
���������	��

���������

G. Bellè2, C.B. Jay1 and E. Moggi2

1 SOCS - Univ. of Tech. Sydney, P.O. Box 123 Broadway, 2007, Australia
phone: ++612 330-1814, fax: ++612 330-1807, e-mail: cbj@socs.uts.edu.au

2 DISI - Univ. di Genova, via Dodecaneso 35, 16146 Genova, Italy
phone: +39 10 353-6629, fax: +39 10 353-6699, e-mail: {gbelle,moggi}@disi.unige.it

Abstract. We present an extension of the Hindley-Milner type system
that supports a generous class of type constructors called functors, and
provide a parametrically polymorphic algorithm for their mapping, i.e.
for applying a function to each datum appearing in a value of constructed
type. The algorithm comes from shape theory, which provides a uniform
method for locating data within a shape. The resulting system is Church-
Rosser and strongly normalising, and supports type inference.

1 Introduction

The interplay between type theory, programming language semantics and cat-
egory theory is now well established. Two of the strongest examples of this
interaction are the representation of function types as exponential objects in
a cartesian closed category [LS86] and the description of polymorphic terms as
natural transformations (e.g. [BFSS90]). For example, the operation of appending
lists can be represented as a natural transformation L×L⇒L where L:D → D
is the list functor on some category D. Of course, these natural transformations
must have associated functors for their domain and codomain. System F supports
a notion of expressible functor, i.e. a type constructor and a corresponding ac-
tion on functions [RP90], but such encodings are rather unsatisfactory ([GLT89,
Section 15.1.1]). In particular, the action of a functor on morphism, its mapping,
must be defined anew for each choice of type constructor.

A better approach, primarily advocated by adherents of the Bird-Meertens
style (e.g. [MFP91, MH95, Jeu95]), is to give a combinator for mapping, whose
type can be expressed as:

map: ∀F : 1.∀X, Y.(X → Y) → FX → FY .

That is, for any functor F : 1 (i.e. taking one argument), types X and Y , and any
morphism f : X → Y we have

map F X Y f : FX → FY

whose action is to take each datum of type X in FX and apply f to it. Unfor-
tunately, the existence of this type does not solve the problem of realising this
high-level algorithm, since the question of how to find the data remains.

Naturally, one can use the functor to determine the algorithm. There are
basically two ways to do this. One method is to have the user specify the mapping
algorithm, say by instantiating a constructor class [Jon95]. In this particular case,
the functor and type arguments are suppressed to obtain map f a, since the choice
of functor can be inferred from the type of a. Unfortunately, it follows that if F
and G are functors such that FX and GY are intended to be the same for some
types X and Y then a dummy constructor must be introduced to distinguish
them.

The other method is to generate the mapping algorithm automatically, from
the structure of the functor. This results in a small loss of flexibility, but saves the
user from supplying repetitious algorithms. Charity [CF92] encodes this directly.
Jeuring [Jeu95] uses a pre-processor to determine the appropriate Haskell code
for mapping and other polytypic operations. Intensional polymorphism [HM95] is
a general technique for describing type-dependent operations in an extension of
ML, designed to obtain more efficient compilation. Although in the same spirit
as the other approaches, the lack of sum types makes it hard to make direct
comparisons.

Perhaps surprisingly, there is a generous class of covariant functors for which
it is possible to describe a mapping algorithm that is independent of the choice
of functor, i.e. which support parametric functorial polymorphism. The first such
algorithms for (polymorphic folding) were produced for a small experimental
language P2 [Jay95a]. Polymorphic mapping for an extension of the covariant
type system [Jay96] was produced in [Jay]. This paper presents an extension
of Hindley-Milner called Functorial ML, or FML, which supports parametric
functorial polymorphism.

For example, it supports:

map f (cons h t) →∗ cons (f h) (map f t)

map f (leaf x) →∗ leaf (f x)

where cons is the usual list constructor, and leaf is the leaf constructor for binary
trees with labeled leaves. It is important to note that these evaluations are not
achieved by pattern matching on primitive combinators, but that the constructors
cons and leaf have internal structure, which is used in the reduction to find the
data in a uniform way. We can also use mapping within a let-construct:

let g = map f in pair (g (cons h t) (g (leaf x)))

where pair is the pairing for binary products. The polymorphic mapping allows
us to support polymorphic folding, too, as will be shown in the body of the paper.
Functors of many variables are also catered for. For example, we have

map2 f g (in0 t) → in0 (f t) (1)

map2 f g (pair s t) → pair (f s) (g t) . (2)

where in0 is the left inclusion to a binary sum, Thus, map2 f g is equally able
to act on values whose type is a sum or product, etc.

Shape theory [Jay95b] provides the basis for these algorithms. It is a new
approach to data types based on the idea of decomposing values into their shape
(or data structure) and the data which is stored within them. The data structure
corresponds to the type constructor, or functor, whose argument is the type of
the data. Thus shape polymorphism is closely linked to functorial polymorphism,
as distinct from the data polymorphism of operations like append. Thus, the
data-shape decomposition supports uniform mechanisms for storing data within
a shape, which are exploited by our mapping algorithm.

To see how this works, consider the projection functors Πm
i :Dm → D which

pick out the ith argument from m. It is tempting to identify Π2
0 (X, X) and

Π2
1 (X, X) with X but this would obliterate the shape-data distinction. Rather,

these types are “isomorphic”, a situation captured by terms

pex2,j : Xj → Π2
j (X0, X1)

(for j ∈ 2) and their inverses. Now given x: X we have the reductions:

map2 f g (pex2,0 x) → pex2,0 (f x)

map2 f g (pex2,1 x) → pex2,1 (g x) .

In other words, the isomorphisms are used to determine where to find the data
associated to each argument of the functor. Similarly, we have isomorphisms to
disambiguate composite functors, e.g.

dex1,1: F (G(X)) → F 〈G〉1(X) .

Its source is the functor F applied to G(X) while its target is the composite
functor F 〈G〉1 applied to X . The corresponding reduction for map is:

map f (dex1,1 t) → dex1,1 (map (map f) t)

whose corresponding diagram is:

F (G(X))
dex1,1

- F 〈G〉1(X)

F (G(Y))

map (map f)

?

dex1,1

- F 〈G〉1(Y) .

?

map f

These isomorphisms may be viewed as a systematic method for resolving the
ambiguities addressed by the dummy constructors mentioned above. The other
approaches use implicit substitution to handle functor composition, making a
uniform algorithm impossible.

The significance of these isomorphisms becomes particularly clear in certain
application contexts. For instance, in distributed or parallel computing the shape-
data distinction can be used to describe data distributions [Jay95c] in which case

the isomorphisms represent redistributions of the data. Also, such isomorphisms
between different composites are central to bicategories [Ben67].

The polymorphism of the mapping algorithm can be captured in a system
that supports inference of functors as well as types. We work with an extension
of the Hindley-Milner types which supports a syntactic class of functors, as well
as those of types and type schema. Another possibility is to identify types and
type schemes (so extending system F with functors). Such a system is used in the
proof of strong normalisation. Again, one could identify types with functors of
arity 0, at the cost of introducing another pair of isomorphisms. We emphasise
the tri-partite division for reasons of clarity, and to obtain type inference.

In this paper we will consider only FML with untyped terms, i.e. à la Church
(in the terminology of [Bar92]), because the main focus is on parametric functorial
polymorphism. However, FML à la Curry is very important, too: it allows a
more aggressive use of type information (as advocated in [HM95]) and it is more
suitable for a semantic investigation.

The following sections of the paper are devoted to: the type system (functors,
types and type schema); terms and type assignment, including the type inference
algorithm; term reduction and its properties (subject reduction, Church-Rosser
and strong normalization); examples, and conclusions and future work. For more
technical details the reader can refer to [BJM96].

2 Functors, types and type schema

A (covariant) functor is a structure-preserving morphism of categories, i.e. it
maps objects to objects and morphisms to morphisms, so as to preserve the
sources and targets of the morphisms, the composition and identities. The sym-
bols m and n will denote natural numbers throughout this paper. If F :Dm → D
is a functor from the mth power of a category D to itself, then we may express
this by saying F is of arity m and write it as F : m.

Here are some elementary examples and constructions. +,×: 2 are binary
functors representing sums and products, and 1: 0 is the functor of no arguments
that produces the terminal object, corresponding to the unit type. Let i range
over m = {0, . . . , m − 1}. The ith projection functor of m arguments is Πm

i : m.
A sequence Gi: n of functors may be written as Gi∈m or even G when the choice
of m is either clear from the context, or irrelevant. Similar notation will be used
for other sequences below, of types, etc. If F : m then

Dn 〈G〉
- Dm F

- D

is their composite. If F : m + 1 is a functor then µmF : m represents the functor
whose action on the tuple X yields the initial F (X,−)-algebra (e.g. [BW90])

F (X, µmF (X)) → µmF (X)

used to find minimal solutions of recursive domain equations.

These constructions motivate the choice of functors in the following descrip-
tion of the raw syntax for functors, types and type schema.

F, G : : = X | C | Πm
i | F 〈G〉n | µmF

τ : : = X | F (τ) | τ1 → τ2

σ : : = τ | ∀X : T.σ | ∀X : m.σ .

We adopt the following notational conventions throughout. X and Y range over
functor and type variables. C ranges over functor constants, in particular we will
consider +,×, the binary functors representing sums and products, and 1, the
functor of no arguments that produces the terminal object, corresponding to the
unit type. F and G range over functors (though sometimes are used as functor
variables), τ ranges over types, and σ ranges over type schema throughout the
paper. A type τ may be distinguished from functors or type schema by giving it
the fixed arity τ : T. We write τ1 × τ2 for ×(τ1, τ2) and τ1 + τ2 for +〈τ1, τ2〉 and
1 for the type 1().

The functor notation is as described above. The given types are variables,
functor applications, and function types. The application of a functor to a tuple
τi∈m of types represents the action of the categorical functor on objects. Note
that all of the ancillary type constructors, such as products and sums, have been
pushed into the declaration of the functors.

The type schema are types, universal quantification over type variables and
universal quantification over functors of given arity. The former quantification
is familiar from Hindley-Milner and is used to express data polymorphism; the
latter quantification will allow us to express functorial polymorphism.

A type context (notation ∆) is a sequence of type variables with assigned
arities (either X : n or X : T) with no repetition of variables. We may identify
∆ with a partial function from functor and type variables to arities, and write
DV(∆) for its domain.

For each of the syntactic categories above we give rules to infer when a raw
expression of that category is well-formed in a type context. The symbol i ranges
over m. ∆ ` means that ∆ is a well-formed typed context.

(empty)
∅ `

(functor)
∆ `

∆, X : n `
X 6∈ DV(∆)

(type)
∆ `

∆, X : T `
X 6∈ DV(∆)

∆ ` F : n means that F is a functor of arity n in context ∆. The formation rules
for functors express the constraints on arities implicit in the category theory.

(X)
∆ `

∆ ` X : m
m = ∆(X) (C)

∆ `

∆ ` C: nC

(FPi)
∆ `

∆ ` Πm
i : m

(Fcomp)
∆ ` F : m ∆ ` Gi: n

∆ ` F 〈Gi∈m〉n: n

(Fmu)
∆ ` F : m + 1

∆ ` µmF : m

∆ ` τ : T means that τ is a type in context ∆.

(X)
∆ `

∆ ` X : T
T = ∆(X) (Fapp)

∆ ` F : m ∆ ` τi: T

∆ ` F (τi∈m): T

(→)
∆ ` τ1, τ2: T

∆ ` τ1 → τ2: T

∆ ` σ means that σ is a type schema in context ∆.

(τ)
∆ ` τ : T

∆ ` τ
(∀m)

∆, Y : m ` σ{Y/X}

∆ ` ∀X : m.σ
Y 6∈ DV(∆)

(∀)
∆, Y : T ` σ{Y/X}

∆ ` ∀X : T.σ
Y 6∈ DV(∆)

The free variables of a functor are defined in the usual way, and the functors
are defined to be equivalence classes of well-formed functor expressions under
α-conversion. Types and schema are defined similarly. We denote with ∀∆.τ the
following schema: τ , if ∆ = ∅, ∀∆′.(∀X : n.τ) if ∆ = ∆′, X : n and ∀∆′.(∀X : T.τ)
if ∆ = ∆′, X : T.

Lemma1. 1. Uniqueness of derivation: each judgement ∆ ` J has at most
one derivation (up to α-conversion).

2. Uniqueness of arity: if ∆ ` F : nj is derivable for j ∈ 2 then n0 = n1.

Proof. For the first, use induction on the size of the derivation of ∆ ` J . For the
second, use induction on the structure of F . ut

A substitution is a partial function S from type variables to expressions for
functors, types or schema. The action of a substitution is extended homomorphic-
ally to any expressions containing free type variables. If R is another substitution
then their composite substitution S R has action given by (S R)X = S(RX).
The notation S: ∆1 → ∆2 means that ∆i are well-formed contexts, DV(∆1) is
included in the domain of S and for each X ∈ DV(∆1) we have

∆2 ` SX : ∆1(X) .

S is a renaming if it is an injective function from variables to variables. Then
define ∆S by

∅S = ∅

(∆, X : a)S = ∆S , S(X): a .

Lemma2.

1. Renaming: let S be a renaming, then ∆ ` J implies ∆S ` S(J).

2. Thinning: ∆1, ∆2 ` J implies ∆1, X : a, ∆2 ` J , provided X 6∈ DV(∆1, ∆2)
and a is either T or an arity m.

3. Substitution: let S: ∆1 → ∆2 be a substitution, then ∆1 ` J implies ∆2 `
S(J).

Proof. Each of the proofs is by induction on the derivation of the premise. The
first two results are used to handle the ∀ rules in the latter proofs. ut

Let ∆ ` Jj : a be well-formed functors or types having the same arity a
for j ∈ 2. A unifier for (∆, J0, J1) is a pair (∆′, S) such that S: ∆ → ∆′ is
a substitution and S(J0) = S(J1). Their most general unifier U(∆, J0, J1) is a
unifier (∆′, S) such that if (∆′′, S′) is any other unifier for them then there is a
substitution R: ∆′ → ∆′′ such that S′ = R S on DV(∆).

Lemma 3. If (∆, J0, J1) has a unifier then it has a most general unifier.

Proof. Standard. Note that the introduction of functors does not lead to higher
order unification since, for example, Πm

i (X) and Xi do not have a unifier. ut

3 Terms and type assignment

The Hindley-Milner type system may assign either type schema or types to terms
[Tof88]). The former has separate rules for abstracting and instantiating type
variables, whereas the latter combines these with the rules for typing variables and
combinators, and the let-construct, respectively. Both type assignment systems
can be extended easily to FML. Here, we consider only the latter, since it is
closer to the type inference algorithm.

The untyped terms we will consider here are like those considered in Hindley-
Milner, but with several additional constants and no fix-point combinator (since
we wish to have strong normalisation):

t: : = x | c | λx.t | t1 t2 | let x = t1 in t2 .

These terms are variables; constants; λ-abstractions and applications and a let-
construct. The novelty, and power, of the system resides in the more powerful
types assigned to these terms, and the choice of constants, which will be used to
capture important properties of functors.

Their description uses the following notational conventions which will be
maintained throughout this paper. x and y range over term variables, c ranges
over combinators, and t ranges over terms. Γ ranges over term contexts, i.e. se-
quences of x: σ with no repetitions of term variables x. The usual conventions
of λ-calculus concerning grouping of declared and bound variables apply (see
[Bar84]); FV(t) is the set of free variables of t; e′{e/x} is the substitution of e
for x in e′.

Here are the term formation rules. ∆; Γ ` means that ∆; Γ is a well-formed
context.

(empty)
∆ `

∆; ∅ `
(term)

∆; Γ ` ∆ ` σ

∆; Γ, x: σ `
x 6∈ DV(Γ)

∆; Γ ` t: τ means that t is a term of type τ in context ∆; Γ and hence that t is
typable in this context.

(x)
∆; Γ ` S: ∆′ → ∆

∆; Γ ` x: S(τ)
Γ (x) = ∀∆′.τ

(c)
∆; Γ ` S: ∆′ → ∆

∆; Γ ` c: S(τ)
(∀∆′.τ) = σc

(λ)
∆; Γ, y: τ1 ` t{y/x}: τ2

∆; Γ ` (λx.t): τ1 → τ2
y 6∈ DV(Γ)

(app)
∆; Γ ` t: τ1 → τ2 ∆; Γ ` t1: τ1

∆; Γ ` (t t1): τ2

(let)
∆, ∆′; Γ ` t1: τ1 ∆; Γ, y: (∀∆′.τ1) ` t2{y/x}: τ2

∆; Γ ` (let x = t1 in t2): τ2

y 6∈ DV(Γ)

Let ∆j ; Γj be well-formed contexts for j = 1, 2. Define S: ∆1; Γ1 → ∆2; Γ2

to mean that S: ∆1 → ∆2 is a substitution, and DV(Γ1) is included in the
domain of S and that ∆2, ∆; Γ2 ` S(x): S(τ) whenever Γ1(x) = ∀∆.τ . Note that
α-conversion is used to ensure that ∆2 and ∆ have no variables in common.

Lemma4.

1. ∆; Γ ` implies ∆ ` Γ (x) for any x ∈ DV(∆).

2. Well-typing: ∆; Γ ` t: τ implies ∆ ` τ : T.

3. Let S: ∆1 → ∆2 be a substitution; then ∆1; Γ ` implies ∆2; S(Γ) `.

4. Type substitution: let S: ∆1 → ∆2 be a substitution; then ∆1; Γ ` t: τ implies
∆2; S(Γ) ` t: S(τ).

5. Let S be a renaming of ∆; then ∆; Γ ` J implies ∆S ; ΓS ` S(J).

6. Thinning: ∆; Γ1, Γ2 ` J implies ∆; Γ1, x: σ, Γ2 ` J for any x 6∈ DV(Γ1, Γ2).

7. Term substitution: let ∆1, ∆; Γ1 ` t: τ ; then ∆1, ∆2; Γ1, x: (∀∆.τ), Γ2 ` t′: τ ′

implies ∆1, ∆2; Γ1, Γ2 ` t′{t/x}: τ ′.

Proof. Each statement is proved by induction on the structure of its premise, in
some cases using earlier statements in the lemma. ut

The combinators are of two kinds. The first collection express properties of
the functorial calculus. The others capture properties of the functor constants
introduced to the basic system. The symbol i ranges over m and j ranges over
2. In the first group we have:

mapm : ∀F : m.∀Xi∈m, Yi∈m: T.(Xi → Yi) →i∈m F (X) → F (Y)

pexm,i : ∀Xj∈m: T.Xi → Πm
i (X)

pinm,i : ∀Xj∈m: T.Πm
i (X) → Xi

dexm,n : ∀F : m.∀Gi∈m: n.∀Xj∈n: T.F (Gi(X)i∈m) → F 〈G〉n(X)

dinm,n : ∀F : m.∀Gi∈m: n.∀Xj∈n: T.F 〈G〉n(X) → F (Gi(X)i∈m)

introm : ∀F : m + 1.∀Xi∈m: T.F (X, µmF (X)) → µmF (X)

foldm : ∀F : m + 1.∀Xi∈m, Y : T.(F (X, Y) → Y) → µmF (X) → Y .

mapm expresses the action of functors of arity m on m-tuples of morphisms. The
rest of the combinators in this group are linked to the various functor formation
rules. The pairs of terms pexm,i and pinm,i, and dexm,n and dinm,n should be
thought of as pairs of inverse isomorphisms. pexm,i makes its argument the ith
argument of m. It is used to store data in a uniform way, suitable for mapping.
dexm,n is an isomorphism between two different ways of associating a triple
composition of functors. introm and foldm are the introduction and elimination
terms for the initial algebra functors. Recalling that initial algebras are defined
for a functor, not just a type constructor, it should not be surprising to realise
that once we have polymorphic mapping then we obtain polymorphic folding for
free, as will be seen in the reduction rules below.

The second group of combinators are associated with the given constant func-
tors +,× and 1. They are the familiar combinators for pairing, projection, inclu-
sion, case analysis, and the canonical term of unit type.

pair : ∀X0, X1: T.X0 → X1 → X0 × X1

pij : ∀X0, X1: T.X0 × X1 → Xj

inj : ∀X0, X1: T.Xj → X0 + X1

case : ∀X0, X1, Y : T.(X0 → Y) → (X1 → Y) → X0 + X1 → Y

un : 1 .

3.1 Type inference

A typing for a triple (∆1, Γ, t) consisting of a type context, a term context and
a term is a triple (∆2, S, τ) such that S: ∆1 → ∆2 is a substitution and

∆2; S(Γ) ` t: τ .

A most general typing for (∆1, Γ, t) is a typing as above such that if (∆′

2, S
′, τ ′)

is any other typing for it then there is a substitution R: ∆2 → ∆′

2 such that
RS = S′ and R(τ) = τ ′.

Milner’s algorithm W (see [Mil78, Tof88]) can be modified to produce a most
general typing for our terms, whenever any typing exists. In the description of
the algorithm we assume that bound variables are renamed to avoid clashes, and
fresh variables are introduced whenever needed.

– W (∆, Γ, x) = (∆ ∆1, id, τ), where Γ (x) = ∀∆1.τ

– W (∆, Γ, c) = (∆ ∆1, id, τ), where σc = ∀∆1.τ

– W (∆, Γ, λx.t) = (∆1, S, SX → τ2), where

(∆1, S, τ2) = W (∆ X : T, Γ x: X, t)

– W (∆, Γ, t t1) = (∆3, U R S, UX), where

(∆1, S, τ) = W (∆, Γ, t)

(∆2, R, τ1) = W (∆1, S(Γ), t1)

(∆3, U) = U(∆2 X : T, R(τ), τ1 → X)

– W (∆, Γ, let x = t1 in t2) = (∆4, R S, τ2), where

(∆1, S, τ1) = W (∆, Γ, t1)

∆2 = ∆1d(∪{FV(SX)|X ∈ DV(∆)})

∆3 = ∆1 − ∆2

(∆4, R, τ2) = W (∆2, S(Γ) x: ∀∆3.τ1, t2)

By definition ∆2 is the smallest sub-context of ∆1 such that S: ∆ → ∆2, so
that we will obtain R S: ∆ → ∆4 as required.

Theorem 5. Let ∆1; Γ be a well-formed context.

1. Soundness: if W (∆1, Γ, t) = (∆2, S, τ), then S: ∆1 → ∆2 and ∆2; S(Γ) `
t: τ .

2. Completeness: if S ′: ∆1 → ∆3 and ∆3; S
′(Γ) ` t: τ ′, then (W succeeds and)

there exists a substitution R: ∆2 → ∆3 such that S′ = R S on DV(∆1) and
τ ′ = R(τ).

Proof. Both statements are proved by induction on the structure of t (see [Tof88])
and use type substitution (see Lemma 4) . ut

4 Term reduction and its properties

The reduction Fβ on terms of FML is defined as follows. Basic reductions (defined
below) applied to a sub-term yields a one-step reduction. Then a reduction t → t′

is a finite sequence of one-step reductions.
The basic reductions are given by the following rules, in which i ranges over

m and j ranges over 2.

(λx.t2) t1 > t2{t1/x}

let x = t1 in t2 > t2{t1/x}

pij (pair t0 t1) > tj

case f0 f1 (inj t) > fj t

foldm f (introm t) > f (mapm+1 (λx.x)i∈m (foldm f) t)

pinm,i (pexm,i t) > t

dinm,n (dexm,n t) > t

mapm fk∈m (pexm,i t) > pexm,i (fi t)

mapn fk∈n (dexm,n t) > dexm,n (mapm (mapn f)i∈m t)

mapm fi∈m (introm t) > introm (mapm+1 f (mapm f) t)

map2 f0 f1 (pair t0 t1) > pair (f0 t0) (f1 t1)

map2 f0 f1 (inj t) > inj (fj t)

map0 un > un

The reduction rules above can be classified as follows. The first two rules
express β-reduction and its equivalent for let-terms. The next three rules express
introduction-elimination rules for products, sums and initial algebras. The last
of these may be unfamiliar. When m = 0 it is

fold0 f (intro0 t) > f (map1(fold0 f)t) .

That is fold0 f acts by recursively mapping itself across all of the substructures
of intro0 t and then applying f to the result:

F (µ0F)
intro0

- µ0F

F (Y)

map1 (fold0 f)

?

f
- Y .

?

fold0 f

Without polymorphic mapping it would be necessary to expand this definition
for each choice of functor. The next two rules reflect the status of pinm,i etc.
as isomorphisms. The remaining rules describe the action of mapping. Most

interesting is the first of these, which shows how a mapping locates its data.
pexm,i identifies the datum t as being the ith argument of m so enabling the
ith function argument fi to be applied to it. Note that pexm,i still appears in
the result, since now fi t is the ith argument. The rules for dexm,n and introm

shows how to pass a mapping inside an outer functor argument. The last two
rules are particular to the constant functors + and × introduced to the system,
and express their intended functoriality.

Theorem 6 SR. Let t → t′. If ∆; Γ ` t: τ then ∆; Γ ` t′: τ .

Proof. Without loss of generality, one can assume that the reduction is basic
and perform the proof by case analysis. In each case one has to analyse only
the last rules in the derivation of the premise, using Lemma 4 to handle term
substitutions. ut

Theorem 7 CR. Fβ on untyped terms is Church-Rosser.

Proof. Standard. The combinatory reductions rules for Fβ are left-linear and non
overlapping, and one can apply the result in [Acz78] (see also [Klo80]). ut

Corollary 8 CR. Fβ on typable terms is Church-Rosser.

Proof. Immediate from SR and CR on untyped terms. ut

Theorem 9 SN. If ∆; Γ ` t: τ , then t is strongly normalising.

Proof. We prove SN for a system more powerful than FML, functorial F (briefly
FF), which can type every term typable in FML (see Section 3), therefore SN for
FF trivially implies SN for FML. The proof follows [Men91] and uses semantic
techniques (reducibility candidates). The details are in [BJM96]. ut

5 Examples

Define the polymorphic identity, and composition in the usual way, by

id = λx.x

g ◦ f = λx.g (f x) .

Composition associates to the right. Now let us consider the list functor, L =
µ1F where F = +〈1〈〉2,×〉. Then for any type X we have the constructors

nil = (intro1 ◦ dex2,2 ◦ in0 ◦ dex0,2) un: LX

cons = λx.λy.(intro1 ◦ dex2,2 ◦ in1) (pair x y): X → LX → LX .

The composite applied to un in defining nil is displayed as the top line of
Figure 1. Let us see how the usual pattern-matching reductions for mapping
and folding over lists can be recovered as composite reductions. Other inductive
types are handled similarly. Let f : X → Y be a morphism. Then map1 f nil

reduces to nil by five map-reductions, as diagrammed in Figure 1, where g =
map2 f (map1 f). Similarly,

map1 f (cons h t) → (intro1 ◦ dex2,2 ◦ in1) (map2 f (map1 f) (pair h t))

→ cons (f h) (map1 f t) .

For folding over a list, let d: D and g: X×D → D be terms. Then we can define

1()
dex0,2

- 1〈〉2(X, LX)
in0
- 1〈〉2(X, LX) + X×LX

dex2,2
- F (X,LX)

intro1
- LX

1()
?

map
0

dex0,2
- 1〈〉2(Y,LY)

g

?
in0
- 1〈〉2(Y, LY) + Y ×LY

map
2

g g

?
dex2,2

- F (Y,LY)

g

? intro1
- LY

map
1

f

?

Fig. 1. map
1
f nil

f = (case (λx.d) g) ◦ din2,2: F (X, D) → D .

Hence, given h: X and t: LX we have:

fold1 f nil → f(map2 id (fold1 f) ((dex2,2 ◦ in0 ◦ dex0,2) un))

→ f(dex2,2(in0(dex0,2 un))) → d

fold1 f (cons h t) → f (map2 id (fold1 f) ((dex2,2 ◦ in1 (pair h t))))

→ f ((dex2,2 ◦ in1 (pair h (fold1 f t))))

→ g(pair h (fold1 f t)) .

6 Conclusions and future work

FML is an extension of the Hindley-Milner type system that supports parametric
functorial polymorphism. That is, one can write algorithms (e.g. mapping and
folding) which work uniformly for any functorial type constructor, unlike pre-
vious, ad hoc algorithms. The Hindley-Milner type inference algorithm extends
smoothly to FML and reduction on well-formed terms is confluent and strongly
normalising.

The functor syntax admits functors of many variables, and functor composi-
tion. Canonical isomorphisms are used to distinguish different orders of compos-
ition, which allow terms to express the shape-data, or functor-argument decom-
position necessary to locate their data (this feature is essential for parametric
algorithms).

Much remains to be done. We expect that the usual denotational models of
system F can be extended to handle explicit functors. Also, the exact relationship
between FML and Fω is not yet clear. Many of the subscripts on the combinat-
ors seem to be redundant. By introducing form variables [Jay95a] to represent
sequences of types we may be able to infer many of them, just as we infer types.
Another, basic shape polymorphic operation is that of extracting the data from
the shape. This is fundamental to search operations, pattern-matching etc. and
should be comfortably supported within the current system, as a new combinator.

FML should be considered as an intermediate language. Indeed, the examples
show that FML is rather awkward in comparison with ML. FML provides a fine
analysis of access to data via the canonical isomorphisms, and should be com-
pared with other intermediate languages, e.g. those proposed in [PJ91, Ler92]
to distinguish between boxed and unboxed values and providing explicit coer-
cions between them. One can envisage an intensional semantics ([BJM96]) where
pexm,i(t) ∈ Πm

i (X) is like a boxed value, since t is wrapped with additional
information about m and i, while dexm,n acts like data redistribution, here dis-
tinguishing between types and functors is crucial.

Finally, it remains to implement FML as an extension of an existing program-
ming language, so that its merits can be tested by the community of programmers.

References

[Acz78] P. Aczel. A general Church-Rosser theorem. Technical report, Univ. of
Manchester, 1978.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, 1984. revised edition.

[Bar92] H.P. Barendregt. Lambda calculi with types. In Handbook of Logic in Com-

puter Science. Oxford Univ. Press, 1992.
[Ben67] J. Benabou. Introduction to bicategories, volume 47. Springer, 1967.
[BFSS90] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott. Functorial poly-

morphism. Theoretical Computer Science, 70:35–64, 1990.
[BJM96] G. Bellè, C. B. Jay, and E. Moggi. Functorial ML. available from

ftp://ftp.disi.unige.it/person/MoggiE/functorial ml.dvi, 1996.
[BW90] M. Barr and C. Wells. Category Theory for Computing Science. International

Series in Computer Science. Prentice Hall, 1990.
[CF92] J.R.B. Cockett and T. Fukushima. About charity. Technical Report

92/480/18, University of Calgary, 1992.
[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7. CUP,

1989.
[HM95] R. Harper and G. Morrisett. Compiling polymorphism using intensional type

analysis. In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 130–141, San
Francisco, California, January 1995.

[Jay] C.B. Jay. Type-free term reduction for covariant types. Tech. report to
appear.

[Jay95a] C.B. Jay. Polynomial polymorphism. In R. Kotagiri, editor, Proceedings of

the Eighteenth Australasian Computer Science Conference: Glenelg, South

Australia 1–3 February, 1995, volume 17, pages 237–243. A.C.S. Communic-
ations, 1995.

[Jay95b] C.B. Jay. A semantics for shape. Science of Computer Programming, 25:251–
283, 1995.

[Jay95c] C.B. Jay. Shape analysis for parallel computing. In Parallel Computing

Workshop ’95 at Fujitsu Parallel Computing Centre, Imperial College, 1995.
[Jay96] C.B. Jay. A fresh look at parametric polymorphism: covariant types. In Pro-

ceedings of the 19th Australasian Computer Science Conference, Melbourne,

Australia, January 31–February 2 1996., pages 525–533, 1996.
[Jeu95] J. Jeuring. Polytypic pattern matching. In Conference on Functional Pro-

gramming Languages and Computer Architecture, pages 238–248, 1995.
[Jon95] M.P. Jones. A system of constructor classes: overloading and implicit higher-

order polymorphism. J. of Functional Programming, 5(1), 1995.
[Klo80] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Mathematical Cen-

ter Amsterdam, 1980. Tracts 129.
[Ler92] X. Leroy. Unboxed objects and polymorphic typing. In 19th Symp. on Prin-

ciple of Programming Languages. ACM Press, 1992.
[LS86] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic,

volume 7 of Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 1986.

[Men91] N.P. Mendler. Inductive types and type constraints in the second-order
lambda calculus. Annals of Pure and Applied Logic, 51, 1991.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In J. Hughes, editor, Procceding of

the 5th ACM Conference on Functional Programming and Compter Archi-

tecture, volume 523 of LNCS, pages 124–44. Springer Verlag, 1991.
[MH95] E. Meijer and G. Hutton. Bananas in space: extending fold and unfold to

exponential types. In Procedings 7th International Conference on Functional

Programming and Computer Architecture, San Diego, California, June 1995.
ACM Press, 1995.

[Mil78] R. Milner. A theory of type polymorphism in programming. JCSS, 17, 1978.
[PJ91] S. Peyton Jones. Unboxed values as first-class citizens. In Functional Pro-

gramming and Computer Architecture, volume 523 of LNCS, 1991.
[RP90] J. Reynolds and G.D. Plotkin. On functors expressible in polymorphic

lambda-calculus. In G. Huet, editor, Logical Foundations of Functional Pro-

gramming. Addison-Wesley, 1990.
[Tof88] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD

thesis, University of Edinburgh, 1988. available as CST-52-88.

A Semantics

We consider two conventional semantics for FML types: set-theoretic (i.e. types
as sets) and domain-theoretic (i.e. types as ω-cpos). Actually, to interpret type
schema one should use a set theory with universes, and interpret types as small
sets/cpos. The interesting part of the semantics is how to accommodate FML
functors, up to minor variations we consider two interpretations: extensional (i.e.
as functors) and intensional (i.e. as functor representations).

The main feature of intensional interpretations is that composition is no longer
associative, but there is a natural isomorphism F 〈G〉n(X) ∼= F (Gi∈m(X)), which
is captured by the FML constants dexm,n and dinm,n. Similarly pexm,i and

pinm,i capture the natural isomorphism Πm
i (X) ∼= Xi. Intensional semantics of

FML functors are important to justify some of the language design choices of
FML. We expect that intentional models based on realizability (which are still
under investigation) might be able to account also for the cost of data access and
redistribution.

A.1 Set-theoretic semantics

In the category Set of sets and functions the obvious interpretation of an FML
functor of arity m is as a functor F :Setm → Set. But the interpretation of µmF
is problematic, since there are functors which do not have an initial algebra (for
cardinality reasons), e.g. the powerset functor P (X) = {X ′|X ′ ⊆ X}.

Shapely functors. One may avoid this problem by interpreting FML functors in
a suitably restricted class of functors on Set. Among the many possibilities, we
take shapely functors over lists (see [Jay95b]). In Set they are (up to natural

isomorphism) those functors of the form F (X) =
∑

s∈S

(
∏

i∈m

X
E(s,i)
i) for some set

S and E: S → Nm. Although adequate, this class of funtors does not include the
finite powerset functor and the functor F (X) = A + XB (when B is infinite)
even though they have an initial algebra.

Shapely functor representations. A more intensional semantics is to interpret
FML functors of arity m as representations 〈S ∈ Set, E: S → Nm〉 of shapely
functors over lists.

– Πm
i is the representation 〈S, E〉 s.t. S = 1 E(0, j) = δi,j

– F 〈G〉n is the representation 〈S, E〉 s.t.

S =
∑

s∈SF

(
∏

i∈m

S
EF (s,i)
Gi

) E(〈s, f〉, j) =
∑

i∈m

(
∑

e∈EF (s,i)

EGi
(f(i, e), j))

where F = 〈SF , EF 〉 and Gi = 〈SGi
, EGi

〉

– µmF is the representation 〈S, E〉 s.t.

S = µS.
∑

s∈SF

SEF (s,m) E(〈s, f〉, i) = EF (s, i) +
∑

e∈EF (s,m)

E(f e, i)

where F = 〈SF , EF 〉. S can be viewed as the set of finite trees with nodes
labeled by SF (and branching determined by the label), while E(, i) is a
weight function (defined by induction on the structure of S) assigning weight
EF (s, i) to label s.

There is an alternative representation of shapely functors over lists as formal

power series F (X) =
∑

n∈Nm

C(n) ×
∏

i∈m

X
n(i)
i for some C: Nm → Set. It is

not clear what are the trade-offs between the two representations. Only more
accurate models, accounting also for the cost of accessing data, might help in
discriminating between the two representations.

A.2 Domain-theoretic semantics

It is worth considering a domain-theoretic semantics, since it highlights some
subtleties that do not arise in Set. In the category Cpo of ω-cpos and ω-
continuous functions the interpretation of an FML functor of arity m as a functor
F :Cpom → Cpo is unsatisfactory, because terms should be interpreted by con-
tinuous functions. Therefore, it is necessary to restrict to strong functors, where
the action on morphisms is continuous. Also in Cpo the interpretation of µmF
is problematic, though the difficulties can be overcome as in Set.

Shapely functors. In Cpo shapely functors over lists are (up to natural isomorph-

ism) of the form F (X) =
∑

s∈S

C(s) × (
∏

i∈m

X
E(c,i)
i) for some set S, C: S → Cpo

and E: S → Nm.
To interpret FML functors one may consider a more restricted class of func-

tors, by taking C(s) = 1. In Cpo these are exactly the shapely functors over
lists mapping flat cpos to flat cpos (i.e. those cpos corresponding to ML equality
types).

Shapely functor representations. The intensional semantics in Cpo can be taken
verbatim from Set, but now a pair 〈S, E: S → Nm〉 represents a strong functor
on Cpo, which extends the functor on Set with the same representation (sets
can be are identified with flat cpos).

B Strong normalization

We prove SN for a system more powerful than FML, functorial F (briefly FF),
which can type every term typable in FML (see Section 3), therefore SN for FF
trivially implies SN for FML. The proof follows [Men91], which proves SN for

system F extended with inductive and coinductive types using Girard’s reducib-
ility candidates method. More precisely, we define an interpretation [[−]] of types
as suitable sets of strongly normalizable terms, and then prove that ∆; Γ ` t: σ
implies t ∈ [[σ]].

B.1 System FF

System FF is obtained from FML by identifying type and type schemas, and it
extends system F in the same way as FML extends ML. More precisely:

– functors are as in FML, i.e.

F, G: : = X | C | Πm
i | F 〈G〉n | µmF

– types and type schemas are identified (and called types), i.e.

τ, σ: : = X | F (τ) | τ → σ | ∀X : T.τ | ∀X : m.τ

– formation rules for type contexts ∆ ` and functors ∆ ` F : n are as in FML,
while formation rules for types ∆ ` τ and contexts ∆; Γ ` are as in FML
modulo the identification of types and type schemas.

– raw terms are as in FML, i.e.

t: : = x | c | λx.t | t1 t2 | let x = t1 in t2

– the type assignment rules for deriving ∆; Γ ` t: τ in FF are

(x)
∆; Γ `

∆; Γ ` x: σ
σ = Γ (x) (c)

∆; Γ `

∆; Γ ` c: σc

(app)
∆; Γ ` t: τ1 → τ2 ∆; Γ ` t1: τ1

∆; Γ ` (t t1): τ2

(λ)
∆; Γ, y: τ1 ` t{y/x}: τ2

∆; Γ ` (λx.t): τ1 → τ2
y 6∈ DV(Γ)

(Appn)
∆; Γ ` t: ∀X : n.σ ∆ ` F : n

∆; Γ ` t: σ{F/X}

(Λn)
∆, Y : n; Γ ` t: σ{Y/X}

∆; Γ ` t: ∀X : n.σ
Y 6∈ DV(∆)

(App)
∆; Γ ` t: ∀X : T.σ Γ ` τ

∆; Γ ` t: σ{τ/X}

(Λ)
∆, Y : T; Γ ` t: σ{Y/X}

∆; Γ ` t: ∀X : T.σ
Y 6∈ DV(∆)

(let)
∆; Γ ` t1: σ1 ∆; Γ, y: σ1 ` t2{y/x}: σ2

∆; Γ ` let x = t1 in t2: σ2
y 6∈ DV(Γ)

Lemma10. If ∆; Γ ` t: τ is derivable in FML, then it is derivable in FF.

Proof. The type assignment rules of FML not already in FF are (x), (c) and
(let). The rule (x) of FML is derivable from (x) of FF by repeatedly applying
(App) and (Appn). Similarly for (c). (let) of FML is derivable from (let) of FF
by repeatedly applying (Λ) and (Λn) to the first premise. ut

For the sake of simplicity, we make some changes to the set of terms:

– let x = t1 in t2 will be identified with (λx.t2)t1 (this cannot be done in FML)

– combinators will be required to be fully applied (this is not essential for SN,
but it make the definition of value much shorter shorter), as a consequence
of that the type assignment rules for combinators need to be changed, e.g.
the new rule for introm becomes

(introm)

∆ ` F : m + 1 ∆ ` τi∈m

∆; Γ ` t: F (τ , µmF)

∆; Γ ` introm(t): µmF

Terms. We introduce two syntactic categories: terms t ∈ Λ and values v ∈ V.

f, t ∈ Λ: : = x | v | t1 t2 | pii(t) | case(f0, f1, t) | foldm(f, t) |
pinm,i(t) | dinm,n(t) | mapm(fi∈m, t)

v ∈ V: : = λx.t | un | pair(t0, t1) | ini(t) | introm(t) |
pexm,i(t) | dexm,n(t)

Lemma 11 Closure under substitution. If S is a term substitution (i.e. a
function from term variables to terms) and v ∈ V, then S(v) ∈ V.

Reduction The notion of reduction Fβ on Λ is given by

– (λx.t2) t1 > t2{t1/x}

– pii(pair(t0, t1)) > ti
– case(f0, f1, ini(t)) > fi t

– foldm(f, introm(t)) > f mapm+1((λx.x)i∈m, λx.foldm(f, x), t)

– pinm,i(pexm,i(t)) > t

– dinm,n(dexm,n(t)) > t

– mapm(fj∈m, pexm,i(t)) > pexm,i(fi t)

mapn(fj∈n, dexm,n(t)) > dexm,n(mapm((λx.mapn(f, x))i∈m, t))

mapm(fi∈m, introm(t)) > introm(mapm+1(f, λx.mapm(f, x), t)

map2(f0, f1, pair(t0, t1)) > pair(f0 t0, f1 t1)

map2(f0, f1, ini(t)) > ini(fi t)

map0(un) > un

We write > also for the corresponding reduction, i.e. the compatible, reflexive
and transitive closure of >.

B.2 Semantic domains

This section defines the sets Sat and Satm: Sat consists of sets for interpreting
types and type schemas, while Satm consists of functions for interpreting functors
of arity m.

Definition 12 Saturated sets.

– SN is the set of t ∈ Λ which are strongly normalizable.
– V(t) is the set of values of t, i.e. those v ∈ V s.t. t >∗ v.
– Sat is the set of saturated sets, i.e. those X ⊆ SN s.t.

• closure under reduction: t ∈ X and t > t′ imply t′ ∈ X ;
• saturation: t ∈ SN and V(t) ⊆ X imply t ∈ X .

Lemma13. Sat ordered by inclusion is a complete lattice, with the least element
⊥ being the set of strongly normalizable terms which cannot reduce to a value,
and with meet given by intersection.

In particular there is a least fixed-point operator lfp: (Sat →mon Sat) →mon Sat,
where Sat →mon Sat is the collection of monotonic functions on Sat.

Definition 14. Given X1, X2 ∈ Sat, the set (X1 → X2) ∈ Sat is given by

X1 → X2 = {t ∈ SN|∀v ∈ V(t).∃t2.(v ≡ λx.t2) ∧ (∀t1 ∈ X1.t2{t1/x} ∈ X2)}.

It is straightforward to prove that (X1 → X2) ∈ Sat.

Definition 15. A function F : Satm → Sat is a functorial operator iff for any
Xi∈m, Yi∈m ∈ Sat the following properties hold

– monotonicity: (∀i ∈ m.Xi ⊆ Yi) implies F (X) ⊆ F (Y);
– functoriality: (∀i ∈ m.fi ∈ (Xi → Yi)) and t ∈ F (X) imply mapm(f, t) ∈

F (Y).

Satm is the set of functorial operators of arity m.

B.3 Semantic functions

This section introduce the semantic counterpart of functor constructors, i.e.

– [[1]] ∈ Sat0 and [[×]], [[+]] ∈ Sat2 interpret the functor constants;
– Pm

i ∈ Satm interprets the projection Πm
i ;

– Cm,n: Satm → Satm
n → Satn interprets functor composition F 〈Gi∈m〉n;

– mm: Satm+1 → Satm interprets the inductive functor construction µmF .

The semantic counterpart of type constructors is as expected (see [Men91]), i.e.

– functional types are interpreted by saturated sets of the form X1 → X2;
– universal quantification is interpreted by intersection (on Sat or Satm);
– functor application is interpreted by function application.

After the definition of the semantics function, we sketch a proof that they have
the expected codomain (this is tricky only for mm, where the proof mimics that
for inductive types given in [Men91]).

Definition 16.

1. [[1]]() = {t ∈ SN|∀v ∈ V(t).v ≡ un}.
2. [[×]](X0, X1) = {t ∈ SN|∀v ∈ V(t).∃t0 ∈ X0.∃t1 ∈ X1.v ≡ pair(t0, t1)}.
3. [[+]](X0, X1) = {t ∈ SN|∀v ∈ V(t).∃i ∈ 2.∃t′ ∈ Xi.v ≡ ini(t

′)}.
4. Pm

i (X) = {t ∈ SN|∀v ∈ V(t).∃t′ ∈ Xi.v ≡ pexm,i(t
′)}.

5. Cm,n(F, G)(X) = {t ∈ SN|∀v ∈ V(t).∃t′ ∈ F (Gi(X)i∈m).v ≡ dexm,n(t′)}.
6. mm(F)(X) = lfp H

F,X
, where H

F,X
: Sat →mon Sat is

H
F,X

(X) = {t ∈ SN|∀v ∈ V(t).∃t′ ∈ F (X, X).v ≡ introm(t′)}.

Lemma 17. The semantics functions in Definition 16 are well defined, i.e.

1. [[1]] ∈ Sat0.
2. [[×]] ∈ Sat2.
3. [[+]] ∈ Sat2.
4. Pm

i ∈ Satm.
5. If F ∈ Satm and Gi∈m ∈ Satn, then Cm,n(F, G) ∈ Satn.
6. If F ∈ Satm+1, then mm(F) ∈ Satm.

Proof.

1. We have to prove that [[1]] ∈ Sat0.

– [[1]]() ∈ Sat. Closure under reduction: if t ∈ [[1]](), t > t′, and v ∈ V(t′),
then v ∈ V(t), and so v ≡ un. Saturation: let t ∈ SN and V(t) ⊆ [[1]](),
then for all v ∈ V(t) we have v ≡ un, hence t ∈ [[1]]().

– Monotonicity is trivial since the arity of the functor is 0.
– Functoriality:

let t ∈ [[1]](). First we have to show that map0(t) ∈ SN. Suppose it
has an infinite reduction path. Then because t is strongly normalizable
at least one outermost reduction has been performed. By inspection of
the reduction rules, an outermost reduction can only be performed when
t has been reduced to un, and then the reduction yields un; contradiction.
This shows also that all values of map0(t) are of the form un and hence
that map0(t) ∈ [[1]]().

2. We have to prove that [[×]] ∈ Sat2.

– [[×]](X0, X1) ∈ Sat. Closure under reduction: it follows from the fact that
V(t′) ⊆ V(t) whenever t > t′: let t ∈ [[×]](X0, X1), if t > t′ then t′ is
strongly normalizable and for all v ∈ V(t′), there exist t0 ∈ X0, t1 ∈ X1,
such that v ≡ pair(t0, t1). Saturation: let t ∈ SN, if V(t) ⊆ [[×]](X0, X1)
then for all v ∈ V(t), there exist t0 ∈ X0, t1 ∈ X1, such that v ≡
pair(t0, t1) and this is the required.

– Monotonicity: straightforward.

– Functoriality:
let fi ∈ (Xi → Yi), for i ∈ 2 and let t ∈ [[×]](X0, X1). We are to show that
map2(f0, f1, t) ∈ [[×]](Y0, Y1). First we will show that map2(f0, f1, t) ∈
SN. Suppose by absurd that there exists an infinite reduction path. Then
because f0, f1 and t are strongly normalizable at least one outermost
reduction has been performed. By inspection of the reduction rules, an
outermost reduction can only be performed when t has been reduced to
a value. Since t ∈ [[×]](X0, X1) then the value is of the form pair(t0, t1).
Therefore the outermost step yields pair(f ′

0t0, f
′

1t1), where f ′

0, f
′

1 are re-
ducts respectively of f0, f1, which are strongly normalizable since f ′

i is
in (Xi → Yi). Now we show that if v ∈ V(map2(f0, f1, t)) then there are
terms t0 ∈ Y0, t1 ∈ Y1 such that v ≡ pair(t0, t1). Consider such a v. It
has been obtained from map2(f0, f1, t) by a sequence of non-outermost
reduction steps and, once t has been reduced to a value, by an outermost
reduction step. But t can only reduce to a value of the form pair(t0, t1)
since t is in [[×]](X0, X1). So v has the form pair(t′0, t

′

1) for some t′i that
are reducts of f ′

i ti. Since fi ∈ (Xi → Yi) it follows that f ′

i ti ∈ Yi and, by
closure under reduction, we have that t′i ∈ Yi as required.

3. Proceed as in the case for [[×]].

4. Proceed as in the case for [[×]].

5. We have to prove that Cm,n(F, G) ∈ Satn.

– Cm,n(F, G)(X) ∈ Sat. Closure under reduction and saturation: proceed
as in the case for [[×]].

– Monotonicity: straightforward.

– Functoriality:
let Yj∈n, fj ∈ (Xj → Yj), for j ∈ n and let t ∈ Cm,n(F, G)(X). We
are to show that mapn(f, t) ∈ Cm,n(F, G)(Y). First we show that it is
strongly normalizable. Suppose by absurd that there exists an infinite
reduction path. Then because fj∈n and t are strongly normalizable at
least one outermost reduction has been performed. By inspection of the
reduction rules, an outermost reduction can only be performed when t
has been reduced to value. Since t ∈ Cm,n(F, G)(X) then t has been
reduced to a value of the form dexm,n(t1). Therefore the outermost step
yields (dexm,n(mapm((λx.mapn(f, x))i∈m, t1)).
Now suppose that λx.mapn(f, x) ∈ Gi(X) → Gi(Y) for all i ∈ m. Clearly
t1 ∈ F (Gi(X)i∈m). Then we have that mapm((λx.mapn(f, x))i∈m, t1) ∈
F (Gi(Y)i∈m) by functoriality of F , which gives the desired contradic-
tion.
We are left with showing that (λx.mapn(f, x)) is in Gi(X) → Gi(Y)
for all i ∈ m. Let i be arbitrary. Then λx.mapn(f, x) is in SN since
reduction can only occur inside the subterm f which by hypothesis is
strongly normalizable. Consider a value v of λx.mapn(f, x). This v is of
the form λx.mapn(f ′, x), where each f ′

j is a reduct of the corresponding
fj . By the closure condition we have that f ′

j ∈ Xj → Yj . By functorial-

ity of Gi, for all t ∈ Gi(X) we have that mapn(f ′, t) ∈ Gi(Y). Now we

show that if v ∈ V(mapn(f, t)) then there is a term t1 ∈ F (Gi(X)i∈m)
such that v ≡ dexm,n(t1). Consider such a v. It has been obtained
from mapn(f, t) by a sequence of non-outermost reduction steps and,
once that t has been reduced to a value, by an outermost reduction
step. But t can only reduce to a value of the form dexm,n(t1) since
t ∈ Cm,n(F, G)(X). So v has the form dexm,n(t2) for some t2 that
are reducts of (mapm((λx.mapn(f, x))i∈m, t1). Since λx.mapn(f, x) ∈
Gi(X) → Gi(Y) for all i ∈ m and t1 ∈ F (Gi(X)i∈m), by functoriality of
F we can conclude that (mapm((λx.mapn(f, x))i∈m, t1) ∈ F (Gi(Y)i∈m).
By closure under reduction we have t2 ∈ F (Gi(Y)i∈m).

6. We have to prove that mm(F) ∈ Satm. We show that:
(a) H

F,X
is well-defined, i.e. ∀X ∈ Sat.H

F,X
(X) ∈ Sat.

(b) H
F,X

: Sat →mon Sat is monotone; hence there exists the least fixed-point.

(c) mm(F) satisfies monotonicity and functoriality.

(a) We proceed as in the case for [[×]].
(b) Straightforward.
(c) – Monotonicity:

follows from monotonicity of the least fixed-point operator.
– Functoriality:

let X and Y be fixed. We have to prove that for all i ∈ m, fi ∈
(Xi → Yi) and that t ∈ mm(F)(X) imply mapm(f, t) ∈ mm(F)(Y).
The chain for the least fixed-point mm(F)(X) is

ξ0 = ⊥
ξα+1 = {t ∈ SN|∀v ∈ V(t).∃t′ ∈ F (X, ξα).v ≡ introm(t′)}
ξλ =

⋃
α<λ ξα for limit λ.

The chain for the least fixed-point mm(F)(Y) is

η0 = ⊥
ηα+1 = {t ∈ SN|∀v ∈ V(t).∃t′ ∈ F (X, ηα).v ≡ introm(t′)}
ηλ =

⋃
α<λ ηα for limit λ.

By ordinal induction we prove that fixed Xi and Yi, for all α we have
that ∀(fi ∈ Xi → Yi)i∈m.∀t ∈ ξα.mapm(f, t) ∈ ηα.
Basis: Let t ∈ ξ0. Since t cannot reduce to any value, neither can the
term mapm(f, t). Hence mapm(f, t) ∈ ⊥ = η0.
Inductive Case: Let t ∈ ξα+1. We have to show that mapm(f, t) ∈
ηα+1:
• mapm(f, t) ∈ SN. Suppose by absurd that there exists an infinite

reduction path. Then because fi∈m and t are strongly normal-
izable at least one outermost reduction has been performed. By
inspection of the reduction rules, an outermost reduction can
only be performed when t has been reduced to a value. Since
t ∈ ξα+1 then the value is of the form introm(t1). Therefore the
outermost step yields (introm(mapm+1(f

′, λx.mapm(f ′, x), t1))),

where each f ′

i is a reduct of the corresponding fi. We can con-
clude provided we show that (mapm+1(f

′, λx.mapm(f ′, x), t1)) ∈

F (Y , ηα). Consider λx.mapm(f ′, x). This term belongs to ξα →
ηα:
∗ λx.mapm(f ′, x) ∈ SN: follows from the fact that a reduction

can only occur inside the subterms f ′

i which by hypothesis are
strongly normalizable.

∗ Consider a value v of λx.mapm(f ′, x). This v is of the form
λx.mapm(f ′′, x), where each f ′′

i is a reduct of the correspond-
ing f ′

i . By the closure condition we have that f ′′

i ∈ Xi → Yi.
By induction we get that ∀t ∈ ξα.mapm(f ′′, t) ∈ ηα.

Since f ′

i ∈ (Xi → Yi), for all i ∈ m, λx.mapm(f ′, x) ∈ ξα → ηα

and t1 ∈ F (X, ξα), we have (mapm+1(f
′, λx.mapm(f ′, x), t1)) ∈

F (Y , ηα) by functoriality of F
• Now we show that if v ∈ V(mapm(f, t)) then there is a term

t′ ∈ F (X, ηα) such that v ≡ introm(t′).
Consider such a v. It has been obtained from mapm(f, t) by a
sequence of non-outermost reduction steps and once t has been
reduced to a value, by an outermost reduction step. But t can
only reduce to a value of the form introm(t1). So v has the form
introm(t2) where t2 is a reduct of (mapm+1(f

′, λx.mapm(f ′, x), t1)).

Since (mapm+1(f
′, λx.mapm(f ′, x), t1)) ∈ F (Y , ηα), by closure

under reduction we can conclude.
Limit Case: Let t ∈ ξλ. Then t ∈ ξα for some α ∈ λ. By inductive
hypothesis (mapm(f, t)) ∈ ηα. Hence (mapm(f, t)) ∈ ηα ⊆ ηλ.

ut

B.4 Interpretation

Using the semantic functions we define an interpretation of well-formed type
contexts, functors and types by induction on the derivation of ∆ ` J .

– If ∆ `, then [[∆]] is a set

[[∅]] = 1

[[∆, X : n]] = [[∆]] × Satn

[[∆, X : T]] = [[∆]] × Sat

– If ∆ ` F : n, then [[∆.F]]: [[∆]] → Satn

[[∆.X]]ρ = ρX

[[∆.C]]ρ = [[C]]

[[∆.Πm
i]]ρ = Pm

i

[[∆.F 〈G〉n]]ρ = Cm,n(H, K)

[[∆.µmF ′]]ρ = mm(H ′)

where H = [[∆.F]]ρ ∈ Satm, H ′ = [[∆.F ′]]ρ ∈ Satm+1 and Ki = [[∆.Gi]]ρ ∈
Satn.

– If ∆ ` τ , then [[∆.τ]]: [[∆]] → Sat

[[∆.X]]ρ = ρX

[[∆.F (τ)]]ρ = H(Y)

[[∆.τ1 → τ2]]ρ = Y1 → Y2

[[∆.(∀X : m.τ)]]ρ =
⋂

H∈Satm

[[∆ X : m.τ]]〈ρ, H〉

[[∆.(∀X : T.τ)]]ρ =
⋂

Z∈Sat

[[∆ X : T.τ]]〈ρ, Z〉

where H = [[∆.F]]ρ ∈ Satm, Yi = [[∆.τi]]ρ ∈ Sat.
– If ∆; Γ `, then [[∆.Γ]]: [[∆]] → DV(Γ) → Sat

[[∆.Γ]]ρ x = [[∆.τ]]ρ where τ = Γ (x).

B.5 Strong normalization proof

The following lemma shows that the terms are well behaved with respect to the
semantic functions. We will need it to prove the Proposition 19.

Lemma 18. Let X, Y, Xi∈m, Yi∈m, Zj∈n ∈ Sat, F ∈ Satm, Gi∈m ∈ Satn and
K ∈ Satm+1. The following hold:

1. un ∈ [[1]]();
2. if ∀t1 ∈ X1.t{t1/x} ∈ X2 then λx.t ∈ (X1 → X2);
3. if t ∈ X1 → X2 and t1 ∈ X1 then tt1 ∈ X2;
4. if for all i ∈ 2, ti ∈ Xi, then pair(t0, t1) ∈ [[×]](X0, X1);
5. if t ∈ [[×]](X0, X1) then for all i ∈ 2, pii(t) ∈ Xi;
6. for all i ∈ 2, if t ∈ Xi then ini(t) ∈ [[+]](X0, X1);
7. if for all i ∈ 2,fi ∈ Xi → Y and t ∈ [[+]](X0, X1) then case(f0, f1, t) ∈ Y ;
8. for all i ∈ m, if t ∈ Xi then pexm,i(t) ∈ Pm

i (X);

9. for all i ∈ m, if t ∈ Pm
i (X) then pinm,i(t) ∈ Xi;

10. if t ∈ F (Gi(Z)i∈m) then dexm,n(t) ∈ Cm,n(F, G)(Z);
11. if t ∈ Cm,n(F, G)(Z) then dinm,n(t) ∈ F (Gi(Z)i∈m);
12. if t ∈ K(X,mm(K)(X)) then introm(t) ∈ mm(K)(X);
13. if f ∈ (K(X, Y) → Y) and t ∈ mm(K)(X) then foldm(f, t) ∈ Y ;
14. if for all i ∈ m,fi ∈ (Xi → Yi) and t ∈ F (X) then mapm(f, t) ∈ F (Y).

Proof. The proof is given only for the last three cases (for the others is similar).

– Given K ∈ Satm+1, Xi∈m ∈ Sat and Y ∈ Sat, if t ∈ K(X,mm(K)(X)) then
introm(t) ∈ mm(K)(X):
Since mm(K)(X) = H

K,X
(mm(K)(X)), where H

K,X
is the monotonic map

in the definition of mm(K), we prove that introm(t) ∈ H
K,X

(mm(K)(X)).

We have that introm(t) ∈ SN since t ∈ SN. Now, a value of introm(t) is of
the form introm(t′), where t′ is a reduct of t. Since t′ ∈ K(X,mm(K)(X))
we have that introm(t) ∈ H

K,X
(mm(K)(X)) = mm(K)(X).

– Given K ∈ Satm+1, Xi∈m ∈ Sat and Y ∈ Sat, if f ∈ (K(X, Y) → Y) and
t ∈ mm(K)(X), then foldm(f, t) ∈ Y :
Let (ξα)α∈Ord be the chain for the least fixed-point mm(K)(X), we prove by
induction on α that

∀f ∈ (K(X, Y) → Y).∀t ∈ ξα.foldm(f, t) ∈ Y

Basis: Let f be a term in K(X, Y) → Y . If t ∈ ξ0 then foldm(f, t) cannot
reduce to a value so it belongs to ⊥ ⊆ Y .
Inductive Case: Suppose that t ∈ ξα+1. Let f ∈ (K(X, Y) → Y). If t does
not reduce to a value then neither foldm(f, t) cannot reduce to a value, so
foldm(f, t) belongs to ⊥ ⊆ Y . Otherwise, t reduces to a value of the form
introm(t1), where t1 ∈ K(X, ξα). Hence foldm(f, t) reduces to
f ′(mapm+1((λx.x)i∈m , λx.foldm(f ′, x), t1)) where f ′ is a reduct of f . Using
inductive hypothesis we get λx.foldm(f ′, x) ∈ (ξα → Y). Functoriality of K
allows to conclude that (mapm+1((λx.x)i∈m , λx.foldm(f ′, x), t1)) ∈ K(X, Y).

Since f ∈ (K(X, Y) → Y) by hypothesis, we have foldm(f, t) ∈ Y .
Limit Case: Suppose that t ∈ ξλ. Then t ∈ ξα for some α ∈ λ. By inductive
hypothesis, we have foldm(f, t) ∈ Y , since f ∈ (K(X, Y) → Y).

– Given F ∈ Satm and Xi∈m, Yi∈m ∈ Sat, if fi ∈ (Xi → Yi) and t ∈ F (X),
then mapm(f, t) ∈ F (Y):
Immediate from the definition of F ∈ Satm.

ut

Proposition 19. If ∆; Γ ` t: τ is derivable in FF, then S(t) ∈ [[∆.τ]]ρ for any
ρ ∈ [[∆]] and term substitution S ∈ [[∆.Γ]]ρ.

Proof. The proof is by induction on the derivation of the judgement ∆; Γ ` t: τ .
Here are the justifications for the rules introm, foldm and mapm.

– (introm)

∆ ` F : m + 1 ∆ ` τi∈m

∆; Γ ` t: F (τ , µmF (τ))

∆; Γ ` introm(t): µmF (τ)
By inductive hypothesis

S(t) ∈ [[∆.F (τ , µmF (τ))]]ρ = K(X,mm(K)(X))

where K = [[∆.F]]ρ and Xi = [[∆.τi]]ρ. By Lemma 18 we can conclude

S(introm(t)) ≡ introm(S(t)) ∈ mm(K)(X) = [[∆.µmF (τ)]]ρ

– (foldm)

∆ ` F : m + 1 ∆ ` τi∈m, σ
∆; Γ ` f : F (τ , σ) → σ ∆; Γ ` t: µmF (τ)

∆; Γ ` foldm(f, t): σ

By inductive hypothesis S(f) ∈ K(X, Y) → Y and S(t) ∈ mm(K)(X),
where K = [[∆.F]]ρ, Xi = [[∆.τi]]ρ and Y = [[∆.σ]]ρ.
By Lemma 18 we can conclude

S(foldm(f, t)) ≡ foldm(S(f), S(t)) ∈ Y = [[∆.σ]]ρ

– (mapm)

∆ ` F : m ∆ ` τi∈m, σi∈m

∆; Γ ` fi: τi → σi ∆; Γ ` t: F (τ)

∆; Γ ` mapm(f, t): F (σ)

By inductive hypothesis S(fi) ∈ Xi → Yi (for i ∈ m) and S(t) ∈ H(X),
where H = [[∆.F]]ρ, Xi = [[∆.τi]]ρ and Y = [[∆.σ]]ρ.
by Lemma 18 we can conclude

S(mapm(f, t)) ≡ mapm((S(fi))i∈m, S(t)) ∈ H(Y) = [[∆.F (σ)]]
ut

Theorem 20 SN. If ∆; Γ ` t: τ is derivable in FF, then t ∈ SN.

Proof. From ∆; Γ ` t: τ , by Proposition 19, we have S(t) ∈ [[∆.τ]]ρ, whenever
ρ ∈ [[∆]] and S ∈ [[∆.Γ]]ρ. Every X ∈ Sat contains the term variables because of
saturation: in fact x ∈ SN and V(x) is empty. Therefore, by taking S to be the
identity substitution, we have that t ∈ [[∆.τ]]ρ and so t ∈ SN. ut

Table of Contents

1 Introduction . 1

2 Functors, types and type schema 4

3 Terms and type assignment . 7
3.1 Type inference . 9

4 Term reduction and its properties 11

5 Examples . 12

6 Conclusions and future work . 13

A Semantics . 16
A.1 Set-theoretic semantics . 16
A.2 Domain-theoretic semantics . 17

B Strong normalization . 17
B.1 System FF . 18
B.2 Semantic domains . 20
B.3 Semantic functions . 20
B.4 Interpretation . 24
B.5 Strong normalization proof . 25

