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Abstract

The type-theoretic explanation of modules proposed to date (for program-
ming languages like ML) is unsatisfactory, because it does not capture that
evaluation of type-expressions is independent from evaluation of program-
expressions. We propose a new explanation based on “programming lan-
guages as indexed categories” and illustrates how ML can be extended to
support higher order modules, by developing a category-theoretic semantics
for a calculus of modules with dependent types. The paper outlines also a
methodology, which may lead to a modular approach in the study of program-
ming languages.

Introduction

The addition of module facilities to programming languages is motivated by the need
to provide a better environment for the development and maintenance of large pro-
grams. Nowadays many programming languages include such facilities. Throughout
the paper Standard ML (see [Mac85, HMM86, MTH90]) is taken as representative
for these languages. The implementation of module facilities has been based mainly
on an operational understanding. More recently, a type-theoretic understanding
of ML-modules has been proposed, which is based on a type theory with depen-
dent types and a cumulative hierarchy of two universes U1 and U2 s.t. U1: U2 and
U1 ⊂ U2 (see [Mac86, HM88]). The explanation of ML-modules according to this
understanding goes as follows:

• ML-signatures are elements of U2 built from U1 and types (i.e. elements of U1)
by the Σ-type constructor, while ML-structures are elements of ML-signature,
namely tuples made of values (i.e. elements of types) and types
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• ML-functor signatures are elements of U2 of the form Πs: sig1.sig2(s), where
sig1 and sig2 are ML-signatures, while ML-functors are elements of ML-functor
signatures, namely functions from ML-structures to ML-structures.

However, the explanation of ML-functors as functions is problematic in relation to
type-checking at compile-time. This becomes apparent when trying to define higher
order modules as done in XML (see [HM88]). Let τ be a type and f : (Πx: τ.U1) be
an ML-functor variable, which may occur in the body of an higher order module.

• It is not clear what the meaning of the type-expression fM : U1 is, when the
program-expression M : τ diverges. This may happen in ML, because functions
can be defined by recursion.

• Type equality becomes undecidable as soon as recursive types are allowed (as
in ML). For instance, if τ = τ → τ , then fM1 = fM2: U1 ⇐⇒M1 = M2: τ and
the second equality is undecidable, since it amounts to βη-conversion between
untyped λ-terms.

These two problems seem to jeopardise decidability of type-checking. XML avoids
these problems by requiring expressions to be total and equality of expression to be
decidable, but then the theory hardly captures the essence of ML, while ML avoids
them by banning higher order modules, so that the only ML-functors λx: τ.M of
ML-signature Πx: τ.U1 are those where x is not free in M .

We take independence of type-expressions from program-expressions
as essential feature of programming languages (such as PASCAL, core
ML, ADA), which should be respected by module facilities. Remark 5.1
clarifies how independence relates to phase distinction and type-checking .

We capture independence of types from values categorically, by viewing a program-
ming language as an indexed category, which suggests an obvious definition of cat-
egory of modules (see Section 4). A concrete outcome of our analysis is that ML-
functors should be viewed as pairs of functions and not as functions (from pairs to
pairs), e.g. ML-functors from Σt1: U1.τ1(t1) to Σt2: U1.τ2(t2) are elements of

Σf : U1 → U2.(Πt1: U1.τ1(t1)→ τ2(ft1))

and not elements of (Σt1: U1.τ1(t1))→ (Σt2: U1.τ2(t2)), as in [Mac86, HM88].

We give also a more abstract characterisation of independence (see
Definition 7.3 and Theorem 7.5) and explain dependent sums and prod-
ucts at the level of ML-signatures in terms of dependent sums and prod-
ucts at the level of kinds and type schemas (see Theorem 7.9).

Pragmatic issues and general methodology

The objective of this paper is not only to describe a language supporting higher or-
der modules, but also to propose a general methodology for studying programming
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languages and to suggest how the independence of type-expressions from program-
expressions and program modules may fit into it. From this perspective Category
Theory is particularly appropriate. This methodology tries to address a deep-rooted
problem in the study of programming languages (and other areas): the lack of modu-
larity . In a modular approach the key concept to investigate should be the “addition
of features to a language” rather than specific “toy languages” (i.e. languages with
only a few features).

Syntax-independent view. The first ingredient of such a methodology should be
to abstract as much as possible from the concrete presentation of a language, so that
one can focus only on the underlying “mathematical structures”. This is standard
practice in Categorical Logic (see [KR77, Pitar]), where theories are identified with
categories having certain additional structure. We follow a similar paradigm for pro-
gramming languages. In particular, we propose to identify a programming language
where type-expressions are evaluated independently from program-expressions with
an indexed category C:Bop → Cat s.t.

• type-expressions are morphisms in B, while

• program-expressions are morphisms in the fibers C[X].

We introduce a language HML, where type-expressions are independent from
program-expressions, and show how it can be viewed as an indexed category. In
[HMM90] this and related languages (in particular a calculus for higher order mod-
ules with dependent signatures) are investigated in greater depth and with more
emphasis on pragmatic issues, such as decidability of type-checking. While here we
investigate only the category-theoretic foundations for these languages.

Program modules. If programming languages are indexed categories (as out-
lined above), then it is natural to expect that program modules should live in a
category where the type-expressions and program-expressions coexist. There is a
standard construction, due to Grothendieck, which transforms an indexed category
C:Bop → Cat into a fibration πC:GC → B. We take GC as the category of modules
for the programming language C. Once we have established the correct link be-
tween programming language concepts and category-theoretic notions, it is mainly
a matter of letting standard category-theoretic machinery do the rest, e.g. tell us
what it means to have higher order modules. More specifically, we will show that
the category of HML-modules has the structure needed to interpret a calculus with
dependent types, like the calculus λML

mod studied in [HMM90].

2-categorical approach. The second ingredient of a general methodology should
be ways to combine features. This is a very difficult problem to solve in generality,
because it depends on the way features interact . For instance:

• they could be unrelated , like products and coproducts, or
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• one feature could be defined in terms of the other, e.g. the definition of function
space relies on having products.

Here we focus on “adding one feature on top of another”. The motivating example is
to make precise the idea of a notion of computation (see [Mog89b]) which respects the
independence of type-expressions from program-expressions, or more formally the
idea of a monad over an indexed category (which captures the independence of type-
expressions from program-expressions). A simpler example of such a combination
is the notion of topological group, which amounts to a group in the category of
topological spaces. The strategy suggested by the second example is to look for
a category of topological spaces (the first feature) and generalise the definition of
group (the second feature) over a set to that of group over an object in a category
(with finite products). By applying (mutatis mutandis) the same strategy to the
first example, we have to generalise the definition of monad over a category to that
of monad over an object in a 2-category and show that indexed categories form a 2-
category. Summarising, the key ideas of the 2-categorical approach to programming
languages are:

• programming languages (with certain features) are objects of a 2-category C
(which will depend on the features one is interested in)

• an additional feature is an instance in C of a 2-categorical concept.

Summary

Section 1 reviews the basics of 2-category theory (see also [KS74]).
Section 2 reviews the basics of indexed-category theory, and defines the 2-category
of indexed categories. We use indexed categories to capture the independence of
type-expressions from program-expressions.
Section 3 reviews briefly the category-theoretic semantics of several typed lambda-
calculi and discusses how various features of programming languages can be de-
scribed categorically.
Section 4 describes the Grothendieck construction, i.e. how to go from a program-
ming language, viewed as an indexed category C, to its category GC of modules.
Section 5 introduces HML, a language similar to ML with type-expressions indepen-
dent from program-expressions, and describes the category GC of HML-modules.
The Appendix gives a complete description of HML, while Section 7 investigates
additional structure on the category GC.
Section 6 reviews the category-theoretic semantics of dependent types and the Calcu-
lus of Constructions (see [CH88]) following quite closely [HP89], but using categories
with attributes instead of classes of display maps.
Section 7 investigates dependent kinds and dependent type schemas in HML, using
the machinery set up in Section 6. More specifically, it describes the effect of indepen-
dence of constructor-expressions from program-expressions at the level of categories
with attributes, and relates dependency at the level of modules to dependency at
the level of constructors and programs.
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1 Preliminaries on 2-categories

Both categories and B-indexed categories can be viewed as objects of suitable 2-
categories, Cat and ICat(B) respectively. This view is particularly useful for giving
definitions involving B-indexed categories (and proving their properties) by analogy
with categories. In fact, it is just a matter of rephrasing familiar concepts, like monad
or adjunction, in the formal language of 2-categories. We recall the definitions of
2-category, 2-functor and 2-natural transformation (see also [KS74]).

Definition 1.1 A 2-category C is a Cat-enriched category, i.e.

• a class of objects Obj(C)

• for every pair of objects c1 and c2 a category C(c1, c2)

• for every object c an object idC
c of C(c, c) and for every triple of objects c1, c2

and c3 a functor compCc1,c2,c3 from C(c1, c2)×C(c2, c3) to C(c1, c3) satisfying the
associativity and identity axioms

– comp( , comp( , )) = comp(comp( , ), )

– comp(id, ) = = comp( , id)

Notation 1.2 An object f of C(c1, c2) is called a 1-morphism, while an arrow σ is
called a 2-morphism. We write ; for comp( , )

c1

f1

⇓ σ1

f ′
1

>

>
c2

f2

⇓ σ2

f ′
2

>

>
c3

;
7−→ c1

f1; f2

⇓ σ1; σ2

f ′
1; f

′
2

>

>
c3

and · for composition of 2-morphisms

c1

f1

⇓ σ1

⇓ σ2

f2

>

>

>

c2
·
7−→ c1

f1

⇓ σ1 · σ2

f2

>

>
c2

Example 1.3 The canonical example of a 2-category is Cat itself (see [Mac71]):

• the objects are categories

• the 1-morphisms are functors and ; is functor composition,

• the 2-morphisms are natural transformations and ; and · are respectively
horizontal and vertical composition of natural transformations.
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Definition 1.4 A 2-functor F from C1 to C2 is a mapping

c

f

⇓ σ

f ′

>

>
c′ in C1

F
7−→ Fc

Ff

⇓ Fσ

Ff ′

>

>
Fc′ in C2

which commutes with identities, ; and · .

Definition 1.5 If F1 and F2 are 2-functors from C1 to C2, then a 2-natural trans-
formation τ from F1 to F2 is a family 〈F1c

τc→ F2c|c ∈ Obj(C1)〉 of 1-morphisms
s.t.

c F1c
τc

> F2c

∨

σ
⇒

∨

=⇒

∨

F1σ
⇒

∨ ∨

F2σ
⇒

∨
c′ F1c

′
τc′

> F2c
′

i.e. the functors τc; F2 and F1 ; τc′ from C1(c, c
′) to C2(F1c, F2c

′) are equal.

Adjunctions are the basic tool to define data-types, while monads are used to model
computations (see [Mog89b]). Their definition can be rephrased in the language of
2-categories and most of their properties can be proved in such a formal setting (see
[Str72]), so these standard tools can be applied in a different 2-category, e.g. that of
indexed categories (see Section 2).

Definition 1.6 Let c and c′ be objects of a 2-category C.

• A monad over c is a triple (T, η, µ) s.t.

c c

c
T

> c idc

∨

η
⇒

∨

T T ; T

∨

µ
⇒

∨

T

c c

(T ; µ) · µ = (µ; T ) · µ and (T ; η) · µ = idT = (η; T ) · µ.

• An adjunction from c to c′ is a quadruple (F, G, η, ε) s.t.

c c′

c

F

<
G

>
c′ idc

∨

η
⇒

∨

F ; G G; F

∨

ε
⇒

∨

idc′

c c′

(η; F ) · (F ; ε) = idF and (G; η) · (ε; G) = idG.

It is obvious from the definition above, that the 2-categorical notions of monad and
adjunction are preserved by 2-functors and that in the 2-category Cat they amount
to familiar definitions.
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2 Indexed categories and programming languages

In this section we define the 2-category ICat(B) of B-indexed categories. Indexed
categories model only one feature of a strongly typed programming language, namely
that expressions are partitioned into two groups, type-expressions and program-
expressions, and that the former are independent from the latter. Section 3 will
discuss how to model other features by additional structure over an indexed category.

In Categorical Logic there is a similar use of indexed categories to capture that
types and terms of first-order logic are given independently from formulas and proofs
(see [See83]), while to enforce the principle of formulas-as-types one must be able
to map fibers down to the base (see [See84]).

The general definition of indexed category is fairly complicated, since it involves
the notion of canonical isomorphism. However, for representing languages it is more
appropriate to use a stricter definition of B-indexed category (e.g. see [See84, See87]),
namely a functor from Bop to Cat, where B is a small category and Cat is the
category of small categories and functors.

Definition 2.1 Given a small category B, the 2-category ICat(B) of B-indexed
categories is defined as follows:

• an object (indexed category) is a functor C:Bop → Cat

X C[X]
∧

f
C
7−→

∨

C[f ]

Y C[Y ]

• a 1-morphism (indexed functor) from C1 to C2 is a natural transformation

F : C1
.
→ C2, i.e. a family 〈F [X]: C1[X]→ C2[X]|X ∈ B〉 of functors s.t.

X C1[X]
F [X]

> C2[X]
∧

f =⇒ C1[f ]

∨ ∨

C2[f ]

Y C1[Y ]
F [Y ]

> C2[Y ]

i.e. for every f : Y → X in B the functors C1[f ]; F [Y ] and F [X]; C2[f ] are
equal.

• Given 1-morphisms F1 and F2 from C1 to C2, a 2-morphism (indexed natural
transformation) from F1 to F2 is a family 〈σ[X]: F1[X]

.
→ F2[X]|X ∈ B〉 of
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natural transformations s.t.

X C1[X] ⇓ σ[X]

>

>
C2[X]

∧

f =⇒ C1[f ]

∨ ∨

C2[f ]

Y C1[Y ] ⇓ σ[Y ]

>

>
C2[Y ]

i.e. for every f : Y → X in B the natural transformations C1[f ]; σ[Y ] and
σ[X]; C2[f ] are equal.

The definition of monad and adjunction for B-indexed categories are particular
instances of the 2-categorical definitions. The following proposition characterises
an adjunction in ICat(B) as a family of adjunctions in Cat satisfying the Beck-
Chevalley condition.

Proposition 2.2 ([PS78]) Given a B-indexed functor G from C2 to C1, an adjunc-
tion (F, G, η, ε) from C1 to C2 amounts to having a family

〈(F [b], G[b], η[b], ε[b])|b ∈ B〉

satisfying the following properties:

loc (F [b], G[b], η[b], ε[b]) is an adjunction from C1[b] to C2[b], for every b ∈ B;

BC the natural transformation (η[b1]; C1[f ]; F [b2])·(F [b1]; C2[f ]; ε[b2]) from C1[f ]; F [b2]
to F [b1]; C2[f ] is the identity, for every f : b2 → b1 in B.

Remark 2.3 The condition loc means that for every f : Y → X

C2[X]

F [X]

<
⊥

G[X]

>
C1[X]

C2[f ]

∨ ∨

C1[f ]

C2[Y ]

F [Y ]

<
⊥

G[Y ]

>
C1[Y ]

and the square involving only the Gs commute, since G is an indexed functor. The
square involving only F s does not commute, in general, though there is a natural
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transformation

C2[X] <
F [X]

C1[X]

C2[f ]

∨

⇑ τ

∨

C1[f ]

C2[Y ] <
F [Y ]

C1[Y ]

where τc ∈ C2(F [Y ](C1[f ]c), C2[f ](F [X]c)) is given by the following construction:

• take the unit η[X]c ∈ C1[X](c, G[X](F [X]c)) of the adjunction G[X] ` F [X]

• take its image g in C1[Y ](C1[f ]c, C1[f ](G[X](F [X]c))) via the functor C1[f ]

• g is in C1[Y ](C1[f ]c, G[Y ](C2[f ](F [X]c))), because the indexed functor G com-
mutes with substitution, i.e. C2[f ]; G[Y ] = G[X]; C1[f ]

• τc is the morphism in C2[Y ](F [Y ](C1[f ]c), C2[f ](F [X]c)) corresponding to g via
the natural isomorphism F [Y ]( ); ε[Y ]b from C1[Y ](a, G[Y ]b) to C2[Y ](F [Y ]a, b),
where ε[Y ] is the counit for the adjunction G[Y ] ` F [Y ]

and the condition BC requires that τ defined above is the identity. The Beck-
Chevalley condition in [PS78] requires only that the natural transformation given
above is a canonical isomorphism, but we have adopted a strict notion of indexed
category, where canonical isomorphisms are identities.

3 Intermezzo

At this point we review the category-theoretic structures used for interpreting some
typed λ-calculi and discuss the additional structures needed to model various fea-
tures of programming languages.

• Hyperdoctrines model the proof theory of intuitionistic first order logic (see
[See83]). They are indexed-categories C:Bop → Cat, where morphisms in the
base correspond to terms and morphisms in the fibers correspond to deriva-
tions. Moreover, the base B has finite products, the fibers C[X] are bicartesian
closed, the functors C[f ] preserve such structure and for every first projection
πb1,b

1 : b1 × b → b1 in B the functor C[πb1,b
1 ] has right adjoint ∀[b1]b and left

adjoint ∃[b1]b (corresponding to universal and existential quantification over
b) satisfying the Beck-Chevalley condition. The definition of universal and
existential quantification in an hyperdoctrine C could be rephrased in terms
of categories with attributes over GC (see Definition 6.11), provided both the
base and the fibers have terminal objects and enough pullbacks.

• Locally cartesian closed categories model intuitionistic type theory with equal-
ity types (see [See84]). They amount to identifying the two levels of an hyper-
doctrine, intuitively propositions and types are identified.
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• Contextual categories, class of display maps, D-categories and categories with
attributes provide essentially equivalent accounts of dependent types. Unlike
the approach based on locally cartesian closed categories, they give a general
category-theoretic understanding of dependent types (see Section 6).

• PL Categories model the higher order lambda calculus, or equivalently the
proof theory of higher order intuitionistic propositional calculus (see [See87]).
They are hyperdoctrines with an object Ω ∈ B (the type of propositions) s.t.
the set of objects of C[X] is B(X, Ω), and for any X ∈ B a distinguished
exponential ΩX (the type of predicates over X).

• Monads can be used to model notions of computation (see [Mog89b, Mogar]).
Computational types are easily accommodated in the simply typed λ-calculus,
but it is still unclear how they fit with dependent types.

We believe that a proper understanding of computational types in
a calculus of dependent types will clarify the semantics of sharing
constraints and generativity , which at the moment is given only
operationally (see [MTH90]).

Other features of programming languages, besides those of main interest for the
paper, can be modelled as follows.

• A distinguished object Ω in the base category corresponds to the kind of all
types, while exponentials ΩX allow the interpretation of higher order type-
constructors.

• Computations at run-time are modelled by a monad in the 2-category ICat(B).
Since monads are a 2-categorical concept, it is clear how to define monads over
indexed categories.

• Data-types (like products, sums, functional types, . . . ) are modelled by the
usual adjunctions but in the 2-category ICat(B) instead of Cat.

This is not quite right, because function spaces (and dependent prod-
ucts) are given via an adjunction with parameter. A 2-categorical
reformulation may have to rely on fibrations in a 2-category, which
is far from simple (see [Str73]).

• Polymorphic types are modelled like universal quantifiers (in Hyperdoctrines),
while abstract data-types are modelled like existential quantifiers (see [MP88]).

Remark 3.1

• The requirement Obj(C[X]) = B(X, Ω) for the kind Ω of all types is not always
justified in relation to programming languages. For instance, in ML there
are types and type schemas. Types correspond to elements of Ω, while type
schemas correspond to objects in the fiber categories. In Section 5 we introduce
a language which does not identify types and type schemas. The inclusion of
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types into type schemas is modelled by an object t ∈ C[Ω] (the generic type), so
that a type expression f : X → Ω (with a free variable of kind X) corresponds
to the type schema C[f ](t) in C[X]. When Obj(C[X]) = B(X, Ω), the generic
type is simply idΩ ∈ C[Ω].

• A general understanding of dependent types is essential for explaining depen-
dent types in the category of modules in terms of dependent types in the base
and fiber categories. For instance, there are non-trivial dependencies at the
level of ML-signatures, even though core ML does not have dependent types.

The semantics of dependent types is based on a special kind of indexed cat-
egories (fibrations), where it is possible to go back and forth from one level
to the other (see definition of D-category in [Ehr88]). Such a possibility of
moving back and forth contradicts the independence of type-expressions from
program-expressions, we will consider instead an indexed category C with two
D-category structures, one for the base and one for the fibers (see Section 7).

4 The category of modules

The 2-category ICat(B) is isomorphic to the 2-category of split B-fibrations (see
[Ben85]). Since B-fibrations are functors with codomain B satisfying certain addi-
tional properties, the 2-category of B-fibrations is a 2-subcategory of Cat↓B and
the 2-embedding, mapping a B-indexed category C to the corresponding B-fibration
πC :GC → B, can be viewed as a 2-functor from ICat(B) to Cat↓B. For our pur-
poses we need only the 2-functor G from ICat(B) to Cat, mapping a programming
language C to its category of modules GC. In Section 5 we will define the category
of modules for HML.

Definition 4.1 The 2-functor G from ICat(B) to Cat is defined as follows:

• if C is an indexed category, then GC is the category s.t.

〈X1, c1〉 where X1 ∈ B and c1 ∈ C[X1]

〈f, g〉

∨

where f ∈ B(X1, X2) and g ∈ C[X1](c1, C[f ]c2)

〈X2, c2〉 where X2 ∈ B and c2 ∈ C[X2]

identity over 〈X, c〉 is 〈idX , idc〉, composition of 〈f1, g1〉 and 〈f2, g2〉 is 〈f1; f2, g1; C[f1]g2〉

• if F is an indexed functor from C1 to C2, then GF is the functor s.t.

〈X, c〉 〈X, F [X]c〉

〈f, g〉

∨

in GC1
GF
7−→ 〈f, F [X]g〉

∨

in GC2

〈X ′, c′〉 〈X ′, F [X ′]c′〉
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• if F1 and F2 are indexed functors from C1 to C2 and τ is an indexed natural
transformation from F1 to F2, then Gτ is the natural transformation s.t.

〈X, c〉 in GC1
Gτ
7−→ 〈X, F1[X]c〉

〈idX , τ [X]c〉
> 〈X, F2[X]c〉 in GC2

Remark 4.2 After defining the general construction which maps a programming
language, viewed as an indexed category C, to its category GC of modules, we can
investigate how additional structure on GC depends on (is induced by) additional
structure on C and/or the base category B. For instance, an indexed monad (T, η, µ)
over C, which corresponds to a notion of run-time computation, induces a monad over
GC by simply taking its image w.r.t. the 2-functor G, more precisely (GT )(〈b, c〉) =
〈b, T [b]c〉.

5 An example: HML

In this section we define a language, HML (for higher-order ML), which extends the
one given in [Mog89a]. The main features of HML are:

• Independence of type-expressions from program-expressions (as in system Fω),
enforced syntactically by having two levels of judgements (and contexts), so
that HML can be viewed as an indexed category.

• Dependent kinds and type schemas (as in the Calculus of Constructions CC
described in [HP89]). More precisely, HML has dependent sums and products
for kinds and type schemas, and type schemas universally and existentially
quantified over kinds.

This enable us to analyse in full generality dependent types at the level of
modules, that are necessary for giving a type-theoretic account of sharing
constraints (see [MTH90]), since these constraints specify equality of (a limited
form of) program-expressions.

• Distinction between types and type schemas (as in ML), so that having both
proper dependency at the level of type schemas (necessary to accommodate
sharing constraints) and independence of type-expressions from program-expressions
(as in Fω) does not lead to inconsistency.

A study of the additional structure on the category GC of HML-modules is post-
poned to Section 7, where such structure is compared to that for the Calculus of
Constructions (as described in [HP89]).

Remark 5.1 The study of dependent types at the level of modules is relevant to
the calculus λML

mod studied in [HMM90]. Though λML
mod has an important restriction,

type schemas are independent from the evaluation of program-expressions, which is
enforced by replacing closure w.r.t. Σ- and Π-types with closure w.r.t. products and
function spaces only. Such a restriction is essential to prove that “type-checking can
be done at compile-time” (even for the calculus of modules).
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Our notion of independence of type-expressions from program-expressions is re-
lated to phase distinction as introduced in [Car88] “. . . the execution of a program
is carried out in two phases: a type-checking phase (compile-time) and an execution
phase (run-time)”. Independence and phase distinction coincide, when types and
type schemas are identified, but in general phase distinction is a stronger require-
ment than independence (provided types are a subset of type schemas).

In λML
mod phase distinction (and termination of the type-checking phase) is achieved

by having type schemas independent from program-expressions. In HML program-
expressions may occur in type schemas (at least potentially), so the only way to
guaranty termination of type-checking is to use a decidable approximation of equal-
ity for program-expressions.

Overview. HML has four syntactic classes:

• Kinds ∆ ` k, whose raw syntax is

k ∈ Kind: : = 1 | Ω | (Σv: k1.k2) | (Πv: k1.k2)

where ∆ is a constructor context, i.e. a sequence v1: k1, . . . , vm: km.

• Constructors ∆ ` u: k, whose raw syntax is

u ∈ Constr: : = v | 1 | × | → | ∗ | 〈u1, u2〉 | πi(u) | (λv: k.u) | u1(u2)

Besides the constants 1: Ω and ×,→: Ω → Ω → Ω we could have considered
also ∀, ∃: (k → Ω) → Ω, if types were closed w.r.t. universal and existential
quantification over kind (like Fω). As common practice, we write u1 → u2

instead of → u1u2 (similarly for ×) and τ for a constructor of kind Ω.

• Type schemas ∆; Γ ` σ, whose raw syntax is

σ ∈ Schema: : = 1 | set(τ) | (Σx: σ1.σ2) | (Πx: σ1.σ2) | (∃v: k1.σ2) | (∀v: k1.σ2)

where Γ is a term context, i.e. a sequence x1: σ1, . . . , xn: σn.

• Terms ∆; Γ ` e: σ, whose raw syntax is

e ∈ Term: : = x | ∗ | 〈e1, e2〉 | πi(e) | (λx: σ.e) | e1(e2) |
(u, e) | (let (v, x)=e in e′) | (λv: k.e) | e(u)

For each syntactic class there are two forms of judgements: formation judgements
and equality judgements. Moreover, there are two auxiliary forms of formation
judgements for contexts.

formation equality
constr. contexts ∆ `
kinds ∆ ` k ∆ ` k1 = k2

constructors ∆ ` u: k ∆ ` u1 = u2: k

term contexts ∆; Γ `
schemas ∆; Γ ` σ ∆; Γ ` σ1 = σ2

terms ∆; Γ ` e: σ ∆; Γ ` e1 = e2: σ

13



Remark 5.2 There are many similarities between HML and the Calculus of Con-
structions CC described in [HP89], but one crucial difference (tightly linked to the
distinction between types and type schemas): in HML the formation and equality
rules for constructors and kinds are independent from the rules for schemas and
terms, while in CC all forms of judgement are interdependent.

In an indexed category the distinction between types and type schemas is easily
captured as follows: types correspond to elements of an object Ω in the base cate-
gory, type schemas correspond to objects in the fiber categories. The identification
of types and type schemas (typical of Fω and CC) amounts to having a one-one
correspondence between morphisms from b to Ω in the base category B and objects
in the fiber C[b] over b. In HML a type τ can be made into a type schema set(τ), so
types are type schemas, but not the other way around.

Inference Rules. The inference rules of HML are partitioned in two sets s.t.
the first is independent from the second (see Appendix). The first set of rules is
for deriving formation and equality judgements for kinds and constructors, which
amounts to Martin-Löf predicative theory of dependent types with a kind constant Ω
and constructor constants 1, × and→ (of appropriate kind). The second set of rules
is for deriving formation and equality judgements for type schemas and terms. It is
similar to the rules in [HP89] for types and terms of the Calculus of Constructions.

Categorical view. The calculus HML can be viewed as an indexed category ac-
cording to a standard term-model construction (see [See87]), where constructors
(up to constructor equality) are morphisms in the base category and terms are mor-
phisms in the fiber categories.

Definition 5.3 HML can be viewed as an indexed category C:Bop → Cat.

• The base category B is defined as follows:

– objects are equivalence classes [k] of kinds, i.e. {k′|∅ ` k = k′}

– morphisms from [k1] to [k2] are equivalence classes [u]k1,k2
of constructors,

i.e. {u′|v: k1 ` u = u′: k2}, where it does not matter what one chooses as
representative for [k1] and [k2]

– [u1]k1,k2
followed by [u2]k2,k3

is [[u1/v]u2]k1,k3

• If [k] is an object of B, then the category C[[k]] is defined as follows:

– objects are equivalence classes [σ]k of schemas, i.e. {σ′|v: k; ∅ ` σ = σ′}

– morphisms from [σ1]k to [σ2]k are equivalence classes [e]k;σ1,σ2
of terms,

i.e. {e′|v: k; x: σ1 ` e = e′: σ2}

– [e1]k;σ1,σ2
followed by [e2]k;σ2,σ3

is [[e1/x]e2]k;σ1,σ3

• If f = [u]k1,k2
is a morphism from [k1] to [k2] in B, then C[f ] is the functor

from C[[k2]] to C[[k1]] defined as follows:

14



– [σ]k2
is mapped to [[u/v]σ]k1

and

– [e]k2;σ1,σ2
is mapped to [[u/v]e]k1;[u/v]σ1,[u/v]σ2

The indexed category C has additional structure, but we will study it as additional
structure on the category GC of modules, so that it can be compared more easily
with the categorical structure of the Calculus of Constructions considered in [HP89].

Definition 5.4 The category GC of HML-modules can be described as follows:

• objects are pairs 〈[k], [σ]k〉, denoted by [v: k; σ]

• morphisms from [v: k1; σ1] to [v: k2; σ2] are pairs 〈[u]k1,k2
, [e]k1;σ1,[u/v]σ2

〉 denoted
by [(v: k1; x: σ1).〈u; e〉]k2;σ2

• [(v: k1; x: σ1).〈u1; e1〉]k2;σ2
followed by [(v: k2; x: σ2).〈u2; e2〉]k3;σ3

is the pair
[(v: k1; x: σ1).〈[u1/v]u2; [u1, e1/v, x]e2〉]k3;σ3

Remark 5.5 At this point we can outline the correspondence between ML-modules
and GC. Since we have not yet defined all the relevant structure on GC, we can
consider only closed signatures, structures and functors (i.e. without reference to
non-local variables). This restriction will be dropped in Remark 7.11.

• A closed ML-signature corresponds to an object of GC, e.g.

signature sig = (sig type v; val x: σ end)

corresponds to the object [v: Ω; σ].

• A closed ML-structure of closed signature sig corresponds to an element of
[v: Ω; σ], e.g.

structure S = (struct type v = u; val x = e end)

corresponds to the morphism [(v: 1; x: 1).〈u; e〉]Ω;σ from the terminal object
[v: 1; 1] to [v: Ω; σ].

• A closed ML-functor, whose parameter and result signatures are closed, cor-
responds to a morphism of GC, e.g.

functor F (S: sig1): sig2 =
struct type v = [S.v/v]u; val x = [S.v, S.x/v, x]e end

corresponds to the morphism [(v: Ω; x: σ1).〈u; e〉]Ω;σ2
from [v: Ω; σ1] to [v: Ω; σ2].

While our explanation of ML-signatures and ML-structures matches the type-theoretic
intuition in [Mac86, HM88], there is a major difference in the understanding of ML-
functors:

for us it is essential that ML-types (including those in the body of an
ML-functor) do not depend on values, otherwise it would not be possible
to associate a morphism in GC to an ML-functor. On the other hand,
such a property is ignored in [Mac86, HM88].

Note that this property holds even for HML, despite having dependent kinds and
type schemas.
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6 A categorical treatment of dependent types

Up to now there is no agreement on what is the best way of looking at dependent
types categorically (see [Car78, See84, Tay87, HP89, Ehr88, Str88, Cur89, Pit89,
Jac90, Pitar]). We follow the approach based on categories with attributes (see
[Car78] and also [Cur89, Pit89, Pitar]), which avoids certain limitations of classes
of display maps (see [Tay87, HP89]) and the unnecessary generality of D-categories
(see [Ehr88]). This section reviews the concepts involved in the definition of categor-
ical model for the Calculus of Construction (see Definition 6.16), namely: category
with attributes, generic type, unit types, dependent sums and products, universal
and existential types, embedding between categories with attributes. Moreover, it
introduces some operations on categories with attributes (see Definition 6.14).

Remark 6.1 In the introduction we advocate formulating concepts 2-categorically.
Since the concept of fibration can be formulated 2-categorically (see [Str73]), it
is possible to formulate categories with attributes and other concepts introduced
below 2-categorically, too. However, we have not done so, because it seemed too
complicated and unintelligible. Nevertheless, a 2-categorical formulation is essential
to define indexed categories with attributes and explain how type dependency in the
category of modules is induced by type dependency in the base and the fibers via
the 2-functor G (given by the Grothendieck construction).

Definition 6.2 A category with attributes is specified by a quadruple (C,D, G, p)
made of the following data:

• a category C with a terminal object 1,

• a discrete C-indexed category D (we identify sets with discrete categories)

• a natural transformation p

GD

G

⇓ p

πD

>

>
C in Cat

s.t. for all f : Y → X and a ∈ D[X]

Y · f ∗a
f · a

> X · a

pf∗a

∨ ∨

pa

Y
f

> X

i.e. the square is a pullback, where we write
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– f ∗a for D[f ](a),

– X · a for the context extension G(〈X, a〉),

– f · a for G(〈f, idD[f ]a〉),

– pa for the context projection p at 〈X, a〉.

Remark 6.3 A general outline of the interpretation of judgements for a calculus of
dependent types in a category with attributes goes as follows:

Judgement Interpretation
context Γ ` object X of C

type Γ ` σ element a of D[X]
term Γ ` e: σ section f of pa, i.e. f : X → X · a s.t. f ; pa = idX

type equality Γ ` σ = σ′ a = a′

term equality Γ ` e = e′: σ f = f ′

The terminal object 1 is used to interpret the empty context.

Given a category with attributes we define the following categories and functors:

Definition 6.4 (Slice category) Let X ∈ C, then the slice category C/X has
as objects the morphisms with codomain X and as morphisms from f1: Y1 → X to
f2: Y2 → X the g: Y1 → Y2 s.t.

Y1

g
> Y2

@
@

@
f1

@
@

@R ∨

f2

X

Let a ∈ D[X], then ·a: C/X → C/(X ·a) is the functor mapping an object f : Y → X
onto f · a: Y · f ∗a→ X · a and a morphism g from f1 to f2 onto the unique g · a s.t.

Y1

g
> Y2

�
�

�
p �

�
��

�
�

�
p �

�
��

∨

f2

Y1 · f
∗
1 a

g · a
> Y2 · f

∗
2 a X

@
@

@
f1 · a @

@
@R ∨

f2 · a

�
�

� p
�

�
��

X · a
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Definition 6.5 (Relative slice category) Let X ∈ C, then the relative slice
category C/DX has as objects the elements of D[X] and as morphisms from a to b
the g: X · a→ X · b s.t.

X · a
g

> X · b
@

@
@
p @

@
@R ∨

p

X

Let f : Y → X, then f ∗: C/DX → C/DY is the functor mapping an object a onto f ∗a
and a morphism g from a to b onto the unique f ∗g s.t.

X · a
g

> X · b

�
�

�
f · a �

�
��

�
�

�
f · b �

�
��

∨

p

Y · f ∗a
f ∗g

> Y · f ∗b X
@

@
@
p @

@
@R ∨

p

�
�

� f
�

�
��

Y

The following definition gives a categorical characterisation of certain types con-
structors, dependent sums and products, in terms of universal properties and com-
mutativity with substitution, i.e. Beck-Chevalley condition.

Definition 6.6 We say that a category with attributes (C,D, G, p) has

• generic type (U ∈ C, t ∈ D[U ])
∆
⇐⇒

for every X ∈ C and a ∈ D[X] exists unique f : X → U s.t. a = f ∗t

• units 1[X] ∈ D[X], for X ∈ C
∆
⇐⇒

– for every f : Y → X

Y · 1′
f · 1

> X · 1

p

∨ ∨

p

Y
f

> X

where 1
∆
= 1[X] and 1′

∆
= 1[Y ] = f ∗1
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– for every f : Y → X exists unique ! s.t.

Y
!

> X · 1
@

@
@

f @
@

@R ∨

p

X

or equivalently !: X
∼
→ X · 1, i.e. ! is an iso, from idX to p1 in C/X.

• sums Σ[X]a.b ∈ D[X] with unit η[X]a,b for X ∈ C , a ∈ D[X] and b ∈ D[X ·a]

X · a · b
η

> X · Σ · p∗a
p

> X · Σ
@

@
@
p @

@
@R ∨

p · a

∨

p

X · a
p

> X

where Σ
∆
= Σ[X]a.b and η

∆
= η[X]a,b

∆
⇐⇒

– for every f : Y → X

X · a · b
η

> X · Σ · p∗a
p

> X · Σ

�
�

�
f · a · b �

�
��

�
�

�
f · Σ · p∗a �

�
��

�
�

�
f · Σ �

�
��

∨

p

Y · a′ · b′
η′

> Y · Σ′ · p∗a′
p

> Y · Σ′ X
@

@
@
p @

@
@R ∨

p · a′

∨

p

�
�

� f
�

�
��

Y · a′

p
> Y

where a′ ∆
= f ∗a, b′

∆
= (f · a)∗b, Σ′ ∆

= Σ[Y ]a′.b′ = f ∗Σ and η′ ∆
= η[Y ]a′,b′

– there is a natural isomorphism C/X(pΣ, )
.
∼= C/(X · a)(pb, · a) given by

X · Σ
g

> Y X · a · b
h

> Y · f ∗a
@

@
@
p @

@
@R ∨

f g
∼
7→ h

∆
= η; (g · a)

@
@

@
p @

@
@R ∨

f · a

X X · a

or equivalently s
∆
= η; p: X · a · b

∼
→ X · Σ from pb; pa to pΣ in C/X.
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• products Π[X]a.b ∈ D[X] with counit ε[X]a,b for X ∈ C , a ∈ D[X] and
b ∈ D[X · a]

X · a · b <
ε

X ·Π · p∗a
p

> X · Π
@

@
@
p @

@
@R ∨

p · a

∨

p

X · a
p

> X

where Π
∆
= Π[X]a.b and ε

∆
= ε[X]a,b

∆
⇐⇒

– for every f : Y → X

X · a · b <
ε

X · Π · p∗a
p

> X · Π

�
�

�
f · a · b �

�
��

�
�

�
f · Π · p∗a �

�
��

�
�

�
f · Π �

�
��

∨

p

Y · a′ · b′ <
ε′

Y · Π′ · p∗a′
p

> Y · Π′ X
@

@
@
p @

@
@R ∨

p · a′

∨

p

�
�

� f
�

�
��

Y · a′

p
> Y

where a′ ∆
= f ∗a, b′

∆
= (f · a)∗b, Π′ ∆

= Π[Y ]a′.b′
∆
= f ∗Π and ε′

∆
= ε[Y ]a′,b′

– there is a natural isomorphism C/X( , pΠ)
.
∼= C/(X · a)( · a, pb) given by

X · Π <
g

Y X · a · b <
h

Y · f ∗a
@

@
@
p @

@
@R ∨

f g
∼
7→ h

∆
= (g · a); ε

@
@

@
p @

@
@R ∨

f · a

X X · a

Remark 6.7 The definitions of units and sums are essentially equivalent to those in
[HP89], but our definitions of generic type and products are stronger.

• In the definition of generic type [HP89] demands only existence of f : X → U ,
while we demand also uniqueness. Our definition describes better the intended
property of a generic type, especially in syntactic models, and it seems more
appropriate, when there is a canonical choice of pullbacks.

• In the definition of products [HP89] demands C/X( , pΠ)
.
∼= C/(X · a)( · a, pb)

for ranging only over pc: X ·c→ X (i.e. it uses C/D instead of C/ ), while we
let range over arbitrary f : Y → X. Note that the absoluteness of products
(see 2.8 of [HP89]) becomes a simple consequence of our definition.
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The unit η for sums and the counit ε for products have a simple description as
context realisation in a theory of dependent types:

• η is the realisation 〈x, 〈a, b〉, a〉 of the context [x: X, y: (Σa: A.B), a: A] in the
context [x: X, a: A, b: B];

• ε is the realisation 〈x, a, f(a)〉 of the context [x: X, a: A, b: B] in the context
[x: X, f : (Πa: A.B), a: A].

Example 6.8 A category C can be made into a trivial category with attributes
(having units, sums and products) by defining:

• D[X] = {∗}

• X · ∗ = X

• f · ∗ = f

• p∗ = idX

Example 6.9 A category C with finite products can be made into a category with
attributes, having units and sums, by defining:

• D[X] = Obj(C)

• X · a = X × a

• f · a = f × ida

• pa = πX,a
1

• 1[X] = 1

• Σ[X]a.b = a× b

Moreover, if C has exponentials, then as a category with attributes it has also prod-
ucts Π[X]a.b = ba. In summary, a cartesian closed category can be viewed as a
category with attributes having units, sums and products.

Example 6.10 The category Cat of small categories can be made into a category
with attributes (having units, sums and products) by defining:

• D[B] = Obj(CatB
op

), i.e. the class of B-indexed categories

• B · C = GC

• (F · C)〈X, c〉 = 〈FX, c〉

• pC = πC

Note that the relative slice category Cat/DB is not equivalent to ICat(B). However,
the two are equivalent on discrete B-indexed categories.
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Following [HP89], we define when a category with attributes (C, E) has universal
and existential quantification along projections corresponding to another category
with attributes (C,D) (possibly the same).

Definition 6.11 Given a category with attributes (C,D, G, p), we say that another
category with attributes (C, E , G, p) has

• ∃-quantifiers ∃[X]a.b ∈ E [X] with unit η[X]a,b for X ∈ C , a ∈ D[X] and
b ∈ E [X · a]

X · a · b
η

> X · a · p∗∃
p · ∃

> X · ∃
@

@
@
p @

@
@R ∨

p

∨

p

X · a
p

> X

where ∃
∆
= ∃[X]a.b and η

∆
= η[X]a,b

∆
⇐⇒

– for every f : Y → X

X · a · b
η

> X · a · p∗∃
p · ∃

> X · ∃

�
�

�
f · a · b �

�
��

�
�

�
f · a · p∗∃ �

�
��

�
�

�
f · ∃ �

�
��

∨

p

Y · a′ · b′
η′

> Y · a′ · p∗∃′
p · ∃′

> Y · ∃′ X
@

@
@
p @

@
@R ∨

p

∨

p

�
�

� f
�

�
��

Y · a′

p
> Y

where a′ ∆
= f ∗a, b′

∆
= (f · a)∗b, ∃′

∆
= ∃[Y ]a′.b′ = f ∗∃ and η′ ∆

= η[Y ]a′,b′

– there is a natural isomorphism C/EX(∃, )
.
∼= C/E(X · a)(b, p∗

a ) given by

X · ∃
g

> X · c X · a · b
h

> X · a · p∗c
@

@
@
p @

@
@R ∨

p g
∼
7→ h

∆
= η; (p∗

ag)

@
@

@
p @

@
@R ∨

p

X X · a
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– the morphism s
∆
= η; (p · ∃): X · a · b → X · ∃ is orthogonal to the set

{pc|Y ∈ C , c ∈ E [Y ]}, i.e. for all Y ∈ C and c ∈ E [Y ]

·
s

> · ·
s

> ·

if g

∨ ∨

f then ∃!h s.t. g

∨ 	�
�

�
h �

�
�

∨

f

·
pc

> · ·
pc

> ·

• ∀-quantifiers ∀[X]a.b ∈ E [X] with counit ε[X]a,b for X ∈ C , a ∈ D[X] and
b ∈ E [X · a]

X · a · b <
ε

X · ∀ · p∗a
p

> X · ∀
@

@
@
p @

@
@R ∨

p · a

∨

p

X · a
p

> X

where ∀
∆
= ∀[X]a.b and ε

∆
= ε[X]a,b

∆
⇐⇒

they satisfy, mutatis mutandis, the requirements for products in Definition 6.6

Remark 6.12 The definition of ∃-quantifier is essentially equivalent to that in [HP89],
but our definition of ∀-quantifiers is stronger in the same way as our definition of
product is (see Remark 6.7).

The unit η for ∃-quantifiers, the morphism s used in the orthogonality condition
and the counit ε for ∀-quantifier have a simple description as context realisation in
a theory of dependent types:

• η is the realisation 〈x, a, (a, b)〉 of the context [x: X, a: A, y: (∃a: A.B)] in the
context [x: X, a: A, b: B];

• s is the realisation 〈x, (a, b)〉 of the context [x: X, y: (∃a: A.B)] in the context
[x: X, a: A, b: B];

• ε is the realisation 〈x, a, f(a)〉 of the context [x: X, a: A, b: B] in the context
[x: X, f : (∀a: A.B), a: A].

The orthogonality condition means simply that there is a one-one correspondence
between terms of type C (classified by E) in the context [x: X, y: (∃a: A.B)] and terms
of type [(a, b)/y]C in the context [x: X, a: A, b: B]. The need for the orthogonality
condition in the definition of ∃-quantifiers was realised by M. Hyland and A. Pitts.
In special cases orthogonality follows from the other two conditions:

• When D = E and E has sums. In fact, (Σ[X]a.b) and (∃[X]a.b) are isomorphic,
so s is an iso, and isos are orthogonal to any class of morphisms.
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• When E is constant, i.e. when types do not depend on values like in Fω. In
this case orthogonality follows from the natural isomorphism of the second
condition.

There is an asymmetry between the definition of ∃- and ∀-quantifiers, since in
the former the universal property is given in terms of relative slice categories, while
in the latter it is given in terms of slice categories. We have chosen to formulate
the universal property for ∀-quantifiers in terms of slice categories because of the
absoluteness result for dependent products established in 2.8 of [HP89]. When
D = E , it is obvious that the definitions of products and ∀-quantifiers for E coincide,
while sums and ∃-quantifiers can both be defined and different.

For categories with attributes the set-theoretic notion of inclusion between classes
of display maps has to be replaced by a more complex one.

Definition 6.13 (Embedding)
Given two categories with attributes (C,D, G, p) and (C, E , G, p), an embedding of
the first into the second is a pair (In, in), where In:D → E is a C-indexed functor
(between discrete indexed categories) and in: G

.
→ (G(In); G):GD → C is a natural

isomorphism s.t. for X ∈ C and a ∈ D[X] the following diagram in C commutes

X · a
inX,a

> X · In(a)

pa

∨ 	�
�

� pIn(a)

�
�

�

X

Embeddings preserve (not necessarily on the nose) units, sums, products and ∀-
quantifiers, but may not preserve ∃-quantifiers.

Definition 6.14 Let (C,D, G, p) and (C, E , G, p) be two categories with attributes,
parallel composition (C,D‖E , G, p) and juxtaposition (C,D · E , G, p) are the
categories with attributes defined as follows:

• (D‖E)[X] = (D[X]× E [X])

X · 〈a, b〉 = X · a · p∗
ab

f · 〈a, b〉 = f · a · p∗
ab

p〈a,b〉 = pp∗

ab; pa, i.e. the diagonal filling of the pullback square

X · a · p∗
ab

pa · b
> X · b

pp∗

ab

∨

@
@

@
p〈a,b〉 @

@
@R ∨

pb

X · a
pa

> X
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• (D · E)[X] = (Σa ∈ D[X].E [X · a])

X · 〈a, b〉 = X · a · b

f · 〈a, b〉 = f · a · b

p〈a,b〉 = pb; pa

Remark 6.15 The intended meaning of the operations described above is:

• context extension in D‖E means context extension by D and E in parallel ,

• context extension in D · E means context extension by D and then by E .

These operation can also be viewed as binary functors on the category Attr(C)
of categories with attributes over C and embedding. From this perspective the
binary functors corresponding to parallel composition and juxtaposition are part of
a monoidal structure over Attr(C) with unit 1, where 1[X] = {∗} (see Example 6.8).
Moreover, parallel composition is symmetric, while juxtaposition is not. Note also
that a category with attributes having units and sums corresponds to a monoid
units: 1 → D ← D · D: sums in the monoidal category Attr(C) with juxtaposition
as tensor product. The operations of parallel composition and juxtaposition can
be viewed also as functors on the poset Disp(C) of classes of display maps over C
ordered by inclusion, and it is easier to look at them in these terms. There are other
operations on classes of display maps worth mentioning:

• × and + (i.e. product and coproduct in Disp(C)).

We summarise the categorical semantics of the Calculus of Constructions given
in [HP89] using the terminology introduced in this section.

Definition 6.16 A model of CC is specified by a category B with a terminal object
1 and two structures R and A of category with attributes on B s.t.

• R is embedded in A;

• R has a generic type (U, t) s.t. U = 1 · a for some a ∈ A[1];

• R and A have units, sums and products;

• R has ∃- and ∀-quantifiers along context projections in A.

Remark 6.17 R and A correspond to context extensions by a type and a kind
respectively. The embedding of R into A means that types are included in kinds,
while U = 1 · a for some a ∈ A[1] means that there is a kind of all types.

The definition above is almost equivalent to that in Summary 2.13 of [HP89].
We have only dropped the requirement that every X ∈ B is (up to isomorphism) of
the form 1 · a for some a ∈ A[1]. In this way it is left open what can be declared in
a context besides variables ranging over a kind (or a type).
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7 Independence and HML-modules

In this section we analyse the structure over the category GC of HML-modules (see
Definition 5.4) necessary for the interpretation of a calculus with dependent types.

• First, we consider two categories with attributes over GC, D and E , corre-
sponding to dependent kinds and dependent type schemas.

• Second, we define independence for categories with attributes (see Defini-
tion 7.3) and prove that D is independent from E .

• Finally, we prove various technical lemmas on independence leading to Theo-
rem 7.9, which infer properties of D·E , corresponding (we claim) to dependent
signatures, from similar properties of D and E .

In analogy with the categorical semantics of the Calculus of Constructions (see
Definition 6.16) we define two categories with attributes over the category of HML-
modules, D and E , corresponding to context extension by a kind and a type schema.

Definition 7.1 The category GC is equipped with two structures D and E of category
with attributes, defined as follows

• D[〈X, c〉] is the set of equivalence classes [k′]k, i.e. {k′′|v: k ` k′ = k′′}

〈f, g〉∗d = [[u/v]k′]k1

〈X, c〉 · d = [v: (Σv: k.k′); σ̂]

〈f, g〉 · d = [(v: (Σv: k1.[u/v]k′); x: σ̂1).〈〈û, π2v〉; ê〉](Σv:k.k′);σ̂

pd = [(v: (Σv: k.k′); x: σ̂).〈π1v; x〉]k;σ

where 〈X, c〉 = [v: k; σ] ∈ GC , d = [k′]k ∈ D[〈X, c〉]
〈f, g〉 = [(v: k1; x: σ1).〈u; e〉]k;σ morphism from 〈X1, c1〉 to 〈X, c〉
ˆ is a shorthand for [π1v/v]

• E [〈X, c〉] is the set of equivalence classes [σ ′]k;σ, i.e. {σ′′|v: k; x: σ ` σ′ = σ′′}

〈f, g〉∗e = [[u, e/v, x]σ′]k1;σ1

〈X, c〉 · e = [v: k; (Σx: σ.σ′)]

〈f, g〉 · e = [(v: k1; x: (Σx: σ1.[u, e/v, x]σ′)).〈u; 〈[π1x/x]e, π2x〉〉]k;(Σx:σ.σ′)

pe = [(v: k; x: (Σx: σ.σ′)).〈v; π1x〉]k;σ

where 〈X, c〉 = [v: k; σ] ∈ GC , e = [σ′]k;σ ∈ E [〈X, c〉]
〈f, g〉 = [(v: k1; x: σ1).〈u; e〉]k;σ morphism from 〈X1, c1〉 to 〈X, c〉

Proposition 7.2 the category GC has a terminal object 1 and the two structures E
and D of category with attributes on GC are s.t.

• E and D have units, sums and products;

• E has ∃- and ∀-quantifiers along context projections in D.
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Proof The definitions of terminal object, units, sums, products and quantifiers are
quite obvious, therefore they will be only sketched. The required properties can be
reformulated as equations and proved using the inference rules for HML.

• Given X = [v: k; σ] ∈ GC, d1 = [k1]k ∈ D[X] and d2 = [k2]Σv:k.k1
∈ D[X · d1],

the unit in D[X] is [1]k, the sum and product of d2 indexed over d1 are

(Σ[X]d1.d2)
∆
= [Σv1: k1.[〈v, v1〉/v]k2]k

(Π[X]d1.d2)
∆
= [Πv1: k1.[〈v, v1〉/v]k2]k

• Given X = [v: k; σ] ∈ GC, e1 = [σ1]k;σ ∈ E [X] and e2 = [σ2]k;Σx:σ.σ1
∈ E [X · e1],

the unit in E [X] is [1]k;σ, the sum and product of e2 indexed over e1 are

(Σ[X]e1.e2)
∆
= [Σx1: σ1.[〈x, x1〉/x]σ2]k;σ

(Π[X]e1.e2)
∆
= [Πx1: σ1.[〈x, x1〉/x]σ2]k;σ

• Given X = [v: k; σ] ∈ GC, d1 = [k1]k ∈ D[X] and e2 = [σ2](Σv:k.k1);σ̂ ∈ E [X ·d1],
the ∃- and ∀-quantifier of e2 along pd1

are

(∃[X]d1.e2)
∆
= [∃v1: k1.[〈v, v1〉/v]σ2]k;σ

(∀[X]d1.e2)
∆
= [∀v1: k1.[〈v, v1〉/v]σ2]k;σ

The structures D and E fail to give a model of the Calculus of Construction for
two reasons: E is not included in D, and E doesn’t have a generic type (U, t) s.t.
U = 1 · d for some d ∈ D[1]. The second reason could be circumvented by using
Fω instead of HML, since in Fω types and type schemas are identified. However,
the first reason is strongly related to independence of constructor-expressions from
term-expressions, which is a feature of Fω, too. In HML independence in enforced
syntactically, by forbidding terms in kinds and constructors (see Section 5). Before
studying any further the category of HML-modules, we characterise independence
at a more abstract level.

Definition 7.3 (Independence) Given two structures D and E of category with
attributes over a category C, we say that D is independent from E iff for every
X ∈ C, e ∈ E [X] and d ∈ D[X]

• the mapping D[pe]:D[X]→ D[X · e] is a bijection

• there is a natural isomorphism C/X( , pd)
.
∼= C/(X · e)( · e, pd · e) given by

Y
g

> X · d Y · f ∗e
h

> X · d · p∗e
∼

> X · e · p∗d
@

@
@
f @

@
@R ∨

p g
∼
7→ h

∆
= (g · e)

@
@

@
f · e @

@
@R ∨

p · e

	�
�

� p
�

�
�

X X · e
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Remark 7.4 Since pd ·e and pp∗

ed are isomorphic in C/(X ·e) and context projections
can be pulled back along any morphism, then the second condition amounts to saying
that there is a bijection between sections of pd and section of pp∗

ed. In summary
independence of D from E means that types and terms classified by D are invariant
w.r.t. context extensions by types classified by E .

Theorem 7.5 (Independence for HML) D is independent from E , where D and
E are the categories with attributes on GC given in Definition 7.1.

Proof Indeed, we prove that D is independent from E whenever D is induced by a
category with attributes over the base B and pe is of the form 〈idX , g〉 for every
X ∈ B and e ∈ E [X].

It is obvious from the definition that D[〈X, c〉] depends only from X and D[〈f, g〉]
depends only from f . Since pe is of the form 〈idX , g〉 and D[〈idX , idc〉] is the iden-
tity, then D[pe] must be the identity and this amounts to the first requirement for
independence.

The natural isomorphism GC/〈X, c〉( , pd)
.
∼= GC/(〈X, c〉·e)( ·e, pd ·e), demanded

in the second requirement for independence, is a consequence of the following facts:

• pd is 〈f, idf∗c〉 for some f and c

• 〈f, idf∗c〉 · e is 〈f, idf∗c′〉 for some c′

• GC/〈X, c〉(〈f ′, g′〉, 〈f, idf∗c〉)
.
∼= B/X(f ′, f), as a morphism in the first hom-set

must be of the form 〈h, g′〉 for some h s.t. f ′ = h; f .

In the sequel we establish some basic facts about independence.

Lemma 7.6 If D is independent from E , then pe is orthogonal to pd for every
X, Y ∈ C, d ∈ D[X] and e ∈ E [Y ], i.e.

·
pe

> · ·
pe

> ·

if g

∨ ∨

f then ∃!h s.t. g

∨ 	�
�

� h
�

�
�

∨

f

·
pd

> · ·
pd

> ·

Proof Because of Remark 7.4 we can assume that X = Y , f = idX and show that

·
pe

> · ·
pe

> ·

if g

∨ �
�

� pd

�
�

��

then ∃!h section of pd s.t. g

∨ 	�
�

� h
�

�
�

· ·

which amounts to a bijection between g ∈ C/X(pe, pd) and h ∈ C/X(idX , pd) given
by g = pe; h. Such a bijection can be given in two steps:
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• the bijection between g ∈ C/X(pe, pd) and h′ ∈ C/X(idX·e, pd · e) given by
g = h′; pp∗

d
e, since

·
pd · e

> ·

pp∗

d
e

∨ ∨

pe

·
pd

> ·

• the bijection between h′ ∈ C/X(idX·e, pd · e) and h ∈ C/X(idX , pd) given by
the second requirement in the definition of independence, as idX·e = idX · e.

We skip the check that composition of these two bijections is the desired one

Lemma 7.7 If D is independent from E , then for every X ∈ C, e1 ∈ E [X] and
d2 ∈ D[X · e1] there exists d1 ∈ D[X] and e2 ∈ E [X · d1] s.t.

·
∼
→ ·

pd2

> ·

pe2

∨ ∨

pe1

·
pd1

> ·

Proof Because of the first condition in the definition of independence, there exists
unique d1 ∈ D[X] s.t. d2 = D[pe1

]d1. Let e2 ∈ E [X ·d1] be E [pd1
]e1. To show that d1

and e2 satisfy the requirement, use the fact that the following squares are pullbacks
for the same pair of morphisms

·
pd1
· e1

> · ·
pd2

> ·

pe2

∨ ∨

pe1
pe1
· d1

∨ ∨

pe1

·
pd1

> · ·
pd1

> ·

Remark 7.8 The proof of the Lemma essentially says that the two categories with
attributes E · D and E‖D, as given in Definition 6.14, are equivalent . Since inde-
pendence implies also that context projections for E are orthogonal to those for D,
then the factorisation of pd2

; pe1
given by the Lemma is unique (up to isomorphism).

Another consequence of independence is that D has quantifiers along context pro-
jections for E , but they are uninteresting . In fact, (∃[X]e1.d2) = (∀[X]e1.d2) = d1,
where d1 is that given by the Lemma.
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Finally, we derive properties of the juxtaposition D·E (see Definition 6.14) under
the assumption that D is independent from E .

Theorem 7.9 Given two categories with attributes D and E s.t.

• D is independent from E ;

• E and D have units, sums and products;

• E has ∃- and ∀-quantifiers along context projections in D;

then the juxtaposition A = D · E satisfies the following properties

• E has ∃- and ∀-quantifiers along context projections in A;

• A has units, sums and products.

Proof We give only a sketch, and write ai for an element 〈di, ei〉 ∈ A[ ].

• Given X ∈ C, a1 ∈ A[X] and e2 ∈ E [X · a1], then
the ∃- and ∀-quantifier of e2 along pa1

are

(∃[X]a1.e2)
∆
= ∃[X]d1.(Σ[X · d1]e1.e2) and

(∀[X]a1.e2)
∆
= ∀[X]d1.(Π[X · d1]e1.e2)

• Given X ∈ C, a1 ∈ A[X] and a2 ∈ A[X · a1], then

the unit in A[X] is 1[X]
∆
= 〈1[X], 1[X · 1[X]]〉

the sum and product of a2 indexed over a1 are

(Σ[X]a1.a2)
∆
= 〈(Σ[X]d1.d3), (s

−1)∗(Σ[X · d1 · d3]e3.e2)〉

(Π[X]a1.a2)
∆
= 〈d, ∀[X · d]p∗

dd1.ε
∗(Π[X · d1 · d3]e3.e2)〉

where d3 ∈ D[X · d1] and e3 ∈ E [X · d1 · d3] are s.t. (see Lemma 7.7)1

·
pd2

> ·

pe3

∨ ∨

pe1

·
pd3

> ·

s: X · d1 · d3
∼
→ X · Σ[X]d1.d3 is the isomorphism for sums (see Definition 6.6)

d ∈ D[X] is the product (Π[X]d1.d3), and

ε: X · d · p∗
dd1 → X · d1 · d3 is the counit for products (see Definition 6.6).

1For simplicity, we that the isomorphism in the top-left corner is the identity.
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The importance of Theorem 7.9 rests on the observation that, when D and E are
the categories with attributes given in Definition 7.1, then A = D ·E is the category
with attributes corresponding to context extension by a signature. This claim
is justified by looking at a more concrete definition of A and by completing the
correspondence between ML-modules and the category GC given in Remark 5.5.

Definition 7.10 The category GC is equipped with a structure A of category with
attributes, defined as follows

• A[〈X, c〉] is the set of equivalence classes [v ′: k′; σ′]k;σ, i.e.
{〈k′′, σ′′〉|v: k ` k′ = k′′ and v: k, v′: k′; x: σ ` σ′ = σ′′}

〈f, g〉∗a = [v′: [u/v]k′; [u, e/v, x]σ′]k1;σ1

〈X, c〉 · a = [v: (Σv: k.k′); (Σx: σ̂.[π2v/v′]σ̂′)]

〈f, g〉 · a = [(v: (Σv: k1.[u/v]k′); x: (Σx: σ̂1.[û, π2v, ê/v, v′, x]σ′)).
〈〈û, π2v〉; 〈[π1x/x]ê, π2(x)〉〉](Σv:k.k′);(Σx:σ̂.[π2v/v′ ]σ̂′)

pa = [(v: (Σv: k.k′); x: (Σx: σ̂.[π2v/v′]σ̂′)).〈π1v; π1x〉]k,σ

where 〈X, c〉 = [v: k; σ] ∈ GC , a = [v′: k′; σ′]k;σ ∈ A[〈X, c〉]
〈f, g〉 = [(v: k1; x: σ1).〈u; e〉]k;σ morphism from 〈X1, c1〉 to 〈X, c〉
ˆ is a shorthand for [π1v/v]

Remark 7.11 There is a bijection between A[〈X, c〉] and (D · E)[〈X, c〉], namely

a = [v′: k′; σ′]k;σ ∈ A[〈X, c〉] corresponds to the pair 〈d, e〉, where
d = [k′]k ∈ D[〈X, c〉] and e = [[π2v/v′]σ̂′](Σv:k.k′);σ̂ ∈ E [〈X, c〉 · d].

The notation for a ∈ A[〈X, c〉] is suggestive of ML-signatures. To make the
correspondence with ML-modules easier to express we introduce a more suggestive
notation also for sections.

Given 〈X, c〉 = [v: k; σ] ∈ GC and a = [v′: k′; σ′]k;σ ∈ A[〈X, c〉], we write
[(v: k; x: σ).〈vi = u; xi = e〉]k′;[vi/v′]σ′ for the section

[(v: k; x: σ).〈〈v, u〉; 〈x, e〉〉](Σv:k.k′);(Σx:σ̂.[π2v/vi ]σ̂′)

of pa, where vi and xi can be choosen arbitrarily and ˆ stands for [π1v/v] .

Indeed every section of pa can be written in this way.
Using the structure A over GC we can revise the correspondence given in Re-

mark 5.5 to account for type dependency at the level of ML-modules. In ML struc-
tures and signatures must always be considered relatively to a context Γ for con-
structor and value variables, specifying kind and type of all (relevant) free variables.
A context Γ can be thought as a closed signature, and therefore it corresponds to
an object 〈X, c〉 = [v: k; σ] of GC (see Remark 5.5).

• An ML-signature corresponds to an element of A[〈X, c〉], e.g.

signature sig = (sig type v′; val x′: σ′ end)

corresponds to the element a = [v′: Ω; σ′]k;σ.
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• An ML-structure of signature sig corresponds to a section, which given a
realisation for Γ extends it to a realisation for Γ extended with sig, e.g.

structure S = (struct type v′ = u; val x′ = e end)

corresponds to the section [(v: k; x: σ).〈v′ = u; x′ = e〉]Ω;σ′ of pa.

• An ML-functor, with parameter signature sig1 and result signature sig2 (pos-
sibly depending on sig1), corresponds to a section of p(Π[〈X,c〉]a1.a2), where ai

corresponds to sigi, e.g.

functor F (S: sig1): sig2 =
struct type v′ = [S.v′/v′]u; val x′ = [S.v′, S.x′/v′, x′]e end

corresponds to the section

[(v: k; x: σ).〈F = (λv′: Ω.u); G = (λv′: Ω.λx′: σ1.e)〉](Πv′:Ω.Ω);(Πv′:T.Πx′:σ1.[Fv′/v′ ]σ2)

8 Conclusion and further research

In this paper we have investigated program modules in relation to independence of
type-expressions from program-expressions (which had been overlooked in previous
accounts) and type dependency. In our investigation we have abstracted, as far as
possible, from the syntax and tried to work at a great level of generality. In fact,
our understanding of program modules applies to any programming language which
can be viewed as an indexed category (possibly with some additional structure).
The main advantages of this approach are its language-independence and the ability
to reformulate unclear questions, like “when does a language support higher order
modules?”, in terms of simple and precise concepts, namely “is the Grothendieck
construction GC a cartesian closed category?”.

In Remarks 5.5 and 7.11 we briefly outlined how ML-modules fit in the categorical
account of program modules. ML, like other programming language, has many
other aspects that we do not address here, and some of them have no satisfactory
theoretical account, yet. Our analysis is not just an exposition of program modules
for theoretically minded people, instead we expect that it will have a feedback on
programming languages. Good module facilities are essential for programming in the
large, and there seems to be a lot of space for improvement in this area. Bridging
the gap between theory and practice could be rather difficult, since one needs to
address also syntactic and pragmatic issues. However, [HMM90] has already made
a step in this direction, by looking at calculi for program modules consistently with
the category-theoretic account given in this paper.

Finally, we mention some related areas of research (see also the introduction):

• Sharing constraints. Sharing constraints specify that two structure identi-
fiers denote the same structure. They were proposed by Dave MacQueen and
are incorporated in Standard ML (see [MTH90]). There is already a clean un-
derstanding of sharing constraints in terms of names and generativity , which
is used in the definition of Standard ML.
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In our opinion there should be a more general explanation of sharing con-
straints based on a calculus for dependent types (as in Martin-Löf Type The-
ory) and computations (as in [Mogar]), which would remove some of the cur-
rent limitations, e.g. only structure identifiers can be used in sharing con-
straints. In such a calculus one would expect that the subtypes {[a]} and
T{a} of TA (where a ∈ A) are different. The first type is the singleton con-
taining only the computation [a] (which does not do anything except returning
the value a). The second type is the set of computations which can do what-
ever they like, but at the end they can only return the value a. The latter
alternative seems a more appropriate to account for sharing constraints.

• Modular approach. In this paper we have focused our attention on one
aspect of programming languages. However, in the introduction we stressed
the need for combining features, and how a 2-categorical setting could help. We
do not believe in a mechanical way of finding the right combining of features,
a trial and error methodology is more likely. The main contribution we expect
from a 2-categorical view of programming languages is a small set of strategies
to guide in such a search.

• Partial evaluation. If indexed categories capture independence of a class of
expressions from another, perhaps they ought to capture evaluation of constant
expressions at compile-time, as done by optimising compilers. More precisely,
expressions evaluated at compile-time should be morphisms in the base cate-
gory. Therefore for every object N in the fiber over 1 we have to introduce an
object N ′ in the base, which classifies the expressions of type N computable
at compile-time. The inclusion of N ′ into N can be achieved by having an
element c: 1→ N in the fiber over N ′, corresponding to the generic expression
of type N computable at compile-time. We have not investigated whether this
way of looking at partial evaluation has any useful applications.

• Categorical semantics of dependent types. This paper has introduced
some operations on categories with attributes and classes of display maps
(see Definition 6.2 and Remark 6.15) and the concept of independence (see
Definition 7.3), that were not present in the literature.

Though these concepts were motivated by a specific application, we believe
that they deserve further study, e.g. it is not clear whether there are analogues
of Theorem 7.9 for the other operations on categories with attributes, and
could be useful in analysing and comparing type theories. For instance, The-
orem 7.9 essentially says that any model of Fω induces a model of CC; this
seems related to Berardi-Mohring’s translation from CC to Fω (see [Ber89,
Moh89]).
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Appendix: HML inference rules

We write [e1, . . . , en/x1, . . . , xn]e for the parallel substitution in e of all variables
x1, . . . , xn by the expressions e1, . . . , en.

Given a context Γ we write DV(Γ) for the set of variables declared in Γ and, if
x is a variable in DV(Γ), then we write Γ(x) for the (unique) kind or type schema
assigned to x in Γ.

Compile-time inference rules

Constructor context formation rules ∆ `

∅
∅ `

v
∆ ` k

∆, v: k `
v 6∈ DV(∆)

Kind formation rules ∆ ` k

Ω
∆ `

∆ ` Ω

1
∆ `

∆ ` 1

Σ
∆ ` k1 ∆, v: k1 ` k2

∆ ` (Σv: k1.k2)

Π
∆ ` k1 ∆, v: k1 ` k2

∆ ` (Πv: k1.k2)

Kind equality rules ∆ ` k1 = k2

The type equality rules of the predicative theory of dependent types (see [HP89]).
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Constructor formation rules ∆ ` u: k

v
∆ `

∆ ` v: k
k = ∆(v)

unit
∆ `

∆ ` 1: Ω

prod
∆ `

∆ ` ×: Ω→ Ω→ Ω

fun
∆ `

∆ `→: Ω→ Ω→ Ω

1I
∆ `

∆ ` ∗: 1

ΣI
∆, v: k1 ` k2 ∆ ` u1: k1 ∆ ` u2: [u1/v]k2

∆ ` 〈u1, u2〉: (Σv: k1.k2)

ΣE.1
∆ ` u: (Σv: k1.k2)

∆ ` π1(u): k1

ΣE.2
∆ ` u: (Σv: k1.k2)

∆ ` π2(u): [π1(u)/v]k2

ΠI
∆, v: k1 ` u: k2

∆ ` (λv: k1.u): (Πv: k1.k2)

ΠE
∆ ` u: (Πv: k1.k2) ∆ ` u1: k1

∆ ` u(u1): [u1/v]k2

:-eq
∆ ` u: k1 ∆ ` k1 = k2

∆ ` u: k2

Constructor equality rules ∆ ` u1 = u2: k

The term equality rules of the predicative theory of dependent types (see [HP89]).

Run-time inference rules

Term context formation rules ∆; Γ `

∅
∆ `

∆; ∅ `

x
∆; Γ ` σ

∆; Γ, x: σ `
x 6∈ DV(∆, Γ)
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Type schema formation rules ∆; Γ ` σ

type
∆; Γ ` ∆ ` τ : Ω

∆; Γ ` set(τ)

1
∆; Γ `

∆; Γ ` 1

Σ
∆; Γ ` σ1 ∆; Γ, x: σ1 ` σ2

∆; Γ ` (Σx: σ1.σ2)

Π
∆; Γ ` σ1 ∆; Γ, x: σ1 ` σ2

∆; Γ ` (Πx: σ1.σ2)

∀
∆; Γ ` ∆, v: k; Γ ` σ

∆; Γ ` (∀v: k.σ)

∃
∆; Γ ` ∆, v: k; Γ ` σ

∆; Γ ` (∃v: k.σ)

Type schema equality rules ∆; Γ ` σ1 = σ2

Similar to the type equality rule for the Calculus of Constructions (see [HP89]), plus
the following rules saying that set( ) commutes with products and function spaces:

1. =
∆; Γ `

∆; Γ ` set(1) = 1

×. =
∆; Γ ` ∆ ` τ1: Ω ∆ ` τ2: Ω

∆; Γ ` set(τ1 × τ2) = (Σx: set(τ1).set(τ2))

→ . =
∆; Γ ` ∆ ` τ1: Ω ∆ ` τ2: Ω

∆; Γ ` set(τ1 → τ2) = (Πx: set(τ1).set(τ2))

Term formation rules ∆; Γ ` e: σ

x
∆; Γ `

∆; Γ ` x: σ
σ = Γ(x)

1I
∆; Γ `

∆; Γ ` ∗: 1

ΣI
∆; Γ, x: σ1 ` σ2 ∆; Γ ` e1: σ1 ∆; Γ ` e2: [e1/x]σ2

∆; Γ ` 〈e1, e2〉: (Σx: σ1.σ2)

ΣE.1
∆; Γ ` e: (Σx: σ1.σ2)

∆; Γ ` π1(e): σ1

36



ΣE.2
∆; Γ ` e: (Σx: σ1.σ2)

∆; Γ ` π2(e): [π1(e)/x]σ2

ΠI
∆; Γ, x: σ1 ` e: σ2

∆; Γ ` (λx: σ1.e): (Πx: σ1.σ2)

ΠE
∆; Γ ` e: (Πx: σ1.σ2) ∆; Γ ` e1: σ1

∆; Γ ` e(e1): [e1/x]σ2

∀I
∆; Γ ` ∆, v: k; Γ ` e: σ

∆; Γ ` (Λv: k.e): (∀v: k.σ)

∀E
∆; Γ ` e: (∀v: k.σ) ∆ ` u: k

∆; Γ ` e(u): [u/v]σ

∃I
∆, v: k; Γ ` σ ∆ ` u: k ∆; Γ ` e: [u/v]σ

∆; Γ ` (u, e): (∃v: k.σ)

∃E

∆; Γ ` e: (∃v: k.σ)
∆; Γ, z: (∃v: k.σ) ` σ′ ∆, v: k; Γ, x: σ ` e′: [(v, x)/z]σ′

∆; Γ ` (let (v, x)=e in e′): [e/z]σ′

:-eq
∆; Γ ` e: σ1 ∆; Γ ` σ1 = σ2

∆; Γ ` e: σ2

Term equality rules ∆; Γ ` e1 = e2: σ

Similar to the type equality rule for the Calculus of Constructions (see [HP89]),
namely the general rules for a congruence and the following βη-rules:

1.η
∆; Γ ` e: 1

∆; Γ ` ∗ = e: 1

Σ.β.1
∆; Γ, x: σ1 ` σ2 ∆; Γ ` e1: σ1 ∆; Γ ` e2: [e1/x]σ2

∆; Γ ` π1(〈e1, e2〉) = e1: σ1

Σ.β.2
∆; Γ, x: σ1 ` σ2 ∆; Γ ` e1: σ1 ∆; Γ ` e2: [e1/x]σ2

∆; Γ ` π2(〈e1, e2〉) = e2: [e1/x]σ2

Σ.η
∆; Γ ` e: (Σx: σ1.σ2)

∆; Γ ` 〈π1(e), π2(e)〉 = e: (Σx: σ1.σ2)

Π.β
∆; Γ, x: σ1 ` e2: σ2 ∆; Γ ` e1: σ1

∆; Γ ` (λx: σ1.e2)(e1) = [e1/x]e2: [e1/x]σ2
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Π.η
∆; Γ ` e: (Πx: σ1.σ2)

∆; Γ ` (λx: σ1.e(x)) = e: (Πx: σ1.σ2)

∀.β
∆; Γ ` ∆, v: k; Γ ` e: σ ∆ ` u: k

∆; Γ ` (Λv: k.e)(u) = [u/v]e: [u/v]σ

∀.η
∆; Γ ` e: (∀v: k.σ)

∆; Γ ` (Λv: k.e(v)) = e: (∀v: k.σ)

∃.β

∆, v: k; Γ ` σ
∆ ` u: k ∆; Γ ` e: [u/v]σ
∆; Γ, z: (∃v: k.σ) ` σ′ ∆, v: k; Γ, x: σ ` e′: [(v, x)/z]σ′

∆; Γ ` (let (v, x)=(u, e) in e′) = [u, e/v, x]e′: [(u, e)/z]σ′

∃.η
∆; Γ ` e: (∃v: k.σ) ∆; Γ, z: (∃v: k.σ) ` e′: σ′

∆; Γ ` (let (v, x)=e in [(v, x)/z]e′) = [e/z]e′: [e/z]σ′
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