the quasitopos of J ′-separated objects in
RL

Proof

It’s easy to show that X ′ is J ′-separated, for any generalized numbered set
X. We prove that for any J ′-separated presheaf F there exist a set X and
a functor G s.t.

• G is isomorphic to F

• G(D) is a set of functions from D to X, for any D ∈ D̊omL

• G(f): g 7→ g ◦ f , for any morphism f of D̊omL

Let X
∆
= {a ∈ F (A)|∀f : A → A.F (f)(a) = a}, for every D ∈ D̊omL and

a ∈ F (D) let ga: D → X be the set-theoretic function s.t. ga(d) = F (K̊d)(a),
and take G to be the functor s.t.

G(D) = {ga|a ∈ F (D)} and G(f : D′ → D): g 7→ g ◦ f

ηD: a ∈ F (D) 7→ ga ∈ G(D) is clearly a natural transformation from F to
G. To show that F ∼= G (i.e. ηD is an isomorphism, for any D), we prove
that if ga = gb, then a = b ∈ F (D).
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Consider the J ′-cover {K̊d: A→ D|d ∈ D} of D ∈ D̊omL, then

F (K̊d)(a)
∆
= ga(d) = gb(d)

∆
= F (K̊d)(b)

but F is J ′-separated, so a and b must be equal

Finally, we have to show that, when G is in RL, then G = X ′, for some

generalized numbered set X. But, if G ∈ RL, then EX
∆
=

⋃

{G(D)|D ∈
D̊omL} is an ideal (this is left to the reader), therefore G = X ′

Proposition 56 If L is an acceptable set of total functions, then J ′ is the double-
negation topology on D̊omL

Proof

Since D̊omL is the monoid (L, ◦), a sieve over A (which is the only object
of D̊omL) is just an R ⊆ L s.t. R ◦ L = R, and the negation operation ¬
maps a sieve R to the sieve {f ∈ L|∀g ∈ L.f ◦ g 6∈ R}. By definition of
double-negation topology J¬¬, a sieve R is in J¬¬(A) iff ¬¬R = L, therefore:
R ∈ J¬¬(A) ⇐⇒ ∀f ∈ L.f ∈ ¬¬R ⇐⇒
∀f ∈ L.∀g ∈ L.f ◦ g 6∈ ¬R ⇐⇒
∀f ∈ L.∀g ∈ L.∃h ∈ L.f ◦g ◦h ∈ R⇐⇒ we can assume that h is a constant
function, because R = R ◦ L
∀f ∈ L.∀g ∈ L.∃a ∈ A.f ◦ g ◦ K̊a ∈ R ⇐⇒

∀a ∈ A.K̊a ∈ R
∆
⇐⇒ R ∈ J ′(A)

When there is a partial function in L (and therefore also the everywhere undefined
function ∅), J ′ is not the double-negation topology J¬¬ on D̊omL, in fact R ∈
J¬¬(D) iff ∅ ∈ R.
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