Multi-Stage Imperative Languages:
A Conservative Extension Result

Cristiano Calcagno! and Eugenio Moggil*

DISI, Univ. di Genova, Genova, Italy
{calcagno,moggi}@disi.unige.it

Abstract. This paper extends the recent work [CMT00] on the opera-
tional semantics and type system for a core language, called MiniMLEY,
which exploits the notion of closed type (see also [MTBS99]) to safely
combine imperative and multi-stage programming. The main novelties
are the identification of a larger set of closed types and the addition of
a binder for useless variables. The resulting language is a conservative

extension of MiniML,g, a simple imperative subset of SML.

1 Introduction

This paper extends recent work [CMT00] on the operational semantics and type
system for a core language, called MiniML?e';', which exploits the notion of closed
type (see also [MTBS99]) to safely combining imperative and multi-stage pro-
gramming. One would expect that the addition of staging constructs to an im-
perative language should not prevent writing programs like those in normal im-
perative languages. In fact, a practical multi-stage programming language like
MetaML [Met00] is designed to be a conservative extension of a standard pro-
gramming language, like SML, for good pragmatic reasons: to gain acceptance
from an existing user community, and to confine the challenges for new users to
the staging constructs only.

Unfortunately, MiniMLFe';I fails to be a conservative extension of a simple im-
perative language like MiniML,es (i.e. MiniML with ML-style references), because
certain well-typed programs in MiniML,s fail to be well-typed in MiniML?e'f\'.
Technically, the problem is that the closed types of MiniML,rBe'f\I are not closed
under function types (and that locations may store only values of closed types).
The best one can do is to define a translation _x from MiniML,s to MiniML:?e';I
respecting typing and operational semantics. The translation uses the closed

type constructor [.] and closedness annotations, in particular the translation of

a functional type is (t; — t2)* 4 [t1% — to%], which records that a functional

type in the source language is a closed functional type in the target language.
From a language design perspective the main contribution of this paper is a

core language, called MiniMLyg'?, which extends conservatively the simple im-

perative language MiniML,s with the staging constructs of MetaML (and a few
* Research partially supported by MURST and ESPRIT WG APPSEM.



other features related to closed types). A safe combination of imperative and
multi-stage programming in MiniMLjg¢" is enforced through the use of closed

types, as done in [CMT00] for MiniMLEY .

Technically, the main novelty over [CMT00] is the identification of a larger
set of closed types, which includes functional types of the form ¢t — ¢ where cis a
closed type. The closed types of MiniMLEY enjoy the following property: values of
closed types are closed, i.e. have no free variables. The closed types of MiniMLs ™
enjoy a weaker property (which is the best one can hope for functional types):
the free variables in values of closed types are useless, i.e. during evaluation they

will never be evaluated (at level 0).

Examples. The restriction of storable values to closed types is motivated by
the following MetaML session:

-| val 1 = ref <1>;

val 1 = ... : ref <int>

-| val £ = <fn x => “(1:=<x>; <2>)>;
val £ = <fn x => 2> : <int -> int>
-| val ¢ = '1;

val ¢ = <x> : <int>

In evaluating the second declaration, the variable x goes outside the scope of
the binding lambda, and the result of the third line is wrong, since z is not
bound in the environment, even though the session is well-typed according to
naive extensions of previously proposed type systems for MetaML. This form of
scope extrusion is specific to multi-level and multi-stage languages, and it does
not arise in traditional programming languages, where evaluation is generally
restricted to closed terms. The problem lies in the run-time interaction between
free variables and references. In the type system we propose the above session is
not well-typed: 1:=<x> cannot be typed, because <x> is not of a closed type.
MiniML7e¢ allows among the closed types some functional types, while in
MiniML?e';' functional types are never closed. The following interactive session, is
typable in MiniML™® but not in MiniMLEY

ref ref *

-| val 1 = ref(fn x => x+1);

val 1 = ... : (int -> int) ref

-l val £ = <fn x => “(1 := (fn y => ((fn z => y+1) <x>)); <x+1>)>;
val f = <(fn x => x+1)> : <int -> int>

The first line creates a reference to functions from integers to integers; and the
second assigns the function fn y => ((fn z => y+1) <x>) to it. As a result,
the variable x escapes from its binder and leaks into the store. However, this
cannot be observed because the variable is “useless”: if we supply an argument
to the stored function, the inner application will be evaluated, discarding the
term <x>. The operational semantics presented here solves the problem with a
binder for useless variables, introduced before storing a term.



Relation to MiniMLE}. There is a significant overlap between MiniML7t™

and MiniMLE}'. We refer to [CMTO00] for a broader discussion of related work

[DP96,Dav96,TS97,TBS98, MTBS99,BMTS99,Tah99,TS00]. For those familiar

with MiniMLEY (recalled in Appendix A) we summarize the differences:

— MiniML%* has no closedness annotation [e], and the closed type constructor
[] cannot be applied to a closed type c. These are cosmetic changes, moti-
vated by the following remarks in [CMT00]: closedness annotations play no
role in the operational semantics, and a closed type ¢ is semantically isomor-
phic to [¢] via the mapping z — [z]. When closedness annotations are re-
moved, the isomorphism becomes an identity, thus the syntax for MiniMLes ™
types forbids [c], since it is equal to c.

~ MiniMLy5™ has a let-binder (let.z = e;ines) corresponding to (let[z:c] =

[e1]in e2) of MiniMLEY, for variables of closed type.

— MiniML7" has a larger set of closed types, in particular a functional type

t — c is closed whenever c is closed. This property is essential to prove that
every well-formed MiniML,e program is also well-formed in MiniMLjg™

— MiniML$" has a new binder ee, called Bullet, which binds all the free vari-
ables in e. When all the free variables in e are useless, ee and e are semanti-
cally equivalent. Bullet is used in the operational semantics to prevent scope
extrusion (for this purpose it replaces the constant fault of [CMT00]), and
to annotate terms whose free variables are useless.
In an implementation, Bullet should help improve efficiency, since one knows
that FV(ee) = () without examining the whole of e. For instance, the func-
tion eAz.e does not depend on the environment, only on the argument. Our
operational semantics is too abstract to support claims about efficiency,
but we expect that a reformulation in terms of weak explicit substitution
([LM99,B97]) could make such claims precise.
In general, checking whether a variable is useless requires a static analysis
(preferably of the whole program, see [WS99]). The MiniML™ type system
has a simple rule to infer ee: ¢”, namely e: ¢™ when all the free variables in
e have level > n. This rule makes sense only in the context of multi-level
languages, but it infers o(!l (z)): ", where [ is a location of closed type
(ty — ¢, which is beyond conventional analyses.

Structure of the paper. Section 2 introduces MiniML,, which is MiniML
of [CDDK86] with ML-style references. Section 3 introduces MiniML}¢®, which
extends MiniML,es with

— The three staging constructs of MetaML [TS97,TBS98 Met00]: Brackets {e},
Escape “e and Run run e.

— A let-binder (let.z = e in e3) for variables of closed type.

— A binder e¢, called Bullet, of all the free variables in a term e of closed type.

We also prove type safety along the lines of [CMTO00]. Section 4 shows that

MiniMLyg¢™ is a conservative extension of MiniML.s. Section 5 discusses im-

provements to the type system through the addition of sub-typing, alternatives

to Bullet, and variation to the syntax and operational semantics of MiniML¢™



2 MiniML,

This section describes the syntax, type system and operational semantics of
MiniML,f, an extension of MiniML ([CDDKS86]) with ML-style references. Types
t are defined as

t € T::=nat | ref ¢ | t1 — to

The sets of MiniML,es terms and values are parametric in an infinite set of vari-
ables z € X and an infinite set of locations [ € L

e€Ei:=x | Az.e|ejey |fixz.e|z|se| (caseeofz > e1 | sz — e2) |
refe |le|eii=ex |l
veVii=Aze|z|sv|l

The first line lists the MiniML terms: variables, abstraction, application, fix-point
for recursive definitions, zero, successor, and case-analysis on natural numbers.
The second line lists the three SML operations on references, and constants [ for
locations. These constants are not allowed in user-defined programs, but they
are instrumental to the operational semantics of MiniML .

Note 1. We will use the following notation and terminology

-
free in e. Eg indicates the set of terms without free variables. Substitution
of g for z in ey (modulo =) is written ex[z: = e1].
— m,n range over the set N of natural numbers. Furthermore, m € N is iden-
tified with the set {i € N|i < m} of its predecessors.

- f:A % B means that f is a partial function from A to B with a finite
domain, written dom(f).

— Term equivalence, written =, is a-conversion. FV (e) is the set of variables

L Tisa signature (for locations only), written {l;: ref t;|i € m}.

X2 Tisa type assignment, written {z;:¢;|i € m}.

—peS 4L f—T Vg is a store, where Vg is the set of closed values.
— X l:reft, I',z:t and p{l = v} denote extension/update of a signature, as-
signment and store respectively.

Type System. The type system of MiniML,f is given in Figure 1, and it enjoys
the following basic properties:

Lemma 1 (Weakening).

1. X;I'te:t, and x fresh imply X; I z:t1 F e:t,
2. X't ety andl fresh imply X, l:reft1;I" F e:t,

Lemma 2 (Substitution).
Yikep:t) and X5 x:t b eaity imply X5 T F exz:= eq]: ¢,

We say that a store p is well-formed for X' (and write X' |= p) &

dom(X) = dom(p) and X F v:t whenever u(l) = v and X'(I) = ref ¢.



Xix:ty Feity Yi'Feiti >ty XI'keaity

— I(x)=t
3, I'+x:t X T'E Azerts =ty 3Tk erea:ty
YiINx:the:t X, I'F e:nat
X I'Hfixz.e:t X, I' F z:nat Y, I' Fse:nat
YiI'Fenat X;I'kepi:t X;Ix:nathea:t YiI'ke:t
XY, I'k (caseeofz — e1 | sz —> e2):t XiI'Freferreft
XiI'Fe:reft YiI'kep:reft X;T'Fea:t
X(l) =reft
3, I'kle:t YiI'ker:=ea:reft X, T'Fl:reft

Fig. 1. Type System for MiniML.f

Operational Semantics. The operational semantics of MiniML,ef is given in
Figure 2. The semantics is non-deterministic because of the rule for evaluating
ref e. Evaluation of a term e € Ey with an initial store pg can lead to

— a result v and a new store p1, when we can derive pg,e < 1, v, or
— a run-time error, when we can derive pg, e < err.

Evaluation of a term may also lead to divergence, although a big-step operational
semantics can express this third possibility only indirectly. One would have to
adopt a reduction semantics (as advocated by [WF94]) to achieve a more ac-
curate classification of the possible computations. In our setting, Type Safety
means that evaluation of a well-typed program cannot lead to a run-time error,
namely

Theorem 1 (Safety). pg,e — d and Xy = po and Xo F e:t imply that there
exist 1 and v and Xy such that d = (p1,v) and Xo, X1 |E 1 and Xy, ¥4 b v:t.

3  MiniML™e

ref

This section describes the syntax, type system and operational semantics of
MiniML7f*, and establishes Type Safety. Types t, closed types ¢ and open types
o are defined as

teT::=clo

ceC:=nat|t—c]|[o]]|refc

0€0::=t— o] (t)

Intuitively, a term can be assigned a closed type ¢ only when its free variables are
useless. The set of MiniML™ terms is parametric in an infinite set of variables

z € X and an infinite set of locations [ € L

e€Ei:=x | z.e|eey |fixze|z|se| (caseeofz—e; | sz — eq) |
(e) | "e | rune | (letex =erines) | e |

refe|le|eii=ey |l



10, €1 <> [1, AT.e 1, €2 <> U2, V2 2, e[ = V2] <> ps, v

o, AZ.e < uo, Ax.e
Mo, e1€2 —> f13,V

10,€1 > 11,V E Ax.e po,e[x: = fixx.e] = p1,v

Ho,Z — [o,Z

o, €182 <> err Lo, fixz.e = pi,v
o, € — U1,V Mo, € = U1,Z 1,1 = U2,V
J0,S€ <> [41,SV Mo, (caseeof z —» e1 | s — e2) = pa2,v
Mo e <> p1,v £z |se 1o, € = 1,SU  p1,esr:=v] < p2,vo
lo, (caseeofz = e1 | sz — e3) <> err 1o, (caseeofz > e1 | ST — e2) <> pa, v2
WD IY g dom(u) A2EZEL =
1o, ref e = p {l = v}, 1 po,le = p1,v
po,e = p1,v 1 € dom(p1) po,e1 <> p1,l  pi,e2 <> po,v
po,le <> err po,e1:= ez < pa{l = v},
1o, e1 = p1,v Z 1 € dom(p1) soul > pio,

Mo, €e1:= ez — err

The rules for error propagation follow the ML-convention, i.e. for every normal eval-
. i, €i < Wit1,V; |1 €N
uation rule {i, e = pi, vi | } and every m € n one should add an error
Mo, € — Mn, U
{pi, i = pig1,vi | 1 €M} pm,em > err

Lo, e <> err

propagation rule

Fig. 2. Operational Semantics for MiniML,f

The second line lists the three multi-stage constructs of MetaML [TS97]: Brackets
(e) and Escape ~e are for building and splicing code, and Run is for executing
code. The second line lists also a let-binder (let.x = ejines) for variables of

closed type, and a binder Bullet e, which binds all the free variables of e, hence
FV(ee) =0, and (ee)[z: = e1] = ee.

Note 2. We will use the following notation and terminology (see also Note 1)

— w ranges over terms not of the form ee, while ow can be either w of ew.
~ oL Tisa signature (for locations only), written {l;: ref ¢;|i € m}.
- AxE (CxN) and I': X Lip (T x N) are type-and-level assignments, written
{z;:c;*|i € m} and {x;:t]*|i € m} respectively.
We use the following operations on type-and-level assignments:
{mi: t}]i € m}t™ 2 {z;:t?"|i € m} adds n to the level of the z;;
{z;: t1i]i € m}=" 4 {z;:t}"|In; <n Ai € m} removes the z; with level > n.
— I'yz:t"™ and A, z: ¢ denote the extension of type-and-level assignments.

Remark 1. The new binder Bullet ee serves many purposes, which the constant
fault of [CMTO0] can fulfill only in part (e.g. fault is not typable). Intuitively, ee
is like a closure (e, p), where p is the environment (explicit substitution) mapping
all variables to fault, and in addition it records that e should have a closed type.



XA Iz tt Fety

o A D) (z)=t" -
20T F it XA T Axeerty — t5
XA ety —»t5 XA TFext?! XA Lz:t"Fet”
XA T Ferea:ty XA I fixze:t™ X, A;TF z:nat”
X, AT F ernat™ XA I'Fenat” XA I'Fe:t™ XA INxinat™ Feait™
X Ay I'F se:nat”™ X3 AT F (caseeofz = e1 | sz — e2): t"
Xy A TFec” XA T'Eeirefc™ Xy A;TFerirefc® XA T ea:c
XA T Foreferref ™ XA T Fle:c” XA T ep:=eq:refc™
XA T Fe:tntl XA T F e ()™
X() =refe T
XA T ELref ™ XA T F(e): (t)" XA T et

AT Fe ()] ;A5 0keo™ I AT Feo]”

X3 Ay run e t™ XA T F e [o]™ XA e o™
XA TFer:e® XA x:c T e t™ Z;Af(n+1);Ff'(n+1)}-e:cn

XA T F (letex = erines): t™ XA T - ee:c™

Fig. 8. Type System for MiniML "

ref

The typing rule for Bullet, in combination with Type Safety (Theorem 2),
formalizes the property that in a term of closed type (at level n) all the free
variables (at level > n) are useless. In fact, during evaluation a variable bound
by Bullet (unlike variables captured by other binders) cannot get instantiated,
thus its occurrences must disappear before reaching level 0 (otherwise a run-time
error will occur).

The operational semantics of Figure 2 uses Bullet to prevent scope extrusion
when a location [ is initialized or assigned. In fact, what gets stored in [ is the
closed value ew, instead of the value w. Therefore, if a free variable in w was
is the scope of an enclosing binder, e.g. z in (Az.” (I: = w; {x))), it is caught by
Bullet, instead of becoming free.

Unlike locations (which exist only at execution time) and fault (which is not
typable), Bullet could be used in user-defined programs to record that a term has
a closed type. The operational semantics uses such information when evaluating
an application (if Az.e has a closed type, then e must have a closed type) and
a let-binder (the let must bind z to a term of closed type) for capturing free
variables. For instance, during evaluation of e(\x.e) v the free variables of v get
captured in e(e[z: = v]).

3.1 Type System

Figure 3 gives the type system of MiniML;". A typing judgement has the form
X, A T'Fe:t™, read “e has type t and level n under the assignment X; A; I'”. X
gives the type of locations which can be used in e, A and I' (must have disjoint
domains and) give the type and level of variables which may occur free in e.



Remark 2. All typing rules, except the last four, are borrowed from [CMT00].
The introduction and elimination rules for [o] say that [o0] is a sub-type of 0. The
rule for (let.z = e; inez) incorporates the typing rule (close*) of [CMT00]. The
rule for ee says that Bullet binds all the free variables in e. One can think of ee
as the closure (e, p), where p is the environment (explicit substitution) mapping
all variables to fault.

The type system enjoys the following basic properties (see also [CMT00]):
Lemma 3 (Weakening).

1. X5 AT ¢ e:th and x fresh imply X5 A; Iy z: 7 F e: t7
2. X, A; T F et and x fresh imply X5 Ay x:c; T F et}
3. X, A; T ety and |l fresh imply X l:vef er; A; T F ex th

Lemma 4 (Substitution).

1. D5 AT F er: 8 and X5 ATzt F ea: t imply X5 A; T F ez = eq]: 15
2. ;A5 0k er: e and X5 A, x: ¢ T F ea: 8 imply X5 AT & eoz: = eq]: 13

3.2 Operational Semantics

The operational semantics of MiniMLJs™ is given in Figure 4. The rules derive

evaluation judgements of the form pu,e & d, where p € S is a value store (see
below). In the rules v ranges over terms, but a posteriori one can show that
v ranges over values at level n (see below). We will show that evaluation of a
well-typed program cannot lead to a run-time error (Theorem 2).

Definition 1. The set V" C E of values at level n is defined by the BNF

vt EeVi=w" | ew"
w® e WO::=Aze |z |50 | (ub) |1
wrtl € Wt = g | Apo™tt | PPl | fixzont! |z | sont! |
(casev™tlof z = o7t | sz — vF ) | (0™F2) | run vt

(letox = v in vl th)

ref o+l | Tyt | ’l){l+1:= v?“ | 1

wn+2 € Wn+2+ — ~,Un+1

neES 4L VY is a value store, where V3 is the set of closed values at level

0. We write X = EN dom(X) = dom(p) and X;0 F v: ® whenever p(l) = v
and X (1) = ref c.

The following result establishes basic facts about the operational semantics,
similar to those established for MiniMLE}Y (see [CMTO00]).

ref

Lemma 5 (Values). pg,e & t1,v and po is value store imply py is a value
store, dom(pg) C dom(p1), v € V* and FV(v) C FV(e).



In the rules below ow is a meta-expression ranging over terms of the form w and ew.

Normal Evaluation
0 0 0
[0, €1 > U1, AT.€ 1, €2 > o, U2 2, e[T:= va] < uz,v

0
o, AZ.e < uo, Ax.e 5
Mo,e1€2 —> U3, v

0 0 0
Ko, €1 > fi1,8AT.€  p1,e2 < fi2,v2 2, e(e[z:=v2]) & ps3, v

0
Mo, T —> err o
Mo, €162 —> U3,V

0 . 0
o, €1 = p1,v Z oAz.e  po,e[r: = fixz.e] = p1,v 0
Mo, Z —> 10, Z

0 i 0
Lo, er1ea < err po, fixx.e = p1,v

0 0 0
Mo, € — [1,v Mo, € — [1,0Z  p1,e1 = p2,V1

0 0
1o,S€ < u1,sv  po,(caseeofz = ey | sz — e2) = p2,v1

0 0 0
Bo, e <> pi1,v 0z | osv Bo,€ < fi1,080 1, ez = ov] <> p2, vz

0 0
po, (caseeof z —»e1 | sz — e2) —err  po,(caseeofz > e1 | sz — e2) = p2,v2

0 0
0,€ — U1, 0w 0, — U1 ol
SAARALL L ¢ dom(uy) P25V )=
po,ref e = p1{l = ew},l 1o,le &= pi,v
0 0 0
e— ow e1 — ol ex — ow
fo.¢ 7 P70 51, w & dom(p1) roa 7 M 5 r.c2 2 B l € dom(p1)
Lo, e — err Lo, e1: = ez = pa{l = ew},l

0 1
Mo, e1 = p1, 0w Mo, € = p1,v

0 . o
w & dom(p1)  po,l < po,l 1o, ~€e <> err

0
po,e1:= ez < err ko, {e) = p1,{v)

0 0 0
NO,G‘—>H1;°(U) H1, ®U = p2, V0 /"‘016‘_),/’11U$0<61>

0 0
Mo, run e <= 2, vo Mo, run e <— err

0 0 n
Bo €1 = p1, 0w py,exfTi=ow] < piz,va po,e > py, 0w

. 0 n
1o, (letex = erinez) <= po, vo Lo, %€ <> i1, ow
Symbolic Evaluation

n+2 0 0
Mo, € = p1,v Mo, e = pu1,{v)  fo,e > p1, ®(ow)

n+1
o, <> fio, T n+l 1 1
po,{e) = p1,{v)  po,"e = p1,v  po, e > p1, 0w

0 n+1
po,e = p1,v ZEole')  po,e = p1,v

~ 1 ~ nt2 ~
Mo, e <> err Mo, € <= p1, v

In all other cases symbolic evaluation is applied to the immediate sub-terms from left
to right without changing level.

Error Propagation

The rules for error propagation follow the ML-convention (see Figure 2).

meta

Fig. 4. Operational Semantics for MiniMLg



Proof. By induction on the derivation of the evaluation judgement g, e & 1, 0.
Notice that in the rules evaluating ref e and e;: = e it is important that we store
ew, since w may have free variables.

The following lemma is used to prove type safety in the case for evaluating run e
at level 0 and “e at level 1. The result holds also for closed types of the form
nat and ref c.

Lemma 6 (Closedness). If X; AT 't ow®: [0]%, then FV (w®) = 0.
Proof. By induction on the derivation of X; A1 't - ow0: [0]°.

Evaluation of run e at level 0 requires to view a value v at level 1 as a term to be
evaluated at level 0. The following lemma says that this confusion in the levels
is compatible with the type system.

Lemma 7 (Demotion). X; A+l [+ | gntlogntl ymplies 375 A; T F o™ g,
Proof. By induction on the derivation of X; A+, 1 | yntl:gntl

The reflective nature of MiniMLjg¢™ is fully captured by the Demotion Lemma
and the following Promotion Lemma (which is not relevant to the proof of Type

Safety).
Lemma 8. X; A; ' F e:t" implies e € V™! and X; ATL T | et tl,

Finally, we establish the key result relating the type system to the operational
semantics. This result entails that evaluation of a well-typed program 0;0 I e: ¢°

. . 0 . .
cannot raise an error, i.e. §, e — err is not derivable.

Theorem 2 (Safety). pig,e <> d and Zo |= po and So; AT TH E e t™ imply
that there exist py and v™ and Xy such that d = (p1,v") and Xy, X1 = p1 and
Yo, D AL THL | gnegn,

Proof. By induction on the derivation of the evaluation judgement pg,e & d.

4 Conservative Extension Result

This section shows that MiniML{ee™ is a conservative extension of MiniML et w.r.t.

typing and operational semantics. When we need to distinguish the syntactic
categories of MiniML™ from those of MiniML,es we use a superscript ™% for
the formers, e.g. E™* denotes the set of MiniMLJe¢*® terms, while E denotes the
set of MiniML,es terms. We have the following inclusions between the syntactic

categories of the two languages:

Lemma 9. T C C™t gnd E C E™ gnd V C VO™,

Proof. Easy induction on the structure of t € T, e € E and v € V.



There are minor mismatches between the typing and evaluation judgements of
the two languages, thus we introduce three derived predicates, which simplify
the formulation of the conservative extension result:

— e:t, i.e. e is a program of type t;
— e |}, i.e. evaluation of e may lead to a value;
— e err, i.e. evaluation of e may lead to a run-time error.

The following table defines the three predicates in MiniML,ef and MiniML¢®:

ref

meta

predicate/meaning in MiniML,ef meaning in MiniML g

et |0;0Fe:t 0;0:0F e:t°
el |Fu,v.0,e= p,v E/L,v.(b,e&)u,v

0
elerr |D,e— err 0,e = err

The conservative extension result can be stated as follows (the rest of the section
establishes several facts, which combined together imply the desired result)

Theorem 3 (Conservative Extension). MiniML and MiniMLR%™ agree on

the validity of the assertions e:t, e | and e |} err, whenever e € E andt € T.

meta
ref >

A typing judgement X; I' F e: t for MiniML,f it is not appropriate for MiniML

because I': X L% T and e lack the level information. Therefore, we introduce the
following operation to turn a type assignment into a type-and-level assignment

{wi:tili € m}™ £ {a;:t7)i € m}
i.e. I'™ assigns level n to all variables declared in I'.
Proposition 1. X; T I e:t in MiniML,¢ implies X;0; T° F e:° in MiniMLjge™.

Proof. Easy induction on the derivation of X;I" - e: t.

An immediate consequence of Proposition 1 is that e:¢ in MiniML,es implies e: ¢

in MiniML}f®. For the converse, we need a translation from T™e to T.

Definition 2. The function ||| from T™% to T is defined as
A
Ilell S lol
&1 = 1l
meta

and it commutes with all other type-constructs of MiniMLg°. The extension to
signatures X is point-wise; |I'|(z) = |t| when I'(xz) = t™ and similarly for A.

Proposition 2. X A; I'F e:t™ implies | X|; |Al; || - e: |t|, provided e € E.

Proof. By induction on the derivation of X; A; I' F e: t™.



The operational semantics of MiniML]yt may introduce Bullet (e.g. when manip-

ulating the store), even when the evaluation starts in a configuration (u, e) with-

out occurrences of . Therefore, to relate the operational semantics of MiniMLjes™

and MiniML,¢f, we introduce a partial function on E™* which erases Bullet from
ec when FV(e) = .

Definition 3 (Erasure). The partial function || on E™* is defined as

|.e|é{|e| if FV(e) =0

undefined otherwise

meta

and it commutes with all other term-constructs of MiniML ¢

Lemma 10. The erasure enjoys the following properties:

— If Z; A; T+ e:t™ and |e] is defined, then X; A; T & |el: t™;
— if lea| = €} and |e1| = €} then |ez[z: = e1]| = ehfz: = e]].

Proof. The first part is by induction on the derivation of X; A; I' | e:t™; the
second is by induction on the structure of es.

Definition 4 (Bisimulation). The relation RC E™* x Eq is given by
eRe <2 FV(e) =0 and le| = €.
The relation is extended to stores p and configurations d as follows:
uRy N dom(p) = dom(p') and p(l) R p'(1) when 1 € dom(u);
dRd <& d=err=4d' or (d=(u,e) and d= (u',e') where uRpy' andeRe').

The following proposition says that R is a bisimulation between the operational

semantics of MiniMLye¢™® and MiniMLief.

Proposition 3. If u Ry’ and e R e, then

1. p,e & d implies there exist (unique) d' such that dR d' and p' e’ — d';
2. ' e — d implies there exist d such that d Rd' and p,e S d.

Proof. The first part is by induction on the derivation of u,e & d. The second
part is by lexicographic induction on the derivation of ', e’ — d’ and the number
of top-level Bullets in e (i.e. n such that e = &"w).

This implies the conservative extension result for the predicates e | and e | err.

5 Conclusions and Further Research

In this section we discuss possible improvements to the type system and varia-

tions to the syntax and operational semantics of MiniML "



Sub-typing. In MiniML[f* sub-typing arises naturally, e.g. one expects [0] < o
for any open type o € O.

AT et}

"~ #; <ty to MiniMLTE®,
;A ety t=" ref
it is better to adopt a more general syntax for types ¢ and closed types ¢

Before adding a sub-sumption rule

teT::=nat |ty =ty | refc| (t) | [t]
ceCi:=nat|t; = cy | refc| [t]

and let the sub-typing rule derive [¢] = ¢. One expects the usual sub-typing rules
for functional and references types, and it seems natural to require the Code and
Closed type constructors to be covariant, i.e.
<t th<t, d<c e<d t<t t<¢
t1 ot <t o th refe<refd (@) <) [t] <[]

while sub-typing axioms, which generate non trivial relations, are
fl<t  c<] [a—-t]<[]—>[] (O] <)
From the sub-typing axioms and rules above one can derive the following facts:

— t < ¢ implies t € C, by induction on the derivation of ¢t < ¢;
— [e] = ¢ and ¢ — [t] = [¢ — t], while the following sub-typing are strict
[(B)] < (t) and [(t1)] = [(t2)] < [(t) = (t2)]-

We plan to investigate the addition of sub-typing and its effects on type safety.

Useless-variable annotation. The binder ee of MiniML® takes an all or

nothing approach. One could provide a more fine-grained annotation (x)e, which
allows to name a useless variable. The typing rules for (z)e are the obvious one:
XA Lx:t™ b e c™ XA x:t™; IT'F e

>
XA T F (z)e:c™ men XA T F (z)e:c™ men

One can define the derived notation (X)e, where X is a finite set/sequence of
variables, by induction on the cardinality of X: (0)e = e, (z,X)e = (z)(X)e. One

might identify ee with & = (X)e, where X = FV(e). However, at the operational
level such identification is not right. In fact, the rule

0 0 0
o, €1 = fi1, 0AT.€  p1,ex > p2,v2  fin, o(e[zi = va]) < pg,v

0
Ho, €1 €2 — U3, v

is not an instance of

0 0 0
pore1 = pu1, (X)Aze  pi ez = po,va o, (X)e)[2: = vo] = ps,v

0
Mo, €1 €2 — U3,V



since the free variables in vy are bound by e_, but not by (X)_. This seems to
suggest that one might want to maintain ee even in the presence of (z)e. On
the other hand, the conservative extension of MiniML,e into MiniMLIe™ seems
to become simpler if we use (z)e (and a suitable adaptation of the operational

semantics) instead of ee.

Acknowledgements

We would like to thank the anonymous referees for their valuable comments
(any failure to fully exploit them is our fault). This paper would not have been
conceived without the previous work in collaboration with Zino Benaissa, Tim
Sheard and Walid Taha, who have introduced us to the challenges of multi-stage
programming. Finally, we would like to thank Tim Sheard for his stimulating
criticisms on previous attempts, and Walid Taha for many discussions.

References

[B9I7] Zine El-Abidine Benaissa Explicit Substitution Calculi as a Foundation of
Functional Programming Languages Implementations Phd thesis, INRIA,
1997.

[BMTS99] Zine El-Abidine Benaissa, Eugenio Moggi, Walid Taha, and Tim Sheard.
Logical modalities and multi-stage programming. In Federated Logic Con-
ference (FLoC) Satellite Workshop on Intuitionistic Modal Logics and Ap-
plications (IMLA), July 1999.

[CDDK86] Dominique Clement, Joelle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A simple applicative language: Mini-ML. In Proceedings of the 1986
ACM Conference on Lisp and Functional Programming, pages 13-27. ACM,
ACM, August 1986.

[CMTO00] Cristiano Calcagno, Eugenio Moggi, Walid Taha. Closed Types as a Simple
Approach to Safe Imperative Multi-Stage Programming. In Proceedings of
ICALP 2000, volume 1853 of LNCS, pages 25-36, Springer, 2000.

[Dav96] Rowan Davies. A temporal-logic approach to binding-time analysis. In
Proceedings, 11*" Annual IEEE Symposium on Logic in Computer Science,
pages 184-195, New Brunswick, July 1996. IEEE Computer Society Press.

[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged computation.
In 238rd Annual ACM Symposium on Principles of Programming Languages
(POPL’96), pages 258-270, St. Petersburg Beach, January 1996.

[LM99]  Jean-Jacques Levy and Luc Maranget. Explicit Substitutions and Program-
ming Languages. In 19th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), Chennai, India, December
1999.

[Met00] The MetaML Home Page, 2000. Provides source code and documentation
online at http://www.cse.ogi.edu/PacSoft/projects/metaml/.

[MTBS99] Eugenio Moggi, Walid Taha, Zine El-Abidine Benaissa, and Tim Sheard.
An idealized MetaML: Simpler, and more expressive. In European Sympo-
stum on Programming (ESOP), volume 1576 of Lecture Notes in Computer
Science, pages 193-207. Springer-Verlag, 1999.



[Tah99]

[TBS98]

[TS97]

[TS00]

[WS99]

[WF94]

Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Institute of Science and Technology, July 1999.
Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage pro-
gramming: Axiomatization and type-safety. In 25th International Collo-
quium on Automata, Languages, and Programming, volume 1443 of Lecture
Notes in Computer Science, pages 918-929, Aalborg, July 1998.

Walid Taha and Tim Sheard. Multi-stage programming with explicit an-
notations. In Proceedings of the ACM-SIGPLAN Symposium on Partial
Evaluation and semantic based program manipulations PEPM’97, Amster-
dam, pages 203-217. ACM, 1997.

Walid Taha and Tim Sheard. MetaML: Multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1-2), 2000.
Mitchell Wand, Igor Siveroni. Constraint Systems for Useless Variable Elim-
ination. In Proceedings of 26th ACM Symposium on Principles of Program-
ming Languages (POPL), pages 291-302, 1999.

Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type
Soundness. Information and Computation, 115(1):38-94, 1994.



XA I'Fenat” XA T'Fer:t™ XA zinat™; I'F e t™
X A;IT'F (caseeof z = e1 | sx — e2):t"

(case™®)

T AS P b et XA T Fe: ] XA ztt; I'Eoeatth
XA, T F [e]: [¢]™ XA T F (let [x] = e1 ine2): th
I AS it 0 b et AT Fe:c”

fix* lose*) ——————
(Bx*) X, AT Ffixz.e: t™ (close™) Xy AT F [e]: [e]”

BN
I-ref

Fig. 5. Type System for MiniM

A MiniMLBN

ref

This section recalls the syntax and type system of MiniML?e'f\', to help in a com-
parison with MiniML™$_ The types ¢ and closed types ¢ of MiniMLEY are defined
as

teTii=c|t1 = ta | () c€Ci:=nat | [t] | refc
Remark 3. Function types are never closed, the types [c] and ¢ are not identified.

The set of MiniMLEY terms is defined as

e€E:=z | z.e|e e |fixxe|z|se]| (caseeofz e |sz—er) |
(e) | "e | rune | [e] | (let [z] = €1 ine3) |
refe | le| e;:=ey | 1| fault

Remark 4. The constant fault leads to a run-time error when evaluated at level
0, and evaluates to itself at higher levels. Operationally, fault is equivalent to the
MiniMLje¢* term ez. There is an explicit closed construct [e], and one let-binder
(Iet [.’L’] =e1 in 62).

Figure 5 summarizes the typing rules of MiniML,I?'el;I which differ from those of

MiniMLy¢®. The main differences are:

— (case*) corresponds to declare the bound variable in A, instead of I', and is
only used to simplify the translation of MiniML,ef in MiniMLi’}'.

— (close*) is necessary because there is no identification of [¢] with c.

— (fix*) can type recursive definitions (e.g. of closed functions) that are not

typable with (fix). For instance, from 0; f':[t1 — t2]™, z:t} + e:t} one
cannot derive fix f'.[Az.€]:[t1 — t2]", while the following modified term
fix f'.(let [f] = f' in [Az.e[f':= [f]]]) has the right type, but the wrong
behavior (it diverges!). The rule (fix*) allows to type [fix f.Az.e[f': = [f]]],
which has the desired operational behavior.
In MiniMLE™ the (fix*) rule is not necessary: assuming a unit type (), one
could write the term fix f'.(let.f = A().f"inAz.e[f":= f()]) which has the
desired type and does not diverge; this term is not typable in MiniMLEe';I
because f:() — (t1 — t2) would not have a closed type.



