
Higher-Order Modules and the Phase Distinction∗

Robert Harper

Carnegie Mellon University

Pittsburgh, PA 15213

John C. Mitchell

Stanford University

Stanford, CA 94305

Eugenio Moggi

University of Edinburgh

Edinburgh EH9-3JZ, U.K.

Abstract

Typed λ-calculus is an important tool in programming language research because it pro-
vides an extensible framework for studying language features both in isolation and in their
relation to each other. In earlier work we introduced a predicative function calculus, XML, for
modeling several aspects of the Standard ML type system. Following MacQueen, our study
focused on the use of dependent types to represent the modularity constructs of Standard ML.
In addition to shedding some light on the trade-offs between language features, our analysis
suggested that the first-order modules system of ML could be naturally extended to higher or-
ders. However, whereas ML maintains a clear distinction between compile-time and run-time
in both its implementation and formal semantics, the XML calculus blurs this distinction.
Since static type checking is, in our view, essential to the practical utility of ML, we intro-
duce a refinement of the XML calculus for which type checking is decidable at compile time.
This calculus is based on a refinement of our earlier treatment of universes, and employs a
non-standard equational theory of modules and signatures inspired by a category-theoretic
account of the phase distinction.

1 Introduction

The module system of Standard ML [HMM86] is an elegant system for encapsulating and combining
program units. The basic entities of the module system are structures, which may be thought
of as reified environments, functors, functions on structures, and signatures, which describe the
components of structures and their types. Program units are represented as structures that are
linked together by the use of functors. The coherence of a combination of program units is ensured
by the use of “sharing” specifications.

There are two existing analyses of the module system, each elucidating several important fea-
tures. In [HMT87b, HMT87a, Tof87] a formal analysis of the Standard ML type system is given,
using structured operational semantics to describe the computational behavior of the type checker.
While it gives a precise, implementation-independent characterization of the ML type system, this
approach is not especially helpful in understanding the logical structure of the ML type system, nor
its denotational semantics. In particular, the operational approach does not easily accommodate
extensions to the language; each extension must be treated on a case-by-case basis.

The second form of analysis, beginning with [Mac86] and continued in [MH88], gives a type-
theoretic account of the language using dependent sum types Σx:A.B to explain structures and
dependent function types Πx:A.B to account for functors. In addition to providing some insight
into the functional behavior of the module constructs, the XML λ-calculus introduced in [MH88]
establishes a framework for studying a number of related ML-like languages, and provides the basis
for model-theoretic studies of these languages. (The title and approach taken there were inspired

∗Reference should be made to the paper, with the same authors and title, published in the proceedings of the

17th POPL ACM Conference. This report is an extended version of the conference paper.

1

by [Rey81]). For instance unbounded recursion in ML can be handled in XML by considering
a simple theory introducing a constant fix of type Πs:U1.Πt:U1.(s→t)→(s→t) and the equational
axiom

s:U1, t:U1, f :(s→t)→(s→t) � fix(f) = f(fix(f)) : (s→t)→(s→t)

expressing the desired fixed-point property. Because variants of the language may be considered as
XML theories, the emphasis of the approach is on properties of the language that remain invariant
under such extensions.

However, one very important feature of Standard ML has not been accounted for in the type-
theoretic analysis is the compile-time nature of type checking. The problem is that the type
structure of XML is sufficiently rich as to admit variations in the language that violate the so-called
phase distinction (introduced by Cardelli [Car88]) between compile-time and run-time expressions.
For example, by introducing a constant A of type U1×int→U1 (which we may think of as “Array”),
we obtain types of the form A(int , e) and A(int , e′), where e and e′ are expressions of type int .
Since type checking in XML involves testing of type equivalence, the presence of such “mixed-
phase” type expressions entail that the type checker must test equivalence of run-time values. The
definition of equivalence of run-time values is sensitive to the particular theory in which we are
working, and hence there cannot be a single type-checking algorithm for all possible variations in
the language. Moreover, in typical cases equality of run-time expressions is undecidable, and so
some incomplete method would be needed in any case. Since the “compile-time type checking”
property is an essential aspect of ML, we are led to refine our earlier analysis of the language to
take account of the phase distinction.

It might be thought at first glance that this is largely a matter of refining the type structure
of XML so as to rule out examples such as that given above. After all, no such declaration is
syntactically possible in ML, and hence it seems that XML is unwarrantedly liberal in admitting
such declarations. While this is indeed the case, it is not the whole story. One benefit of the
type-theoretic analysis is that it suggest a natural extension of the ML module system to higher-
orders. In ML functors are first-order in the sense that they take structures as arguments and
return structures as results; there is no provision for passing functors as arguments, nor returning
them as results. For many applications, particularly in their role as the means of combining
program units (i.e., “linking”), first-order functors are adequate for practical purposes. However,
recent work suggests that higher-order forms may be useful for supporting separate compilation
(roughly, a separately-compilable module is abstracted with respect to the functors used within it.)
Furthermore, higher-order functors may be used as an alternative to ML’s “sharing” specifications
to ensure that program units are coherently combined [BL84, Mac86].

Unfortunately, the extension of the module facility to higher orders results in violations of
the phase distinction. Specifically, since structures are “mixed-phase” entities, consisting of a
compile-time part and a run-time part, the usual functional interpretation of functors introduces,
at higher types, phase-violating constructs similar to the example given above. Roughly speaking,
A can be thought of as a “functor variable” resulting in a structure consisting of a type and some
trivial run-time value. By projecting out the type component, we reproduce the example above
in the higher-order modules calculus. Thus the straightforward extension of ML’s functors to
higher-orders is incompatible with compile-time type checking.

The main objective of this paper is to account for the phase distinction in a type theory
supporting higher-order modules. We present a calculus, λML, that is at once a refinement and an
extension of the XML calculus considered in our earlier work. The universe structure of XML is
refined so that the core language (i.e., the language without modules) possesses a natural phase
distinction. Then the language is extended in a systematic way to include dependent types for
representing structures and functors. In order to preserve the phase distinction a non-standard
formulation of the rules for dependent types is needed. The crucial point is that we consider a non-
standard equational theory inspired by the categorical viewpoint considered in [Mog89a]. As with
the XML calculus, λML is parameterized by a theory consisting of a set of type constructors a set
of term constructors, and equational axioms governing the term constructors. (Actually, nothing
hinges on the equational axioms; our approach is compatible with the computational λ-calculus
approach taken in [Mog89b].)

2

k ∈ kind :: = 1 | T | k1 × k2 | k1 → k2

u ∈ constr :: = v | 1 | × | → | ∗ | 〈u1, u2〉 | πi(u) | (λv:k.u) | u1 u2

σ ∈ type :: = set(u) | σ1 ×σ2 | σ1 →σ2 | (∀v:k.σ)
e ∈ term :: = x | ∗ | 〈e1, e2〉 | πi(e) | (λx:σ.e) | e1 e2 | (Λv:k.e) | e[u]
Φ ∈ context :: = ∅ | Φ, v:k | Φ, x:σ

Table 1: λML raw expressions

The analysis of λML focuses on two key properties of the language: decidability, and compile-
time type checking. The formal definition of “compile-time type checking” focuses on the equational
principles needed for type checking. The general idea is that we prove that only a limited form
of equational reasoning need be performed by the type checker, and that this reasoning is inde-
pendent of the computational properties of run-time expressions. Together with decidability, the
compile-time type checking property ensures that the type checker is insensitive to variations in
the language, and, for example, will terminate even in the presence of an undecidable theory of
run-time values.

This paper is organized as follows. In Section 2 we introduce the core calculus, λML, that
will serve as the basis for our work. λML is essentially the HML calculus given in [Mog89a] and
closely related to the Core-XML calculus given in [MH88]. In Section 3 we introduce λML

mod
, the

full calculus of higher-order modules. This calculus may be seen as a formal presentation of the
category of modules determined by λML (see [Mog89a] for details). The modularity constructs
of ML (with the exception of sharing specifications) are represented in λML

mod
by a non-standard

formalization of dependent types based on taking a number of non-standard type equivalences.
λML

mod
is proved to be a definitional extension of an auxiliary “structures-only” calculus, and this

result is then used to establish decidability and compile-time type checking for the full calculus of
modules. Finally, in Section 4 we suggest directions for further research.

2 Core Calculus

We begin by giving the definition of the λML core calculus, λML, which is essentially the calculus
HML of [Mog89a]. This calculus captures many of the essential features of the ML type system,
but omits, for the sake of simplicity, ML’s concrete and abstract types (which could be modeled
using existential types [MP88]), recursive types (which can be described through a λML theory),
and record types. We also omit consideration of pattern matching, and computational aspects
such as side-effects and exceptions (for which see [Mog89b]).

2.1 Syntactic Preliminaries

There are four basic syntactic classes in λML: the kinds, which classify the constructors, and
the types, which classify the terms. The constructors include monotypes such as int, and type
constructors such as list. The distinguished kind T classifies the monotypes. The terms of the
calculus correspond to the basic expression forms of ML, but with an explicitly-typed syntax.
(See [MH88] for a discussion of this choice.) It is important to note that our “types” correspond
roughly to ML’s “type schemes,” the essential differences being that we admit quantification over
all kinds, not just the kind of monotypes, and we require that the collection of types satisfy closure
conditions not found in ML. (The additional closure properties for type schemas ensure that the
category of modules for λML is relatively cartesian closed.) This organization is a refinement of
the type structure of Core-XML. The distinguished kind T is essentially the first universe U1 of
Core-XML. However, the second universe, U2, of Core-XML is here refined into the collections
of kinds and types. The cumulativity of the Core-XML universes is here replaced by the explicit
“injection” of T into the collection of types.

3

Φ context Φ is a context
Φ � u : k u is a constructor of kind k
Φ � σ type σ is a type
Φ � e : σ e is a term of type σ

Φ � u1 = u2 k u1 and u2 are equal constructors of kind k
Φ � σ1 = σ2 type σ1 and σ2 are equal types
Φ � e1 = e2 : σ e1 and e2 are equal terms of type schema σ

Table 2: λML judgement forms

2.2 Syntax

The syntax of λML raw expressions is given in Table 1. The collection of term variables, ranged over
by x, and the collection of constructor variables, ranged over by v, are assumed to be disjoint. The
metavariable τ ranges over the collection of monotypes (constructors of kind T). Contexts consist
of a sequence of declarations of the form v:k and x:σ declaring the kind or type, respectively, of a
constructor or term variable. In addition to the context-free syntax, we require that no variable
be declared more than once in a context Φ so that we may unambiguously regard Φ as a partial
function with finite domain Dom(Φ) assigning kinds to constructor variables and types to term
variables.

2.3 Judgement Forms

There are two classes of judgements in λML, the formation judgements and the equality judgements.
The formation judgements are used to define the set of well-formed λML expressions. With the
exception of the kind expressions, there is one formation judgement for each syntactic category.
(Every raw kind expression is well-formed.) The equality judgements are used to axiomatize equiv-
alence of expressions. (There is no equality judgement for kinds; kind equivalence is just syntactic
identity.) The equality judgements are divided into two classes, the compile-time equations and
the run-time equations, reflecting the intuitive phase distinction: kind and type equivalence are
compile-time, term equivalence is run-time. The judgment forms of λML are summarized in Ta-
ble 2. The metavariable F ranges over formation judgements, E ranges over equality judgements,
and J ranges over all forms of judgement. We sometimes write Φ � α to stand for an arbitrary
judgement when we wish to make the context part explicit.

2.4 Formation Rules

The syntax of λML is specified by a set of inference rules for deriving formation judgements given
in Appendix A. We write λML ` F to indicate that the formation judgement F is derivable using
these rules. The formation rules may be summarized as follows. The constructors and kinds form
a simply-typed λ-calculus (with product and unit types) with base kind T , and basic constructors
1, ×, and →. The collection of types is built from base types 1 and set(τ), where τ is a constructor
of kind T , using the type constructors × and →, and quantification over an arbitrary kind. The
terms amount to an explicitly-typed presentation of the ML core language, similar to that presented
in [MH88]. (The let construct is omitted since it is definable here.)

2.5 Equality rules

The rules for deriving equational judgements are given in Appendix A. We write λML ` E to
indicate that an equation E is derivable in accordance with these rules. The λML equational

4

rules are formulated so as to ensure that if an equational judgement is derivable, then it is well-
formed, meaning that the evident associated formation judgements are derivable. For the sake of
convenience we give a brief summary of the equational rules of λML.

2.5.1 Compile-Time Equality

Constructors Equivalence of constructor expressions is the standard equivalence of terms in the
simply-typed λ-calculus based on the following axioms:

(1 η)
Φ � u : 1

Φ � u = ∗ : 1

(× β)
Φ � u1 : k1 Φ � u2 : k2

Φ � πi(〈u1, u2〉) = ui : ki

(i = 1, 2)

(× η)
Φ � u : k1 × k2

Φ � 〈π1(u), π2(u)〉 = u : k1 × k2

(→ β)
Φ � u1 : k1 Φ, v:k1 � u2 : k2

Φ � (λv:k1.u2) u1 = [u1/v]u2 : k2

(→ η)
Φ � u : k1 → k2

Φ � (λv:k1.u v) = u : k1 → k2

(v 6∈ Dom(Φ))

Types The equivalence relation on types includes the following axioms expressing the interpre-
tation of the basic ML type constructors

(1 T =)
Φ context

Φ � set(1) = 1 type

(× T =)
Φ � τ1 : T Φ � τ2 : T

Φ � set(τ1 × τ2) = set(τ1)× set(τ2) type

(→ T =)
Φ � τ1 : T Φ � τ2 : T

Φ � set(τ1→τ2) = set(τ1)→ set(τ2) type

2.5.2 Run-Time Equality

Terms There are seven axioms corresponding to the reduction rules associated with each of the
type constructors:

(1 η)
Φ � e : 1

Φ � e = ∗ : 1

(× β)
Φ � e1 : σ1 Φ � e2 : σ2

Φ � πi(〈e1, e2〉) = ei : σi

(i = 1, 2)

(× η)
Φ � e : σ1 ×σ2

Φ � 〈π1(e), π2(e)〉 = e : σ1 ×σ2

5

(→ β)
Φ � e1 : σ1 Φ, x:σ1 � e2 : σ2

Φ � (λx:σ1.e2) e1 = [e1/x]e2 : σ2

(→ η)
Φ � e : σ1 →σ2

Φ � (λx:σ1.e x) = e : σ1 →σ2

(x 6∈ Dom(Φ))

(∀ β)
Φ � u : k Φ, v:k � e : σ

Φ � (Λv:k.e)[u] = [u/v]e : [u/v]σ

(∀ η)
Φ � e : (∀v:k.σ)

Φ � (Λv:k.e[v]) = e : (∀v:k.σ)
(v 6∈ Dom(Φ))

2.6 Theories

The λML calculus is parametric in a theory T = (ΦT ,AT) consisting of a well-formed context
ΦT , and a set AT of run-time equational axioms of the form e1 = e2 : σ such that Φ0 � ei : σ
is derivable for i = 1, 2. A theory corresponds to the programming language notion of standard
prelude, and might contain declarations such as int : T and fix : ∀t:T. set((t→ t)→ t), and axioms
such as

Λt:T.λf : set(t→ t).fix(f) = Λt:T.λf : set(t→ t).f(fix (f)) : ∀t:T.(t→ t)→ t.

expressing the fixed-point property of fix. For T = (ΦT ,AT), we write λML[T] ` J to indicate that
the judgement J is derivable in λML, taking the variables declared in ΦT as basic constructors and
terms, and taking the equations in ET as non-logical axioms. We write λML[T] `ct J to indicate
that the judgement J is derivable from theory T using only the compile-time equational rules (and
the equational axioms of T .)

2.7 Properties of λ
ML

For Φ a λML context, let Φc denote the context obtained by omitting all term variable declarations
from Φ, and, conversely, let Φr denote the context obtained by eliminating all constructor variable
declarations from Φ. The following lemma expresses the compile-time type checking property of
λML:

Lemma 2.1 Let T be any theory. The following implications hold:

If λML[T] ` then λML[ΦcalT, ∅] `ct

Φ context Φc, Φr context
Φ � u : k Φc � u : k
Φ � u1 = u2 : k Φc � u1 = u2 : k
Φ � σ type Φc � σ type
Φ � σ1 = σ2 type Φc � σ1 = σ2 type
Φ � e : σ Φc, Φr � e : σ
Φ � e1 = e2 : σ Φc, Φr � ei : σ

Since the constructors and kinds form a simply-typed λ-calculus, it is a routine matter to show
that equality of well-formed constructors (and, consequently, types) in λML is decidable. It is then
easy to show that type checking in λML is decidable. (This is in fact a well-known property of the
polymorphic lambda calculus Fω (c.f. [Gir71, Gir72, Rey74, BMM89]), which may be seen as an
impredicative extension of the λML calculus.

Lemma 2.2 There is a straightforward one-pass algorithm which decides, for an arbitrary well-
formed theory T and formation judgement F , whether or not λML[T] ` F .

The main technical accomplishment of this paper is to present a full calculus encompassing the
module expressions of ML which has a compile-time decidable type checking problem.

6

k ∈ kind :: = . . .
u ∈ constr :: = . . . | sc

σ ∈ type :: = . . .
e ∈ term :: = . . . | sr

S ∈ sig :: = [v:k, σ]
M ∈ mod :: = [u, e]
Φ ∈ context :: = . . . | Φ, s:S

Table 3: λML
str raw expressions

3 Modules Calculus

3.1 Overview

We begin by recalling the the type-theoretic analysis of the ML module facility initiated in [Mac86]
and further developed in [MH88] (see also [NPS88, C+86, Mar84] for related ideas). According to
those studies, a structure is an element of a strong sum type such as S = Σt:T.σ(t), and hence is,
in this case, a tuple [τ, e] consisting of a type and a term. Selection of components of a structure is
accomplished using the projections Fst and Snd . Functors are modeled as elements of dependent
function types such as Πs:(Σt:T.σ(t)).(Σt:T.σ′(t)). A functor is therefore represented as a λ-term
mapping structures to structures. As discussed in the introduction, the straightforward formulation
of dependent types runs afoul of the intuitive phase distinction, and compile-time type checking
is lost. For example, if F is a functor variable of signature S → S (where S is as above), then
Fst(F [int , 3]) is an irreducible type expression involving a run-time sub-expression.

In this section we develop a calculus λML

mod
of higher-order modules with a phase distinction based

on the categorical analysis given in [Mog89a]. We begin with an auxiliary “structures-only” calculus
that is primarily a technical device needed for the proofs. The full calculus of higher-order modules
has a standard syntax for dependent strong sums and functions, but a non-standard equational
theory inspired by the categorical interpretation of program modules [Mog89a]. The calculus also
employs a single non-standard typing rule for structures needed for the proof of decidability. The
non-standard aspects of the calculus are justified by a proof that it is a definitional extension of the
“structures-only” calculus, which itself bears a straightforward relationship to the core calculus.
This definitional extension result is then used to prove that λML

mod
is decidable and admits compile-

time type checking.

3.2 The Calculus of Structures

The calculus of structures, λML
str , is an extension of λML obtained by the introduction of structures

and signatures. We assume given a set of structure variables, disjoint from constructor and term
variables, and ranged over by the metavariable s and variants. The additional syntax of λML

str is
given in Table 3. Note that contexts are extended to include declarations of structure identifiers;
the same conventions regarding non-repetition of declarations and the associated use of contexts
as functions apply here as well.

The judgement forms of λML are extended with two additional formation judgements, and two
additional equality judgements, summarized in Table 4. The rules for deriving judgements in λML

str

are obtained by extending the rules of λML (taking contexts now in the extended sense) by the
rules for structures given in Appendix B, together with the following two rules governing the use
of structure variables:

([] E1)
Φ context

Φ � sc : k
(Φ(s) = [v:k, σ])

([] E2)
Φ context

Φ � sr : [sc/v]σ
(Φ(s) = [v:k, σ])

7

Φ � S sig S is a signature
Φ � M : S M is a structure of signature S

Φ � S1 = S2 sig S1 and S2 are equal signatures
Φ � M1 = M2 : S M1 and M2 are equal structures of signature S

Table 4: λML
str

judgement forms

The notion of theory and derivability with respect to a theory remains the same as in λML.
The calculus of structures may be understood in terms of a translation into the core calculus,

which amounts to a proof that λML
str

may be interpreted into the category of modules of [Mog89a].
For Φ a λML

str context, define Φ to be the λML context obtained by replacing all structure variable
declarations s : [v:k, σ] by the pair of declarations sc : k and sr : [sc/v]σ.

Lemma 3.1 Let T be a well-formed λML theory.

1. If λML
str

[T] ` Φ context, then λML[T] ` Φ context.

2. For any λML formation or equality judgement Φ � α, λML
str

[T] ` Φ � α iff λML[T] ` Φ � α.

3. λML
str

[T] ` Φ � [u, e] : [v:k, σ] iff λML[T] ` Φ � u : k and λML[T] ` Φ � e : [u/v]σ, and
similarly for structure equality.

Proof. By a straightforward induction on λML
str

derivations.
It is an immediate consequence of this lemma and the decidability of type equivalence in λML

that type equivalence is λML
str is decidable. This will be important for the decidability of type

checking in the full modules calculus.

3.3 The Calculus of Modules

The fact that the category of modules of [Mog89a] is relatively Cartesian closed amounts to the
fact that Σ and Π types are definable in λML

str . This may seem surprising, since λML
str is a rather

minimal calculus of structures. The key idea is to regard all module expressions as “mixed-phase”
entities, consisting of a compile-time part and a run-time part. For basic structures of the form
[u, e], the partitioning is clear: u, a constructor, is the compile-time part, and e, a term is the run-
time part. For more complex module expressions such as functors, the separation is not quite so
explicit. Consider the signature S = [v:T, set(v)], and let F :S → S be a functor. Since the type of
this functor lies within the first-order fragment of λML, we may rely on Standard ML for intuition.
A functor such as F takes a structure of signature S as argument, and returns a structure, also of
signature S. On the face of it, F might compute the type component of the result as a function
of both the type and term component of the argument. However, no such computation is possible
in ML since there are no primitives for building types from terms. Thus we may regard F as
consisting of two parts, the compile-time part, which computes the type component of the result
as a function of the type component of the argument, and the run-time part, which computes the
term component of the result as a function of both the type and term component of the argument
(recall that we are working in an explicitly-typed framework with explicit polymorphism.) In this
way a functor may be regarded as a special form of structure.

For example, suppose that I is the identity functor λs:S.s. Under this interpretation, I stands
for the structure

[λsc:T.sc, Λsc:T.λsr: set(sc).sr]

of signature (but it is not the only signature for such a structure)

[f :T→T, ∀sc:T. set(sc→fsc)].

8

k ∈ kind :: = . . .
u ∈ constr :: = . . . | Fst(M)
σ ∈ type :: = . . .
e ∈ term :: = . . . | Snd(M)
S ∈ sig :: = [v:k, σ] | 1 | (Σs:S1.S2) | (Πs:S1.S2)
M ∈ mod :: = s | [u, e] | ∗ | 〈M1, M2〉 | πi(M) | (λs:S.M) | M1 M2

Φ ∈ context :: = . . . | Φ, s:S

Table 5: λML

mod
raw expressions

In other words, I stands for the structure consisting of the identity constructor on types, and the
polymorphic identity on terms.

If functors are to be regarded as structures, then application must correspondingly be ex-
tended to structures (of appropriate signature). In keeping with the above discussion, structure
application may be defined as the structure resulting from the application of the first compo-
nent of the functor to the first component of the argument, and the second component of the
functor to both components of the argument. More precisely, if [u, e] is a structure of signature
[f :k′ → k, ∀v′:k′.σ′ → [fv′/v]σ], and [u′, e′] is a structure of signature [v′:k′, σ′], then the applica-
tion [u, e] [u′, e′] is defined to be the structure [uu′, eue′] of signature [v:k, σ]. As we shall see below,
these typing conditions are satisfied whenever the first structure is the image of a functor under
the translation sketched in the next paragraph. Moreover, both type correctness and equality are
preserved under the translation.

Although in a sense λML
str

“already” has higher-order modules, the syntax for denoting them is
quite unnatural since it forces the user to be explicit about the decomposition of module constructs
into a compile-time and a run-time part, even in the case of first-order functors such as are found in
ML. Our goal, then, is to consider a more natural notation similar to that used in [Mac86, MH88]
that nonetheless respects the phase distinction. This is achieved by employing a non-standard
equational theory that, when used during type checking, makes explicit the underlying “split”
interpretation of module expressions, and hence eliminates apparent phase violations. For example,
if A is a functor of signature [t:T, set(int)]→[t:T, 1], then the type expression σ = Fst(A [int , 3]) is
equal, using the non-standard rules, to Fst(A) int , which is free of run-time subexpressions. As a
result, if e is a term of type σ, then the application

(λx: set(Fst(A [int , 5])).x) e

is type-correct, whereas in the absence of the non-standard equations this would not be so (assuming
3 6= 5 : int).

The raw syntax of λML

mod
is an extension of that of λML; the extensions are given in Table 5. The

judgement forms are the same as for λML
str , and are axiomatized by the structure rules of Appendix B

together with the rules of Appendix C. The λML

mod
calculus is parametric in a theory, defined as in

λML (i.e., we do not admit module constants, or axioms governing module expressions.)
The formation rules of λML

mod
are essentially the standard rules for dependent strong sums and

dependent function types. The equational rules include the expected rules for dependent types,
together with the non-standard rules summarized in Table 6.

Beside the non-standard equational rules (and orthogonal to them), there is also a non-standard
typing rules for structures:

Φ � M : [v:k, σ]

Φ, v:k � σ′ type

Φ � Snd M : [Fst M/v]σ′

Φ � M : [v:k, σ′]

The non-standard typing rule is consistent with the interpretation in the category of modules
[Mog89a], but (we conjecture that) without it the main properties of λML

mod
, namely the compile-

9

Non-standard equational rules for signatures

(1 >)
Φ context

Φ � 1 = [v:1, 1] sig

(Σ >)
Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � (Σs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1 × k2, [π1v/v1]σ1 ×[π1v, π2v/v1, v2]σ2] sig

(Π >)
Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � (Πs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1 → k2, (∀v1:k1.σ1 →[v v1/v2]σ2)] sig

Non-standard equational rules for modules

(1 I >)
Φ context

Φ � ∗ = [∗, ∗] [v:1, 1]

(Σ I >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u1 : k1 Φ � e1 : [u1/v1]σ1

Φ � u2 : k2 Φ � e2 : [u1, u2/v1, v2]σ2

Φ � 〈[u1, e1], [u2, e2]〉 = [〈u1, u2〉, 〈e1, e2〉] : [v:k1 × k2, [π1v/v1]σ1 ×[π1v, π2v/v1, v2]σ2]

(Σ E1 >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u : k1 × k2 Φ � e : [π1u/v1]σ1 ×[π1u, π2u/v1, v2]σ2

Φ � π1[u, e] = [π1u, π1e] : [v1:k1, σ1]

(Σ E2 >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u : k1 × k2 Φ � e : [π1u/v1]σ1 ×[π1u, π2u/v1, v2]σ2

Φ � π2[u, e] = [π2u, π2e] : [v2:k2, [π1u/v1]σ2]

(Π I >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ, v1:k1 � u : k2 Φ, v1:k1, x:σ1 � e : [u/v2]σ2

Φ � (λs:[v1:k1, σ1].[Fst s, Snd s/v1, x][u, e]) = [(λv1:k1.u), (Λv1:k1.λx:σ1.e)] :

[v:k1 → k2, (∀v1:k1.σ1 →[v v1/v2]σ2)]

(Π E >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u1 : k1 Φ � e1 : [u1/v1]σ1

Φ � u : k1 → k2 Φ � e : (∀v1:k1.σ1 →[v v1/v2]σ2)

Φ � [u, e] [u1, e1] = [u u1, e[u1] e1] : [v2:k2, [u1/v1]σ2]

Table 6: Non-standard equations

10

expression translation induction hypotheses

Fst(M) u where M [= [u, e]

Snd(M) e where M [= [u, e]
s [sc, sr]

[v:k, σ] [v:k, [v/v]σ[]
1 [v:1, 1]

(Σs:S1.S2) [v:(k1 × k2), ([π1v/v]σ1 ×[π1v, π2v/sc,v]σ2)] where S[
i = [v:ki, σi]

(Πs:S1.S2) [v:(k1 → k2), ∀sc:k1.[s
c/v]σ1 →[v sc/v]σ2] where S[

i = [v:ki, σi]
∗ [∗, ∗]

〈M1, M2〉 [〈u1, u2〉, 〈e1, e2〉] where M [
i = [ui, ei]

πiM [πiu, πie] where M [= [u, e]

(λs:S.M) [(λsc:k.u), (Λsc:k.λsr:[sc/v]σ.e)] where S[= [v:k, σ]
and M [= [u, e]

M1 M2 [u1 u2, e1[u2] e2] where M [
i = [ui, ei]

Table 7: Translation of λML

mod
into λML

str

time type checking theorem and the decidability of typing judgements, would still hold. The
reason for having such rule is mainly pragmatic: to have a simple type checking algorithm (see
Definition 3.9). Moreover, this additional typing rule captures a particularly natural property of
Σ-types (once uniqueness of type has been abandoned), namely that a structure M should be
identified with its expansion [Fst M,Snd M]. A typical example of typing judgement derivable by
the non-standard typing rule is s:[v:k, σ] � s : [v:k, [Fst s/v]σ].

3.4 Translation of λ
ML

mod
into λ

ML

str

The non-standard equational theory used in the definition of λML

mod
is justified by proving that

λML

mod
is a definitional extension of λML

str
, in a sense to be made precise below. This definitional

extension result will then play an important role in establishing the decidability and compile-time
type checking property of λML

mod
.

We begin by giving a translation [from raw λML

mod
expressions into raw λML

str
expressions. This

translation is defined by induction on the structure of λML

mod
expressions. Apart from the cases

given in Table 7, the translation is defined to commute with the expression constructors. For the
basis we associate with every module variable s a constructor variable sc and a term variable sr in
λML
str . For convenience in defining the translation we fix a constructor variable v that may occur in

expressions of λML
str

, but not in expressions of λML

mod
. Signatures of λML

mod
will be translated to λML

str

signatures of the form [v:k, σ]. The translation is extended “declaration-wise” to contexts: Φ[is
obtained from Φ by replacing declarations of the form x:σ by x:σ[, and declarations of the form
s:S by s:S[. Note that the translation leaves λML expressions fixed; consequently, the translation
need not be extended to theories.

Lemma 3.2 (Substitutivity) The translation [commutes with substitution.
In particular if M [= [u, e], then ([M/s])[= [u, e/sc, sr]([).

Proof. By induction on the structure of the raw expression .

Theorem 3.3 ([interpretation) Let T be a well-formed theory, and let J be a λML

mod
judge-

ment. If λML

mod
[T] ` J , then λML

str [T] ` J [.

Proof. By induction on the derivation of J in λML

mod
. The crucial points are

1. The non-standard equations become identities under translation.

11

2. Occurrences of Fst() and Snd() are eliminated; in particular, redices are contracted.

3. The module-level β and η redices become pairs of constructor- and term-level β and η redices.

Conversely, λML
str is essentially a sub-calculus of λML

mod
, differing only in the treatment of structure

variables. To make this precise, define the embedding e of λML
str

raw expressions into λML

mod
raw

expressions by replacing all occurrences of sc by Fst(s), and all occurrences of sr by Snd(s).

Theorem 3.4 (e interpretation) Let T be a well-formed theory, and let J be a λML
str judgement.

If λML
str

[T] ` J , then λML

mod
[T] ` J e.

Proof. By induction on the derivation of J in λML
str

.

Theorem 3.5 (Definitional Extension) Let T be a well-formed theory.

• For any formation judgement F of λML
str , if λML

str [T] ` F , then (F e)[is syntactically equal to
F , modulo the names of bound variables.

• If λML

mod
[T] ` Φ � M : S, then the following equality judgements are derivable in λML

mod
[T]:

– Φs � Φ(s) = (Φ(s)[)e sig, for all s ∈ Dom(Φ), where Φ ≡ Φs, s:Φ(s), Φs (and similarly
for x and v in Dom(Φ))

– Φ � S = (S[)e sig

– Φ � M = (M [)e : S

(and similarly for the other formation judgements.)

Proof. The first statment it is obvious, since (e)[is Syntactically equal to (up to α-conversion),
for any λML

str
raw expression .

The second statment is proved by induction on the derivation of a formation judgement. Note
that in the case of rules (type eq) and (sig eq) one uses the induction hypothesis plus rules (type eq =
) and (sig eq =) respectively.

Corollary 3.6 (Conservative Extension) Let T be an arbitrary well-formed theory. For any
λML
str

judgement J , λML

mod
[T] ` J e iff λML

str
[T] ` J .

3.5 Compile-Time Type Checking for λ
ML

mod

The compile-time equational theory of λML

mod
and λML

str is defined to consist of all equational principles
except those that would not be sound if the calculus of terms were extended to admit computational
behaviors such as side-effects and non-termination.

Definition 3.7 (compile-time calculus) Compile-time provability in λML

mod
and λML

str is defined
by disallowing the use of all β and η rules for term equivalence, and all β and η rules for module
equivalence, apart from ([] β1)/([] β2)/([] η).

Let us designate the β and η axioms for terms of λML by βη, then the full λML

mod
calculus may be

recovered by working in the theory (∅, βη), since the β and η axioms for modules are derivable in
such a theory.

It may be easily verified that the variants of Theorems 3.3, 3.4 and 3.5 obtained by considering
compile-time derivability hold.

12

Theorem 3.8 (Compile-time type checking) Given any well-formed theory T = (ΦT ,AT),
the following implications hold:

If λML

mod
[T] ` then λML

mod
[ΦT , ∅] `ct

Φ context Φ context
Φ � σ type Φ � σ type
Φ � S sig Φ � S sig
Φ � u : k Φ � u : k
Φ � e : σ Φ � e : σ
Φ � M : S Φ � M : S

If λML

mod
[T] ` then λML

mod
[ΦT , ∅] `ct

Φ � σ1 = σ2 type Φ � σ1 = σ2 type
Φ � S1 = S2 sig Φ � S1 = S2 sig
Φ � u1 = u2 : k Φ � u1 = u2 : k
Φ � e1 = e2 : σ Φ � ei : σ
Φ � M1 = M2 : S Φ � Mi : S

Φ � [Fst M1,Snd M1] = [Fst M2,Snd M1] : S

Proof. By induction on the derivation of a judgement in λML

mod
.

3.6 Decidability of λ
ML

mod

The decidability of λML

mod
is proved by giving an algorithm that “flattens” structures and signatures

during type checking. As a result, checking signature equivalence is reduced to checking type
equivalence in λML

str , and this is, as we have already argued, decidable. The main complication in
the algorithm stems from the failure of unicity of types. For example, the structure [int , 3] has both
of the inequivalent signatures [t:T, set(t)] and [t:T, int]. Our approach is to compute the “most
specific” signature for a structure (in the foregoing example this would be the second) which will
always have the form [v:k, σ] where v does not occur free in σ. (As a notational convenience, we
will usually omit explicit designation of the non-occurring variable, and write such signatures in
the form [:k, σ].) The algorithm defined below takes as input a raw context Φ and, for instance, a
raw module expression M of λML

mod
and produces one of the following results:

• The context Φ[and M [≡ [u, e]:[:k, σ], meaning that Φ � M : [:k, σ] is derivable in λML

mod
.

• An error, meaning that Φ context is not derivable in λML

mod
or that Φ � M : S is not derivable

in λML

mod
for any S.

Definition 3.9 (Type-checking algorithm) The type-checking algorithm TC is given by a de-
terministic set of inference rules to derive judgements of the following form:

input output

Φ →→ Φ[context

Φ � σ →→ Φ[� σ[type

Φ � S →→ Φ[� S[sig

Φ � u →→ Φ[� u[: k

Φ � e →→ Φ[� e[: σ

Φ � M →→ Φ[� M [: [:k, σ]

In the last three cases the algorithm TC not only computes the translation, but also a kind, type or
signature. A sample of the inference rules that constitute the algorithm is given in Table 8.

TC is parametric in a theory T , and we write TC[T] for the instance of the algorithm in which
the constants declared in ΦT are regarded as variables. More precisely, Φ →→ Φ[context in TC[T]
iff ΦT , Φ →→ ΦT , Φ[context in TC.

That the inference rules determine an algorithm is stated by the following theorem:

13

(Φ, s:S)
Φ � S →→ Φ[� S[

sig

Φ, s:S →→ Φ[, s:S[
context

(s 6∈ Dom(Φ))

([] sig)
Φ, v:k � σ →→ Φ[, v:k � σ[

type

Φ � [v:k, σ] →→ Φ[� [v:k, σ[] : sig

([] I)
Φ � u →→ Φ[� u[: k Φ � e →→ Φ[� e[: σ

Φ � [u, e] →→ Φ[� [u, e] : [:k, σ]

([] E1)
Φ � M →→ Φ[� [u, e] : [:k, σ]

Φ � Fst(M) →→ Φ[� u : k

([] E2)
Φ � M →→ Φ[� [u, e] : [:k, σ]

Φ � Snd(M) →→ Φ[� e : σ

(var)
Φ →→ Φ[

context

Φ � s →→ Φ[� [sc, sr] : [:k, [sc/v]σ]
(Φ[(s) = [v:k, σ])

(1 I)
Φ context →→ Φ[

context

Φ � ∗ →→ Φ[� [∗, ∗] : [:1, 1]

(Σ I)
Φ � M1 →→ Φ[� [u1, e1] : [:k1, σ1] Φ � M2 →→ Φ[� [u2, e2] : [:k2, σ2]

Φ � 〈M1, M2〉 →→ Φ[� [〈u1, u2〉, 〈e1, e2〉] : [:k1 × k2, σ1 ×σ2]

(Σ Ei)
Φ � M →→ Φ[� [u, e] : [:k1 × k2, σ1 ×σ2]

Φ � πiM →→ Φ[� [πiu, πie] : [:ki, σi]

(Π I)
Φ, s:S1 � M →→ Φ[, s:[v:k1, σ1] � [u, e] : [:k2, σ2]

Φ � (λs:S1.M) →→ Φ[� [(λsc:k1.u), (Λsc:k1.λsr:[sc/v]σ1.e)] :
[:k1 → k2, ∀sc:k1.[s

c/v]σ1 →σ2]

(Π E)

Φ � M →→ Φ[� [u, e] : [:k1 → k2, ∀v:k1.σ1 →σ2]

Φ � M1 →→ Φ[� [u1, e1] : [:k1, σ]

Φ � M M1 →→ Φ[� [u u1, e[u1] e1] : [:k2, [u1/v]σ2]
λML

str ` Φ[� σ = [u1/v]σ1 type

Table 8: Type checking algorithm (selected rules)

14

Theorem 3.10 (Decidability) It is decidable whether a raw type-checking judgement lhs →→ rhs
is derivable using the inference rules in Definition 3.9.

Proof. By lexicographic induction on 〈size(lhs), length(Φ)〉.

Theorem 3.11 (Soundness) Let T be a well-formed theory. The following implications hold:

If TC[T] ` then λML

mod
[T] `ct

Φ →→ Φ[context Φ context

Φ � σ →→ Φ[� σ[type Φ � σ type

Φ � S →→ Φ[� S[sig Φ � S sig

Φ � u →→ Φ[� u[: k Φ � u : k

Φ � e →→ Φ[� e[: σ Φ � e : σe

Φ � M →→ Φ[� [u, e] : [:k, σ] Φ � M : [:k, σe]

Theorem 3.12 (Completeness) Let T be any well-formed theory. The following implications
hold:

If λML

mod
[T] `ct then TC[T] ` & λML

str [T] `ct

Φ context Φ →→ Φ[context

Φ � σ type Φ � σ →→ Φ[� σ[type

Φ � S sig Φ � S →→ Φ[� S[sig

Φ � u : k Φ � u →→ Φ[� u[: k

Φ � e : σ Φ � σ →→ Φ[� σ[type

Φ � e →→ Φ[� e[: σ′

Φ[� σ[= σ′ type

Φ � M : S Φ � S →→ Φ[� [v:k, σ] sig

Φ � M →→ Φ[� [u, e] : [:k, σ′]

Φ[� σ′ = [u/v]σ type

If λML

mod
[T] `ct then TC[T] ` & λML

str
[T] `ct

Φ � σ1 = σ2 type Φ � σi →→ Φ[� σ[
i type

Φ[� σ[
1 = σ[

2 type

Φ � S1 = S2 sig Φ � Si →→ Φ[� S[
i sig

Φ[� S[
1 = S[

2 sig

Φ � u1 = u2 : k Φ � ui →→ Φ[� u[
i : k

Φ[� u[
1 = u[

2 : k

Φ � e1 = e2 : σ Φ � σ →→ Φ[� σ[type
Φ � ei →→ Φ[� e[

i : σi

Φ[� σ[= σi type
Φ[� e[

1 = e[
2 : σ[

Φ � M1 = M2 : S Φ � S →→ Φ[� [v:k, σ] sig

Φ � Mi →→ Φ[� [ui, ei] : [:k, σi]
Φ[� u1 = u2 : k

Φ[� σ = [ui/v]σi type

Φ[� e1 = e2 : σ

Proof. By induction on the derivation of a judgement in λML

mod
.

Corollary 3.13 Given any well-formed theory T , the derivability of formation judgements in
λML

mod
[T] is decidable and does not depend on run-time axioms nor the axioms in T .

15

4 Conclusion

Although the relatively straightforward ML-like function calculus XML of [MH88] illustrates some
important properties of ML-like languages, it does not provide an adequate basis for the design
of a compile-time type checker. Similar problems arise in other programming language models
based on dependent types. To address this pragmatic issue, we have developed an alternate form
of the XML calculus in which there is a clear compile-time/run-time distinction. Essentially, our
technique is to add equational axioms that allow us to decompose structures and functors into
separate compile-time and run-time components. While the phase distinction in λML reduces to
the syntactic difference between types and their elements, the general technique seems applicable
to other forms of phase distinction.

The basis for our development is the “category of modules” over an indexed category, which
is an instance of the Grothedieck construction. General properties of the category of modules
are explained in the companion paper [Mog89a]. In the specific case of λML, our non-standard
equational axioms lead to a calculus which bears a natural relationship to the category of modules.
In future work, it would be interesting to explore the exact connection between our calculus and the
categorical construction, and to develop phase distinctions for languages whose type expressions
may contain “run-time” subexpressions in more complicated ways.

References

[BL84] R. Burstall and B. Lampson. A kernel language for abstract data types and modules.
In Proc. Int. Symp. on Semantics of Data Types, Sophia-Antipolis (France), Springer
LNCS 173, pages 1–50, 1984.

[BMM89] K. B. Bruce, A. R. Meyer, and J. C. Mitchell. The semantics of second-order lambda
calculus. Information and Computation, 1989. (to appear).

[C+86] Constable et al. Implementing Mathematics with the Nuprl Proof Development System,
volume 37 of Graduate Texts in Mathematics. Prentice-Hall, 1986.

[Car88] L. Cardelli. Phase distinctions in type theory. Manuscript, 1988.

[Gir71] J.-Y. Girard. Une extension de l’interpretation de Gödel à l’analyse, et son application
à l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad,
editor, 2nd Scandinavian Logic Symposium, pages 63–92. North-Holland, 1971.

[Gir72] J.-Y. Girard. Interpretation fonctionelle et elimination des coupures de l’arithmetique
d’ordre superieur. These D’Etat, Universite Paris VII, 1972.

[HMM86] R. Harper, D.B. MacQueen, and R. Milner. Standard ml. Technical Report ECS–LFCS–
86–2, Lab. for Foundations of Computer Science, University of Edinburgh, March 1986.

[HMT87a] R. Harper, R. Milner, and M. Tofte. The semantics of standard ML. Technical Report
ECS–LFCS–87–36, Lab. for Foundations of Computer Science, University of Edinburgh,
August 1987.

[HMT87b] R. Harper, R. Milner, and M. Tofte. A type discipline for program modules. In
TAPSOFT ’87, volume 250 of LNCS. Springer-Verlag, March 1987.

[Mac86] D.B. MacQueen. Using dependent types to express modular structure. In Proc. 13-th
ACM Symp. on Principles of Programming Languages, pages 277–286, 1986.

[Mar84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[MH88] J.C. Mitchell and R. Harper. The essence of ML. In Proc. 15-th ACM Symp. on
Principles of Programming Languages, pages 28–46, January 1988.

16

[Mog89a] E. Moggi. A category-theoretic account of program modules. In Summer Conf. on
Category Theory and Computer Science, pages 101–117, 1989.

[Mog89b] E. Moggi. Computational lambda calculus and monads. In Fourth IEEE Symp. Logic
in Computer Science, pages 14–23, 1989.

[MP88] J.C. Mitchell and G.D. Plotkin. Abstract types have existential types. ACM Trans.
on Programming Languages and Systems, 10(3):470–502, 1988. Preliminary version
appeared in Proc. 12-th ACM Symp. on Principles of Programming Languages, 1985.

[NPS88] B. Nordstrom, K. Peterson, and J. Smith. Programming in martin-löf’s type theory.
University of Gothenburg / Chalmers Institue of Technology, Book draft of Midsummer
1988.

[Rey74] J.C. Reynolds. Towards a theory of type structure. In Paris Colloq. on Programming,
pages 408–425. Springer-Verlag LNCS 19, 1974.

[Rey81] J.C. Reynolds. The essence of Algol. In de Bakker and van Vliet, editors, Algorithmic
Languages, pages 345–372. IFIP, North Holland, 1981.

[Tof87] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Uni-
versity of Edinburgh, 1987.

A Core calculus

Contexts: Φ context

(Φ = ∅)
∅ context

(Φ, v:k)
Φ context

Φ, v:k context
(v 6∈ Dom(Φ))

(Φ, x:σ)
Φ � σ type

Φ, x:σ context
(x 6∈ Dom(Φ))

Constructors: Φ � u : k

(var)
Φ context

Φ � v : k
(Φ(v) = k)

(1 T)
Φ context

Φ � 1 : T

(× T)
Φ context

Φ � × : T →T →T

(→ T)
Φ context

Φ � → : T →T →T

(1 I)
Φ context

Φ � ∗ : 1

(× I)
Φ � u1 : k1 Φ � u2 : k2

Φ � 〈u1, u2〉 : k1 × k2

17

(× E)
Φ � u : k1 × k2

Φ � πi(u) : ki

(i = 1, 2)

(→ I)
Φ, v:k1 � u : k2

Φ � (λv:k1.u) : k1 → k2

(→ E)
Φ � u1 : k1 → k2 Φ � u2 : k1

Φ � u1 u2 : k2

Types: Φ � σ type

(T ⊆ type)
Φ � τ : T

Φ � set(τ) type

(1 type)
Φ context

Φ � 1 type

(× type)
Φ � σ1 type Φ � σ2 type

Φ � σ1 ×σ2 type

(→ type)
Φ � σ1 type Φ � σ2 type

Φ � σ1 →σ2 type

(∀ type)
Φ, v:k � σ type

Φ � (∀v:k.σ) type

Terms: Φ � e : σ

(var)
Φ context

Φ � x : σ
(Φ(x) = σ)

(∀ I)
Φ, v:k � e : σ

Φ � (Λv:k.e) : (∀v:k.σ)

(∀ E)
Φ � e : (∀v:k.σ) Φ � u : k

Φ � e[u] : [u/v]σ

(1 I)
Φ context

Φ � ∗ : 1

(× I)
Φ � e1 : σ1 Φ � e2 : σ2

Φ � 〈e1, e2〉 : σ1 ×σ2

(× E)
Φ � e : σ1 ×σ2

Φ � πie : σi

(i = 1, 2)

(→ I)
Φ, x:σ1 � e : σ2

Φ � (λx:σ1.e) : σ1 →σ2

(→ E)
Φ � e2 : σ1 →σ2 Φ � e1 : σ1

Φ � e2 e1 : σ2

(type eq)
Φ � e : σ1 Φ � σ1 = σ2 type

Φ � e : σ2

18

Constructors: Φ � u1 = u2 : k

(refl)
Φ � u : k

Φ � u = u : k

(symm)
Φ � u1 = u2 : k

Φ � u2 = u1 : k

(trans)
Φ � u1 = u2 : k Φ � u2 = u3 : k

Φ � u1 = u3 : k

(1 η)
Φ � u : 1

Φ � u = ∗ : 1

(× I =)
Φ � u1 = u′

1 : k1 Φ � u2 = u′

2 : k2

Φ � 〈u1, u2〉 = 〈u′

1, u
′

2〉 : k1 × k2

(× E =)
Φ � u = u′ : k1 × k2

Φ � πi(u) = πi(u
′) : ki

(i = 1, 2)

(× β)
Φ � u1 : k1 Φ � u2 : k2

Φ � πi(〈u1, u2〉) = ui : ki

(i = 1, 2)

(× η)
Φ � u : k1 × k2

Φ � 〈π1(u), π2(u)〉 = u : k1 × k2

(→ I =)
Φ, v:k1 � u = u′ : k2

Φ � (λv:k1.u) = (λv:k1.u
′) : k1 → k2

(→ E =)
Φ � u = u′ : k1 → k2 Φ � u1 = u′

1 : k1

Φ � u u1 = u′ u′

1 : k2

(→ β)
Φ � u1 : k1 Φ, v:k1 � u2 : k2

Φ � (λv:k1.u2) u1 = [u1/v]u2 : k2

(→ η)
Φ � u : k1 → k2

Φ � (λv:k1.u v) = u : k1 → k2

(v 6∈ Dom(Φ))

Types: Φ � σ1 = σ2 type

(refl)
Φ � σ type

Φ � σ = σ type

(symm)
Φ � σ1 = σ2 type

Φ � σ2 = σ1 type

(trans)
Φ � σ1 = σ2 type Φ � σ2 = σ3 type

Φ � σ1 = σ3 type

19

(T ⊆ type =)
Φ � τ = τ ′ : T

Φ � set(τ) = set(τ ′) type

(× type =)
Φ � σ1 = σ′

1 type Φ � σ2 = σ′

2 type

Φ � σ1 ×σ2 = σ′

1 ×σ′

2 type

(→ type =)
Φ � σ1 = σ′

1 type Φ � σ2 = σ′

2 type

Φ � σ1 →σ2 = σ′

1 →σ′

2 type

(∀ type =)
Φ, v:k � σ = σ′

type

Φ � (∀v:k.σ) = (∀v:k.σ′) type

(1 T =)
Φ context

Φ � set(1) = 1 type

(× T =)
Φ � τ1 : T Φ � τ2 : T

Φ � set(τ1 × τ2) = set(τ1)× set(τ2) type

(→ T =)
Φ � τ1 : T Φ � τ2 : T

Φ � set(τ1→τ2) = set(τ1)→ set(τ2) type

Terms: Φ � e1 = e2 : σ

(refl)
Φ � e : σ

Φ � e = e : σ

(symm)
Φ � e1 = e2 : σ

Φ � e2 = e1 : σ

(trans)
Φ � e1 = e2 : σ Φ � e2 = e3 : σ

Φ � e1 = e3 : σ

(type eq =)
Φ � e1 = e2 : σ1 Φ � σ1 = σ2 type

Φ � e1 = e2 : σ2

(1 η)
Φ � e : 1

Φ � e = ∗ : 1

(× I =)
Φ � e1 = e′1 : σ1 Φ � e2 = e′2 : σ2

Φ � 〈e1, e2〉 = 〈e′1, e
′

2〉 : σ1 ×σ2

(× E =)
Φ � e = e′ : σ1 ×σ2

Φ � πi(e) = πi(e
′) : σi

(i = 1, 2)

(× β)
Φ � e1 : σ1 Φ � e2 : σ2

Φ � πi(〈e1, e2〉) = ei : σi

(i = 1, 2)

(× η)
Φ � e : σ1 ×σ2

Φ � 〈π1(e), π2(e)〉 = e : σ1 ×σ2

20

(→ I =)
Φ � σ1 = σ′

1 type Φ, x:σ1 � e = e′ : σ2

Φ � (λx:σ1.e) = (λx:σ′

1.e
′) : σ1 →σ2

(→ E =)
Φ � e = e′ : σ1 →σ2 Φ � e1 = e′1 : σ1

Φ � e e1 = e′ e′1 : σ2

(→ β)
Φ � e1 : σ1 Φ, x:σ1 � e2 : σ2

Φ � (λx:σ1.e2) e1 = [e1/x]e2 : σ2

(→ η)
Φ � e : σ1 →σ2

Φ � (λx:σ1.e x) = e : σ1 →σ2

(x 6∈ Dom(Φ))

(∀ I =)
Φ, v:k � e = e′ : σ

Φ � (Λv:k.e) = (Λv:k.e′) : (∀v:k.σ)

(∀ E =)
Φ � e = e′ : (∀v:k.σ) Φ � u1 = u′

1 : k

Φ � e[u] = e′[u′] : [u/v]σ

(∀ β)
Φ � u : k Φ, v:k � e : σ

Φ � (Λv:k.e)[u] = [u/v]e : [u/v]σ

(∀ η)
Φ � e : (∀v:k.σ)

Φ � (Λv:k.e[v]) = e : (∀v:k.σ)
(v 6∈ Dom(Φ))

B Common Rules for Structures

Contexts: Φ context

(Φ, s:S)
Φ � S sig

Φ, s:S context
(s 6∈ Dom(Φ))

Signatures: Φ � S sig

([] sig)
Φ, v:k � σ type

Φ � [v:k, σ] : sig

Modules: Φ � M : S

([] I)
Φ, v:k � σ type Φ � u : k Φ � e : [u/v]σ

Φ � [u, e] : [v:k, σ]

(sig eq)
Φ � M : S1 S1 = S2 sig

Φ � M : S1

21

Signatures: Φ � S1 = S2 sig

(refl)
Φ � S sig

Φ � S = S sig

(symm)
Φ � S1 = S2 sig

Φ � S2 = S1 sig

(trans)
Φ � S1 = S2 sig Φ � S2 = S3 sig

Φ � S1 = S3 sig

([] sig =)
Φ, v:k � σ = σ′

type

Φ � [v:k, σ] = [v:k, σ′] sig

Modules: Φ � M1 = M2 : S

(refl)
Φ � M : S

Φ � M = M : S

(symm)
Φ � M1 = M2 : S

Φ � M2 = M1 : S

(trans)
Φ � M1 = M2 : S Φ � M2 = M3 : S

Φ � M1 = M3 : S

(sig eq =)
Φ � M1 = M2 : S1 Φ � S1 = S2 sig

Φ � M1 = M2 : S2

([] I =)
Φ, v:k � σ type Φ � u = u′ : k Φ � e = e′ : [u/v]σ

Φ � [u, e] = [u′, e′] : [v:k, σ]

C Module Calculus

Constructors: Φ � u : k

([] E1)
Φ � M : [v:k, σ]

Φ � Fst(M) : k

Terms: Φ � e : σ

([] E2)
Φ � M : [v:k, σ]

Φ � Snd (M) : [Fst(M)/v]σ

Signatures: Φ � S sig

(1 sig)
Φ context

Φ � 1 sig

(Σ sig)
Φ, s:S1 � S2 sig

Φ � (Σs:S1.S2) sig

(Π sig)
Φ, s:S1 � S2 sig

Φ � (Πs:S1.S2) sig

22

Modules: Φ � M : S

(var)
Φ context

Φ � s : S
(Φ(s) = S)

(1 I)
Φ context

Φ � ∗ : 1

(Σ I)
Φ, s:S1 � S2 sig Φ � M1 : S1 Φ � M2 : [M1/s]S2

Φ � 〈M1, M2〉 : (Σs:S1.S2)

(Σ E1)
Φ � M : (Σs:S1.S2)

Φ � π1M : S1

(Σ E2)
Φ � M : (Σs:S1.S2)

Φ � π2M : [π1M/s]S1

(Π I)
Φ, s:S1 � M : S2

Φ � (λs:S1.M) : (Πs:S1.S2)

(Π E)
Φ � M : (Πs:S1.S2) Φ � M1 : S1

Φ � M M1 : [M1/s]S2

Non-standard typing rule for structures

Φ � M : [v:k, σ]

Φ, v:k � σ′ type

Φ � Snd M : [Fst M/v]σ′

Φ � M : [v:k, σ′]

Constructors: Φ � u1 = u2 : k

([] E1 =)
Φ � M = M ′ : [v:k, σ]

Φ � Fst(M) = Fst(M ′) : k

([] β1)
Φ, v:k � σ type Φ � u : k Φ � e : [u/v]σ

Φ � Fst([u, e]) = u : k

Terms: Φ � e1 = e2 : σ

([] E2 =)
Φ � M = M ′ : [v:k, σ]

Φ � Snd(M) = Snd(M ′) : [Fst(M)/v]σ

([] β2)
Φ, v:k � σ type Φ � u : k Φ � e : [u/v]σ

Φ � Snd([u, e]) = e : [u/v]σ

Signatures: Φ � S1 = S2 sig

(Σ sig =)
Φ � S1 = S′

1 sig Φ, s:S1 � S2 = S′

2 sig

Φ � (Σs:S1.S2) = (Σs:S′

1.S
′

2) sig

(Π sig =)
Φ � S1 = S′

1 sig Φ, s:S1 � S2 = S′

2 sig

Φ � (Πs:S1.S2) = (Πs:S′

1.S
′

2) sig

23

Non-standard equational rules for signatures

(1 >)
Φ context

Φ � 1 = [v:1, 1] sig

(Σ >)
Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � (Σs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1 × k2, [π1v/v1]σ1 ×[π1v, π2v/v1, v2]σ2] sig

(Π >)
Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � (Πs:[v1:k1, σ1].[v2:k2, [Fst(s)/v1]σ2]) = [v:k1 → k2, (∀v1:k1.σ1 →[v v1/v2]σ2)] sig

Modules: Φ � M1 = M2 : S

([] η)
Φ � M : [v:k, σ]

Φ � 〈Fst(M), Snd(M)〉 = M : [v:k, σ]

(1 η)
Φ � M : 1

Φ � M = ∗ : 1

(Σ I =)
Φ, s:S1 � S2 sig Φ � M1 = M ′

1 : S1 Φ � M2 = M ′

2 : [M1/s]S2

Φ � 〈M1, M2〉 = 〈M ′

1, M
′

2〉 : (Σs:S1.S2)

(Σ E1 =)
Φ � M = M ′ : (Σs:S1.S2)

Φ � π1(M) = π1(M
′) : S1

(Σ E2 =)
Φ � M = M ′ : (Σs:S1.S2)

Φ � π2(M) = π2(M
′) : [π1(M)/s]S2

(Σ β1)
Φ, s:S1 � S2 sig Φ � M1 : S1 Φ � M2 : [M1/s]S2

Φ � π1(〈M1, M2〉) = M1 : S1

(Σ β2)
Φ, s:S1 � S2 sig Φ � M1 : S1 Φ � M2 : [M1/s]S2

Φ � π2(〈M1, M2〉) = M2 : [M1/s]S2

(Σ η)
Φ � M : (Σs:S1.S2)

Φ � 〈π1(M), π2(M)〉 = M : (Σs:S1.S2)

(Π I =)
Φ � S1 = S′

1 sig Φ, s:S1 � M = M ′ : S2

Φ � (λs:S1.M) = (λs:S′

1.M
′) : (Πs:S1.S2)

(Π E =)
Φ � M = M ′ : (Πs:S1.S2) Φ � M1 = M ′

1 : S1

Φ � M M1 = M ′ M ′

1 : [M1/s]S2

(Π β)
Φ � M1 : S1 Φ, s:S1 � M2 : S2

Φ � (λs:S1.M2)M1 = [M1/s]M2 : [M1/s]S2

(Π η)
Φ � M : (Πs:S1.S2)

Φ � (λs:S1.M s) = M : (Πs:S1.S2)
(s 6∈ Dom(Φ))

24

Non-standard equational rules for modules

(1 I >)
Φ context

Φ � ∗ = [∗, ∗] [v:1, 1]

(Σ I >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u1 : k1 Φ � e1 : [u1/v1]σ1

Φ � u2 : k2 Φ � e2 : [u1, u2/v1, v2]σ2

Φ � 〈[u1, e1], [u2, e2]〉 = [〈u1, u2〉, 〈e1, e2〉] : [v:k1 × k2, [π1v/v1]σ1 ×[π1v, π2v/v1, v2]σ2]

(Σ E1 >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u : k1 × k2 Φ � e : [π1u/v1]σ1 ×[π1u, π2u/v1, v2]σ2

Φ � π1[u, e] = [π1u, π1e] : [v1:k1, σ1]

(Σ E2 >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u : k1 × k2 Φ � e : [π1u/v1]σ1 ×[π1u, π2u/v1, v2]σ2

Φ � π2[u, e] = [π2u, π2e] : [v2:k2, [π1u/v1]σ2]

(Π I >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ, v1:k1 � u : k2 Φ, v1:k1, x:σ1 � e : [u/v2]σ2

Φ � (λs:[v1:k1, σ1].[Fst s, Snd s/v1, x][u, e]) = [(λv1:k1.u), (Λv1:k1.λx:σ1.e)] :

[v:k1 → k2, (∀v1:k1.σ1 →[v v1/v2]σ2)]

(Π E >)

Φ, v1:k1 � σ1 type Φ, v1:k1, v2:k2 � σ2 type

Φ � u1 : k1 Φ � e1 : [u1/v1]σ1

Φ � u : k1 → k2 Φ � e : (∀v1:k1.σ1 →[v v1/v2]σ2)

Φ � [u, e] [u1, e1] = [u u1, e[u1] e1] : [v2:k2, [u1/v1]σ2]

25

