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This paper describes the design and the semantics of MetaKlaim, an higher order

distributed process calculus equipped with staging mechanisms. MetaKlaim integrates

MetaML (an extension of SML for multi-stage programming) and Klaim (a Kernel

Language for Agents Interaction and Mobility), to permit interleaving of

meta-programming activities (like assembly and linking of code fragments), dynamic

checking of security policies at administrative boundaries and “traditional”

computational activities on a wide area network (like remote communication and code

mobility). MetaKlaim exploits a powerful type system (including polymorphic types á

la system F) to deal with highly parameterized mobile components and to dynamically

enforce security policies: types are metadata which are extracted from code at run-time

and are used to express trustiness guarantees. The dynamic type checking ensures that

the trustiness guarantees of wide are network applications are maintained whenever

computations interoperate with potentially untrusted components.

1. Introduction

The distributed software architecture (model) which underpins most of the wide area net-
work (WAN) applications typically consists of a large number of heterogeneous computa-
tional entities (sometimes referred to as nodes or sites of the network) where components
of applications are executed. Differently from traditional middle-wares for distributed
programming, the structure of the underlying network is made manifest to programmers
of WAN applications. In general, the various nodes are handled by different authorities
having different administrative policies and security requirements. Components of WAN
applications are characterized by an highly dynamic behavior and have to deal with the
unpredictable changes over time of the network environment (changes due to the unavail-
ability of network connectivity, lack of services, node failures, network reconfiguration,

† Supported by MIUR project NAPOLI and EU project PROFUNDIS IST-2001-33100.
‡ Supported by MIUR project NAPOLI and EU project DART IST-2001-33477.
§ Supported by MIUR project NAPOLI and EU project AGILE IST-2001-32747.



G. Ferrari and E. Moggi and R. Pugliese 2

and so on). Moreover, nomadic or mobile components must be designed to support het-
erogeneity and interoperability because they may detach from a node and re-attach later
on a different node. We refer to (FPV98) and (Car99) for comprehensive analysis of issues
related to WAN applications.

The problems associated with the development of WAN applications have prompted
the study of the foundations of programming languages with advanced features includ-
ing mechanisms for code and agent mobility, for managing security, and for coordinating
and monitoring the use of resources. Several foundational calculi have been proposed
to tackle most of the phenomena related to WAN programming. We mention the Dis-
tributed Join-calculus (FGL+96), Klaim (DFP98), the Distributed π-calculus (HR01),
the Ambient calculus (CG00a), the Seal calculus (VC99), and Nomadic Pict (SW00). All
these foundational models encompass a notion of location to reflect the idea of admin-
istrative domains: computations at a certain location are under the control of a specific
authority. In other words, they focus on the spatial dimension (which is often referred to
as network awareness) of WAN programming.

In a WAN setting no central authority can define and enforce policies which regulate
accesses to network resources. Moreover, components of applications should be designed
to be executed and interoperate with potentially malicious components. The advent of
safe programming languages such as Java and C] has led to the definition of strong type
systems which can be effectively exploited to rule out a variety of security bugs. Notice
that the use of a typed intermediate code has come into prominence in the last few years
(e.g. the Java Bytecode or the Microsoft Intermediate Language). However, static type
checking cannot detect all potential security holes. Current run-time environments exploit
some mechanisms (e.g. see (SMH00; Sch00; FBF99)), like reference monitors and certify-
ing compilers, to dynamically check security properties which cannot be enforced either
statically or at linking time. Dynamic enforcing of security checks increases the security
level of WAN applications, because it permits to identify those portions of applications
code that are potentially untrusted, and can support the revocation of previously granted
permissions to partially trusted code. Moreover, components of WAN applications are of-
ten developed and maintained by different providers/principals and may be downloaded
and linked together “on demand”. Hence, the run-time system may interleave computa-
tional activities with meta-programming activities, such as dynamic linking, assembling
and customization of components, that permit to reconfigure the application without
having to restart it. In fact, the interest towards formally understanding dynamic link-
ing (and separate compilation) is witnessed by several papers that have recently tackled
the problem (Car97a; MG99; HWC00; Dro00; HW00; Sew01). To sum up, dynamic en-
forcement of security properties together with dynamic assembling and customization of
components make the temporal dimension of WAN programming.

The spatial and the temporal dimensions of WAN programming have been studied at
considerable depth but in isolation, and their interplay has not been properly formal-
ized and understood, yet. This paper proposes a foundational model which integrates
the spatial and temporal aspects of WAN programming. We have abstracted the ba-
sic features of the problem in a calculus having primitives for programming processes
which may migrate among nodes, and primitives which support fine-grain control on
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dynamic linking of components and dynamic checking of security policies. Our calcu-
lus, called MetaKlaim, builds on Klaim (DFP98; KHP98; DFPV00) and MetaML

(TS97; She99; TS00; MHP00). Klaim (Kernel Language for Agents Interaction and Mo-
bility) is an experimental language, inspired by the Linda coordination model (Gel85;
CG89), specifically designed to model and to program WAN applications by exploiting
distribution and mobility. MetaML supports staging constructs for meta-programming
and most features of SML. It is ideal for describing customization and combination of
software components, since the staging constructs have the same status of the other
programming constructs.

MetaKlaim takes the form of an higher-order distributed process calculus where
staging handles naturally typed code. The calculus is designed around the following
ingredients:

— Localities and code mobility to deal with the spatial dimension of WAN programming;
— Polymorphic types á la system F to deal with highly parameterized mobile compo-

nents;
— Types, namely metadata extracted at run-time from potential untrusted code, to

dynamically enforce security policies;
— Staging and meta-programming constructs (á la MetaML) to link, specialize, adapt,

run and reconfigure mobile components by taking advantage of run-time type infor-
mation.

In this paper we introduce the operational semantics of MetaKlaim. To our knowl-
edge, this is the first semantics for a general-purpose higher order distributed process cal-
culus with staging constructs. The operational semantics performs dynamic type check-
ing of untrusted code, thus the trustness guarantees of wide are network applications are
maintained, even when they interoperate with potentially untrusted components. More-
over, the type system of MetaKlaim and the dynamic type checking can ensure local
Type Safety, i.e. type safety of just that part of the net we want to control.

The rest of the paper is organized as follows: Section 2 gives further motivations for
our work; Section 3 presents the syntax of MetaKlaim and discusses the main linguis-
tic design choices; Section 4 and 5 introduce a type system and define the operational
semantics for MetaKlaim; Section 6 states and demonstrates the type safety result;
Section 7 gives a few examples of distributed and mobile code applications; Section 8
presents some comparisons with related work; finally, Section 9 draws some conclusions
and discusses directions for further work.

2. Further Motivations

Current software technologies emphasize the notion of components as the key idiom to
control the design and the development of applications. Ideally, programmers should
design and build applications by combining and integrating together (pre-existing) com-
ponents. To support this simple idea, programming languages should provide mecha-
nisms to link and specialize components. In other words, components are assumed to
be generic and pluggable to other components to achieve the required functionalities.
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Modern operating systems and programming languages (such as Java) include dynamic
linking mechanisms as a fundamental part of their run time environment. COM (Cor01)
and Java Beans (Mic02) support component updating: run-time type checking is used to
determine what versions of components are available.

Components often embody facilities to specialize their structure and generate efficient
code once the parameters of the components have been provided. These components are
called generative (EC00). An illustrative example is given by C++ template mechanisms
and template metaprogramming (MS96). Multi-stage programming languages have been
proposed for writing generative components. For instance, (KCC00) presents several
examples of components, described as higher-order macros in a functional meta-language
similar to MetaML.

The execution cycle of component-based programming (that is characterized by the
ability of integrating components into applications) consists of

1 Finding the required components;
2 Linking and specializing components;
3 Running the application assembled from components.

The advent of network technologies introduces new phenomena: components are avail-
able on the net and are managed (and provided) by different authorities. The use of
components in a WAN environment raises a number of interesting issues. First, given
the heterogeneity of the environment net components should be highly portable: compo-
nents could be used anywhere but require some services to behave properly (i.e. services
are used to adapt components to a variety of infrastructures). Functional abstraction is
not enough for expressing the desirable forms of parametrization. Also a limited form of
polymorphism, like that supported by SML, appears inadequate. Second, security should
be ensured: components downloaded from different authorities have different security re-
quirements, and they should be executed within different run-time environments. Third,
dynamic adaptability should be ensured: WAN applications are highly dynamic and can
reconfigure their structure and their components at run-time to respond to dynamic
changes of the network environment.

Thus, in the case of WAN programming, the execution cycle of components includes
additional steps and becomes:

1 Downloading generic components;
2 Adapting components to the local infrastructure and the local execution environment;
3 Fixing the loading and specialization policies according to local requirements;
4 Monitoring the execution of the assembled application;
5 Reconfiguring the application and its policies whenever the network environment

changes.

The refined execution cycle (we will call it the network cycle), also applies to nomadic
(mobile) applications: it suffices to substitute the Download step with a MoveTo step.
This is important because it has been widely acknowledged that mobility (FPV98;
RPM00) provides a suitable abstraction to design and implement WAN applications.
In particular, the usefulness of mobility emerges when developing both applications for
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devices with intermittent access to the network, and network services having different
access policies.

Current technologies provide solutions only to some of the issues discussed above. For
instance, in the Java programming language heterogeneity is handled through bytecode
interpretation. Permissions, grants and stack inspection handles dynamic check of pos-
sibly untrusted code. C] generics account for highly parameterized generic components
(KS01). The .NET architecture supplies a programming technology embodying general
facilities for handling heterogeneity and orchestration of WEB services.

3. MetaKlaim

This section introduces MetaKlaim, a foundational multi-stage calculus specifically de-
signed to model both the spatial and temporal aspects of global computing. MetaKlaim

extends system F (Gir72; Rey74) with primitives from Klaim and MetaML: Klaim’s
primitives permit to model the spatial aspects of distributed concurrent applications,
including code mobility, while the staging annotations of MetaML provide a fine-grain
control of the temporal aspects.

Notation 3.1 (Notations and Conventions used throughout the paper).

— m,n range over the set N of natural numbers. Furthermore, m ∈ N is identified with
the set {i ∈ N|i < m} of its predecessors.

— Syntactic equivalence, written ≡, is α-conversion. FV(e) is the set of free variables in
e. If E is a set of syntactic entities, then E0 indicates the set of entities in E without
free variables.

— e ranges over finite sequences of e. |e| is the number of elements in the sequence e. e1, e2

denotes the concatenation of the sequences e1 and e2 (and similarly for sequences Γ1

and Γ2 of declarations). e : t is a shorthand for ei : t for each ei in the sequence e.
— ρ ranges over substitutions, i.e. functions (with finite domain) mapping variables to

terms (or types). ∅ is the empty substitution, x := e is the substitution mapping x

to e, and ρ1, ρ2 denotes the union of two substitutions (with disjoint domains). e[ρ]
is the result (modulo α-conversion) of applying the substitution ρ to e.

— µ(A) is the set of multisets with elements in A, and ] is multiset union.
— Given a BNF e := P1 | . . . | Pm, we write e+ = Pm+1 | . . . | Pm+n as a shorthand

for the extended BNF e := P1 | . . . | Pm+n.

From Klaim (DFP98; KHP98; DFPV00) we borrow the computational paradigm, which
identifies processes as the basic units of computation, and nets, i.e. collections of nodes,
as the coordinators of process activities. Each node has an address, called locality, and
consists of a process component and a tuple space (TS), i.e. a multi-set of tuples. Processes
communicate asynchronously via TSs. The types of MetaKlaim include the types L and
(ti|i ∈ m) of localities and tuples, but not a type of processes, because process actions
can be performed by terms of any type. In MetaKlaim the primitives of Klaim take
the following form:

— spawn(e) activates a process (obtained from e) in a parallel thread.
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— new(e) creates a new locality l, activates a process (obtained from e) at l, and returns
l.

— output(l, e) adds the value of e to the TS at l (output is non-blocking).
— input(l, (pi⇒ei|i ∈ m)) accesses the TS located at l for gathering data. The input

operation checks each pattern pi and looks in the TS at l for a matching value v. If such
a v exists, it is removed from the TS, and the variables x!t declared in the matching
pattern pj are replaced within ej by the corresponding values in v. If no matching
tuple is found, the operation is suspended until one becomes available (thus input

is a blocking operation). Notice that input exploits dynamic type-checking (namely
a matching v must be consistent with the types attached to variables declared in a
pattern).

Remark 3.2. In Klaim there is a primitive eval(l, e) for activating a process at a remote
locality l. This primitive is used for asynchronous process mobility, but it has not been
included in MetaKlaim for the following reasons:

— eval relies on dynamic scoping (a potentially dangerous mechanism), which is not
available in MetaKlaim, since in a functional setting one can use (the safer mecha-
nism of) parametrization.

— with eval a node may activate a process on another node, but the target node has
no control over the incoming process. This can be a source of security problems. In
particular, Local Type Safety (see Theorem 6.2) fails, if eval would be added.

In MetaKlaim process mobility occurs only by “mutual agreement”, i.e. a (sending)
node can output a process abstraction in any TS, but the abstraction becomes an active
process only if (a process at) another (receiving) node input it. Higher-order remote
communication between nodes, like that provided by Klaim, is essential to implement
this form of mobility.

From MetaML (TS97; She99; TS00; MHP00) we borrow the types 〈t〉 for code with
potentially unresolved links (represented by dynamic variables), the stratification into
levels of declarations (level n > 0 for dynamic variables) and evaluation (level n > 0 for
symbolic evaluation), and the following staging annotations:

— Brackets 〈e〉 constructs code representing the program fragment obtained by the
symbolic evaluation of e, e.g. 〈2+x〉 is a value of type 〈nat〉 representing the fragment
2 + x, where x is a dynamic variable.

— Escape ˜ e returns the program fragment represented by code e. During symbolic
evaluation Escape is used for splicing program fragments into bigger programs, e.g.
〈λx.1 + ˜〈2 + x〉〉 evaluates to 〈λx.1 + 2 + x〉.

— Cross-stage persistence %e permits to use the value of e at a higher level, e.g. 〈%(1+
1) + x〉 evaluates to 〈%2 + x〉. Notice that %(1 + 1) and ˜〈1 + 1〉 have the same type,
but their symbolic evaluation is different: the first evaluates to %2, while the second
evaluates to 1 + 1.

— run(e) executes the program represented by code e, e.g. run〈1 + 1〉 evaluates to 2.

Remark 3.3. In MetaML it is possible to evaluate under (dynamic) lambda. This
feature is essential for allowing arbitrary interleaving of code generation and normal
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— Types t ∈ T ::= X | L | t1 → t2 | (ti|i ∈ m) | 〈t〉 | ∀X.t | U⇒t

— Contexts Γ ∈ Ctx ::= ∅ | Γ, Xn | Γ, x : tn

— Terms e ∈ E ::= x | l | λx : t.e | e1 e2 | fix x : t.e | (ei|i ∈ m) | πj e | op e

| 〈e〉 | ˜e | %e | ΛX.e | e{t} | (mri|i ∈ m) with m > 0

Patterns p ∈ P ::= x!t | x = e | (pi|i ∈ m)

Match Rules mr ::= p⇒e

Fig. 1. Syntax of types and terms

computation, but it may cause new forms of improper run-time behavior, that do not
arise in traditional programming languages:

— execution of code with unresolved links, e.g. the evaluation of 〈λx.˜(run〈x〉; . . .)〉 will
attempt to evaluate run〈x〉, before the dynamic variable x gets bound to a value.

— extrusion of a value with free dynamic variables from the scope of the binding lambda,
e.g. the evaluation of 〈λx.˜(output(l, 〈x〉); . . .)〉 will output 〈x〉 in the TS located at
l, thus loosing the connection with the binding lambda.

In a statically typed language these improper behaviors can be prevented by a more so-
phisticated type system, e.g. (CMS02) exploits closed types. For a language with dynamic
type-checking, like MetaKlaim, we prefer to keep the type system simple (the cost of
type checking is linear in the size of the term). The trade-offs are a run-time overhead on
local operations (linear in the size of their operands) for checking the absence of unre-
solved links or scope extrusion, and run-time exceptions exn raised when a check detects
a problem.

Figure 1 summarizes the syntax of MetaKlaim, which uses the following primitives
categories

— a numerable set XT of type variables, ranged over by X, . . .;
— a numerable set X of term variables, ranged over by x, . . .;
— a numerable set L of localities, ranged over by l, . . .;
— a finite set Op = {spawn, new, output, input, run} of local operations, ranged over by

op.

The syntax of MetaKlaim can be explained in terms of system F , Klaim and MetaML.

— From system F we borrow functional types t1 → t2, abstraction λx : t.e and appli-
cation e1 e2, and polymorphic types ∀X.t, type abstraction ΛX.e and instantiation
e{t}.

— From Klaim we borrow localities l of type L, tuples (ei|i ∈ m) of type (ti|i ∈ m),
and the construct (pi⇒ei|i ∈ m) of type U⇒t, which performs pattern matching and
dynamic type-checking on untrusted values deposited in tuple spaces (in Klaim this
construct is bundled with the input primitive); the primitives spawn, new, output

and input are among the local operations Op.
— From MetaML we borrow code types 〈t〉, and the staging annotations brackets 〈e〉,

escape ˜e, and cross-stage persistence %e; run is among the local operations Op.
— Finally, we have recursive definitions fix x : t.e and projections πj e.
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In MetaKlaim, we perform a dynamic type check, when we input an untrusted value
from a tuple space, in order to ensure some trustiness guarantees. The type system
of MetaKlaim is relatively simple, and the guarantees we can express are limited. For
instance, we cannot express constrains on the computational effects of a term, such as the
ability to spawn new threads or to perform input/output. We circumvent this limitation
of the type system by allowing only the input of global values.

Definition 3.4. A term e ∈ E0 is global ∆⇐⇒ it has no occurrences of local operations
op ∈ Op.

Thus the only way we can turn a global value v into a process (interacting with its
environment) is by passing some local operations (possibly in customized form), in other
words v must be a higher-order abstraction representing processes parameterized w.r.t.
customized local operations. Even if we improve the expressiveness of type system by
adding effects, there is still a need to consider processes parameterized w.r.t. customized
local operations, and this parameterization will require also effect polymorphism (besides
type polymorphism).

Remark 3.5. The use of dynamic type dispatching in a distributed polymorphic pro-
gramming language has been strongly advocated in (Dug99). For simplicity, we have
chosen not to include dynamic type dispatching in MetaKlaim, but it would be a very
appropriate extension. However, one may wonder whether input(x!t⇒e) of MetaKlaim

is semantically equivalent to typecase of (x : t)e of (ACPP91; ACPR95). In fact, they
are different! To simplify the comparison we consider a type U of untrusted values, and
replace the input primitive with a construct check against (x!t)e.

— The type U of untrusted values has the following introduction and elimination rules
Γ `

Γ ` u(e) : U

Γ ` v : U Γ, x : t ` e : t

Γ ` check v against (x : t)e : t
the reduction semantics is check u(v) against (x : t)e > e[x := v] provided ∅ ` v : t,
thus at run-time we have to check that v has type t (in the empty context).

— In (ACPP91; ACPR95) the type D of dynamics has similar introduction and elimi-
nation rules (provided we do not consider pattern variables in types)

Γ ` e : t

Γ ` d(e : t) : D

Γ ` v : D Γ, x : t ` e : t

Γ ` typecase v of (x : t)e : t
the reduction semantics is typecase d(v : t′) of (x : t)e > e[x := v] provided t′ ≡ t,
thus at run-time we only need to check equality of types.

Therefore, the two mechanisms accomplish different useful tasks. For instance, if we
have an untrusted dynamic value u(d(v : t)), we must first check that d(v : t) : D (or
equivalently that v : t), and only then we can compare t with other types to decide how
to use v safely.

4. Type System

The type system derives judgments of the following forms
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∅ `
Γ `

Γ, Xn `
X fresh

Γ `n t

Γ, x : tn `
x fresh

X
Γ `

Γ `n X
Xm ∈ Γ and m ≤ n L

Γ `
Γ `n L

→
Γ `n t1 Γ `n t2

Γ `n t1 → t2

( )
Γ `n ti i ∈ m

Γ `n (ti|i ∈ m)
〈 〉

Γ `n+1 t

Γ `n 〈t〉
∀

Γ, Xn `n t

Γ `n ∀X.t
U⇒

Γ `n t

Γ `n U⇒t

var
Γ `

Γ `n x : t
x : tn ∈ Γ loc

Γ `
Γ `n l : L

fun
Γ, x : tn

1 `n e : t2

Γ `n λx : t1.e : t1 → t2

app
Γ `n e1 : t1 → t2 Γ `n e2 : t1

Γ `n e1 e2 : t2
fix

Γ, x : tn `n e : t

Γ `n fix x : t.e : t

tuple
Γ ` {Γ `n ei : ti | i ∈ m}
Γ `n (ei|i ∈ m) : (ti|i ∈ m)

proj
Γ `n e : (ti|i ∈ m)

Γ `n πj e : tj

j < m

spawn
Γ `n e : () → t

Γ `n spawn e : ()
new

Γ `n e : L → t

Γ `n new e : L
input

Γ `n e : (L, U⇒t)

Γ `n input e : t

output
Γ `n e : (L, t)

Γ `n output e : ()
run

Γ `n e : 〈t〉 Γ `n t

Γ `n run e : t
brck

Γ `n+1 e : t

Γ `n 〈e〉 : 〈t〉

esc
Γ `n e : 〈t〉

Γ `n+1 ˜e : t
csp

Γ `n e : t

Γ `n+1 %e : t
poly

Γ, Xn `n e : t

Γ `n ΛX.e : ∀X.t

spec
Γ `n e : ∀X.t2 Γ `n t1

Γ `n e{t1} : t2[X := t1]

case
{Γ `n e(pi) : L | i ∈ m} {Γ, Γn(pi) `n ei : t | i ∈ m}

Γ `n (pi⇒ei|i ∈ m) : U⇒t
m > 0

Fig. 2. Type System

— Γ ` , i.e. Γ is a well-formed context
— Γ `n t, i.e. t is a well-formed type at level n ≥ 0
— Γ `n e : t, i.e. e is a well-formed term of type t at level n ≥ 0

Levels are typical of multi-level languages (like λ© of (Dav96)). In a dynamically typed
multi-stage language, like MetaKlaim (see also (SSP98)), type variables get bound at
different stages of a computation, and thus well-formedness is level dependent not only
for terms, but also for types. The declarations in a context Γ have the following meaning:
Xn means that the type variable X ranges over types t at level n, while x : tn means
that the term variable x ranges over values of type t at level n.

Figure 2 gives the typing rules. Most of them are the multi-level extension of standard
typing rules. The only typing rules that deserve some comments are:

— The rule for type variables supports a form of cross-stage persistence (as in (SSP98)),
namely an X declared at level m can be used at higher levels.

— The typing for run has the additional premise Γ `n t, since the other premise implies
only that Γ `n+1 t.

— Rule (case) uses some auxiliary notation, namely a context Γn(p) and a sequence
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e(p) of terms defined by induction on p ∈ P as follows:

p Γn(p) e(p)

x!t x : tn ∅
x = e x : Ln e

(pi|i ∈ m) Γn(p0), . . . , Γ
n(pm−1) e(p0), . . . , e(pm−1)

4.1. Basic Properties of the Type System

Properties like Weakening and Substitution are typical of type systems. Substitution is
particularly important, since it clarifies the meaning of different declarations, namely
how the type and level assigned to a variable x constrain the terms that may safely
replace it. Lemma 4.5 expresses a property of interest for multi-level languages, namely
how the validity of a judgment is affected when (some of) the levels are incremented. The
situation is more subtle when (some of) the levels are decremented (see Lemma 6.5).

Notation 4.1 (Notation and Convention used in the rest of the paper).

— Γ ` J ranges over the possible judgments of the type system, thus J matches anything
that can be on the right hand side of `.

— Γ+1 is the context obtained from Γ by incrementing the level of each declaration by
1, i.e. Xn becomes Xn+1 and x : tn becomes x : tn+1.

Lemma 4.2 (Weakening). The following rules are admissible
Γ1, Γ2 ` J

Γ1, X
m, Γ2 ` J

X fresh
Γ1 `m t Γ1, Γ2 ` J

Γ1, x : tm, Γ2 ` J
x fresh

Proof. By induction on the derivation of Γ1,Γ2 ` J .

Lemma 4.3 (Substitution). The following rules are admissible
Γ1 `m t Γ1, X

m, Γ2 ` J

Γ1, Γ2[X := t] ` J [X := t]

Γ1 `m e : t Γ1, x : tm, Γ2 ` J

Γ1, Γ2 ` J [x := e]

Proof. By induction on the derivation of Γ1, X
m,Γ2 ` J and Γ1, x : tm,Γ2 ` J respec-

tively.

The following lemma implies that the type of a closed term is necessarily closed. This
property is quite subtle, for instance it fails if we extend the language with an exception
exn : t, instead of a polymorphic constant raiseexn : ∀X.X.

Lemma 4.4 (Strengthening). The following rules are admissible
Γ1, X

m, Γ2 `n e : t

Γ1, Γ2 `n e : t
X 6∈ FV(Γ2, e)

Γ1, x : tm, Γ2 `n e : t

Γ1, Γ2 `n e : t
x 6∈ FV(e)

Proof. By induction on the derivation of Γ1, X
m,Γ2 ` J and Γ1, x : tm,Γ2 ` J respec-

tively.
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Lemma 4.5 (Promotion). The following rules are admissible
Γ1, Γ2 `
Γ1, Γ

+1
2 `

Γ1, Γ2 `n t

Γ1, Γ
+1
2 `n+1 t

Γ `n e : t

Γ+1 `n+1 e : t

Proof. The first two rules are proved by mutual induction on the derivation of Γ1,Γ+1
2 `

and Γ1,Γ+1
2 `n+1 t. The third rule is by induction on the derivation of Γ+1 `n+1 e : t.

Remark 4.6. One can easily adapt a type inference algorithm for system F (e.g. see
(Car97b)) to MetaKlaim. Namely, given Γ, e and n the algorithm either returns a t

such that Γ `n e : t is derivable (t is unique up to α-conversion), or fails when such a t

does not exists.

5. Operational Semantics

Following the Klaim computational paradigm, we define the operational semantics over
nets.

Definition 5.1. A net N ∈ Net
∆= µ(L × (E0 + V0

0 + {exn, err})) is a multi-set of pairs
consisting of a locality l and either a process p(e), or a value u(v) in the tuple space, or
exn indicating that a process at l has raised an exception, or err indicating that a process
at l has crashed.

The dynamics of a net is given by a relation N ==⇒ N ′ defined in terms of two transition
relations e

a
> e′ and e > exn | err for terms†: err means that a process has crashed,

this is different from node failure (that we do not model), and from a deadlocked process
(e.g. a process that is waiting to input a tuple that never arrives); exn means that an
exception has been raised (for simplicity we do not provide exception handling facilities,
although in practice they are important). The transitions relations are defined in terms
of evaluation contexts (see (WF94)) and reductions r0 a

> e′ (and r0 > exn | err)
for actions and r1 1

> e′ | err for symbolic evaluation.
Figure 3 summarizes the syntactic categories for the operational semantics. Redexes

are the subterms where rewriting takes place. Evaluation contexts identify which of the
redexes in a term should be evaluated first, namely the hole [] gives the position of
such a redex. The syntax is complicated by the stratifications into levels (borrowed from
MetaML).

5.1. Reduction and Transition Relation

Even if we are interested in defining > only on closed terms, we must consider open
redexes because of evaluation under (dynamic) lambda. Figure 4 defines the reduction

> and uses the following auxiliary operations:

† We write e > exn | err to denote e > exn or e > err (and similarly for other transition
relations).
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— Values vn ∈ Vn ⊂ E at level n ∈ N

v0 ::= l | λx : t.e | (v0
i |i ∈ m) | 〈v1〉 | ΛX.e | (vmr0

i |i ∈ m)

vn+1 ::= x | l | λx : t.vn+1 | vn+1
1 vn+1

2 | fix x : t.vn+1 | (vn+1
i |i ∈ m) | πj vn+1

| op vn+1 | 〈vn+2〉 | %vn | ΛX.vn+1 | vn+1{t} | (vmrn+1
i |i ∈ m)

vn+2+ = ˜vn+1

Evaluated Patterns vpn ∈ VPn ::= x!t | x = vn | (vpn
i |i ∈ m)

Evaluated Match Rules vmr0 ::= vp0⇒e

vmrn+1 ::= vpn+1⇒vn+1

— Redexes ri ∈ Ri at level i ∈ {0, 1}
r0 ::= x | v0

1v0
2 | fix x : t.e | πj v0 | op v0 | ˜e | %e | v0{t}

r1 ::= ˜v0

— Evaluation Contexts En
i ∈ ECn

i at level n ∈ N with hole at level i ∈ {0, 1}
En

i ::= En
i e | vnEn

i | (vn, En
i , e) | πj En

i | op En
i | 〈En+1

i 〉 | En
i {t}

| (vmrn, Epn
i ⇒e, mr)

En+1
i + = λx : t.En+1

i | fix x : t.En+1
i | ˜En

i | %En
i | ΛX.En+1

i

| (vmrn+1, vpn+1⇒En+1
i , mr)

Ei
i+ = []

Evaluation Contexts for patterns Epn
i ::= x = En

i | (vpn, Epn
i , p)

— Actions a ∈ A ::= τ | l : e | s(e) | i(v)@l | o(v)@l with e ∈ E0 and v ∈ V0
0

Fig. 3. Values, redexes and evaluation contexts

— Function match(p, v0) either returns a closed substitution ρ : X
fin→ V0

0 or fail. Its
definition is by induction on p ∈ P. The base cases are:

p match(p, v0)

x!t x := v0 if ∅ `0 v0 : t and v0 global, otherwise fail

x = e x := v0 if v0 ≡ e ∈ L, otherwise fail

match is used by input for dynamic type checking of global values (see Definition 3.4).
— Demotion vn+1 ↓n∈ E is defined by induction on vn+1 ∈ Vn+1 (and vpn+1 ∈ VPn+1):

vn+1 vn+1 ↓n∈ E

x x

〈vn+2〉 〈vn+2 ↓n+1〉
˜vn ˜vn ↓n−1 (n > 0)

%vn

{
%vn ↓n−1 if n > 0

vn[x := %x|x ∈ FV(vn)] otherwise

vpn+1 vpn+1 ↓n∈ P

x!t x!t

x = vn+1 x = vn+1 ↓n

vmrn+1 vmrn+1 ↓n

vpn+1⇒vn+1 vpn+1 ↓n ⇒vn+1 ↓n
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(λx : t.e) v0
2

τ
> e[x := v0

2 ]

v0
1 v0

2 > err if v0
1 6≡ λx : t.e

fix x : t.e
τ
> e[x := fix x : t.e]

πj (v0
i |i ∈ m)

τ
> v0

j if j < m

πj v0 > err if v0 6≡ (v0
i |i ∈ m) with j < m

spawn v0 s(v0())
> () if v0 ∈ V0

0, otherwise exn (scope extrusion exception)

new v0 l:(v0l)
> l if v0 ∈ V0

0, otherwise exn (scope extrusion exception)

output (l, v0)
o(v0)@l

> () if v0 ∈ V0
0, otherwise exn (scope extrusion exception)

output v0 > err if v0 6≡ (l, v0
1)

input (l, (vp0
i⇒ei|i ∈ m))

i(v0)@l
> ej [ρ] if match(vp0

j , v
0) = ρ for some j ∈ m

input v0 > err if v0 6≡ (l, (vp0
i⇒ei|i ∈ m))

run 〈v1〉 τ
> v1 ↓0 if v1 ∈ V1

0, otherwise exn (demotion exception)

run v0 > err if v0 6≡ 〈v1〉

(ΛX.e){t} τ
> e[X := t]

v0{t} > err if v0 6≡ ΛX.e

x > err

˜e > err

%e > err

˜〈v1〉 1
> v1

˜v0 1
> err if v0 6≡ 〈v1〉

Fig. 4. Reductions for actions and symbolic evaluation

In all other cases ↓n commutes with the top level term (and pattern) construct.

Remark 5.2. Intuitively, Demotion is like Compilation: it translates a value 〈v1〉 rep-
resenting a program into an executable term v1 ↓0. However, the reduction for run per-
forms demotion only when v1 is closed, in order to prevent unresolved link errors (see
Remark 3.3).

We comment some of the reduction rules in Figure 4 (the others are standard):

— The rules for spawn, new, output and input come from Klaim, those for run and
symbolic evaluation

1
> come from MetaML.

— spawn (and similarly new and output) checks that the process spawned is closed (in
order to prevent scope extrusion), and raises an exception otherwise.

— input is non-deterministic and requires pattern matching, which includes dynamic
type-checking of global values. Moreover, input may get stuck, e.g. input(l, x!X⇒e)
is stuck because there are no closed values of type X.

— run checks that the value that is demoted is closed (in order to prevent unresolved
links), and raises an exception otherwise.
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— All reductions to err correspond to type- or level-errors. For instance, ˜e and %e are
not well-typed at level 0, nor is x when all variables are declared at level > 0.

The transition relation > is defined (in terms of > ) by the following standard
rules

r0 a
> e′

E0
0 [r0]

a
> E0

0 [e′]

r0 > exn | err

E0
0 [r0] > exn | err

r1 1
> e′

E0
1 [r1]

τ
> E0

1 [e′]

r1 1
> err

E0
1 [r1] > err

5.2. Net Transition Relation

The relation ===⇒ is defined (in terms of > ) by the following rules
e > exn

N ] (l : p(e)) ===⇒ N ] (l : exn)

e > err

N ] (l : p(e)) ===⇒ N ] (l : err)

e
τ
> e′

N ] (l : p(e)) ===⇒ N ] (l : p(e′))

e
i(v0)@l2

> e′

N ] (l1 : p(e)) ] (l2 : u(v0)) ===⇒ N ] (l1 : p(e′)) ] (l2 : p(()))

e
o(v0)@l2

> e′

N ] (l1 : p(e)) ===⇒ N ] (l1 : p(e′)) ] (l2 : u(v0))

e
s(e2)

> e1

N ] (l : p(e)) ===⇒ N ] (l : p(e1)) ] (l : p(e2))

e
l2:e2

> e1

N ] (l1 : p(e)) ===⇒ N ] (l1 : p(e1)) ] (l2 : p(e2))
l2 6∈ L(N) ∪ {l1}

where L(N) ∆= {l | (l : ) ∈ N} ⊆fin L is the set of localities in the net N . The rules
have an obvious meaning, we just remark that the side condition in the last rule ensures
freshness of l2.

5.3. Basic Properties of the Operational Semantics

The following properties are straightforward to prove.

Lemma 5.3 (Reduction). If r
a
> e′ or r

1
> e′, then FV(e′) ⊆ FV(r).

Lemma 5.4 (Unique Decomposition). Given n ∈ N and e ∈ E, then

— either e ∈ Vn

— or exist (unique) i ∈ {0, 1} and En
i ∈ En

i and ri ∈ Ri such that e ≡ En
i [ri]

Proof. By induction on the structure of e ∈ E.

Lemma 5.5 (Transition). If e ∈ E0 and e
a
> e′, then e′ ∈ E0.

Proof. Immediate from Lemmas 5.4 and 5.3.

Lemma 5.6 (Net Transition). If N ===⇒ N ′, then L(N) ⊆ L(N ′).
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6. Type Safety

In order to express the type safety results we introduce two notions of well-formed net:
one is global, the other is relative to a subset L of nodes.

Definition 6.1 (Well-formed Net).

Global: A net N is well-formed ∆⇐⇒ (l : err) 6∈ N , and for every (l : p(e)) ∈ N exists t

s.t. ∅ `0 e : t.
Local: A net N is well-formed w.r.t. L ⊆ L(N) ∆⇐⇒ (l : err) 6∈ N when l ∈ L, and for

every (l : p(e)) ∈ N with l ∈ L exists t s.t. ∅ `0 e : t.

In the definition of well-formed net nothing is said about values u(v) in the tuple spaces,
since they are considered untrusted. In fact, processes can fetch such values only through
the input primitive, which performs dynamic type-checking.

Theorem 6.2 (Type Safety). If N ===⇒ N ′, then

Global: N well-formed implies N ′ well-formed
Local: N well-formed w.r.t. L implies N ′ well-formed w.r.t. L

The type safety theorem then guarantees that a well-formed net will never give rise
to type- or level-errors. Together with dynamic type checking performed with input
operations, these imply that our type system can be used for protecting hosts from
imported code, thus ensuring various kinds of host security properties (as in (YH99b)).

Remark 6.3. The local type safety property is enforced by two features of MetaKlaim:
the dynamic type-checking performed by the input operation (namely match), which
prevents ill-typed values in tuple spaces to pollute well-typed processes; the absence of
Klaim’s eval primitive, which would allow processes external to L to spawn ill-typed
processes at a locality in L. For instance, with an eval primitive similar to a ‘remote’
spawn the following net transition would become possible

lbad : p(eval(lgood, vbad)), lgood : u(v) ===⇒ lbad : p(()), lgood : p(vbad()), lgood : u(v)

where vbad is any closed value (at level 0) such that vbad() > err.

6.1. Technical Lemmas for Type Safety

The proof of Type Safety relies on the basic properties of the type system (see Sec-
tion 4.1), and the following lemmas linking operational semantics and type system.

Notation 6.4 (Auxiliary definitions and notations used in this section).

— ` a means that action a is well-formed. Action τ , i(v) and o(v) are always well-formed.
Actions s(e) and l : e are well-formed, provided that ∅ `0 e : t for some t.

— Γn(En
i ) is the typing context for the hole in the evaluation context En

i ∈ ECn
i , and is

defined by induction on En
i ∈ ECn

i (and Epn
i )



G. Ferrari and E. Moggi and R. Pugliese 16

En
i Γn(En

i ) ∈ Ctx

[] ∅ (n = i)

〈En+1
i 〉 Γn+1(En+1

i )

vmrn, Epn
i ⇒e, mr Γn(Epn

i )

Epn
i Γn(Epn

i ) ∈ Ctx

x = En
i Γn(En

i )

En+1
i Γn+1(En+1

i ) ∈ Ctx

λx : t.En+1
i x : tn+1, Γn+1(En+1

i )

fix x : t.En+1
i x : tn+1, Γn+1(En+1

i )

ΛX.En+1
i Xn+1, Γn+1(En+1

i )

˜En
i Γn(En

i )

%En
i Γn(En

i )

vmrn+1, vpn+1⇒En+1
i , mr Γn+1(vpn+1), Γn+1(En+1

i )

In all other cases Γn( ) is applied to the immediate sub-context. Γn(vpn) is a special
case of Γn(p) defined in Section 4 (indeed, according to the grammars in Figures 1
and 3, VPn is included in P).

— e >6 err means that e > err does not hold (and similarly e >6 err).

Lemma 6.5 (Demotion). The following rules are admissible
Γ+1 `
Γ `

Γ+1 `n+1 t

Γ `n t

Γ+1 `n+1 vn+1 : t

Γ `n vn+1 ↓n: t

Proof. The first two rules are proved by mutual induction on the derivation of Γ+1 `
and Γ+1 `n+1 t. The third rule is by induction on the derivation of Γ+1 `n+1 vn+1 : t.

Lemma 6.6 (Structure). If Γ `0 v0 : t, then one of the following possibilities holds:

— v0 ≡ l and t ≡ L

— v0 ≡ (v0
i |i ∈ m) and t ≡ (ti|i ∈ m) with Γ `0 v0

i : ti for all i ∈ m

— v0 ≡ λx : t1.e and t ≡ t1 → t2 with Γ, x : t01 `0 e : t2
— v0 ≡ 〈v1〉 and t ≡ 〈t′〉 with Γ `1 v1 : t′

— v0 ≡ ΛX.e and t ≡ ∀X.t′ with Γ, X0 `0 e : t′

— v0 ≡ (vp0
i⇒ei|i ∈ m) and t ≡ U⇒t′ with Γ,Γ0(vp0

i ) `0 ei : t′ for all i ∈ m

Proof. By case analysis on the last rule in the derivation of Γ `0 v0 : t. Because of the
structure of v0 ∈ V0 we have to consider only the following cases (see Figure 2): (loc),
(fun), (tuple), (brck), (poly) and (case).

Lemma 6.7 (Match). If ρ = match(p, v0), then ∅ `0 ρ(x) : t and ρ(x) is global when
x : t0 ∈ Γ0(p).
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Proof. By induction on the structure of p ∈ P.

— Base case x!t. ρ is x := v0 and Γ0(p) is x : t. The property follows immediately from
the definition of match.

— Base case x = e. ρ is x := v0 ∈ L and Γ0(p) is x : L. The property follows immediately
from v0 ∈ L.

— Inductive step (pi|i ∈ m). Γ0(p) ≡ Γ0(p0), . . . ,Γ0(pm−1) and v0 must be of the form
(v0

i |i ∈ m).
ρ = ρ0, . . . , ρm−1 with ρi = match(pi, v

0
i ). If x : t0 ∈ Γ0(pj), then ρ(x) = ρj(x) and

the property follows by the induction hypothesis for pj .

Lemma 6.8 (Safety and Subject Reduction for > ).

— If Γ+1 `0 r0 : t, then r0 >6 err and r0 a
> e′ implies Γ+1 `0 e′ : t and ` a.

— If Γ+1 `1 r1 : t, then r1 >6 1err and r1 1
> e′ implies Γ+1 `1 e′ : t.

Proof. By induction on the derivation of Γ+1 `i ri : t. The last rule in the derivation
uniquely determines (the structure of) ri.

— (var) contradicts that ri is a redex, because all x declared in Γ+1 are at a level > 0
— (loc), (fun), (tuple), (brck), (csp), (poly) and (case) contradict that ri is a redex
— (app) implies r0 ≡ v0

1v0
2 and Γ+1 `0 v0

1 : t1 → t and Γ+1 `0 v0
2 : t1. By Lemma 6.6 v0

1

must be of the form λx : t1.e and Γ+1, x : t01 `0 e : t, therefore r0 τ
> e[x := v0

2 ]. By
Lemma 4.3 we get Γ+1 `0 e[x := v0

2 ] : t.
— (fix) implies r0 ≡ fix x : t.e

τ
> e[x := fix x : t.e] and Γ+1, x : t0 `0 e : t. By

Lemma 4.3 (and Γ+1 `0 fix x : t.e : t) we get Γ+1 `0 e[x := fix x : t.e] : t.
— (proj) implies r0 ≡ πj v0 and Γ+1 `0 v0 : (ti|i ∈ m) with j < m and t ≡ tj . By

Lemma 6.6 v0 must be of the form (v0
i |i ∈ m) with Γ+1 `0 v0

i : ti for i ∈ m, therefore
r0 τ

> vj .
— (spawn) implies r0 ≡ spawn v0, t ≡ (), and Γ+1 `0 v0 : () → t′. If v0 ∈ V0

0, then

r0
s(v0())

> () and ∅ `0 v0 : () → t′. By (app) we get ∅ `0 v0() : t′, i.e. ` a. Otherwise
exn.

— (new) is similar to (spawn).
— (output) implies r0 ≡ output v0, t ≡ () and Γ+1 `0 v0 : (L, t′). By Lemma 6.6 v0 must

be of the form (l, v0
0) with Γ+1 `0 v0

0 : t′. If v0
0 ∈ V0

0, then r0 o(v0
0)@l

> (). Otherwise
exn.

— (input) implies r0 ≡ input v0 and Γ+1 `0 v0 : (L,U⇒t). By Lemma 6.6 v0 must be
of the form (l, (vp0

i⇒ei|i ∈ m)) with Γ+1,Γ0(vp0
i ) `0 ei : t for all i ∈ m. Therefore,

the possible reductions are r0 i(v0
0)@l

> ej [ρ] with match(vp0
j , v

0
0) for some j ∈ m. By

Lemma 6.7 and repeated application of Lemma 4.3 we get Γ+1 `0 ej [ρ] : t.
— (run) implies r0 ≡ run v0, Γ+1 `0 v0 : 〈t〉 (and Γ+1 `0 t). By Lemma 6.6 v0 must be

of the form 〈v1〉 with Γ+1 `1 v1 : t. If v1 ∈ V1
0, then r0 τ

> v1 ↓0 and ∅ `1 v1 : t by
Lemma 4.4. Therefore, by Lemma 6.5 we get ∅ `0 v1 ↓0: t. Otherwise exn.
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— (spec) implies r0 ≡ v0{t1} and Γ+1 `0 v0 : ∀X.t2 and Γ+1 `0 t1 with t ≡ t2[X :=
t1]. By Lemma 6.6 v0 must be of the form ΛX.e with Γ+1, X0 `0 e : t2. Thus
r0 τ

> e[X := t1], and by Lemma 4.3 we get Γ+1 `0 e[X := t1] : t.
— (esc) implies r1 ≡ ˜v0 and Γ+1 `0 v0 : 〈t〉. By Lemma 6.6 v0 must be of the form

〈v1〉 with Γ+1 `1 v1 : t, and thus r0 τ
> v1.

Lemma 6.9 (Replacement for Evaluation Context). If En
i ∈ ECn

i and Γ `n

En
i [e] : t, then exists t′ ∈ T such that

— Γ,Γn(En
i ) `i e : t′

— Γ,Γn(En
i ) `i e′ : t′ implies Γ `n En

i [e′] : t.

Proof. By induction on the structure of En
i ∈ ECn

i and the derivation of Γ `n En
i [e] : t.

Lemma 6.10 (Safety and Subject Reduction for > ). If ∅ `0 e : t, then
e >6 err and e

a
> e′ implies ∅ `0 e′ : t and ` a.

Proof. By Lemma 5.4 either e ∈ V0 (and there is nothing to prove) or e ≡ E0
i [ri] for

some i. In the latter case, by Lemma 6.9, we have Γ0(E0
i ) `i ri : t′ for some t′. Thus we

can apply Lemma 6.8, since Γn(En
i ) is always of the form Γ+1 (see Notation 6.4).

Finally we prove Theorem 6.2.

Proof. We give the details only for the proof of Local Type Safety (the proof of
Global Type Safety is similar). The proof is by case-analysis on the rule used to de-
rive N ==⇒ N ′. The only interesting cases correspond to net transitions that involve at
least one locality in L:

— if e > exn, then the safety property remains trivially true
— if e > err, then l 6∈ L because of Lemma 6.10
— if e

τ
> e′ and l ∈ L, then e′ is well-typed at level 0 by Lemma 6.10

— if e
i(v0)@l2

> e′ and l1 ∈ L, then e′ is well-typed at level 0 by Lemma 6.10

— if e
o(v0)@l2

> e′ and l1 ∈ L, then e′ is well-typed at level 0 by Lemma 6.10, and whether
l2 ∈ L is irrelevant for the safety property

— if e
s(e2)

> e1 and l ∈ L, then e1 and e2 are well-typed at level 0 by Lemma 6.10
— e

l2:e2
> e1 and l ∈ L, then e1 is well-typed at level 0 by Lemma 6.10, also e2 is

well-typed, but it is irrelevant for local safety because l2 6∈ L.

7. Examples

In this section, we exemplify the use of MetaKlaim to program WAN applications.
Each example is presented in a simplified form, but addresses a significant aspect in
WAN programming. The first example, group communication, deals with generation of
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lightweight efficient components implementing a form of broadcast remote communica-
tion. The second example, nomadic data collector, addresses the issue of protecting host
machines from mobile code that travels along the net for retrieving information on a
piece of data. The third example, dynamic linker and loader, illustrates separation of
concerns supported by generative components. In the rest of this section, we will freely
use ML-like notations for functions, local declarations, datatypes, lists, conditional and
sequential composition. Moreover, for type-setting reasons, we write fn x:t.e instead of
λx : t.e and V X.t instead of ∀X.t.

7.1. Group Communication

We introduce a function grout that implements a form of group communication: a mes-
sage (the parameter of the function) is broadcasted to each locality of a given list statically
known. Function grout is a simple example of multipoint applications (e.g. audio/video
applications) which exploit multicast communications. In fact, function grout can be
thought of as a basic building block for constructing more sophisticated applications
which permit, e.g., to dynamically change the group of receivers or to hierarchically
structure the group (like in distributed mailing lists). We make use of the following
types:

L (* localities *)

type Data = ... (* type of messages *)

type GO = L List -> Data -> () (* type of group output *)

type GOs = L List -> <Data> -> <()> (* type for staged group output *)

type GOcg = L List -> <Data -> ()> (* type for group output code generator *)

We first present a version of grout that does not use staging. As it is expected, function
grout takes a list of localities l and a message x as arguments and outputs a tuple
containing x at each locality in l. Notice that to be well-typed the message has to be a
global value.

fun grout (l:L List, x:Data):() =

if l=nil then ()

else output(hd l,x) ; grout(tl l,x)

This version of grout does not take advantage of the fact that its parameters are available
at different stages of the computation. Indeed, the fact that the list parameter l is
statically available (while the message parameter x will be available at run time) offers
an opportunity to optimize the code of the function with respect to l. In this way, the
overhead of looking up the first element of l, and of recursively calling the function on the
tail of l each time a message has to be sent, can be removed. Following a general staging
method (see (CMS02; TS00; She01)), we define a staged version grout_s of grout

fun grout_s (l:L List, x:<Data>):<()> =

if l=nil then <()>

else <output(%(hd l),~x) ; ~(grout_s(tl l,x))>

The types reflect the fact that the list parameter is available in the first stage, and the
message is available in the second stage. The brackets around the branches of the if-
expression means that the function grout_s returns code. In the else branch, the output
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operation is delayed to the second stage, while the recursive call to grout_s is performed
in the first stage. The staging annotations in output(%(hd l),~x) have been inserted
because the value of hd l is computed in the first stage but used later, while x has type
code. The staged version of grout is used to define a function grout_cg that takes a list
l of localities and generates specialized code for broadcasting a message to all localities
in l.
(* code generator *)

fun grout_cg (l:L List):<Data -> ()> = <fn x:Data . ~(grout_s l <x>)>

(* grout specialized for a list l *)

fun grout_l:Data -> () = run(grout_cg l)

For instance, when grout_cg is applied to a list of localities [l1,l2], we get
< fn x:Data . output(l1,x) ; output(l2,x) ; () >

If we have an application that reads messages from orig and broadcast them to the
same list dest of localities, then one could use the broadcast specialized for dest
fix p:(). input(orig, x!Data => grout(dest,x) ; p)

fix p_o:(). input(orig, x!Data => grout_dest(x) ; p_o) (* optimized p *)

The main advantage of p_o over p is better performance.
Adaptive applications can benefit from code generation, as described in (HS01). The

following application extends p with a new functionality, that permits to change the list
of destinations
fun ap (dest:L List):() =

input(orig, x!Data => grout(dest,x) ; (ap dest)

| l!L List => (ap l))

One can obtain the process ap dest from a general template ap_gen parameterized w.r.t.
a function do specifying what to do when an input x:X is received, and a function upd
for updating what to do when an input y:Y is received
fun ap_gen (do:X->(), upd:Y->X->()):() =

input(orig, x!X => (do x) ; ap_gen(do,upd)

| y!Y => ap_gen(upd y,upd))

More precisely ap dest amounts to ap_gen(upd dest, upd) where upd is such that
upd y x = grout(y,x). However, we can exploit the code generator grout_cg for defin-
ing a different updating function upd y = run(grout_cg y), that returns a better do.

7.2. Nomadic Data Collector

We now address the issue of protecting host machines from possibly malicious mobile
code. Consider the following scenario. A certain user requires to assemble information on
a piece of data (e.g. the price of certain devices). Part of the behavior of the user’s ap-
plication strictly depends on this information. However, there are some activities which
are independent of it. The user’s application can be structured to exploit the mobility
paradigm: a mobile component can dynamically travel among hosts of the net looking
for the required information. Here, for simplicity, we assume that each node of the dis-
tributed database contain tuples of the form (i,d), where i is the search key and d is the
associated data, or of the form (i,l), where l is a locality where more data associated
to i can be searched. We make use of the following types:
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L (* localities *)

type Key = ... (* authorization keys *)

type Data = ...

(* polymorphic types of local operations input, output, spawn *)

type I = V X. (L,U=>X) -> X

type O = V X. (L,X) -> ()

type S = V X. (() -> X) -> ()

(* polymorphic types of meta-operations for input, output, spawn *)

type MI = Key -> <I>

type MO = Key -> <O>

type MS = <S>

(* code abstractions with static security checks *)

type MEnvK = (L,MI,MO,MS)

type CAK = MEnvK -> <()>

The types of meta operations exploit code types, hence meta operations are able to insert
the code fragments of the operations provided locally into larger programs.

The type of code abstractions (e.g. the type of mobile code) is parameterized with
respect to the locality (where the code will be executed) and the meta-operations. In
other words, the type of code abstractions can be intuitively interpreted as the network
environment of the code. This environment must be fed with the information about
the current location and its local operations. We want to emphasize the fact that the
meta-operations for communication require an authorization key as parameter. In such
a way, depending on the value of the key k (that is checked in the example below by
a function safe), the meta-operation in’ k could generate an actual input without
run-time overhead, or () when the key does not allow to read anything (or customized
run-time checks, that we do not detail). Customization of the other local operations can
be done similarly.

fun in’ (k:Key):<I> = if safe k then <input> else <()>

We now discuss the main module of our mobile application: the nomadic data collec-
tor. The code abstraction pca(k,i,u) is the mobile code which retrieves the required
information on the distributed database. The parameter k is an authorization key, i is
a search key, and u is the locality where all data associated to i should be collected.
The behavior of the mobile code pca(k,i,u) is rather intuitive. After being activated,
pca(k,i,u) spawns a process that perform a local query (here the query removes data
which are associated in the local database to the search key i). Then the mobile code
forwards the result of the query to the tuple space located at u, and sends copies of itself
(i.e. of pca(k,i,u)) to localities that may contain data associated to i. In the definition
of pca(k,i,u) cross-stage persistence is used to hard-wire the parameters i and u at the
appropriate level.

fun pca(k:Key, i:Data, u:L):CAK =

fix ca:CAK. fn (self’, in’, out’, spawn’):MEnvK .

<~spawn’ {()} (() => fix p:().

~(in’ k) {()}

(%self’, (_=%i, x!Data) =>

~(out’ k) {Data} (%u,x)) ; p);

fix q:().
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~(in’ k) {()}

(%self’, (_=%i, l!L) =>

~(out’ k) {CAK} (l,%ca)) ; q>

The code abstraction pca(k,i,u) is instantiated and activated by process execute.
This process fetches code abstractions of type CAK from the local tuple space, instantiates
them by providing a customized environment env, and finally activates the resulting code.

fun execute (self:L, env:MEnvK):() =

fix exec:().

input (self, X!CAK => spawn (() => run(X env)) ; exec)

7.3. Dynamic Linking and Loading

We now present the MetaKlaim implementation of a basic facility to dynamically load
components. We have already pointed out that a key issue of most WAN applications
is the ability to control the loading policy of components. One may want either to load
components just-when-needed, or prefer to fetch in advance all components requested by
a certain application. The (naive) solution is to parameterize applications with respect to
a linker, and call the linker whenever a component (or service) is needed. However, this
does not ensure enough flexibility. A better approach is to define a generative component
parameterized with respect to a meta-linker. The meta-linker can decide whether to load
a requested component at code-generation-time, by immediately invoking the linker, or
to postpone the loading at run-time, namely by generating code for a call to the linker.

Hereafter, we view a linker as a specialized component which, given a name of a
service, either succeeds in establishing a connection between the service and the calling
application by returning an authorization key, or raises an exception. Indeed, we are not
interested in the details of the linker, but only in its abstract behavior. We make use of
the following basic types:

type Key = ... (* authorization keys *)

type Name = ... (* service names *)

A linker behaves like a function: given the name of the component returns the au-
thorization key required to exploit component functionalities. Hence, a linker has the
type

type Linker = Name -> Key (* linkers *)

A meta-linker is an higher order component which given the name of a component
returns a frozen authorization key: the metadata information which has to be actualized
to provide the linking step. Hence, the meta-linker delays the computation which performs
the linking of the component. The meta-linker has the type

type MLinker = Name -> <Key> (* metalinkers *)

Finally, a parameterized component is a component whose linking policy has not been
fixed in advance. To behave properly a meta-linker must be supplied to the parameterized
component. Hence, the type of a parameterized component is:

type PC = MLinker -> <()> (* parameterized components *)
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A directory (i.e. repository) of components in MetaKlaim takes the form of a tuple
space. Parameterized components are distinguished tuples stored in the tuple space: they
are tuples having type PC.

The input operation is the basic facility to find a component inside a directory. It
queries the tuple space to find the required component: pattern-matching is used to
select components according to their types . For instance, the expression

input (self, x!PC => spawn(() => e)

queries the local tuple space to select a parameterized component of type PC.
The following process execute fetches a parameterized component from the local tuple

place, generates code by supplying it a meta-linker, and then spawns a process that
executes the generated code.

fun Mexecute (self:L, mlinker:MLinker):() =

fix exec:().

input (self, x!PC=> spawn(() => run(x mlinker)) ; exec)

An invocation of the meta-linker will be of the form <...~(mlinker n)...>. The escape
operator ~e is used to insert delayed computation into larger computation. Using the meta
programming facilities, the programmer has a fine grain control on the evaluation order
of the program. For instance, the meta-linker can decide whether to invoke the linker at
code generation time, i.e. mlinker n = <%(linker n)>, or whether to generate code
for invoking the linker at run-time, i.e. mlinker n = <%linker %n>. In the first case,
linker n is statically evaluated; if the linker fails to make a connection, the code of the
application will not be executed at all.

Notice that the MExecute cannot be transmitted over the net. It is not a mobile
component since it will not get through the dynamic checking of the pattern matching.
The critical point is that the input operation could have been programmed to download
a malicious component from a remote, untrusted, host.

A mobile Meta-Execute can be programmed as follows

fun MMExecute (self:L, mlinker:MLinker, in’, spawn’, run’):() =

fix exec:().

in’ (self, x!PC=> spawn’(() => run’(x mlinker)) ; exec)

The type of MMExecute is parameterized with respect to the locality (where the code
will be executed) and the local operations exploiting the full power of system F.

8. Related Work

There are several approaches related with some of the issues tackled by MetaKlaim.
Some of these approaches have been mentioned in the first two sections of the paper, here
we only consider the most strictly related one and draw comparisons with some process
languages equipped with process distribution and higher-order remote communication.

Kali Scheme (CJK95) is a distributed implementation of Scheme (SS75) which adds to
facilities for program distribution and for communication of higher order objects, such
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as procedures and closures. These features, and the continuation passing programming
style inherited from Scheme, fit the language also for applications dealing with dynamic
code transmission, linking and generation. However, differently from MetaKlaim, the
language does not have a type system and type errors are detected at run-time.

Dπλ (YH99a) is the result of integrating the call-by-value λ-calculus, the π-calculus,
and primitives for process distribution and remote process creation. Differently from
MetaKlaim, communication is synchronous and channel based, and localities are anony-
mous. This last feature implies that localities cannot be explicitly referred by processes
and do not have a first-class status, thus the distributed fragment of the calculus is not
as expressive as MetaKlaim. Dπλ permits the transmission of process abstractions pa-
rameterized with respect to resource (i.e. channel) names. The language is equipped with
a type system that, by constraining values that may be output, statically guarantees that
processes willing to perform inputs at a given channel are co-located. The type system
for Dπλ is completely static and relies on restrictions laid on values that are sent across
localities, whilst the type system for MetaKlaim uses dynamic checks for controlling
the type of values that are received by input actions. Moreover, for a Dπλ system to
type check all of its subsystems have to type check (this burden is partially alleviated
from the fact that subsystems can be type checked independently and then composed
while checking compatibility of their use of resources), while a MetaKlaim net can also
be partially checked relatively to a subset of localities (in the same spirit as (RH99)).
These features indicate that the MetaKlaim approach better fits also open and, possi-
bly, untrusted large scale distributed systems where it is important to protect hosts from
imported code.

(YH99b) extends to Dπλ the type system of (YH02) for an higher order variant of
the π-calculus. This type system permits controlling the effect of transmitted process ab-
stractions on local resources (i.e. channels). All the remarks about the first type system
also apply to this one. Furthermore, differently from MetaKlaim, processes are assigned
fine-grain types that, like interfaces, record the resources to which processes have access
together with the corresponding capabilities, and process abstractions are assigned de-
pendent functional types that abstract from channel names and types. Although process
abstractions are not polymorphic as in MetaKlaim, channel names may appear and be
bound both in terms and in types and thus, in some sense, play the role of MetaKlaim

type variables.

Confined-λ (Kir01) is an higher-order functional language that supports distributed
computing by allowing expressions at different localities to communicate via channels.
In Confined-λ, authors of code can assign regions (i.e. subsystems) to values in order to
limit the part of a system where a value can freely move. Then, a type system is defined
that statically guarantees that each value can roam only within the corresponding re-
gion. Differently from our approach, communication is channel based, localities cannot be
dynamically created, the transmissible process abstractions can be parameterized with
respect to channel names, and the type of a transmissible value restricts the subsystem
where the value can freely move. The Confined-λ type system is completely static and
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relies on restrictions laid on values whenever they are used as arguments of output op-
erations, while the MetaKlaim type system relies on dynamic checks whenever input
operations are performed. Moreover, differently from MetaKlaim, a Confined-λ pro-
gram may execute only if all the expressions it contains are well-typed. In conclusion,
while the MetaKlaim approach better fit open and untrusted large scale distributed
systems, the Confined-λ approach is more suitable for guaranteing secrecy properties,
i.e. that a given (secret) information is not leaked outside a fixed subsystem, in small
scale distributed systems.

Additional examples of type systems for distributed higher order functional languages
can be found in (Kir02). In addition to the previous considerations, we can also say
that they all use static effect systems for approximating dynamic properties, while
MetaKlaim uses global values, which is a naive way of saying that processes have
no effect annotations in their type.

9. Conclusions and Future Work

We have described MetaKlaim, a foundational calculus for global computing. Our ap-
proach is based on polymorphic types á la system F, staging constructs (á la MetaML),
and dynamic type checking. To the best of our knowledge, MetaKlaim is the first calcu-
lus that integrates multi-stage features with primitives for mobile distributed processes.
In this paper we have mainly focussed on developing the foundations of its mathematical
theory, but we believe that our programming notations can form the core of a real pro-
gramming language with facilities for code mobility and multi-stage programming. The
consistency of operational semantics and type system implies that in our approach hosts
are protected from imported code, thus ensuring various kinds of host security. This,
together with the possibility of partially checking MetaKlaim nets only relatively to
subsets of localities, make MetaKlaim suitable for programming applications in open
and, possibly, untrusted large scale distributed systems.

Process calculi with distribution and mobility other than Klaim could in principle
be enriched with staging and meta-programming constructs. However, if some proper-
ties must be guaranteed, mobile code should be dynamically checkable and, possibly,
customizable. This in practice requires the exploitation of higher-order remote commu-
nication (to split code migration into code exchange and code spawning) and code types
at the object level, and does not seem to fit well with process calculi with just name
passing.

There are several directions one can consider for improving MetaKlaim, for instance

— We could replace Klaim’s flat structure of localities with hierarchical (dynamically
changing) tree structure typical of Ambients (CG00b). Each ambient will have a tuple
space, a pool of local processes, and a pool of (mobile) sub-ambients.

— We could refine the type system into a type-and-effect system (TJ94), and extend it
with dynamics (ACPR95; Dug99).

— We could introduce guardians for monitoring node activities (FMP02), in addition to
the dynamic checks performed by processes (during an input-action).
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As a future work we plan to implement MetaKlaim by possibly exploiting the Klaim

prototype implementation as a starting point. The Klaim prototype implementation
can be downloaded from the Klaim homepage (KHP98), while its detailed description,
together with some programming examples, can be found in (BDP02). Moreover, we also
plan to develop realistic WAN applications to gather more data for further validating the
advantages of the approach and to assess our linguistic choices (for example, different
forms of output could be envisaged that differ for the amount of performed checks and,
then, for the secrecy properties guaranteed).
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