Closed Types as a Simple Approach
to Safe Imperative Multi-Stage Programming

Cristiano Calcagno!, Eugenio Moggi'*, and Walid Taha?**

! DISI, Univ. di Genova, Genova, Italy
{calcagno,moggi}@disi.unige.it

? Department of Computing Sciences, Chalmers, Gteborg, Sweden
taha@cs.chalmers.se

Abstract. Safely adding computational effects to a multi-stage lan-
guage has been an open problem. In previous work, a closed type con-
structor was used to provide a safe mechanism for executing dynamically
generated code. This paper proposes a general notion of closed type as a
simple approach to safely introducing computational effects into multi-
stage languages. We demonstrate this approach formally in a core lan-
guage called Mini-MLBY. This core language combines safely multi-stage
constructs and ML-style references. In addition to incorporating state,
Mini-M LPe?' also embodies a number of technical improvements over pre-
viously proposed core languages for multi-stage programming.

1 Introduction

Many important software applications require the manipulation of open code
at run-time. Examples of such applications include high-level program genera-
tion, compilation, and partial evaluation [JGS93]. But having a notion of values
that includes open code (that is, possibly containing free variables) complicates
both the (untyped) operational semantics and type systems for programming
languages designed to support such applications. This paper advocates a simple
and direct approach for safely adding computational effects into languages that
manipulate open code. The approach capitalises on a single type constructor
that guarantees that a given term will evaluate to a closed value at run-time.
We demonstrate our approach in the case of ML-style references [MTHM97].
We extend recent studies into the semantics and type systems for multi-level
and multi-stage languages. Multi-level languages [GJ91,GJ96,Mog98,Dav96)
provide a mechanism for constructing and combining open code. Multi-stage
languages [TS97,TBS98, MTBS99,BMTS99,Tah99,Tah00] extend multi-level lan-
guages with a construct for executing the code generated at run-time. Multi-stage
programming can be illustrated using MetaML [TS97,Met00], an extension of

* Research partially supported by MURST and ESPRIT WG APPSEM.
** Postdoctoral Fellow funded by the Swedish Research Council for Engineering Sci-
ences (TFR), grant number 221-96-403.

-| datatype nat = z | s of nat; (* natural numbers*)

datatype nat

~-| fun p z xy=(y :=1.0 (* conventional program
I p(sn)xy=(nxy;y:=xx*ly);
val p = fn : nat -> real -> real ref -> unit

*)

-| fun p_a z xy =<7y :=1.0 (* annotated program *)
| p.a (sn) xy=<"(p.anxy); “y:="x % !"y>;

val p_a = fn : nat -> <real> -> <real ref> -> <unit>

-| val p_cg = (¥ code generator *)
fn n => <fn x y => “(p_a n <x> <y>)>;

val p_cg = fn : nat -> <real -> real ref -> unit>

-| val p_sc = p_cg 3; (* specialised code *)

val p_sc = <fn x y => (y:=1.0; y:=xxly; y:=xx*ly; y:=x*!y)>

: <real -> real ref -> unit>
-| val p_sp = run p_sc; (* specialised program *)

val p_sp = fn : real -> real ref -> unit

Fig. 1. Example of multi-stage programming with references in MetaML

SML [MTHM97] with a type constructor (_) for open code. MetaML provides
three basic staging constructs that operate on this type: Brackets (_), Escape

_and Run run _. Brackets defers the computation of its argument; Escape

splices its argument into the body of surrounding Brackets; and Run executes

its argument.

Figure 1 lists a sequence of declarations illustrating the multi-stage program-

ming method [TS97,BMTS99] in an imperative setting:

— p is a conventional “single-stage” program, which takes a natural n, a real

x, a reference y, and stores x® in y.

p-a is a “two-stage” annotated version of p, which requires the natural n
(as before), but uses only symbolic representations for the real x and the
reference y. p_a builds a representation of the desired computation. When
the first argument is zero, no assignment is performed, instead a piece of
code for performing an assignment at a later time is generated. When the
first argument is greater than zero, code is generated for performing an as-
signment at a later time, and moreover the recursive call to p_a is performed
so that the whole code-generation is performed in full.

p_cg is the code generator. Given a natural number, the code generator
proceeds by building a piece of code that contains a lambda abstraction, and
then using Escape performs an unfolding of the annotated program p_a over
the “dummy variables” <x> and <y>. This powerful capability of “evaluation
under lambda” is an essential feature of multi-stage programming languages.

— p_sc is the specialised code generated by applying p_cg to a particular nat-
ural number (in this case 3). The generated (high-level) code corresponds
closely to machine code, and should compile into a light-weight subroutine.

— p_sp is the specialised program, the ultimate goal of run-time code genera-
tion. The function p_sp is a specialised version of p applied to 3, which does
not have unnecessary run-time overheads.

Problem Safely adding computational effects to multi-stage languages has been
an open problem!. For example, when adding ML-style references to a multi-
stage language like MetaML, one can have that “dynamically bound” variables
go out of the scope of their binder [TS00]. Consider the following MetaML?
session:

-| val a = ref <1>;

val a = ... : ref <int>

-| val b = <fn x => “(a:=<x>; <2>)>;
val b = <fn x => 2> : <int -> int>
-| val ¢ = !a;

val ¢ = <x> : <int>

In evaluating the second declaration, the variable x goes outside the scope of
the binding lambda, and the result of the third line is wrong, since x is not
bound in the environment, even though the session is well-typed according to
naive extensions of previously proposed type systems for MetaML. This form of
scope extrusion is specific to multi-level and multi-stage languages, and it does
not arise in traditional programming languages, where evaluation is generally
restricted to closed terms (e.g. see [Plo75] and many subsequent studies.) The
the problem lies in the run-time interaction between free variables and references.

Remark 1. In the type system we propose (see Figure 2) the above session is
not well-typed. First, ref <1> cannot be typed, because <1> is not of a closed
type. Second, if we add some closedness annotation to make the first line well-
typed, i.e. val a = ref [<1>], then the type of a becomes ref [<int>], and
we can no longer type a:=<x> in the third line. Now, there is no way to add
closedness annotations, e.g. a:=[<x>], to make the third line well-typed, in fact
the (close)-rule is not applicable to derive a: ref nat®; z: nat! F [(z)]: [(nat)]°.

Contributions and organisation of this paper This paper shows that multi-
stage and imperative features can be combined safely in the same programming

! The current release of MetaML [Met00] is a substantial language, supporting most
features of SML and a host of novel meta-programming constructs. In this release,
safety is not guaranteed for meta-programs that use Run or effects. We hope to
incorporate the ideas presented in this paper into the next MetaML release.

2 The observation made here also applies to AC [Dav96].

language. We demonstrate this formally using a core language, that we call
Mini-MLBY which extends Mini-ML [CDDK86] with ML-style references and®

ref »

— A code type constructor {_) [TS97,TBS98,Dav96].

— A closed type constructor [_] [BMTS99], but with improved syntax borrowed
from Y [DP96].

— A term construct run _ [TS97] typed with [].

The key technical result is type safety for Mini-M L?e'}', i.e. evaluation of well-

typed programs does not raise an error (see Theorem 1). The type system of
Mini-MLBY is simpler than some related systems for binding-time analysis (BTA),
and it is also more expressive than most proposals for such systems (Section 3).

In principle the additional features of Mini-MLEN should not prevent us from
writing programs like those in normal imperative languages. This can be demon-
strated by giving an embedding of Mini-MLs into our language, omitted for
brevity. We expect the simple approach of using closed types to work in relation
to other computational effects, for example: only closed values can be packaged

with exceptions, only closed values can be communicated between processes.

Note on Previous Work The results presented here are a significant general-
isation of a recently proposed solution to the problem of assigning a sound type
to Run. The naive typing run : (¢) — ¢ of Run is unsound (see [TBS98]), since it
allows to execute an arbitrary piece of code, including “dummy variables” such
as <x>. The closed type constructor [_] proposed in [BMTS99] allows to give
a sound typing run :[(t)] — t for Run, since one can guarantee that values of
type [r] will be closed. In this paper, we generalise this property of the closed
type constructor to a bigger set of types, that we call closed types, and we
also exploit these types to avoid the scope extrusion problem in the setting of
imperative multi-stage programming.

. - BN
2 Mini-ML
This section describes the syntax, type system and operational semantics of
Mini-M L'?e'}', and establishes safety of well-typed programs. The types 7 and closed
types o are defined as

TeET::=0|m o 12| (1) oc€C:=nat|[r]|ref o

Intuitively, a term can only be assigned a closed type ¢ when it will evalu-
ate to a closed value (see Lemma 4). Values of type [r] are always closed,
but relying only on the close type constructor makes programming verbose
[MTBS99,BMTS99,Tah00]. The generalised notion of closed type greatly im-
proves the usability of the language (see Section 2.3). The set of Mini-MLEN

ref

3 Mini-MLEY can incorporate also MetaML’s cross-stage persistence [TS97]. This can
be done by adding an up, similar to that of ABY [MTBS99], and by introducing a
demotion operation. This development is omitted for space reasons.

terms is parametric in an infinite set of variables £ € X and an infinite set of
locations [€ L

e€E:=x | ze|e e |fixze|z|se|(caseeof z—e1 |sz— ez) |
(e) | "e | rune | [e] | (let [z] = ey ine3) |
refe|le|er:=ex|l] fault

The first line lists the Mini-ML terms: variables, abstraction, application, fix-
point for recursive definitions, zero, successor, and case-analysis on natural num-
bers. The second line lists the three multi-stage constructs of MetaML [TS97]:
Brackets {e) and Escape ~e are for building and splicing code, and Run is for ex-
ecuting code. The second line also lists the two “closedness annotations”: Close
[e] is for marking a term as being closed, and Let-Close is for forgetting these
markings. The third line lists the three SML operations on references, constants
[for locations, and a constant fault for a program that crashes. The constants [
and fault are not allowed in user-defined programs, but they are instrumental to

the operational semantics of Mini-MLEY.

Remark 2. Realistic implementations should erase closedness annotations, by
mapping [e] to e and (let [z] = ey in e3) to (let z = e; in e3).
The constant fault is used in the rules for symbolic evaluation of binders,

n+l n+l
. pre = p,v . pe = p'yv
e.g. we write I instead of] .
w, Az.e = p'[z:= fault], \z.v A r.e = u' Az

This more hygienic handling of scope extrusion is compatible with the identifi-
cation of terms modulo a-conversion, and prevents new free variable to appear
as effect of the evaluation (see Lemma 3). On the other hand, in implementa-
tions there is no need to use the more hygienic rules, because during evaluation
of a well-typed program (starting from the empty store) only closed values get
stored.

Note 1. We will use the following notation and terminology

— Term equivalence, written =, is a-conversion. Substitution of e for z in ¢
(modulo =) is written €'[z: = e].

— m,n range over the set N of natural numbers. Furthermore, m € N is iden-
tified with the set {i € N|i < m} of its predecessors.

- f:A 7% B means that f is a partial function from A to B with a finite
domain, written dom(f).

oL Tisa signature (for locations only), written {l;: ref o;|i € m}.

i €m}.

- A, I':X fip (T x N) are type-and-level assignments, written {z;: 7;"
We use the following operations on type-and-level assignments:

i €m}tn 4 {z;:71"|i € m} adds n to the level of the z;;

i € m}sn 4 {z;:7"|n; < n Ai € m} removes the z; with level > n.

{zs: 1"

{zs: 1"
— wL f—z)n E is a store.
— X l:ref o, Iy z: 7 and p{l = e} denote extension of a signature, assignment
and store respectively.

A(z) =71" —— I'(x)=1"

DIRVAYY BN ol Y XA TRz
YAz Fen” YA TkFerinn > " YA T'Fern™
XA TE Mre:ry - 1" X, A;T'Fey ea:m™
(fix) XAzt kFer" X, A; ' e:nat”
x
XA T Ffixxe: X, A; I+ z:nat™ X, A; I+ s e:nat”
Y, A;CFenat” Y A;T'Fenrt™ X Ajzinat™;I'Fea:t”
(case*) —
Y, ATk (caseeof z— e | sz —er): T
X, A;T ket Y A; T Fe{r)” Y AT Fe[{(m)]"
X AT+ {e):{1)" Y, A;TF ettt Y, A;'Frune:t”
(close) XA P et YA L ke] XAz e ™
close
X, A; Tk [e]: [7]" X, A; T+ (let [z] = ey ine2): 72"
X, A 'Fe:o™ X, AT Feiref o™

X, AT Fref exref o™ YA Fleo™
X, A TFepiref o™ X A;T'Fegia™
t (1) = ref
(set) X, A T'Fepr=eq:ref o™ X AT F Lref o™ () =refo
X AS g 0k e " Y. ATkeo™
- (close*) —
YA TFfixxe: X, AT F [e]:[o]

(fix*)

Fig. 2. Type System for Mini-MLE}Y

2.1 Type System

Figure 2 gives the rules for the type system of Mini-MLEN. A typing judgement

has the form X A; " F e: 7", read “e has type T and level n in X, A; 7. X
gives the type of locations which can be used in e, A and I' (must have disjoint
domains and) give the type and level of variables which may occur free in e.

Remark 3. Splitting the context into two parts (A and I') is borrowed from
AF [DP96], and allows us to replace the cumbersome closedness annotation
(close e with {z; = e;|i € m}) of ABN [BMTS99] with the more convenient
[e] and (let [z] = ey in e2). Informally, a variable z: 7™ declared in I" ranges over
values of type 7 at level n (see Definition 1), while a variable z: 7™ declared in
A ranges over closed values (i.e. without free variables) of type 7 at level n.

Most typing rules are similar to those for related languages [Dav96,BMTS99],
but there are some notable exceptions:

— (close) is the standard rule for [e], the restricted context ¥, AS™; () in the
premise prevents [e] to depend on variables declared in I" (like in A¥ [DP96])
or variables of level > n. The stronger rule (close*) applies only to closed
types, and it is justified in Remark 5.

— (fix) is the standard rule for fix z.e, while (fix*) makes a stronger assumption
on z, and thus can type recursive definitions (e.g. of closed functions) that

are not typable with (fix). For instance, from §; f': [;n = 7], 2: 70 F e: 2™
we cannot derive fix f'.[Az.€]:[11 — 72]™, while the following modified term
fix f'.(let [f] = f' in [Az.e[f':= [f]]]) has the right type, but the wrong
behaviour (it diverges!). On the other hand, the stronger rule (fix*) allows
to type [fix f.\z.e[f':=[f]]], which has the desired operational behaviour.

— There is a weaker variant of (case*), which we ignore, where the assumption
z:nat™ is in I" instead of A.

— (set) does not assign to e;: = ey type unit, simply to avoid adding a unit type
to Mini-MLEY

ref *
The type system enjoys the following basic properties:
Lemma 1 (Weakening).

1. If ¥, A; ' e:p™ and x fresh, then X, A; Lz F e: ™
2. If ¥, A; T+ e:m™ and x fresh, then X, A, z: 7™ I F e: ™
3 If ¥, A;T'F e:p™ and | fresh, then X l:ref 01, A; T F e: ™

Proof. Part 1 is proved by induction on the derivation of X, A; I" - e: 75™. The
other two parts are proved similarly.

Lemma 2 (Substitution).

1. If X, A;Tken™ and X, A; Tzt Fe': 1", then X, A; T F e[z = e]: 12"
2. If X, Ak en™ and X, A,z T R e, then X, AT F e[z = e]: "

Proof. Part 1 is proved by induction on the derivation of A; I x: 7" e': »".
Part 2 is proved similarly.

2.2 CBYV Operational Semantics

Figure 3 gives the evaluation rules for the call-by-value (CBV) operational se-

mantics of Mini-MLBY. Evaluation of a term e at level n can lead to

- ! d ' wh deri Ol
a result v and a new store u', when we can derive y,e = py', v,

. . n
— a run-time error, when we can derive p,e < err, or
— divergence, when the search for a derivation goes into an infinite regress.

We will show that the second case (error) does not occur for well-typed pro-
grams (see Theorem 1). In general v ranges over terms, but under appropriate
assumptions on u, v could be restricted to value at level n.

Definition 1. We define the set V* C E of values at level n by the BNF
W0 eVhi=Xze|z|sv | ()| O |1
vt e vt = g | Azt | ol Tl | fix zomt |
z | sv™t! | (case vt of z = v | sz — Wit |
(™*2) | run o™t |] | (let [z] = 0™ F in o) |
ref o1 | Lyt | ot = 2+ | 1] fault

Un+2 € Vn+2+ — ~,Un+1

Normal Evaluation
We give an ezhaustive set of rules for evaluation of terms e € E at level 0

0
M, T <> err I, e1 & widze ', es N pivo pelzi=v) & u
0
7)\x.e&)p, Az.e n,e1 e ‘—)u"',v'
1y €1 & pivZEdre pe[r:=fix z.e] & uv 0 e & w v
o - o Mz pz ————
iy e1 ea <> err i, fix e = p' v mse <= p sv
0 li ! 0 n 0 ! !
e =,z pen = pv me—p vEz|se
o, 0
u,(caseeofz— e |sx —er) = p' v u,(caseeof z—>e1 | sz — er) — err
;L,ei),u',sv u',ez[m::v]ﬁ)p”,v' p,e‘iut',v 0
—————— p,eerr
0 n ’ 0 !
u,(caseeof z—e1 | sz —ex) > u' v u,{ey = ', (v)
0 0 0 0
pe=p [(v)] po=p’ W pe=p vE ()] pe = p'yv
0 n ! 0 0 !
pyrune = p' v 14, fun e < err u,le] = @', [v]
0 0 0
K, er — l""a [U] /1,,62[.1::: ’U] — //’”71/ H,e1r — M’av 7_é [6]
i, (let [z] = ey in e2) & u i, (let [z] = e1 in e2) S err
o o
e = u,v e—=u,l
BEB igdomy) 2P @)=
w,ref e = p/{l =v},1 w'le=pu v

pe sy vEledom(y) poer < pl 1 plier S p v

p,!e&err u,el:=e2£>u”{l=v},l

0o /
,e1 = v ZEILE dom
per = plvE () ul S p, fault < err

0
My, €e1:= €2 — err

Symbolic Evaluation

pe i (v) e v # () e S v eSS wl v
. 1, L1 ntl , . nt2 , .
p e = pv p, e < err p,(e) = p's(v)y p e = v

In all other cases symbolic evaluation is applied to the immediate sub-terms from left to
n+1l ’ n+l
er — v ey —> v
right without changing level ki ik ln +1/1 2 e and bound variables
et ea <= p’ v v

: eSS
that have leaked in the store are replaced by fault

Uy Az.e (s ' [z = fault], Az.v
Error Propagation

For space reasons, we omit the rules for error propagation. These rules follow the
ML-convention for exceptions propagation.

Fig. 3. Operational Semantics for Mini-MLEY

Remark 4. Values at level 0 can be classified according to the five kinds of types:

types T = T» |nat (r) [7] ref o
T

values |[A\z.e z, so® [(vh) [v9] l

Because of {v') the definition of value at level 0 involves values at higher levels.
Values at level > 0, called symbolic values, are almost like terms. The differences
between the BNF for V**! and E is in the productions for (€) and ~e:

— (v™*1) is a value at level n, rather than level n + 1
— ~o™tlis 3 value at level n + 2, rather than level n + 1.

Note 2. We will use the following auxiliary notation to describe stores:

— p is value store EN L fip Vo,
- Y Eup VEN u is a value store and dom(X) = dom(pu) and X;0 + u(l):o
whenever [€ dom(u).

0

The following result establishes basic facts about the operational semantics,
which are independent of the type system.

Lemma 3 (Values). y,e < u/,v implies dom(p) C dom (') and FV (i',v) C
FV(u,e); moreover, if i is a value store, then v € V™ and u' is a value store.

Proof. By induction on the derivation of the evaluation judgement u,e & wiv.
The following property justifies why a o € C is called a closed type.

Lemma 4 (Closedness). X, A*L; I+ 0: ¢ implies FV(v°) = 0.

Proof. By induction on the derivation of X, AT1; I'+1 |- 40: ¢°.

Remark 5. Let V, 2 {v € VO[5, A*1; T+ | 4:79} be the set of values of
type 7 (in a given context X, A*1; I't1) It is easy to show that the mapping
[v] = v is an injection of V,] into V., and moreover it is represented by the term

A . . 0
open = Az.(let [z] = z in z), i.e. open:[r] — 7 and open [v] — v.
Note also that the Closedness Lemma implies the mapping [v] — v is a bijection
when 7 is a closed type. A posteriori, this property justifies the typing rule
(close*), which in turn ensures that term close 4 Az.[z], representing the inverse
mapping v — [v], has type o — [o].

Evaluation of Run at level 0 requires to view a value at level 1 as a term to be
evaluated at level 0. The following result says that this confusion in the levels is
compatible with the type system.

Lemma 5 (Demotion). ¥, AT1; +1 - oL implies X, A; T vt 7",

Proof. By induction on the derivation of X, A*1; [+1 |- yntt. 77,

datatype nat
val p = fn : nat -> real -> real ref -> unit

val p_a = fn : nat -> <real> -> <real ref> -> <unit>
val p_cg = fn : nat -> <real -> real ref -> unit>

val p_sc = <fn x y => (y:=1.0; y:=x*!y; y:=xxly; y:=xx!y)>
: <real -> real ref -> unit>
> val p_sp = run[p_sc]; (* specialised program *)

val p_sp = fn : real -> real ref -> unit

> val p_pg = fn n => let [n]=[n] in runl[p_cg n]l; (* program generator *)
val p_pg = fn : nat -> real -> real ref -> unit

Fig. 4. The Example Written in Mini-MLEY

To fully claim the reflective nature of Mini-MLBY we need also a Promotion

Lemma, (which, however, is not relevant to the proof of Type Safety).
Lemma 6. X, A; ' F e: 1" implies e € V' and X, AT, T | e L,
Finally, we establish the key result relating the type system to the operational

semantics. This result entails that evaluation of a well-typed program (; ¢ F e: 7°

. . 0 . .
cannot raise an error, i.e. §, e < err is not derivable.

Theorem 1 (Safety). p,e <> d and ¥ = p and X, AT, T+ - e:r™ imply
that there exist y' and v™ and X' such that d = (u',v") and X, X' = ' and
XX AL DL R n

Proof. By induction on the derivation of the evaluation judgement u,e & d.

2.3 The power function

While ensuring the safety of Mini-MLBY requires a relatively non-trivial type
system, the power examples presented at the beginning of this paper can still
be expressed just as concisely as in MetaML. First, we introduce the following
top-level derived forms:

— val x = e; p stands for (let [z] = [e] in p), with the following derived rules
for typing and evaluation at level 0
0
X, A0 F ey pre = v
0
A1 T F prm™ w,plz:=v] <y v'
Y, ATk (val z = e; p)im” p,(val & = e; p) &#u,v/
— a top-level definition by pattern-matching is reduced to one of the form
val f = e; p in the usual way (that is, using the case and fix constructs).

Note that this means identifiers declared at top-level go in the closed part A
of a context X, A;I". We assume to have a predefined closed type real with a
function times *: real — real — real and a constant 1.0: real. Figure 4 reconsider

the example of Figure 1 used in the introduction in Mini-MLE}Y:

— the declarations of p, p_a, p_cg and p_sc do not require any change;

— in the declaration of p_sp one closedness annotation has been added;

— p_pg is a program generator with the same type of the conventional program
p, but applied to a natural, say 3, returns a specialised program (i.e. p_sp).

3 Related Work

The problem we identify at the beginning of this paper also applies to Davies’s
AO [Dav96], which allows open code and symbolic evaluation under lambda (but
has no construct for running code). Therefore, the naive addition of references
leads to the same problem of scope extrusion pointed out in the Introduction.

Mini-MLBY is related to Binding-Time Analyses (BTAs) for imperative lan-
guages. Intuitively, a BTA takes a single-stage program and produces a two-stage
one (often in the form of a two-level program) [JGS93,Tah00]. Thiemann and
Dussart [TD] describe an off-line partial evaluator for a higher-order language
with first-class references, where a two-level language with regions is used to
specify a BTA. Their two-level language allows storing dynamic values in static
cells, but the type and effect system prohibits operating on static cells within
the scope of a dynamic lambda (unless these cells belong to a region local to
the body of the dynamic lambda). While both this BTA and our type system
ensure that no run-time error (such as scope extrusion) can occur, they provide
incomparable extensions.

Hatcliff and Danvy [HD97] propose a partial evaluator for a computational
metalanguage, and they formalise existing techniques in a uniform framework by
abstracting from dynamic computational effects. However, this partial evaluator
does not seem to allow interesting computational effects at specialisation time.

References

[BMTS99] Zine El-Abidine Benaissa, Eugenio Moggi, Walid Taha, and Tim Sheard.
Logical modalities and multi-stage programming. In Federated Logic Con-
ference (FLoC) Satellite Workshop on Intuitionistic Modal Logics and Ap-
plications (IMLA), July 1999.

[CDDK86] Dominique Clement, Joelle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A simple applicative language: Mini-ML. In Proceedings of the
1986 ACM Conference on Lisp and Functional Programming, pages 13—-27.
ACM, ACM, August 1986.

[Dav96] Rowan Davies. A temporal-logic approach to binding-time analysis. In
Proceedings, 11" Annual IEEE Symposium on Logic in Computer Science,
pages 184-195, New Brunswick, July 1996. IEEE Computer Society Press.

[DP96]

[GJ91]

[GJ96]

[HD97]

[1GS93]
[Met00]

[Mog98]

[MTBS99]

Rowan Davies and Frank Pfenning. A modal analysis of staged compu-
tation. In 28rd Annual ACM Symposium on Principles of Programming
Languages (POPL’96), pages 258—-270, St. Petersburg Beach, January 1996.
Carsten K. Gomard and Neil D. Jones. A partial evaluator for untyped
lambda calculus. Journal of Functional Programming, 1(1):21-69, January
1991.

Robert Gliick and Jesper Jgrgensen. Fast binding-time analysis for multi-
level specialization. In Dines Bjgrner, Manfred Broy, and Igor V. Pottosin,
editors, Perspectives of System Informatics, volume 1181 of Lecture Notes
in Computer Science, pages 261-272. Springer-Verlag, 1996.

John Hatcliff and Olivier Danvy. A computational formalization for partial
evaluation. Mathematical Structures in Computer Science, 7(5):507-541,
October 1997.

Neil D. Jones, Carsten K Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice-Hall, 1993.

The MetaML Home Page, 2000. Provides source code and documentation
online at http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html.
Eugenio Moggi. Functor categories and two-level languages. In FoSSaCS
’98, volume 1378 of Lecture Notes in Computer Science. Springer Verlag,
1998.

Eugenio Moggi, Walid Taha, Zine El-Abidine Benaissa, and Tim Sheard.
An idealized MetaML: Simpler, and more expressive. In European Sympo-
stum on Programming (ESOP), volume 1576 of Lecture Notes in Computer
Science, pages 193-207. Springer-Verlag, 1999.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The

[Plo75]

[Tah99)]

[Tah00]

[TBS98]

[TD]

[TS97]

[TS00]

Definition of Standard ML (Revised). MIT Press, 1997.

Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
Theoretical Computer Science, 1:125-159, 1975.

Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Institute of Science and Technology, July 1999.
Walid Taha. A sound reduction semantics for untyped CBN multi-stage
computation. Or, the theory of MetaML is non-trivial. In Proceedings of
the ACM Symposium on Partial Evaluation and Semantics Based Program
Manipulation, Boston, January 2000.

Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage pro-
gramming: Axiomatization and type-safety. In 25th International Collo-
quium on Automata, Languages, and Programming, volume 1443 of Lecture
Notes in Computer Science, pages 918-929, Aalborg, July 1998.

Peter Thiemann and Dirk Dussart. Partial evaluation for higher-order
languages with state. Available online from http://www.informatik.uni-
freiburg.de/~thiemann/papers/index.html.

Walid Taha and Tim Sheard. Multi-stage programming with explicit an-
notations. In Proceedings of the ACM-SIGPLAN Symposium on Partial
Evaluation and semantic based program manipulations PEPM’97, Amster-
dam, pages 203-217. ACM, 1997.

Walid Taha and Tim Sheard. MetaML: Multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1-2), 2000.

