
A Syntactic Approach to Modularity in Denotational

Semantics

Pietro Cenciarelli

Dept. of Comp. Sci., Univ. of Edinburgh, UK, email: pic@dcs.ed.ac.uk

Eugenio Moggi∗

DISI, Univ. di Genova, ITALY, email: moggi@disi.unige.it

Abstract

This paper proposes a syntactic reformulation of the modular approach to Denotational Semantics
in [Mog89a, Mog91a]. This reformulation is based on a duality between model constructions and
translations of theories (often called relative interpretations), analogous to Gabriel-Ulmer duality. To
demonstrate the simplicity and usability of the syntactic reformulation, we give a sample of theories
and translations, which can be used to give semantics to concurrent languages (via translation into
suitable metalanguages).

Introduction

The main objective of Denotational Semantics is to provide mathematical models of programming
languages. These models can be used both as formal descriptions of programming languages and
also to validate reasoning principles. However, to make Denotational Semantics usable one must
address two key issues:

• Modularity. A key issue in the applicability of formalisms to large-scale examples is the ability
to structure theories so as to be able to reuse components.

• Simplicity. In fact, one barrier to the wide-spread use of mathematical models and formal
methods is the level of expertise required.

[Mog89a, Mog91a] propose a way of tackling the problem of modularizing the semantic specification
of programming languages, based on the monadic approach and the use of monad transformers.
This paper addresses not only the issue of modularity, but also that of simplicity. Simplicity is
achieved by hiding the category-theoretic concepts and sophistication of the original approach in
suitable metalanguages. We give a sample of metalanguage theories and translations, which can
be used to give semantics to concurrent languages without the ad hoc treatment still present in
the original proposal. Finally, we have investigated how these theories and translations relate
to lex-categories and lex functors, in the hope that they may suggest more general notions of
translation.

Metalanguages for Denotational Semantics. Over the past 20 years the work on Domain
Theory and Denotational Semantics by Scott, Plotkin, Milner et al. has provided elegant for-
malisms (like LCF ) based on the typed λ-calculus for dealing with higher-order, recursively defined
partial functions on data-types. A more recent advance is the use of computational monads as a
structuring principle for semantics (see [Mog91b]): computational features are encapsulated in a
strong monad T over a category of values. LCF is replaced by a metalanguage MLT (Σ) featuring

∗This work is supported by ESPRIT BRA 6811 (Categorical Logic In Computer Science II) and EC SCIENCE
twinning ERBSC1*CT920795 (Progr. Lang. Semantics and Program Logics).

1



a type constructor T (mapping A to the type TA of programs computing values in A) and T related
operations specified in a signature Σ. Then, the semantics of a programming language PL is given
via a translation mapping PL programs into MLT (Σ) terms of computational type. By a suitable
choice of Σ, one may avoid most of the complexity involved in translating PL directly into LCF ,
since MLT (Σ) hides the interpretation of T and Σ, just as an interface hides the implementation
details of an abstract data-type.

The issue of modularity in semantic specifications. Lack of modularity is a primary obstacle
to making the techniques of Denotational Semantics applicable to complex programming languages.
Finding good structuring principles is one aspect of this problem: large, unstructured, monolithic
semantic specifications are just as unusable as large, unstructured, monolithic programs. Another
aspect is generality: because of the subtle interactions that may occur between different language
features, it is hard to build semantics incrementally, combining well-studied features in a safe
fashion. In particular, when a programming language is extended, its semantics may need to be
extensively redefined. [Mos90] identifies this problem very clearly, and stresses the role of auxiliary
notation (our Σ) in making semantic specifications more reusable.

Monad transformers and incremental approach to semantics. The monadic approach to
semantics consists of three steps, i.e. given a (complex) programming language PL: first identify
a suitable metalanguage MLT (Σ), then define a translation of PL into MLT (Σ), and finally
construct a model of MLT (Σ). Usually, the first two steps are straightforward, and most of the
difficulties are in the third step. To overcome these difficulties [Mog89a, Mog91a] proposes an
incremental approach to constructing models of MLT (Σ).
The idea is to mimic the stepwise methodology for program development. If we consider specifi-
cations as theories and implementations as models, then we can reduce the problem of finding an
implementation of a complex specification Th′ to that of finding an implementation of a simpler
specification Th, provided there is a construction F : Mod(Th) → Mod(Th′), where Mod(Th) is
the class of models of Th (see [ST87]). If a specification is given by a metalanguage MLT (Σ)
(and possibly a theory Th over it), then an implementation is an interpretation of MLT (Σ) in
a category with a strong monad (satisfying the axioms of Th) and a construction is a function
F : ModT (Σ) → ModT (Σ′). When signatures are ignored, F amounts to a monad transformer,
i.e. a function mapping monads to monads. Therefore, starting from a model of a metalanguage
MLT (Σ0), we can incrementally construct a model of MLT (Σn) by providing a sequence of signa-
tures Σi ⊂ Σi+1 (0 ≤ i < n) and constructions Fi: ModT (Σi) → ModT (Σi+1). The constructions
we are interested in are not persistent, since they involve a reinterpretation of the type constructor
T (i.e. a change of monad) and of the operations in Σi.

1 The Syntactic Approach to Modularity

Constructions as defined above are far too general; in practice one is interested only in imple-
mentable ones. For a wide range of logics one can associate to a translation (also called rela-
tive interpretation) I of a theory Th′ into Th a construction Mod(I): Mod(Th) → Mod(Th′).
Therefore, one may manipulate (finite presentations) of translations instead of working directly
with constructions. In some cases, e.g. for algebraic theories, one might even establish a duality
between translations and constructions enjoying certain additional properties. Most construc-
tions Fi: ModT (Σi) → ModT (Σi+1) used in the incremental approach correspond to translations
Ii: MLT (Σi+1) → MLT (Σi). In general, these translations are of the form IΣ: MLT (Σpar + Σ +
Σnew) → MLT (Σpar + Σ), where Σnew are the new operations defined by IΣ, Σ are the old oper-
ations redefined by IΣ and Σpar are the parameters of the construction, which are unaffected by
IΣ. Moreover, IΣ is natural w.r.t. Σ ranging over a category SigI of redefinable signatures and
signature morphisms:

2



Σ MLT (Σpar + Σ + Σnew)
IΣ

> MLT (Σpar + Σ)

σ

∨

in SigI implies MLT (Σpar + σ + Σnew)

∨ ∨

MLT (Σpar + σ)

Σ′ MLT (Σ′ + Σnew + Σpar)
IΣ′

> MLT (Σ′ + Σpar)

Because of naturality, I is determined by the translation I∅: MLT (Σpar + Σnew) → MLT (Σpar)
defining the new symbols, and translations Iτ : MLT (Σpar + Σc:τ ) → MLT (Σpar + Σc:τ ), called
uniform redefinitions, redefining a generic symbol c of type τ in isolation. Uniform redefinition
may be possible only for certain τ , which depend on I .

Remark 1.1 The notion of translation used in this paper is general enough to describe the tradi-
tional techniques of denotational semantics, but is not applicable to a “change of category”, such as
C 7→ CW . Indeed, it is unclear whether monad transformers may help in structuring more complex
denotational semantics, such as those for modeling local variables (see [OT92]).

Instead of working directly with MLT , we prefer to use a general purpose metalanguage HML
(similar to HML of [Mog89b]), which is not biased towards monads, but is expressive enough to
easily axiomatize desirable metalanguage features (including monads) and to describe concisely
uniform redefinitions. HML is given by a set of rules (see Appendix A) for deriving the following
judgements: well-formedness of signatures ` Σ sig, theories `Σ Th theory, contexts `Σ Γ context,
kinds `Σ k: kind, constructors Γ `Σ u: k, type schemes Γ `Σ σ: scheme, terms Γ `Σ e: σ and
propositions Γ `Σ φ: prop; equality of constructors, type schemes and terms; and sequents.
A signature Σ is a sequence for declaring constants at the level of kinds K: kind, constructors C: k,
type schemes S: k⇒scheme, terms c: σ and propositions P: ∀v: k.σ⇒prop. A context Γ is a sequence
for declaring variables at the level of constructors v: k and terms x: σ. Except for term equality
judgements Γ `Σ,Th e1 =σ e2 and sequents Γ `Σ,Th Φ =⇒ φ (which depend on a theory Th), it is
decidable whether a judgement is derivable.
We use a notion of translation, corresponding to signature morphisms mapping primitive operations
to derived ones (for simplicity we restrict to the case when propositions are simply equations).

Definition 1.2 (Raw translation) Given a partial function F from constants to raw expres-
sions, we say that F is a raw translation iff whenever defined

• F (K) ∈ Kind

• F (C) ∈ Constr and has no free variables

• F (S) ∈ Schema and has at most one free variable, say v

• F (c) ∈ Term and has no free variables.

A raw translation F induces a total function F ∗ defined by induction on raw expressions:

• F ∗(K) = F (K) if F (K) is defined, F ∗(K) = K otherwise

• F ∗(C) = F (C) if F (C) is defined, F ∗(C) = C otherwise

• F ∗(S(u)) = [F ∗(u)/v]F (S) if F (S) is defined, F ∗(S(u)) = S(F ∗(u)) otherwise

• F ∗(c) = F (c) if F (c) is defined, F ∗(c) = c otherwise

• in all other cases F ∗ commutes with the top-level form.

Definition 1.3 (Translation) Given two signatures Σ1 and Σ2, we say that F is a translation
from Σ1 to Σ2 (and write F : Σ1 → Σ2) iff F is a raw translation with domain DC(Σ1) and

• `Σ2
F (K): kind, if Σ1(K) = kind

3



• ∅ `Σ2
F (C): F ∗(k), if Σ1(C) = k

• v: F ∗(k) `Σ2
F (S): scheme, if Σ1(S) = k⇒scheme

• ∅ `Σ2
F (c): F ∗(σ), if Σ1(c) = σ

Given a Σ2-theory Th, we say that two translations F, G: Σ1 → Σ2 are Th-equivalent iff

• F (K) = G(K), if Σ1(K) = kind

• ∅ `Σ2
F (C) = G(C): F ∗(k), if Σ1(C) = k

• v: F ∗(k) `Σ2
F (S) = G(S): scheme, if Σ1(S) = k⇒scheme

• ∅ `Σ2,Th F (c) = G(c): F ∗(σ), if Σ1(c) = σ

Definition 1.4 (Interpretation) Given a Σ1-theory Th1 and a Σ2-theory Th2, we say that F is
an interpretation of Th1 in Th2 (and write F : (Σ1, Th1) → (Σ2, Th2)) iff F : Σ1 → Σ2 and

• ∅ `Σ2,Th2
F ∗(φ), for every assertion φ ∈ Th1.

where F ∗ is extended to assertions in the obvious way.

It is decidable whether a raw translation is a translation from Σ1 to Σ2, but it may be undecidable
whether a translation is an interpretation, or whether two translations are Th-equivalent.

Proposition 1.5 If F : Σ1 → Σ2 is a translation, then

• F ∗(Φ) `Σ2
F ∗(J) is derivable, when Φ `Σ1

J is

• F ∗(Φ) `Σ2,F∗(Th) F ∗(J) is derivable, when Φ `Σ1,Th J is

Corollary 1.6 (Composition) If F : Σ1 → Σ2 and G: Σ2 → Σ3 are translations, then the raw
translation H = F ; G∗ is a translation H : Σ1 → Σ3, called the composite of F followed by G.

2 Case studies

This Section gives a sample of HML-theories and -translations for describing metalanguages
MLT (Σ) and translations IΣ: MLT (Σpar + Σ + Σnew) → MLT (Σpar + Σ). For instance, consider
the translation IΣ corresponding to the monad transformer FTX = T (X + E) for exceptions: the
only parameter is the type E, the new symbols are the (polymorphic) operations raiseX : E⇒TX
and handleX : TX, (E⇒TX)⇒TX , while the old symbols might be either types or operations
cX : τ1×(τ2⇒TX)⇒TX , where T is neither in τ1 nor in τ2. To describe IΣ in HML we use two
translations:

• HML(Σ+ +Σpar +ΣT +Σnew) → HML(Σ+ +Σpar +ΣT ) corresponds to I∅, where the HML-
signature must make explicit not only the parameters Σpar of the construction, but also the
relevant features of MLT (in this case sums and computational types);

• HML(ΣS) → HML(ΣS), where ΣS ≡ G: (Ω⇒Ω)×Ω⇒Ω, S: Ω⇒scheme, T : Ω⇒Ω, c: ∀X : Ω.S(TX),
corresponds to uniform redefinition IS(TX) for a monad transformer FTX = T (GTX) of a
generic operation cX : S(TX). By a suitable choice of G and S we can specialize IS(TX) to the
case FTX = T (X + E) and cX : τ1×(τ2⇒TX)⇒TX , but it may be specialized to other monad
transformers, e.g.: T (X×M) for complexity and µX ′.T (X + X ′) for resumptions.

We investigate also the translation IΣ corresponding to the monad transformer FTX = µX ′.T (X+
X ′) for resumptions, and show that many forms of parallel composition can be expressed using the
new symbols τH and CH defined by IΣ.

4



Remark 2.1 For describing uniform redefinitions it seems essential to have type variables and
signatures introducing also kinds and type schemes besides type constructors and polymorphic
operations. When we stay in the fragment of HML corresponding to Standard ML, we may
improve conciseness by dropping type information which can be recovered by type inference. So
far we did not need the additional expressiveness given by dependent types, which are so important
in logical frameworks such as LF .
In what follows type information may be erased from well-formed terms and equations, when it
can be recovered (uniquely up to provable type equality) from the type information in signatures
and contexts.

2.1 Examples of theories

Metalanguages can be represented in HML like logics are represented in LF (see [HHP87]). More
precisely, we represent a metalanguage ML by a pair (Σ, Th), consisting of a HML-signature Σ
and a Σ-theory Th, such that the formal system HML(Σ, Th) (obtained by fixing signature and
theory) is a conservative extension of ML, after some suitable translation of ML into HML(Σ, Th).
For instance, a metalanguage MLT for categories with finite products and a strong monad can be
represented by taking Th = Th× + ThT , and if we want also coproducts and exponentials of the
form (TY )X , then we should use Th = Th× + Th+ + ThT + Th⇒.

Example 2.2 [Theory for monads]

• signature ΣT

T : Ω⇒Ω,
val: ∀v: Ω.v⇒Tv,
let: ∀v1, v2: Ω.T v1, (v1⇒Tv2)⇒Tv2

• theory ThT

1. v: Ω, c: Tv ` c = let(c, val)

2. v1, v2: Ω, x: v1, f : v1⇒Tv2 ` let(val(x), f) = f(x)

3. v1, v2, v3: Ω, c: Tv1, f : v1⇒Tv2, g: v2⇒Tv3 ` let(let(c, f), g) = let(c, λx.let(f(x), g))

Example 2.3 [theory for reflection of products]

• signature Σ×

unit: Ω,
In1: 1⇒unit,
Out1: unit⇒1,
prod: Ω, Ω⇒Ω,
In×: ∀v1, v2: Ω.(v1×v2)⇒prod(v1, v2),
Out×: ∀v1, v2: Ω.prod(v1, v2)⇒(v1×v2)

• theory Th×

x: 1 ` Out1(In1(x)) = x

x: unit ` In1(Out1(x)) = x

v1, v2: Ω, x: v1×v2 ` Out×(In×(x)) = x

v1, v2: Ω, x: prod(v1, v2) ` In×(Out×(x)) = x

Example 2.4 [Theory for sums]

• signature Σ+

0: Ω,
+: Ω, Ω⇒Ω,
Z: ∀v: Ω.0⇒v,
ini: ∀v1, v2: Ω.vi⇒v1 + v2, (i = 1, 2)
case: ∀v1, v2, v: Ω.v1 + v2, (v1⇒v), (v2⇒v)⇒v

5



• theory Th+

1. v: Ω, f : 0⇒v, x: 0 ` f(x) = Z(x)

2. v1, v2, v: Ω, x: vi, f1: v1⇒v, f2: v2⇒v ` case(ini(x), f1, f2) = fi(x) (i = 1, 2)

3. v1, v2, v: Ω, x: v1 + v2, f : (v1 + v2)⇒v ` case(x, λx1.f(in1(x1)), λx2.f(in2(x2))) = f(x)

Example 2.5 [theory for reflection of T -exponentials]

• signature Σ⇒ = ΣT +

Tfun: Ω, Ω⇒Ω,
In⇒: ∀v1, v2: Ω.(v1⇒Tv2)⇒Tfun(v1, v2),
Out⇒: ∀v1, v2: Ω.T fun(v1, v2)⇒(v1⇒Tv2)

• theory Th⇒

v1, v2: Ω, x: v1⇒Tv2 ` Out⇒(In⇒(x)) = x

v1, v2: Ω, x: Tfun(v1, v2) ` In⇒(Out⇒(x)) = x

Example 2.6 [Theory for fixed point operator]

• signature ΣY = ΣT +

Y : ∀v1, v2: Ω.((v1⇒Tv2), v1⇒Tv2), v1⇒Tv2

• theory ThY = ThT +

1. v1, v2: Ω.f : (v1⇒Tv2)⇒(v1⇒Tv2) ` Y (f) = f(Y f)

Example 2.7 [Theory for inductive types]

• signature Σµ

µ: (Ω⇒Ω)⇒Ω,
i: ∀F : Ω⇒Ω.F (µF )⇒µF,
I : ∀F : Ω⇒Ω, v: Ω.(∀v1, v2: Ω.(v1⇒v2), F (v1)⇒F (v2)), (F (v)⇒v), µF⇒v

• theory Thµ

1. F : Ω⇒Ω, v: Ω, f : (∀v1, v2: Ω.(v1⇒v2), F (v1)⇒F (v2)), α: F (v)⇒v `
f strength =⇒ ∀x: F (µF ).I(f, α, i(x)) = α(f(I(f, α), x))

2. F : Ω⇒Ω, v: Ω, f : (∀v1, v2: Ω.(v1⇒v2), F (v1)⇒F (v2)), α: F (v)⇒v, g: µF⇒v `
f strength, ∀x: F (µF ).g(i(x)) = α(f(g, x)) =⇒ g = I(f, α)

where “f strength” is the assertion saying that “f is a strength for F”

Remark 2.8

• We write τ1×τ2, τ1⇒Tτ2 and τ1 + τ2 for prod(τ1, τ2), Tfun(τ1, τ2) and +(τ1, τ2). Moreover, we
do not write the conversion functions In1, Out1, In×, Out× In⇒ and Out⇒.

• We write µh.fh instead of Y [v1, v2](f).

• We do not write i[F ], when is it clear from the context. Moreover, we write µX.τ for µ(λX : Ω.τ)
and µh.λx.α(fhx) for I [F, v](f, α). The latter does not cause ambiguity with the notation
introduced for fixed point operators, since Y [µF, v](λh, x.α(fhx)) and I [F, Tv](f, α) are provably
equivalent in Thµ + ThY , when α: F (Tv)⇒Tv.

• The axiomatization for a fixed point operator is rather weak; it would be better to use one for
the least fixed point operator.

6



• The theory of inductive types is consistent if we add sums(, products, fixed point operators) and
T -exponentials, but it becomes inconsistent if we require also all exponentials to be reflected (e.g.
consider FX = (X⇒2)⇒2). Consistency can be proved using the following indexed category
(which suggests other consistent extensions): the base consists of (large) ω-categories and ω-
functors, in particular Ω is interpreted by the ω-category of small cpos and embedding-partial
projections pairs, while the fiber over k is Cpo|k|, where |k| are the objects of k, and Cpo is the
category of (large) ω-cpos and ω-continuous functions.

2.2 Examples of translations

This section exemplifies the use of HML-translations for representing the MLT -translations I∅
corresponding to the monad transformers FTX = T (X +E) for exceptions and FTX = µY.T (X +
H(Y )) for generalized resumptions (where H is a strong endofunctor). By a suitable choice of H ,
the monad transformer for generalized resumptions may be specialized to others, e.g.: FTX =
µY.T (X + Y ) for resumptions, FTX = µY.T (X + (A×V ×Y )) for interactive output and FTX =
µY.T (X + (A×Y V )) for interactive input.
In what follows, a translation I∅: MLT (Σpar + Σnew) → MLT (Σpar) will be represented by a
HML-translation F : HML(Σ2) → HML(Σ1). In general, Σ1 and Σ2 are constructed through the
following sequence of steps, each introducing a HML-signature extending the one defined in the
previous step:

• ΣML is the signature representing the relevant features of MLT not redefined by I∅;

• Σ0 = ΣML + Σpar, usually F restricted to Σ0 is the identity;

• Σ1 = Σ0+ the relevant features of MLT redefined by I∅, usually Σ1 = Σ0 + ΣT ;

• Σ2 = Σ1 + Σnew.

Example 2.9 [Translation for exceptions FTX = T (X + E)]

• Σ0 = Σ+ + E: Ω

E represents the type of exceptions

• Σ1 = Σ0 + ΣT

• Σ2 = Σ1 +
raise: ∀X : Ω.E⇒TX,
handle: ∀X : Ω.TX, (E⇒TX)⇒TX

• F : Σ2 → Σ1 is the identity over Σ0 and

F (T )(X) = T (X + E)

F (val)[X ](x) = val(in1(x))

F (raise)[X ](n) = val(in2(n))

F (handle)[X ](c, f) = let(c, λx.case(x, F (val), f))

F (let)[X, Y ](c, f) = let(c, λx.case(x, f, F (raise)))

Example 2.10 [Translation for generalized resumptions FTX = µY.T (X + HY )]

• Σ0 = Σ+ + Σµ +
H : Ω⇒Ω,
st: (∀X, Y : Ω.(X⇒Y ), HX⇒HY )

(H, st) represents a strong endofunctor

• Σ1 = Σ0 + ΣT

7



• Σ2 = Σ1 +
τH : ∀X : Ω.H(TX)⇒TX,
CH : ∀X, Y : Ω.(X⇒TY ), (H(TX)⇒TY )⇒(TX⇒TY )

• F : Σ2 → Σ1 is the identity over Σ0 and

F (T )(X) = µX ′.T (X + HX ′)

F (val)[X ](x) = val(in1(x))

F (τH )[X ](z) = val(in2(z))

F (CH )[X, Y ](f, g, c) = let(c, λx.case(x, f, g))

F (let)[X, Y ](c, f) = (µh.λc.F (CH )(c, f, λz.F (τH)(st(h)z)))(c)

One may specialize (H, st) in several ways, e.g.

• when H(X) = E, one gets back the translation for exceptions, and therefore Σµ becomes un-
necessary. Actually, CH does not specialize to handle, but they are interdefinable.

• when H(X) = X , one gets the translation for resumptions. In this case, τH corresponds to
τ -prefixing (of CCS), while CH does not have an obvious analogue in concurrent languages.
However, several operations on concurrent programs may be defined in terms of τH , CH and a
fixed point combinator Y (see Section 2.4).

Remark 2.11 [Commutativity for generalized resumptions] Given two endofunctors H1 and H2,
let HX = (H1X + H2X) and F1, F2 and F be the translations for generalized resumptions
corresponding to H1, H2 and H , then FTX , F1(F2T )X and F2(F1T )X are provably isomorphic.
Moreover, τH and CH are definable from τH1

, CH1
, τH2

and CH2
(and conversely). One way to

establish such a definability result is by proving the equivalence of two composite translations.

2.3 Examples of uniform redefinitions

This section exemplifies the use of HML-translations for representing uniform redefinitions Iτ

corresponding to a monad transformer of the form F (T )X = T (G(T, X)). Monad transformers of
this form include: FTX = µX ′.T (X + HX ′) for generalized resumptions and FTX = T (X×M)
for complexity (where M is a monoid).
In what follows, a uniform redefinition Iτ : MLT (Σpar + Σc:τ ) → MLT (Σpar + Σc:τ ) will be repre-
sented by a HML-translation F : HML(Σ2) → HML(Σ2). In general, Σ2 is constructed through
the following sequence of steps, each introducing a HML-signature extending the one defined in
the previous step:

• ΣML is the signature representing the relevant features of MLT not redefined by Iτ ;

• Σ0 = ΣML + Σpar+ the part of Σc:τ not redefined by Iτ (which consists mainly of symbols
occurring in τ), usually F restricted to Σ0 is the identity;

• Σ1 = Σ0+ the relevant features of MLT redefined by Iτ , e.g. Σ1 = Σ0 + ΣT ;

• Σ2 = Σ1 + c: τ .

Example 2.12 [Uniform redefinition of cX : S(TX)]

• Σ0 = G: (Ω⇒Ω), Ω⇒Ω,
S: Ω⇒scheme

G is a parameter of the construction, while S is used for typing the symbol c

• Σ1 = Σ0 + T : Ω⇒Ω

N.B.: this uniform redefinition applies also when T does not have all the structure of a monad

• Σ2 = Σ1 + c: ∀X : Ω.S(TX)

8



• F : Σ2 → Σ2 is the identity over Σ0 and

F (T )(X) = T (G(T, X))

F (c)[X ] = c[G(T, X)]

Uniform redefinition of c: ∀X1, . . . , Xn: Ω.S(TX1, . . . , TXn), when S: Ωn⇒scheme, can be defined
similarly. Most of the symbols, that may need to be redefined in the incremental approach to
semantics, have a type scheme of the form S(TX), where S is a type scheme not depending on T ,
or can be replaced by symbols whose type scheme is of such a form, e.g.:

• nilX : TX , orX : (TX)2⇒TX

• lookup: L⇒TU , update: L, U⇒T1 , new: TL

• raiseX : E⇒TX , handleX : TX, (E⇒TX)⇒TX

• τX : TX⇒TX , ?X : A, (V ⇒TX)⇒TX , !X : A, V, TX⇒TX .

But there are two important exceptions:

• call/ccX,Y : ((X⇒TY )⇒TX)⇒TX

• CX,Y : (X⇒TY ), (H(TX)⇒TY )⇒(TX⇒TY ) introduced in Example 2.10.

However, there are uniform redefinitions also for (operations of) these type schemes, although they
are more involved and make further assumptions on G and T .

2.4 Applications

In this section we consider a metalanguage MLT (Σ + Σnew) which includes the operations τH

and CH of Example 2.10, and show that various operations on concurrent programs (with shared
memory) can be expressed in this metalanguage.
The idea is to start with a metalanguage MLT (Σ) for non-deterministic (imperative) languages,
where the operations declared in Σ should include at least

• or[X ]: TX, TX⇒TX non-deterministic choice, and

• Y [X, Y ]: ((X⇒TY ), X⇒TY ), X⇒TY (least) fixed point operator.

A model of MLT (Σ) in the category of cpos is obtained by taking TX = Ppl(X×S)S , where Ppl

is Plotkin’s powerdomain. Then, we can extend MLT (Σ) to MLT (Σ + Σnew), by adding the new
operations corresponding to the monad transformer for resumptions (see Example 2.10):

• τH [X ]: TX⇒TX , and

• CH [X, Y ]: (X⇒TY ), (TX⇒TY ), TX⇒TY .

A model of MLT (Σ+Σnew) can be obtained via a translation into MLT (Σ); we use the translation
in Example 2.10 (with HX = X) for the new operations (and T ), and the uniform redefinition
in Example 2.12 for the operations in Σ. In the model of MLT (Σ + Σnew) obtained in this way
TX = µY.Ppl((X+Y )×S)S , and T1 is isomorphic to the cpo of resumptions µR.Ppl((S+(R×S))S .
Now that we have outlined the intended interpretation of MLT (Σ + Σnew), we can give a sample
of operations definable from or, Y , τH and CH in MLT :

• critical section critical[X ]: TX⇒TX is defined by primitive recursion

critical[X ] = CH (λx.τH (val(x)), critical)

• parallel and-composition and right and-merge pand[X1, X2], rand[X1, X2]: TX1, TX2⇒T (X1×X2)
are defined by mutual recursion

– pand[X1, X2](c1, c2) = or(rand(c1, c2), rand(c2, c1))

9



– rand[X1, X2](c) = CH(λx2.let(c, λx1.val(〈x1, x2〉)), λc′.pand(c, c′))

• parallel or-composition and right or-merge por[X ], ror[X ]: TX, TX⇒TX are defined by mutual
recursion

– por[X ](c1, c2) = or(ror(c1 , c2), ror(c2, c1))

– ror[X ](c) = CH(λx2.val(x2), λc′.por(c, c′))

Remark 2.13 Intuitively, critical(c) forces the program c to be executed in one step, and the
two parallel compositions execute their arguments in parallel, but pand(c1, c2) completes only
when both c1 and c2 have completed, while por(c1, c2) completes as soon as c1 or c2 have com-
pleted. In particular, in the intended model of MLT (Σ + Σnew) the following equalities hold:
pand(val(x1), val(x2)) = val(〈x1, x2〉) and por(val(x1), val(x2)) = or(val(x1), val(x2))
However, to establish properties of these derived operations formally (i.e. without appealing to
specific models), we should have proved that the translations defined in Examples 2.10 and 2.12
are indeed interpretations between suitable HML-theories.

3 Categorical view

The idea of functorial semantics is that certain fragments of logical theories correspond to certain
choices of categorical properties P , sometimes called doctrines ([Law75, KR77]), so that theories
of kind P can be identified with categories with P structure. In this setting, interpretations of
a theory T in a category C with P structure correspond to P-preserving functors from T to C,
that is, models of T in C are objects in the functor category [T, C]P . According to this view,
HML-theories correspond to special sorts of (split) fibrations, which we call λω-categories; they
are a mild generalization of PL-categories ([See87]), Seely’s categorical version of the higher order
polymorphic λ-calculus. Moreover, one expects a correspondence between structure preserving
maps between λω-categories and HML-translations.

Definition 3.1 A λω-category T is a fibred CCC over a CCC base, which admits universal quan-
tification along cartesian projections, and with two distinguished objects: Ω in the base and t in the
fiber over Ω. λω-Cat is the category of λω-categories and structure preserving maps. The category
Mod (T ) of models of T is the comma category (T ↓ λω-Cat).

We seek a correspondence between translations φ: T2 → T1 and functors Φ:Mod (T1) → Mod (T2),
so as to give a measure of HML’s ability to express constructions. Given the above definition
of models, there is a straightforward notion of relative interpretation: a morphism φ: T2 → T1,
induces a functor Φ:Mod (T1) → Mod (T2) by composition. We may say that Φ is syntactically
induced because it is determined by φ which we think of as a translation of theories. In order to
establish the categorical properties of syntactically induced functors we relate λω-categories with
lex-categories:

Proposition 3.2 a) There exists a lex-category Λω s.t. [Λω,Sets ]lex
∼= λω-Cat. b) There exists

a functor th : λω-Cat → Lex s.t. Mod (T ) ∼= [th (T ),Sets ]lex.

Part a) of the proposition is proven by exhibiting a universal Horn theory ([Kea75]) for it. Part b)
is pictured by the following diagram, where (th ,∼=) is a morphism of indexed categories:

Lex op

⇑
‖
‖

�
�
�

th op
�
�
��

‖
‖

∼=

@
@
@ [ ,Sets ]lex

@
@
@R

λω-Catop

( ↓ λω-Cat)
> Cat

10



This result tells us that the categories defined above are locally finitely presentable (by the Gabriel-
Ulmer duality in [GU75]), and that functors Mod (I):Mod (T1) → Mod (T2) induced by a meta-
language translation I : T2 → T1 (i.e. a morphism in λω-Cat) have left adjoints, allowing I to be
recovered from Mod (I). This view also suggests more general constructions than Mod (I), namely
the constructions corresponding to morphisms from th (T2) to th (T1) in Lex , which seem to include
constructions corresponding to a “change of category”.

References

[Gor79] M.J.C. Gordon. The Denotational Description of Programming Languages. Springer-
Verlag, 1979.

[GU75] P. Gabriel and F. Ulmer. Lokal Präsentierbare kategorien. In Lecture notes in mathe-
matics, vol.445, Berlin, 1975. Springer.

[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In 2nd LICS
Conf. IEEE, 1987.

[Kea75] O. Keane. Abstract horn theories. In F.W. Lawvere, C. Maurer, and G.C. Wraith,
editors, Model theory and topoi, pages 15–50, Berlin, 1975. Springer. Lecture notes in
mathematics, vol.445.

[KR77] A. Kock and G.E. Reyes. Doctrines in categorical logic. In J. Barwise, editor, Handbook
of mathematical logic, pages 283–313. North-Holland, 1977.

[Law75] F. W. Lawvere. Introduction. In F.W. Lawvere, C. Maurer, and G.C. Wraith, editors,
Model theory and topoi, pages 3–14, Berlin, 1975. Springer. Lecture notes in mathemat-
ics, vol.445.

[Mog89a] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-
90-113, Edinburgh Univ., Dept. of Comp. Sci., 1989. Lecture Notes for course CS 359,
Stanford Univ.

[Mog89b] E. Moggi. A category-theoretic account of program modules. In Proceedings of the Con-
ference on Category Theory and Computer Science, Paris, France, Sept. 1989, volume
530 of Lecture Notes in Computer Science. Springer Verlag, 1989.

[Mog91a] E. Moggi. A modular approach to denotational semantics. Invited talk for the Conference
on Category Theory and Computer Science, Paris, France, 1991.

[Mog91b] E. Moggi. Notions of computation and monads. Information and Computation, 93(1),
1991.

[Mos90] P. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science. North Holland, 1990.

[OT92] P.W. O’Hearn and R.D. Tennent. Semantics of local variables. In Applications of
Categories in Computer Science, number 177 in L.M.S. Lecture Notes Series. Cambridge
University Press, 1992.

[Sch86] D.A. Schmidt. Denotational Semantics: a Methodology for Language Development. Allyn
& Bacon, 1986.

[See87] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda calculus.
Journal of Symbolic Logic, 52(2), 1987.

[ST87] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic
specifications: implementations revisited. In H. Ehrig and al., editors, TAPSOFT 87,
volume 250 of Lecture Notes in Computer Science. Springer Verlag, 1987.

11



A The metalanguage HML

For simplicity, we give the rules of HML in the case when propositions are just equations. There-
fore, we ignore sequents and declarations of predicates P: ∀v: k.σ⇒prop in signature.

Signatures

∅ ` ∅ sig

add-K
` Σ sig

` Σ, K: kind sig
K 6∈ DC(Σ) add-C

`Σ k: kind

` Σ, C: k sig
C 6∈ DC(Σ)

add-S
`Σ k: kind

` Σ, S: k⇒scheme sig
S 6∈ DC(Σ) add-c

∅ `Σ σ: scheme

` Σ, c: σ sig
c 6∈ DC(Σ)

Theories

∅
` Σ sig

`Σ ∅ theory
add

`Σ Th theory ∅ `Σ e1: σ ∅ `Σ e2: σ

`Σ Th, e1 =σ e2 theory

Kinds

K
` Σ sig

`Σ K: kind
Σ(K) = kind

1
` Σ sig

`Σ 1: kind
×

`Σ k1: kind
`Σ k2: kind

`Σ k1×k2: kind
⇒

`Σ k1: kind
`Σ k2: kind

`Σ k1⇒k2: kind

Contexts

∅
` Σ sig

`Σ ∅ context

add-v

`Σ Γ context
`Σ k: kind

`Σ Γ, v: k context
v 6∈ DV(Γ) add-x

`Σ Γ context
Γ `Σ σ: scheme

`Σ Γ, x: σ context
x 6∈ DV(Γ)

Constructors

v
`Σ Γ context

Γ `Σ v: k
Γ(v) = k C

`Σ Γ context

Γ `Σ C: k
Σ(C) = k

1I
`Σ Γ context

Γ `Σ ∗: 1
×I

Γ `Σ u1: k1 Γ `Σ u2: k2

Γ `Σ 〈u1, u2〉: k1×k2

×E
Γ `Σ u: k1×k2

Γ `Σ πi(u): ki

⇒I
Γ, v: k1 `Σ u: k2

Γ `Σ (λv: k1.u): k1⇒k2

⇒E
Γ `Σ u: k1⇒k2 Γ `Σ u1: k1

Γ `Σ u(u1): k2

Constructor equality

Constructor equality is the congruence generated by the following rules

1.η
Γ `Σ u: 1

Γ `Σ ∗ = u: 1

×.β
Γ `Σ u1: k1 Γ `Σ u2: k2

Γ `Σ πi(〈u1, u2〉) = ui: ki

×.η
Γ `Σ u: k1×k2

Γ `Σ 〈π1(u), π2(u)〉 = u: k1×k2

⇒.β
Γ, v: k1 `Σ u2: k2 Γ `Σ u1: k1

Γ `Σ (λv: k1.u2)(u1) = [u1/v]u2: k2
⇒.η

Γ `Σ u: k1⇒k2

Γ `Σ (λv: k1.u(v)) = u: k1⇒k2

12



Type schemes

type
Γ `Σ u: Ω

Γ `Σ u
1

`Σ Γ context

Γ `Σ 1
S

Γ `Σ u: k

Γ `Σ S(u)
Σ(S) = k⇒scheme

×

Γ `Σ σ1: scheme
Γ `Σ σ2: scheme

Γ `Σ σ1×σ2: scheme
⇒

Γ `Σ σ1: scheme
Γ `Σ σ2: scheme

Γ `Σ σ1⇒σ2: scheme
∀

Γ, v: k `Σ σ: scheme

Γ `Σ (∀v: k.σ): scheme

Type scheme equality

Type scheme equality is the congruence induced by constructor equality

Terms

x
`Σ Γ context

Γ `Σ x: σ
Γ(x) = σ c

`Σ Γ context

Γ `Σ c: σ
Σ(c) = σ

1I
`Σ Γ context

Γ `Σ ∗: 1
×I

Γ `Σ e1: σ1

Γ `Σ e2: σ2

Γ `Σ 〈e1, e2〉: σ1×σ2
×E

Γ `Σ e: σ1×σ2

Γ `Σ πi(e): σi

⇒I
Γ, x: σ1 `Σ e: σ2

Γ `Σ (λx: σ1.e): σ1⇒σ2

⇒E
Γ `Σ e: σ1⇒σ2 Γ `Σ e1: σ1

Γ `Σ e(e1): σ2

∀I
Γ, v: k `Σ e: σ

Γ `Σ (Λv: k.e): (∀v: k.σ)
∀E

Γ `Σ e: (∀v: k.σ) Γ `Σ u: k

Γ `Σ e[u]: [u/v]σ

:-eq
Γ `Σ e: σ1 Γ `Σ σ1 = σ2: scheme

Γ `Σ e: σ2

Term equality

Term equality is the congruence generated by constructor equality the following rules

axiom
`Σ Th theory `Σ Γ context

Γ `Σ,Th e1 =σ e2

(e1 =σ e2) ∈ Th

1.η
`Σ Th theory Γ `Σ e: 1

Γ `Σ,Th ∗ =1 e

×.β
`Σ Th theory Γ `Σ e1: σ1 Γ `Σ e2: σ2

Γ `Σ,Th πi(〈e1, e2〉) =σi
ei

×.η
`Σ Th theory Γ `Σ e: σ1×σ2

Γ `Σ,Th 〈π1(e), π2(e)〉 =σ1×σ2
e

⇒.β
`Σ Th theory Γ, x: σ1 `Σ e2: σ2 Γ `Σ e1: σ1

Γ `Σ,Th (λx: σ1.e2)(e1) =σ2
[e1/x]e2

⇒.η
`Σ Th theory Γ `Σ e: σ1⇒σ2

Γ `Σ,Th (λx: σ1.e(x)) =σ1⇒σ2
e

∀.β
`Σ Th theory Γ, v: k `Σ e: σ Γ `Σ u: k

Γ `Σ,Th (Λv: k.e)[u] = [u/v]e: [u/v]σ

∀.η
`Σ Th theory Γ `Σ e: (∀v: k.σ)

Γ `Σ,Th (Λv: k.e[v]) =(∀v:k.σ) e

=-eq
Γ `Σ,Th e1 =σ1

e2 Γ `Σ σ1 = σ2: scheme

Γ `Σ,Th e1 =σ2
e2

13


