A Fully-Abstract Model for the m-calculus
(Extended Abstract)

M.P. Fiore*

E. Moggif

D. Sangiorgit

December 1995

Abstract

This paper provides both a fully abstract (domain-
theoretic) model for the m-calculus and a universal
(set-theoretic) model for the finite mw-calculus with re-
spect to strong late bisimulation and congruence. This
is done by: considering categorical models, defining a
metalanguage for these models, and translating the
m-calculus into the metalanguage. A technical nov-
elty of our approach is an abstract proof of full ab-
straction: The result on full abstraction for the fi-
nite m-calculus in the set-theoretic model is axiomat-
ically extended to the whole m-calculus with respect
to the domain-theoretic interpretation. In this proof,
a central role is played by the description of non-
determinism as a free construction and by the equa-
tional theory of the metalanguage.

Introduction

The w-calculus [16] is a process algebra for communi-
cating processes with a dynamically-changing topol-
ogy. Processes (or agents) interact with each other by
exchanging names. A name can be private (i.e. local)
to a process, which, however, may decide to export the
name thus accepting to share it with other processes.
Communication of private names is the main differ-
ence between m-calculus and its predecessor CCS, and
makes the calculus very expressive. Late bisimulation
is the operational equivalence on m-calculus processes
analised in [16]. It is preserved by all operators of the
calculus except for input. Late congruence is the in-

*LFCS, Univ. of Edinburgh, UK. Research supported by
EPSRC grant RR29300 and by HCM grant ERBCHRXCT 92-
0046.

TDISI, Univ. di Genova, Italy. Research supported by ES-
PRIT BRA CLICS-1I, HCM project EXPRESS and SCIENCE
twinning ERBSC1*CT920795.

fINRIA, Sophia Antipolis, France. Research supported
by HCM project “EXPRESS” and by ESPRIT BRA project
“CONFER”.

duced congruence. Roughly, in late bisimulation free
names of processes are viewed as constants, whereas
in late congruence they are viewed as free variables
and hence can be freely instantiated.

This paper substantiates the claim that “the
m-calculus is CCS with local channels”. Indeed, we
construct a model for the m-calculus combining tech-
niques used for modelling CCS and local variables
in the light of an abstract approach to denotational
semantics; notably: powerdomains as free algebras,
functor categories, and a kind of monadic metalan-
guage. Powerdomains as free algebras were introduced
in [13] for modelling the bounded non-determinism
of a parallel imperative language. Functor categories
were used in [18] to model local variables in Algol-
like languages. Monads were proposed as a tool for
structuring denotational semantics [17, 8].

Using monads we can exhibit the semantics for the
m-calculus as a special case of a general construction,
which can be instantiated to get semantics for cal-
culi ranging from pure CCS to value-passing CCS to
the polyadic m-calculus. This uniform treatment high-
lights the intrinsic differences and similarities among
these calculi. Here, for brevity, we will only present a
model for the m-calculus. The model captures essen-
tial properties of the role of names in the w-calculus:
for instance, that the identity of names does not affect
the behaviour of a process and that equality and in-
equality conditions on names may affect process bisim-
ilarity.

We give a denotational semantics for the m-calculus
by: considering categorical models, defining a met-
alanguage for these models, and translating the -
calculus into the metalanguage. The metalanguage
is a simply typed A-calculus with sums, operations for
non-determinism and dynamic allocation, base types
for names and agents, and recursion (over exponents
of the type of agents). It has an interpretation in
a standard domain-theoretic model given by a func-
tor category over Cpo (the category of cpos —posets
closed under lubs of w-chains possibly without bot-

tom element— and continuous functions) equipped
with a powerdomain monad. This model is shown
to provide a fully-abstract denotational semantics for
the m-calculus with respect to strong late bisimulation
and congruence. Indeed, the model also provides fully
abstract semantics for bisimulations under a distinc-
tion [16] and bisimulations under a constraint (Sec-
tion 3), which are bisimulation relations in between
late bisimulation and late congruence.

The metalanguage without recursion has an inter-
pretation in a set-theoretic model given by a functor
category over Set (the category of sets and functions)
equipped with the free-semilattice monad. This model
is in bijective correspondence with certain canoni-
cal normal forms of m-calculus processes and pro-
vides a universal denotational semantics for the finite
m-calculus with respect to late bisimulation and con-
gruence.

An important aspect of the metalanguage is its as-
sociated equational theory which permits reasoning
about the denotational semantics. For example, to
validate laws on 7m-calculus processes we first validate
analogous laws between terms of the metalanguage
using its equational theory, and then infer the orig-
inal laws by compositionality of the denotational in-
terpretation. Also, the denotational semantics implic-
itly defines a model of synchronisation trees for the
m-calculus under late bisimulation (i.e. an abstract no-
tion of late transition system) and process-like oper-
ations on these, whose laws can be established using
the equational theory of the metalanguage.

A novelty of our approach is an abstract proof of full
abstraction. The result on full abstraction for canoni-
cal normal forms in the set-theoretic model is axiomat-
ically extended to the whole calculus with respect to
the domain-theoretic interpretation. This is done by
relating the free-semilattice monad and the powerdo-
main monad by means of their universal properties,
and by exploiting the equational theory of the meta-
language. As a technical benefit, an explicit descrip-
tion of the powerdomain is not needed and we can
work with cpos instead of bifinite domains.

Related work. In [14] and [10], Hennessy and
Plotkin constructed term models for CCS-like lan-
guages (where actions are pure synchronisations).
Later, Abramsky [1] gave a denotational semantics
for SCCS using a domain of synchronisation trees de-
fined as the initial solution in SFP (the category of
bifinite domains and continuous functions) of a do-
main equation involving Plotkin’s powerdomain. Fur-
ther, he provided two full abstraction results: one for
finite SCCS with respect to strong partial bisimula-

tion and another one for the whole SCCS with re-
spect to the finitely observable part of strong bisim-
ulation. More recently, Aceto and Ingdlfsdéttir [2],
using the same domain of synchronisation trees, have
generalised Abramsky’s results to a class of CCS-like
languages (those described in the compact GSOS for-
mat). Outside the realm of domain theory, in [21],
Rutten provides fully abstract semantics with respect
to strong bisimulation in a non-well-founded set (spec-
ified by a recursive equation) for a different class of
CCS-like languages (a subclass of those described in
the tyft/txft format).

Independently from us, other researchers have
been working on a denotational semantics for the
m-calculus. Stark has given a denotational seman-
tics in a functor category over SFP. His interpreta-
tion coincides with ours but, as he has not extracted
a metalanguage from the model, his constructions are
concrete and do not identify the uniformities that our
axiomatic approach highlights. Abramsky and Mered-
ith are investigating a model for the w-calculus based
on non-well-founded sets. Details of this work are not
known to us.

Organisation of the paper. In Section 1 we re-
view the syntax and the operational semantics of the
m-calculus. In Section 2 we present our denotational
model and in Section 3 the full abstraction results.
Finally, in Section 4 we discuss conclusions and direc-
tions for future research.

1 m-calculus

We review the syntax and operational semantics of the
m-calculus. N is the countably infinite set of all names,
ranged over by a,b,c,d. The class Pr of processes is
built from the operators of inaction, sum, matching,
mismatching, prefixing, restriction, parallel composi-
tion and guarded replication; a prefix can be an input,
a free output, a bound output or an silent prefix:

Definition 1.1 (w-calculus, concrete syntax)

P = 0|P+P|ja=tlP | [a#b]P | a.P |
vaP | P|P | la.P

a = a(b) | ab | ap) |~

A process is finite when it uses only the operators in
the first row.

Remark. It is possible to extend the definition of fi-
nite processes to include the parallel composition and

restriction operators, but this does not add new pro-
cess behaviours and complicates some of our technical
developments.

We refer to [16] for detailed discussions on the op-
erators of the language. We remind that a matching
[@ = b]P means “if a = b then P”, that a mismatch-
ing [a # b]P means “if a # b then P”, and that a
replication !a. P represents a countably infinite num-
ber of copies of a. P in parallel. Guarded replications
enjoy simpler algebraic laws than plain replication ! P.
The restriction to guarded replications does not af-
fect expressiveness, since every plain replication can
be rewritten in terms of guarded replications, up to
strong late congruence [24]. A bound output @(b) rep-
resents the output of a private name b at a; one can
think of @(b). P as an abbreviation for vbab. P. In
a(b). P, vb P, and @(b). P all free occurrences of name
b in P are bound. Free names (fn) and bound names
(bn) of processes and prefixes, name substitution, and
alpha conversion are defined as expected.

Terminology and notation. We use V to range
over finite lists of distinct names and Pry for the
set of processes with free names in V. We write
[a & aog,...,an—1]P as abbreviation for [a # a]
...[a # an—1]P. For a finite list without repetitions
I'=ig,...,in_1, we write) ., P; as an abbreviation
for P, + ...+ P;, ,. We use the symbol = for syn-
tactic identity, and =, for syntactic identity modulo
alpha conversion. We assign parallel composition and
sum the lowest precedence among the operators.

Table 1 shows the transitional rules for the calculus.
We have omitted the symmetric of rules suml, pari,
coml, and closel. Note that there are four kinds of
transitions, corresponding to the four kinds of prefixes
in the syntax.

Definition 1.2 (Late bisimulation [16]) Late
bisimulation is the largest symmetric relation ~ on
processes such that P ~ @Q implies

a(b)
1. Whenever P — P’ and b ¢ t(Q), then Q'
a(b)
exists such that Q — @' and for all names c,

P} ~ Q{p}.

2. Whenever P — P’ fora=ab or a =7, then Q'
exists such that Q 2 Q and P' ~ Q'.

a(b)
3. Whenever P — P’ and b & In(Q), then Q' exists
a(d)
such that @ — @' and P’ ~ Q’.

Late bisimilarity is preserved by all operators ex-
cept input prefix. The induced congruence, called late
congruence, is denoted by ~¢ and can be defined thus:

Definition 1.3 (Late congruence [16]) Two pro-
cesses P, Q) are late congruent, written P ~° Q, if
Po ~ Qo for all name substitutions o.

In the semantics of Section 2, ~ will correspond to
the closed interpretation —where free names of pro-
cesses are treated as constants— and ~¢ will corre-
spond to the open interpretation —where free names
are treated as free variables.

To have a simpler aziomatic proof of full abstrac-
tion (Section 3), we will make use of the auxiliary
operators of left merge and synchronisation [7], writ-
ten | and ||, respectively. They are related to parallel
composition by the law:

Par P|Q=P|Q+Q|]P+P| Q.

In this law, left merge accounts for the behaviour of
P | Q given by rules par1-2, whereas synchronisation
accounts for that given by com1-2 and closel-2.

Definition 1.4 (CNFy) Given a finite list of dis-
tinct names V, the set of processes NFy,, called the
V-normal forms, is defined from the grammar below,
where it is assumed that a,b € V and that c ¢ V:

Py=Py+Py | 0| @.Py | a(c). Py,

Py | ale) (Lle=dPv + g VIR,

acV

CN Fv, called the canonical V-normal forms, is the set
of canonical representatives of the equivalence classes
obtained by quotienting N Fy, by ~.

2 Denotational semantics

The denotation of a process is given relative to the
names which are free (or visible) in it. Thus, our
model is a type A of agents which wvaries over stages;
intuitively, the number of free names available for in-
teraction. That is, the type A consists of the following
data: for every natural number n a type A(n) of ‘pro-
cesses with at most n free names’ and for every injec-
tive substitution ¢ ; m < m of n names into m names
a mapping A(n) —= A(m) which allows us to view
every process with n free names as a process with m
free names. Of course, these mappings cannot be arbi-
trary: we expect that A(id,) = ida(,) as the substitu-
tion id,, : n < n produces no renaming; whilst for in-
jective substitutions ¢ : ¢ < j and K : j <— k we expect

p=.P P 5 p"
alpha = pre
P — P

rep la.P By |la. P if bn(a) € tn(la. P)

a(b) , ac ,
PP @QZq
PlQ — P{p}|Q
@ !
res PQ;P a & names(«)
va P — va P’

closel

coml

mismch

«@ ¢ !
aP — P suml #
P+Q > P
« /
part —— L it bn(a) ¢ (Q)
PIQ = PIQ
P a(b) P o a(b) o P ab P
— — — open %ifa;‘éb
PlQ — vb(P|Q) vo P — P
< / < /
PP iy s PP
[a#bP — P’ [a=a]P — P’

Table 1: The transition system for the w-calculus

that the mapping A(7) Al

(j) induced by k¢ de-
composes as the mappings A(7) Al A(y) A A(k)
induced by ¢ and . All this amounts to saying that A
is a functor from a category Z (of injective maps be-

tween finite cardinals) to a category C (of meanings).

Henceforth we will take the viewpoint that A is
a type in the functor category CZ whose objects are
functors from Z to C and whose arrows are nat-
ural transformations between such functors. (Re-
call that a natural transformation ¢ : X — Y be-
tween functors X,Y : 7 — C is given by a family
{on + X(n) — Y(n)}nejz) of morphisms in C such
that for all injective maps ¢ : n — m, Y (1) o v, =
©m © X(t).) A process with no free names will have
a denotation as a global element of A (i.e. a natural
transformation 1 = A) or, equivalently, as an element
of A(0) because, by Yoneda, every p : A is uniquely
determined by po : A(0) as p, = A(0 — n)(po) : A(n).
Thus, the naturality condition imposes a uniform in-
terpretation at all stages. To interpret arbitrary pro-
cesses we will introduce a type IV of names and assign
to a process with n free names a denotation as a natu-
ral transformation N™ - A. As before the naturality
condition imposes a uniform interpretation which, for
example, will account for the irrelevance of the iden-
tity of names.

It is possible to axiomatise the structure needed
from our category C of meanings in order to sup-
port the denotational semantics, in particular C must
be a Cpo-enriched bicartesian closed category (Cpo-
biCCC). We will not give an explicit axiomatisation
of C in this extended abstract, indeed we will only be
concerned with two categories C of meanings; viz. Cpo
and Set. In Cpo? we will obtain a domain-theoretic
model for the whole 7-calculus; whilst in Set? we will
obtain a set-theoretic model for the finite processes.

Our denotational semantics is given by translation
into a metalanguage. The metalanguage is a type the-
ory (with an associated equational theory) which is
an internal language for the part of CZ we are inter-
ested in. In this way we can perform constructions
and definitions in CZ and prove properties (e.g. about
the equality of certain morphisms) without the need of
looking at explicit descriptions. The core of the meta-
language is a simply typed A-calculus (1, x, =) with
sums (+), type constructors for non-determinism and
dynamic allocation of names, and base types for names
(N) and agents (A). In addition, we have operators
for recursion (over exponents of the type of agents):
in the domain-theoretic interpretation arbitrary recur-
sive definitions are possible; whilst in the set-theoretic
interpretation we only consider finite agents.

In the remainder of the section we define the con-
structors for modelling non-determinism and dynamic
allocation; then we introduce the objects of names and
agents; finally we present the open and closed interpre-
tations, respectively corresponding to late congruence
and bisimulation.

Notation 2.1 In expressions of the metalanguage we
adopt the following conventions: e is an expression,
x,y are variables, f, g are variables of functional type,
p, q are variables of computational type.

2.1 Non-determinism

We introduce the power type constructor P for
modelling non-determinism. It has associated op-
erations walx X = P X and letxy (X =
PY)x P X = PY subject to the laws for a com-
mutative monad —e.g. let(Axy.let(Az2.e,p2),p1) =
let(Axg.let(Axy1.e,p1),p2); and operations 0 : P X
and U : PX x PX = P X making (P X,0,U)

into a semilattice. Moreover, the operations for non-
determinism interact with let according to the fol-
lowing laws: let(f,0) = 0 and let(f,U(p1,p2)) =
U(let(f,p1),let(f,p2)). To understand these laws
think that, roughly, let(f,p) is ‘U{f(x) | = € p}".

In general these power types arise as free construc-
tions by considering left adjoints to forgetful functors
from a category of non-deterministic computations to
a category of values (see [13, 5]). Two such construc-
tions that will be used later are:

e The free-semilattice monad. Let S be a Cpo-
cartesian category, and let SL(S) be the Cpo-
category of semilattices in S and homomorphisms.

The free-semilattice monad on S is the Cpo-monad
induced by the Cpo-adjunction SL(S) | S
whenever it exists. When & = Set the free-
semilattice monad is the finite powerset functor
equipped with the singleton and the big union.

e Abramsky’s powerdomain monad. Let D be
a Cpo-cartesian category. We define the category
ND(D) of non-deterministic computations over
D as the Cpo-category with objects (D, L,0,U),
where L : D is the least element of D and (D, 0,U)
is a semilattice in D; arrows are strict semilattice
homomorphisms.

Abramsky’s Powerdomain monad on D is the
Cpo-monad on D induced by the Cpo-adjunction
ND(D) 1 D whenever it exists. When D =

Cpo Abramsky’s powerdomain monad exists
(see [13, 3)).

Below we will be concerned with commutative mon-
ads for non-determinism arising as above over func-
tor categories. The following observation incorporates
them in our setting:

Proposition 2.2 If C admits Abramsky’s powerdo-
main monad (resp. the free-semilattice monad) then
s0 does CV for every small category W and it is given
pointwise. That is, writing P and P "V for the monad
on C and C" respectively, we have P " (X)(w) =
P (X (w)).

2.2 Dynamic allocation

We introduce the type constructor § for modelling dy-
namic allocation of names. It has associated opera-
tions oxy : (X = Y) = 0X = Y, upx : X = 60X,
and swapy : §°X = 02X; which are the internal
version of categorical structure on CZ (made explicit
below) induced by Z. Intuitively X stands for the

type X when one new name is available. With this in
mind,

® upy , is the canonical coercion mapping an element
of X at stage n to the same element at stage n+ 1;

® swapy ,, is an involution mapping an element of X
at stage n+2 to the element of the same type where
the last two names in n + 2 have been swapped.

To explain how such structure is obtained, we consider
an alternative characterisation of the category Z of
finite cardinals n = {0,...,n — 1} and injective maps:

7 is the strict symmetric monoidal category
(Z,0,+) freely generated from one object 1
and morphisms up : 0 — 1 and swap : 2 — 2
(here 2 = 1+1) such that swaposwap = ids :
2 — 2, (up+idy)oup = (id; +up)oup : 0 — 2
and swap o (up +idy) = (id1 +up) : 1 — 2.

§:CFT = CTup: 6% = 8, swap : 62 = 62 are defined in
terms of the generating data (1, up, swap) for 7

o (6X)(n) ¥ X(n+1)

o upx, L X(n+up): X(n) — X(n+1)

e swapy , dzezfX(n + swap) : X(n+2) - X(n+2)

and inherit the equational properties of up and swap;
i.e. swapy oswapy = ids2x, d(upy) o upy = Upsx ©
upy, and swapy o d(upy) = upsx. Moreover, §, up,
and swap preserve anything defined pointwise; such
as limits and colimits, and Abramsky’s powerdomain
monad with its associated structure (L, 0, and U).
The functor ¢ has a tensorial strength upy xidsy :
X Xx0Y — 0(XxY) —here we use that §(X xY) =
0(X) x 0(Y)— which, as usual in the presence of ex-
ponentials, allow us to internalise the action of § on
morphisms as a map dxy : (X =Y) = X = Y.

2.3 Names and agents

We introduce the objects N of names and A of agents
in CZ together with their associated operations.

Names. The type of names N is defined as the inclu-

sion of Z into the biCCC C; i.e. N(n) E (on the rhs

n is the coproduct in C of n copies of the terminal ob-
ject). N admits a decidable equality eq : N x N = 2
(here 2 = 1 4 1) and satisfies the following proper-
ties which are used for interpreting the m-calculus and
establishing full-abstraction:

e There is a global element new : 6N (viz. new,, &ef n)

u
making N UPw SN < 1 into a coproduct dia-

gram in CZ. Thus we can do case analysis on JN;

to improve readability we write Az:N.er a for
)\t : 1. €2

case a of upy () =>e; or new =>eg. (We use a simi-
lar notation for doing case analysis on coproducts.)

e swapy is an involution that swaps J(new) and
0 (upp) new; that is, swap (0 new) = § (upy) new.

e Forh: Nx N =X,

swapx (0 (Az : N.§ (Ay : N.h(z,y)) new) new)
=0 (Ay: N.§ (A\x: N.h(z,y)) new) new. (1)

We will also use the following proposition stating
that an element of N = X at stage n is determined
by n elements of X at stage n together with an element
of 0. X at stage n.

Proposition 2.3 For any biCCC K, the exponential
N=X in K% ezists and is given by (N=X)(n) =
X(n)"x X(n+1).

Remark. In particular, the natural transformation in-
terpreting f : N = X F § f new : §X is, at stage n,
g1t X(M)" x X(n+1) —» X(n+1).

Agents. The type of agents A is defined as
uX.P (HX) where

e HX ¥ N x (N=X)+ N x N x X + N x 6X +

X; each summand respectively giving meaning to
inputs, free outputs, bound outputs, and internal
actions of processes; and

e in the set-theoretic interpretation P is the free-
semilattice monad on Set”, whilst in the domain-
theoretic interpretation it is Abramsky’s powerdo-
main monad on Cpo?. Here one can apply the stan-
dard techniques for solving recursive domain equa-
tions —see [26] and [9, Chapter 7].

By Propositions 2.2 and 2.3, and results on the solu-
tion of domain equations, we can give a concrete de-
scription of A on objects as the initial solution to the
following system of equations in C (where P below is
the appropriate power monad on C) with n € | 7 |

X =P (nxX,"xXXpp1+nxnx X, +nxX,11+X5).

We introduce some auxiliary notation (related to
a suitable monad transformer —see [8]) which simpli-
fies the description of the denotational semantics and
helps in validating equational properties:

oS : HA = A is given (up to the isomorphism
P HA= A) by S(z) = val(x).

We write S; (i = 1,4) for the i*® component of S; so
that S = [Sl, S,, S3, 54]

o C: (HA=A)xA = A is given (up to the isomor-
phism P HA = A) by C(f,p) = let(f,p).

We write CC : (HAXx HA = A)x Ax A= A
for C iterated twice; i.e. CC(k,p1,p2) =

Chx.C(Ay. k(x,y),p2),p1)-

S and C inherit the properties of val and let, and since
P is commutative we have

CC(K,p1,p2) = CC(K o(ma,m),p2,p1). (2)

From now on we will consistently treat the isomor-
phism P HA = A as an equality.

Finally we introduce the operation R : §A = A,
which maps, at stage n, a process with n+1 free names
to one with n free names by restricting on the last
allocated name. The definition of R, given in Table 2,
relies on the type equalities 04 = P (ONx0(N=-A) +
SNXSNxSA + 6N x62A +0A) and SN = N + 1, and
inspects whether each action capability involves the
last allocated name (i.e. the new one) or not:

e In case of an input at a: if a is new, then we cancel
the input capability, otherwise we allow the input
and restrict on the continuation.

e In case of a free output at a of b: if a is new, then we
cancel the output capability; if @ is not new but b is,
then we make the free output into a bound output;
if neither a nor b are new, then we allow the output
and restrict on the continuation.

e In case of a bound output at a: if a is new, then
we cancel the output capability, otherwise we allow
the output and restrict on the second last allocated
name (not on the last allocated one as this is the
one being allocated by the bound output).

e In case of an internal action: we allow the action
and restrict on the continuation.

2.4 Interpretation

We give the interpretation of the term constructors
for an abstract syntaz of the m-calculus (c.f. Defini-
tion 1.1). The interpretation is defined by translation
into the metalanguage of the previous subsections as
follows:

Aa: 0N, f:0(N = A).

[Xa: N.Si(a/,\b: N.R(E (A : N = A f'b))]]
M :1.0 a

Ma’ @ N.
Aa:ON,b:6N,p A | ¢ [

AV N.So(a’, 0, Rp'),)
At 2 1.S3(a’,p) a

R = let
() % tet i1 »)
Aa’ i N.S3(a’,d R (swapy p'))
. /. 52 3 ’ A
)\a'éNm'&A'[)\t:l.O a
L Ap' 1 0A.S4(Rp) i

Table 2: R: 0A = A
i When two processes try to communicate there are 16
nil: A deadlock o . possibilities to consider, since each process may per-
sum: A, A — A non-deterministic choice form 4 possible actions. This explains the case analysis

are given by the semilattice structure of P HA.

M:N,N,A— A matching
MM: N,N;,A— A mismatching

are defined by case analysis using the decidable equal-
ity on the type of names.

in: N,(N=>A)— A
out: NN A— A
bout: N,(N = A) — A
tau: A— A

input

output

bound output
internal action

correspond, except for bout, to components of the op-
eration S : HA = A; explicitly, [in,out,Ss,tau] =
S. Bounded output is given by bout(a,f) =
Ss(a,d f new) —see Proposition 2.3 and the remark
after it.

[res: (N=>A4)— A

is given by res(f) = R(¢ f new). (Note that the defini-
tion of res in terms of R mimics that of bout in terms

of 53)

local name |

par: AJA — A parallel composition
Im: A,A— A left merge
syn: A A — A synchronisation

are defined by mutual recursion as follows:

par(p, q) = sum(Im(p, q),Im(q, p), syn(p, q),syn(q, p))-
Im(p, q) =
Aa:N,f:N= Ain(a,\b: N.par(fb,q))
Aa: N,b: N,p': A out(a,b,par(p’, q))
Aa: N,p' : 6A.S3(a,d par (p',up q))
Ap’ : A.tau(par(p’, q))

,D)-

in the definition of syn below.

syn(p1,p2) = CC(K, p1,p2); the cases covered by K :
(HA x HA) = A are summarised in the symmetric
Table 3 where

ecom: NxNxAxA = Aiscom(z,y,p,q) =
M(z, y, tau(par(p, q))), and

e close: N x N x §A x §A = Ais close(x,y,p’,q') =
M(z,y, tau(R(é par (p',q')))).

lin: N,(N=A4)— A
lout: NN, A— A
lbout: N, (N = A) — A
ltau: A — A

replicated input
replicated output
replicated bound output
replicated internal action

are defined by recursion (but not mutual recursion) as
follows:

lin(a, f) = in(a, \b: N.par(fb,'in(a, f))).

lout(a, b, p) = out(a, b, par(p, lout(a, b, p))).
Ibout(a, f) = bout(a, Ab : N. par(fb,bout(a, f))).
ltau(p) = tau(par(p, 'tau(p))).

Open interpretation. Given the interpreta-
tion/translation of the above term constructors it is
straightforward to extend it to names and well-formed
processes following the paradigm of categorical logic.
For a name a € V, O[V + a] is the obvious pro-
jection NIVl = N in CZ. For a process P € Pry,
O[V + P] is a morphism NIVl = A in C* defined
by induction on the structure of P. For example,

OV - P | P] & paro (O]V F P, OV F P])

and OV F a(b). P] ino (O[V F a], X O[V,b + P]).

‘ o : N, fo: N=>A

2:N7y2:N7QQ:A

x2: N,¢5: 6A g2 : A

r1: N, fi:N=A nil
1 :N,y1: N,q1 : A com(za, x1, fo(y1),q1)
x1: N,q) : §A | close(za, 21, (d f2 new),q})
q A nil

com(x1,x2, f1(y2),q2) close(x1,xa, (& f1 new), ¢b) nil

nil nil nil
nil nil nil
nil nil nil

Table 3: K: (HAXx HA)= A

Closed interpretation. Bisimulation cannot corre-
spond to the above interpretation, because the oper-
ational semantics considers free names of a process
semantically different. In the denotational semantics
this requirement can be captured smoothly by ex-
ploiting the functor category structure and adopting
a closed interpretation such that for V with | V' | = n,
C[VFa] € N(n) =n and C[V + P] € A(n). Then

the closed interpretation is defined in terms of the open

interpretation: C[V F _] Lef OV F _].(0,...,n—1).

It is then possible to prove that the close interpreta-
tion is compositional on all constructs but input. For
instance, for parallel composition: C[V + Py | Py =
pary|(C[V = PA,C[V F P]). The clause for
input cannot be purely compositional because late
bisimulation is not preserved by this operator but,
for V.= ag,...,an—1, we have C[V F a(b).P] =
in,(C[V F], C[V F P{@ih}])icn,C[V,b F P]). A
straightforward consequence of naturality is that the
induced semantics is preserved by renaming; i.e. for
be 'V, a,

C[V,aF P] =C[V,b+ P{ba}] (3)

2.5 Examples of denotational validity

To see the denotational machinery at work, we vali-
date the semantic counterpart of the following three
laws for late congruence:

Syni P|Q = Q[P
Syn2 z(u). P gv).Q =
[z = ylr.vz (P{#u} | Q{#p}), if 2 ¢ In(P, Q)
R1 vezZ(y). P = Z(y).va P, if x & {y, 2}
(Synl) For p,q : A, we have that CC(K,p,q) =
CC(K,q,p) by (2) because K is symmetric (i.e. K =
K o(mg,m)). Hence syn(p, q) = syn(q, p) and then also
par(p, q) = sum(Im(p, q),Im(q, p), syn(p, q))-
Notice below how in translating the laws into the
metalanguage w-bindings become A-bindings; whilst
substitutions become applications.

(Syn2) For z,y: N and p,q: N = A,

syn(in(z, p), bout(y, q))

syn(S1(z,p), S3(y, 6 ¢ new))

close(z,y,d p new,d g new)

M(z, y, tau(R(d par (6 p new,d g new))))
M(z,y,tau(R(6 (Az : N.par(pz,¢z)) new)))
= M(z,y,tau(res(A\z : N.par(pz,qz)))).

(Rl) Forz: Nandp: N x N = A,

res(Az : N.bout(z, A\y : N.p(z,y)))

= R(6 (Az.S3(z,6 (Ay.p(x,y)) new)) new)

=R(S3(6 2,6 (Az.d (A\y.p(z,y)) new) new))

= S3(z,0 R (swap(d (Az.d (\y.p(z,y)) new) new)))
=S3(z,0 R (0 (A\y.d (Az.p(x,y)) new) new)) , by (1)
= S3(z,0 (Ay.R(d (\z. p(z,y)) new)) new)

= S3(z,d (Ay. res(Az.p(z,y))) new)

= bout(z, Ay : N.res(Az : N.p(x,y))).

3 Full abstraction

This section contains the main results of our study.

Theorem 3.1 (Universality of the set-theoretic
interpretation) In the set-theoretic interpretation of
finite agents, writing Ay € Set® for the object of
agents

1. C[V F _] establishes a bijective correspondence

CNFy =2 A(|V]), and so

2. for every finite P,Q € Pry, P~ Q iff C[VF P] =
eIV F QJ.

PROOF: Ay is the least solution in Set of the following
system of domain equations (with n € |Z |)

Xn =M (nxX,,"xXXpp1+nxnxX,+nxX,11+X,)

where M is the free-semilattice monad.

So Ap(|V']) is a set of finite labelled trees, each tree
representing an equivalence class of N F, modulo the
equational laws stating that (0,+) is a semilattice. §

Theorem 3.2 (Finite full abstraction of the
close domain-theoretic interpretation) In the
domain-theoretic interpretation, for every finite

P,Q € Pry, P~Q iffC[VF P] =C[V I Q].

PrOOF: Let M be the free-semilattice monad, P
Abramsky’s powerdomain monad, and H the endo-
functor HX = NX(N=X)+NxNxX+Nx0X+X.

The domain equations Xo = M (HXp) and X =
P (HX) have initial solutions in CpoZ, say Ay and
A respectively. Moreover, it can be shown that Ay
is the set-theoretic interpretation (ordered by equal-
ity), A has an M H-algebra structure, and the unique
M H-homomorphism e : Ay — A is an embedding
(with a partial projection as right adjoint). Therefore,
the domain-theoretic interpretation of a finite agent
is the image via e of the set-theoretic interpretation
and, since e is monic, the two interpretations make
the same identifications.]

Such an easy transfer of finite full abstraction from
a set-theoretic to a domain-theoretic model relies cru-
cially on extending H to partial morphisms; this is
possible for the endofunctor V=_, only when V is of
a very simple nature.

Theorem 3.3 (Full abstraction of the close
domain-theoretic interpretation) In the domain-

theoretic interpretation, for every P,Q € Pry, P ~ @
i C[VEP]=C[VFQ].

PrOOF: We highlight the main steps of the proof.
First, we prove that ~ coincides with (), ~", where
~™ is the n-th approximant of ~ (i.e. only the first
n actions of the processes are observed). This, which
is similar to the stratification result for strong bisim-
ilarity for CCS finitely branching processes, holds be-
cause, modulo a-conversion, the transition system of
any m-calculus process is finitely branching.

Second, we introduce a key ingredient: a system
A, of axioms and inference rules on w-calculus pro-
cesses which allows to rewrite a process P € Pry into
an expanded form up to level n, say Expy, (P); that
is, a syntactic form where the operators of parallel
composition, restriction and replication can only oc-
cur underneath n prefixes.

Third, using the approximants {~"},, and the op-
erational validity of the laws in A, we can convert the
bisimilarity between any pair of processes (P, @) into

the bisimilarity between a set {(Nily,(P), Nily;(Q)) |
n € w} of pairs of processes in normal form. Nilj; (P)
is obtained from Expy,(P) by replacing the subpro-
cesses underneath n prefixes with 0.

Having normal forms, we can apply the finite
full abstraction Theorem 3.2, therefore Nilj; (P) and
Nil{, (Q) are bisimilar iff their closed interpretations
are equal. To conclude the proof, we have to estab-
lish the denotational counterpart of the previous steps,
obtained by replacing ~ with semantic equivalence.

The processes P and Expy (P) are semantically
equivalent, because the laws in A, are semantically
valid. Technically, this is the most delicate point and
we discuss it after this proof.

By continuity and the semantic validity of the laws
in A, we can convert semantic equivalence between P
and @ into the semantic equivalence of their syntactic
approximations Boty, (P) and Boty, (Q). Boty (P) is
obtained from Expy, (P) by replacing the subprocesses
underneath n prefixes with L (a new constant repre-
senting the least element in the semantic domain).

With some simple considerations one can show that
for any P,Q € Pry, Boty(P) and Boty,(Q) are se-
mantically equivalent iff Nil{,(P) and Nilj,(Q) are. 7y

We now comment on A, and its semantic vali-
dation. In A, the axioms for sum, restriction and
conditionals are those used in [16] or [19] for ax-
iomatising m-calculus late bisimilarity, and include the
semilattice axioms for nil and sum, and distributiv-
ity axioms for restriction like R1 (Section 2.5) and
va (P4 Q) = va P+ va Q. We need one axiom for
each form of replication, like lab. P = @b. (P | lab. P).
To have a finite set of axioms for parallel composi-
tion, we use the auxiliary operators left merge and
synchronisation. This yields 12 axioms, among which
Syn1 and Syn2 (Section 2.5) and Par (Section 1). The
inference rules are those for equivalence and the con-
gruence rules for prefixing, sum, restriction, left merge
and synchronisation. However, since late bisimulation
is not preserved by input prefix, the inference rule for
input is

Vien. P{ap} = Q{%p}
a(b). P = a(b).Q
with the proviso fn(a(b). P,a(b). Q) = {ag, ..., an-1}
The statement of validation of the laws says that for
all P,Q € Pry, if Ax E P =Q then C[V F P] =
C[V F Q], and the proof is by induction on the depth

of the derivation of A, = P = @. Examples of vali-
dation of axioms have been given in Section 2.5.

P=Q

Because of the link between open and closed inter-
pretation in the functor category CZ, it is easy to get

a full-abstraction result for late congruence from one
for late bisimulation (and conversely).

Corollary 3.4 (Full abstraction of the open
domain-theoretic interpretation) In the domain-
theoretic interpretation, for P,Q € Pry, P ~° Q iff
O[V EP] =0[V I Q].

Distinctions and constraints. We briefly mention
the extension of our theory to distinctions and con-
straints. In the m-calculus, it is possible to define
bisimilarity equivalences in between late bisimilarity
and congruence, using distinctions [16]. These are con-
junctions of inequalities between names which must be
respected in any use of the processes. Guided by the
denotational model, we have generalised distinctions
to constraints, roughly decidable properties on finite
tuples of names. Constraints are more expressive than
distinctions, in that they allow us to express more re-
fined forms of process bisimilarities. In particular, for
any pair of processes there is an optimal constraint
which expresses the necessary conditions on names
under which the processes are behaviourally equiva-
lent. Full abstraction for bisimilarity under constraint
follows as a corollary of full abstraction for late bisim-
ilarity (Theorem 3.3); the proof is similar to that for
the open interpretation (Corollary 3.4).

4 Conclusions and future work

The denotational model is superior to the operational
approach for establishing certain properties of ~ and
~¢. For instance, the invariance of ~ under injective
substitutions is a straightforward consequence of (3);
and the congruence properties of ~ and ~¢ (e.g., that
~¢ is preserved by all operators, and that ~ is pre-
served by all operators but input) follow directly from
the definitions of O[_] and C[_].

The denotational model is also interesting for prov-
ing basic laws of the operators of 7m-calculus, like asso-
ciativity of parallel composition and the extrusion law
for restriction “va (P | Q) ~° P | vaQ if a & fu(P)”.
The operational proofs of these laws in [16] require
some ingenuity (e.g. the “bisimilarity up to bisimilar-
ity and up to restriction” technique). For an idea of
how these proofs may be carried over in the deno-
tational model, see the validation of laws in Subsec-
tion 2.5.

Guarded replication. In our w-calculus syntax the
plain replication !P has been replaced by a guarded
replication !«. P. This simplification is justified by
the laws of m-calculus strong bisimilarity [24] and al-
lows us to avoid the issue of divergence. For instance,

10

with plain replication a denotational semantics would
validate !0 = L, whilst bisimulation validates !0 = 0.

Matching/mismatching. For describing the canon-
ical forms induced by our model and hence to obtain
the universality Theorem 3.1 we need both matching
and mismatching —operators whose theoretical and
pragmatical relevance for m-calculus is often debated.
The importance of these constructs for equational rea-
soning had already been expressed in [19].

The metalanguage. We have factored the denota-
tional semantics for the m-calculus through a metalan-
guage suggested by model-theoretic considerations.

The metalanguage can easily cope with operators
not in the m-calculus syntax. For instance, interrupt
operators like those in LOTOS [6], which are not defin-
able in the m-calculus —even up to weak bisimulation.

An interesting direction of research is to turn the
metalanguage into a typed higher order process cal-
culus, with an operational semantics and notion of
bisimulation conservatively extending those of the
m-calculus.

The translation of the m-calculus in the metalan-
guage uses a type of agents A = P (HA), where P is
Abramsky’s powerdomain monad and H is an endo-
functor corresponding to the action capabilities. It is
conceivable to replace P with some other monad and
H with some other endofunctor. This flexibility allows
to accommodate smoothly other languages, e.g.

e to deal with global variables one should replace P

with the monad TX %' P (X x §)5, where S is an

object of states;

e to deal with the ml-calculus [25] (a symmetric sub-
calculus of m-calculus where the free-output con-
struct is forbidden and hence only private names

can be exchanged), one should use the endofunctor

HX ¥ N x 6X + N x 6X + X. This gives a fully

abstract model for wl-bisimilarity; the proof mimics
the one outlined in Section 3.

In particular, by changing H we can define a de-
notational semantics in Cpo? for languages ranging
from pure CCS to Higher-Order m-calculus (HOw) [22],
along the lines outlined for the m-calculus.

Also the proof of full abstraction is fairly reusable.
It copes with the polyadic m-calculus (where several
names can be sent at once) and value-passing CCS
(with binary sums and guarded recursion), provided
the set of values is finite; but it cannot cope with HOx
and CCS with infinite-value passing.

We have obtained full abstraction with respect to
a simple minded domain-theoretic model (in compar-

ison to other categories proposed for Algol-like lan-
guages). The main problem to get full abstraction
results for domain-theoretic models is not local names
and mobility, but higher order! In fact, simple domain-
theoretic models cannot achieve full abstraction for
PCF nor for the Av-calculus (a CBV A-calculus whose
base types are bool and unit ref, see [20]). There-
fore, to get full abstraction results for higher-order
calculi with static binding, like Plain CHOCS [27]
and HOw, one should consider more refined models
(probably based on game semantics [4, 12]). Thom-
sen [27], Hennessy [11], and Jeffrey [15] have given
denotational models for higher-order process calculi
with dynamic binding. But their constructions can-
not account for calculi based on static binding like the
m-calculus, Plain CHOCS, and HOm.

Limits of our approach. Our semantics for
m-calculus is a special case of a uniform approach
to give semantics to a variety of calculi. However,
this approach deals only with strong late bisimulation,
which from a denotational point of view appears to
be the simplest equivalence to handle (among those
proposed for the m-calculus). We do not know how
to capture denotationally other equivalences, namely
early and open bisimulations (which differ from late
bisimulation and congruence in the requirements on
name instantiations) and weak bisimulations (where
the internal actions of processes are partially ignored).
The problem with weak bisimulations is not specific
to the m-calculus semantics as there is no established
domain-theoretic model for weak bisimulation even in

pure CCS.

References

[1] S. Abramsky. A Domain Equation for Bisimulation.
Inf. & Comp., 92:161-218, 1991.

[2] L. Aceto and A. Ingélfsdéttir. CPO Models for a Class
of GSOS Languages. In Proc. TAPSOFT’95, LNCS 915,
Springer-Verlag, 1995.

[3] S. Abramsky and A. Jung. Domain theory. In Hand-
book of Logic in Computer Science. Oxford University
Press, 1994.

[4] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full
abstraction for PCF (extended abstract). In Proc.
TACS’94, LNCS 789, Springer-Verlag.

[5] S.O. Anderson and A.J. Power. A representable ap-
proach to nondeterminism. Manuscript, 1993.

[6] T. Bolognesi and E. Brinksma. Introduction to the ISO
specification language LOTOS. In The Formal Descrip-
tion Technique LOTOS. North Holland, 1989.

11

[7] J. Baecten and W. Weijland. Process Algebra, Cam-
bridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1990.

[8] P. Cenciarelli and E. Moggi. A syntactic approach to
modularity in denotational semantics. In CTCS-5, pages
9-12. CWI, September 1993.

[9] M.P. Fiore. Aziomatic Domain Theory in Categories
of Partial Maps. PhD thesis, Univ. of Edinburgh, 1994.
To be published by Cambridge University Press.

[10] M. Hennessy. A Term Model for Synchronous Pro-
cesses. Inf. & Control, 51:58-75, 1981.

[11] M. Hennessy. A fully abstract denotational model for
higher-order processes (extended abstract). In 8 LICS
Conf.. IEEE, Computer Society Press, 1993.

[12] J.M.E. Hyland and C.-H.L. Ong. Pi-calculus, dialogue
games and PCF. In Proc. FPLCA ’95 ACM, 1995.

[13] M. Hennessy and G. Plotkin. Full abstraction for a
simple parallel programming language. LNCS 74, 1979.

[14] M. Hennessy and G. Plotkin. A term model for CCS.
LNCS 88, 1980.

[15] A. Jeffrey. A fully abstract semantics for a concurrent
functional language with monadic types. In 10 LICS
Conf. IEEE, Computer Society Press, 1995.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes, (Parts I and II). Inf. & Comp., 100:1-
77, 1992.

[17] E. Moggi. Notions of computation and monads. Inf.
& Comp., 93(1):55-92, 1991.

[18] F.J. Oles. Type algebras, functor categories and block
structure. In M. Nivat and J.C. Reynolds, editors, Al-
gebraic Methods in Semantics, 1985.

[19] J. Parrow and D. Sangiorgi. Algebraic theories for
name-passing calculi. Inf. €& Comp., 120:174-197, 1995.

[20] A.M. Pitts and I.D.B. Stark. Observable properties
of higher order functions that dynamically create local
names, or: What’s new? LNCS 711, 1993.

[21] J. Rutten. Processes as terms: non-well-founded mod-
els for bisimulation. MSCS 2:257-275, 1992.

[22] D. Sangiorgi. Ezpressing Mobility in Process Algebras:
First-Order and Higher-Order Paradigms. PhD thesis,
Univ. of Edinburgh, 1992.

[23] D. Sangiorgi. A theory of bisimulation for the
m-calculus. In Proc. CONCUR ’93, LNCS 715, Springer-
Verlag.

[24] D. Sangiorgi. On the bisimulation proof method.
Technical Report ECS-LFCS-94-299, Dept. of Comp.
Sci., Univ. of Edinburgh, 1994.

[25] D. Sangiorgi. nl: A symmetric calculus based on
internal mobility. In Proc. TAPSOFT’95, LNCS 915,
Springer-Verlag, 1995.

[26] M. Smyth and G. Plotkin. The category-theoretic
solution of recursive domain equations. SIAM JC,
11(4):761-783, 1982.

[27] B. Thomsen. Calculi for Higher Order Communicat-
ing Systems. PhD thesis, Department of Computing,
Imperial College, 1990.

12

