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Abstract. Most foundational models for global computing have focused
on the spatial dimension of computations, however global computing re-
quires also new ways of thinking about the temporal dimension. In par-
ticular, with no central control and the need to operate with incomplete
information there is a compelling need to interleave meta-programming
activities (like assembly and linking of code fragments), security checks
(like type-checking at administrative boundaries) and normal computa-
tional activities. METAKLAIM is a case study in modeling both spatial
and temporal aspects of computing by integrating METAML (an exten-
sion of SML for multi-stage programming) and KrLaiM (a Kernel Lan-
guage for Agents Interaction and Mobility). The staging annotations of
METAML provide a fine-grain control of the temporal aspects, while
KrAim allows to model and program the spatial aspects of distributed
concurrent applications. Our approach for combining these aspects is
quite general and should be applicable to other languages/systems for
network programming.

1 Introduction

The distributed software architecture (model) which underpins most of the wide
area network (WAN) applications typically consists of a large number of het-
erogeneous computational entities (sometimes referred to as nodes or sites of
the network) where components of applications are executed. The various nodes
are handled by different authorities having different administrative policies and
security requirements. Components of WAN applications are characterized by
an highly dynamic behaviour. For instance, a component which acts as a server
may become later a client asking for services to other components. Moreover,
components have to deal with the unpredictable changes over time of the net-
work environment (changes due to the availability of network connectivity, lack
of services, node failures, network reconfiguration, and so on). Finally, nomadic
or mobile components may detach from a node and re-attach later on a different
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node. Hence, components must be designed to support heterogeneity and inter-
operability. Differently from traditional middle-wares for distributed program-
ming, the structure of the underlying network is made manifest to programmers
of WAN applications. We refer to Fuggetta, Picco and Vigna [16] and to Cardelli
[5] for a comprehensive analysis of this issue.

The problems associated with the development of WAN applications has
prompted the study of the foundations of programming languages with advanced
features including mechanisms for agent mobility, for managing security, and for
coordinating and monitoring the use of resources. Several foundational calculi
have been proposed to tackle most of the phenomena related to WAN program-
ming. We mention the Distributed Join-calculus [17], Klaim [9], the Distributed
m-calculus [21], the Ambient calculus [3], the Seal calculus [34], and Nomadic
Pict [30]. All these foundational models encompass a notion of location to re-
flect the idea of administrative domains, and computations at a certain location
are under the control of a specific authority. In other words, they focus on the
spatial dimension of WAN programming?.

Another crucial aspect of WAN programming concerns the temporal dimen-
sion: the run-time system may interleave computational activities with struc-
turing activities (e.g. the dynamic assembling of components). Components of
WAN applications are often developed and maintained by different providers and
may be downloaded on demand. Dynamic linking and dynamic enforcement of
security checks (e.g. authentication and access control) increase the flexibility of
WAN applications since it makes possible to reconfigure the application without
having to restart the application. Several papers have addressed the problem
of formally understanding dynamic linking (and separate compilation) [2, 13, 23,
29]; other approaches have tackled the problems of security in systems of mobile
agents (see e.g. [12,20,22] and the references therein).

Hence, the spatial and the temporal dimension of WAN programming have
been studied at considerable depth but in isolation and their interplay has not yet
properly formalized and understood. This paper attempts to develop a founda-
tional model which integrates together both the spatial and the temporal aspects
of WAN programming. We have abstracted the basic feature of the problem in
a calculus having primitives for programming agents which may migrate among
sites, and primitives which support fine-grain control of dynamic linking and
security checks.

Our calculus builds on the Kramv language [9] and the MetaML functional
language. The language KrLAM (Kernel Language for Agents Interaction and
Mobility) is an experimental programming language, inspired by the Linda co-
ordination model [19, 6], specifically designed to model and to program WAN ap-
plications by exploiting mobility. KLAIM provides direct support for expressing
and enforcing access control policies to resources and for authorizing migration
and execution of mobile processes [12,11]. METAML [25] supports most fea-
tures of SML and meta-programming constructs. Meta-programming provides
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an ideal tool for describing customization and combination of software compo-
nents. In other words, METAML enables programming of a variety of structural
re-arrangements of code directly since the meta-programming constructs have
the same status of the other programming constructs.

Sections 2 and 3 give an high-level overview of METAML and HOTKLAIM (a
higher-order variant of KLAIM) introduced in Ferrari, Moggi and Pugliese [15].
Section 4 describes the formal development of METAKLAIM, a core language that
integrates the meta-programming features of METAML with the programming
constructs of KLAIM, and discusses how METAKLAIM may handle some of the
most relevant issues raised by global computing. Section 5 gives few programming
examples particularly relevant in a global computing scenario.

2 MetaML

METAML [25] is a substantial language, supporting most features of SML and
a host of meta-programming constructs. In the current public release, safety is
guaranteed only for programs in the pure fragment. Most of the theoretical work
has gone into establishing type safety for larger subsets of the language. The key
idea in multi-stage programming is the use of annotations to allow the pro-
grammer to breakdown the cost of a computation into distinct stages. METAML
provides a type constructor (_) for code fragments with potentially unresolved
links (represented by dynamic variables), and three basic staging annotations:
Brackets (_), Escape ~ _ and Run run _. Brackets defers the computation of
its argument (constructing code instead); Escape splices its code argument into
the body of surrounding Brackets (combining code fragments into a larger frag-
ment); and Run executes its code argument. The following examples illustrate
more concretely how the staging annotation affects evaluation:

-] val a = <1>;

val a = <1> : <int>
-] val b = <Ta+"a>;
val b = <1+1> : <int>
-] val ¢ = run b;

val ¢ = 2 : int

A distinguished feature of multi-stage (and multi-level) languages is the ability to
“evaluate under a dynamic binder”, and to manipulate values with free “dynamic
variables” at run-time. For instance:

-| fun double x = <“x+7x>;

val double = fn ... : <int> -> <int>

-| val f = <fn x => ~“(double <x+1>)>;

val f = <fn x => (x+1)+(x+1)> : <int -> int>

the value <x+1> has a dynamic variable x free, and evaluation of double <x+1>is
performed within the scope of a dynamic binder <fn x =>...>. Having values
with free dynamic variables complicates the typing of run and of the three



operations on references. In fact, the naive typing of such operations does not
ensure type safety, as the following examples show:

-] <fn x => “(run <x>;<x+1>)>;

(* x is an unresolved link, thus one cannot execute x *)

-] val 1 = ref <1>;

val 1 = ... : <int> ref;

-| val f = <fn x => “(1:=<x>;<x+1>)>;

val f = <fn x => x+1> : <int -> int>

(* 1 contains <x>, so x is outside the scope of its binder *)

One of our starting points for designing METAKLAIM is the work by Calcagno,
Moggi, Sheard and Taha [1], which exploits closed types to ensure type safety of
METAML’s staging annotations and cross-stage persistence in the presence of
SML-style references. In fact, the authors conjecture that closed types provide
a general solution for safely adding multi-stage programming constructs in the
presence of computational effects. The key property of a term e of closed type is
that “all free occurrences in e of dynamic variables are dead code”, and therefore
they can be ignored. The closed type constructor [], first introduced in Moggi,
Taha, Benaissa and Sheard [26] for typing Run, maps a type t to the biggest
closed type [t] included in ¢.

Note 1. Hereafter, we use the following notations and conventions:

— Term equivalence, written =, is a-conversion. FV(e) is the set of variables
free in e. If E is a set of terms, then Eq indicates the set of terms in E without
free variables. Substitution of e; for x in ey (modulo =) is written eq[z := e1].

— m,n range over the set N of natural numbers, and m € N is identified with
the set of its predecessors.

— € denotes a sequence of terms and |e] indicates the number of its elements.

- f: A I B means that f is a partial function from A to B with a finite
domain, written dom(f).

— u(A) is the set of multisets with elements in A, and & denotes multiset union.

— Given an declaration of a grammar such as e := Py | ... | P, we write
e+ =Punt1| ... | Putn as a shorthand fore:= Py | ... | Pptn-

Figure 1 summarizes the syntax of terms, types and closed types for the
fragment of METAML considered in Calcagno, Moggi, Sheard and Taha [1].
Variables = range over an infinite set X (and locations [ over an infinite set L).

The type system of METAML uses judgments of the form A; ' -, e : t, read

“e has type t at level n”, where A : X fin (CxN)and I' : X fin (T x N) are
type-and-level assignments. The level information is typical of type systems for
multi-level languages (like A© of Davies [7]), in this context dynamic variables
correspond to variables declared at level > 0. The splitting of type-and-level
assignments in two parts (A and I') is borrowed from A\J [8], and is needed for
typing terms of type [t]. More formally, the difference between a declaration in



— Terms e€ E:=x | Ax.e | ere2 | let x = e1 in ez | fix z.e functional fragment

| U] ref(e) | get(e) | set(er,e2) references
| (e) | "e | %e | run(e) meta-programming
| (z)e dead-code annotation

Bind (x)e declares that the free occurrences of z in e are dead code. Bind is used
in the operational semantics for handling scope extrusion.
— Types t € Tu= ... |ty — ta | [t] | ref ¢ | (t)
Closed types c€ Cu=... |t1 —ca | [t] | ref ¢
where ... stands for some unspecified base types, e.g. int.

Fig. 1. Syntax of METAML types and terms

A and the same declaration in I" is expressed by the following substitution rules:

AT b ep ity XiAS Ok e e
XA Lx t7 by et to PIVAN RN B D 2
XA T by ealzi=e1] : g YA Ty, eazi=e1] ity

Figure 2 recalls the typing rules for the pure fragment, in particular:

— %e allows to use at higher levels a value defined at level n, this feature is
called cross-stage persistence;

— run(e) allows to execute the complete program (i.e. without unresolved links)
represented by e. Since run(e) is at the same the level of e, one could con-
sidered run as a constant of type [(t)] — [t].

Given that one allows only references to values of a closed type, the three SML
operations on references have the expected types, namely:

ref :c—ref c get :ref ¢ — ¢ set :ref c — c — ref ¢

Calcagno, Moggi, Sheard and Taha [1] adopt a small-step operational seman-
tics, which eases the transfer of definitions and results to a concurrent setting.

More precisely, there are transition relations e s e , one for each level, defined

in terms of evaluation contexts [35] and two reductions — >, one at level 0
(normal evaluation) and the other at level 1 (symbolic evaluation):

r % e
EP[r] > EI'[¢/]

E7 evaluation context at level n with hole at level ¢

. . . . 0 .
In fact, one is only interested in transitions e ——= €, where e is closed. How-
ever, the ability to evaluate under dynamic binders means that a redex r could
have free dynamic variables even when E'[r] is closed. The following are the



VAV B RN A R

0 (A () =t"
PAR BN o e ATy Axee ity — to
ATy er:t1 — to A;NFper:a
ATy ea:tr Ax:c Ty et ALttt et
A; Ty, eres : to ATy letx =erines: to A;TEy fixxe: t
A;Tbpyr et AT Hy e (8) A;Tbp et ATy et [(8)]
A; T, (e) : (t) Al bpq Tect AT Fpyy %e: t AT Fprune: [t
A lEp et fresh At Fpe:c S Ax:cTFpe:c S
———— 1z fres
A;FI—n(ac)e:tx AT Hy, (T)e:c e ATy, (e c e

A;TMbFpe:c A0k, et AT By e [t
ATy et ] AT Fp e [t AT'Fpe:t

Fig. 2. Type System for the pure fragment of METAML.

reductions for the pure fragment

(X)Az.e) ° s (X)e)z =" fixz.e N elx := fix x.€]
let 2 =10 ine —> e[z := o’] run((X)(v!)) LN (X)v! 1o

"(X)h) — (X)o!

where (X)e is iterated Bind, ee is the Bind-closure of e (i.e. all free variables in
e get bound by Bind in ee), v"*1 |,, is a Demotion operation which turns values
at level n + 1 into terms, and v™ ranges over the set V" C E of values at level n

0 eVYi=1|Az.e| ()| (z)0°
it e vt =

In the reduction let z = v° in e —> e[z := ov"] we substitute = with ev° rather
than v°. This can be done because the type of v* must be closed, and so all
dynamic variables in v" are dead code. For the same reason, the reductions for
ref(v®) and set((X)l,v°), which are the redexes that cause an update of the
store, write to the store ev” rather than v°. In this way one ensures that the
store contains only closed values, and that any free dynamic variable in v°, that
would go outside the scope of its dynamic binder, is re-bound by Bind.

3 Klaim

We now briefly reviews the main features of KLAIM by presenting a variant, called
HoTKrAM (for Higher-order typed KLAIM), which is more suitable for integra-



— Types t € Tu=L | t1 — t2 | (L]t € m) (m > 0)
— Terms e € E::=z | (mr;i]i €n) | erez | fix z.e functional fragment (n > 0)
| (eliem) | 1] op(@) (m > 0) and (e| = #op)
where op ranges over a set Op = {nil, new, spawn, input, read, output} of primitive
operations. The arities of these operations are: #nil = 0, #new = #spawn = 1
and #input = #read = Foutput = 2.
Patterns p € P =zt | e | (pi]i € m) (m > 0)
Match Rules mr ::= p=-e
— Values v € V=1 | (vmri|i € n) | (vili € m) (n >0 and m > 0)
Evaluated Patterns vp € VP ::= 2!t | v | (vpi|i € m) (m > 0)
Evaluated Match Rules vmr ::= vp=-e

Fig. 3. Syntax of HOTKLAIM types, terms and values

tion with METAMUL. Figure 3 summarizes the syntax of HOTKLAIM terms, which
extends that of a core functional language with pattern matching?.

The KLAIM programming paradigm identifies processes as the primary units
of computation, and nets, i.e. collections of nodes, as the coordinators of process
activities. Fach node has an address, called locality, and consists of a process
component and a tuple space (TS), i.e. a multi-set of tuples. Processes are dis-
tributed over nodes and communicate asynchronously via TSs. The types of
HoTKLAIM include the type L of localities and tuple types (¢;|¢ € m).

— nil is the deadlock process, while spawn(e) activates a process in a parallel
thread. These operations have type nil : t and spawn : (() — t) — ()
respectively.

— output(l,v) adds v to the TS at I (output is non-blocking). The type of output
is (L,t) — ().

— input(l, (vp;=-e;]i € m)) and read(l, (vp;=-e;|i € m)) access the TS located
at l. input checks each value pattern vp; and looks in the TS at [ for a
matching v. If such a v exists, it is removed from the TS, and the variables
declared in the matching pattern vp; (i.e. those indicated by z!t) are replaced
within e; by the corresponding values in v. If no matching tuple is found, the
operation is suspended until one becomes available (thus input is a blocking
operation). read differs from input only in that the matching v is not removed
from the TS. The type of input and read is (L,t; — t2) — to. These are the
only operations using dynamic type-checking (namely a matching v must be
consistent with the types attached to variables declared in a pattern).

— new(e) creates a new locality [, activates process e [ at [, and returns the
new locality. Therefore, the type of new is (L — t) — L.

In KrLAIM there is also an operation eval(l,e) for process mobility, which
activates a process at locality [. The operation eval has not been included in
HoTKrLAIM. In fact, eval relies on dynamic scoping (a potentially dangerous

2 The patterns are more general than those of SML, namely they include terms (that
should evaluate to a locality).



mechanism), which is not available in HOTKLAIM, since in a functional language
one can use (the safer mechanism of) parameterization. Moreover, the form of
mobility underlying eval is “asynchronous”, i.e. it involves only the sending node,
this can be a source of security problems, because the target node has no con-
trol over the incoming processes. HOTKLAIM allows only “synchronous” process
mobility. More precisely, a (sending) node can output a process abstraction in
any TS, but the abstraction can become an active process only if (a process at)
another (receiving) node does input/read it. Without eval, remote communi-
cation between nodes, like that provided by KLAIM primitives, is essential to
implement mobility.

A HOTKLAIM net N € Net 2 (L x Eg) is a multi-set of pairs consisting
of a locality | (node name) and a term e (either a process running under the
authority of that node or a value in the TS of that node). The dynamics of a
net is given by a relation N === N’ defined in terms of transition relations

e —> ¢ for terms, where a ranges over the set of potential interactions
acAu=1]l:e]|s(e)]|i(v)Ql]|r(v)Ql | o(v)al

For instance, ¢(v)@I is the capability of inputing a value v from the TS at I, while
[ : e is the (non-blocking) action of creating a new locality [ running process e.

The transitions relation ——> is defined in terms of evaluation contexts and a
. . a . . .
corresponding reduction ——= . The following is a sample of the reductions
(vpi=eili € n) v —> e;lpl if j € n and match(vpj,v) = p
and Vi < j.match(pv;,v) = fail

(vpi=eili € n) v —> fail it Vi € n.match(pv;,v) = fail

input(l, (vp;=-e;li € n)) QLS ejlp] if j € n and matchi(vpj,v) = p

and Vi < j.match,(pv;,v) = fail

o(v)@l

output(l,v) ——= () spawn(v) lt) O tv d

new(v) —> 1

the functions match(vp, v) and matchy(vp,v) check the value v against the value
pattern vp, and either return the matching substitution (if it exists) or fail, e.g.
match(v,v’) = 0 if v = v/ € L, otherwise fail. The function match; does in
addition dynamic type-checking, i.e. match;(x!t,v) = [z := v] when @ - v : ¢,
otherwise fail.

4 MetaKlaim: a Proposal

This Section describes METAKLAIM, which integrates the meta-programming
features of METAML with HOTKLAIM. The integration of types and terms is
straightforward (see Figure 4). The typing judgments are those of METAML, and
the type system extends that for the pure fragment of METAML (see Figure 2).
The most critical design choice concerns the operational semantics:



— One choice is to have a sharp separation between symbolic evaluation and
process interaction, namely to forbid process interaction during symbolic
evaluation (i.e. within the scope of a dynamic binder).

— The other choice is to allow arbitrary interleaving of symbolic evaluation and
process interaction.

We have opted for the second choice, since it offers a higher degree of flexibility,
but one must be careful in typing the primitive operations op € Op, in order
to prevent scope extrusion when process interaction occurs within the scope of
a dynamic binder. The solution is similar to that for the SML operations on
references, in certain cases one must use closed types instead of arbitrary types:

nil : t new: (L —c¢)— L spawn : (() — ¢) — ()
input,read : (Lyc —t) —t output : (L,c) — ()

The transition relations e ——> ¢’ are defined in terms of evaluatiOIll contexts
(see Figure 5) and reductions 70 —=> ¢’ (for interactions) and r' —= e’ (for
symbolic evaluation), namely

7“0 a; e 7,1 1; e
E3[r’] v Eple] E}[r] v Eple]

In fact, for defining the dynamics of a net only transition relations > with
n = 0 are needed.
The reductions for the primitive operations op(e) have to be modified as
follows in order to prevent scope extrusion:
. . i(v9)al .
input(l, (vp)=-e;li € n)) —— e;lp] if j € n and matchy(vp9,v°) = p
and Vi < j.matchy(pv?,0°) = fail

o(ev®)@l l:e0° 1

output(l,v°) ———= () spawn(v°) M 0 new(v?) —= 1

The definition of net is like in HOTKLAIM, i.e. a multi-set N € Net 2 u(LxEp)
of pairs. The following is a sample of the net transition rules

i(v)Qly,0
e (v)@ly, o

Nu((ly:e)d(ly:v) == NW(ly:e)d(ly:nil)
o(v)@lz,0

er——>¢
Nu((ly:e)== NW(l1:€e)d(lz:v)

la:ez,0

6}%61
Ny((ly:e)== NW(l1:e1)W(la:e2)

ls € L(N) U {ll}

lo ¢ LIN)U{l1}

where L(N) = {l|3e.(l: e) € N} Cy4y L is the set of nodes in the net N. We say

that a net NV is well-formed <25 for every (I :e) € Nexistsc € Cs.t. ;0 Fge:c
and all localities occurring in e are in L(N), i.e. are nodes of the net.



— Types t e Tu=L | t1 —t2 | (LJi €m) | [t] | {¢t) (m >0)
Closed types c€ Cu:=L | t1 — c2 | (ci]i € m) | [t] (m > 0)
— Terms e c Ex=z | (mrili €n) | etex |letz =erines | fixze (n>0)
| (eili em) | 1] op(e) (le| = #op and m > 0)
| (e) | "e | %e | run(e) | (z)e
Patterns p € P =zt | e | (pi|i € m) (m > 0)
Match Rules mr ::= p=-e
— Values v" € V" C E at level n € N

W0 =1 (vmrdli € n) | (W2]i € m) | (v') | (x)0°
o= | (omr T € n) [P T gt | let o = ot inod T | fix zon !
| (pTli € m) [ 1] op(@" ")
| @) | o™ | run(u™t) | (@)
Un+2+ — ~Un+1

Evaluated Patterns vp™ € VP := z!t | v" | (vpl'|i € m)

Evaluated Match Rules  vmr? ::= vp’=e

vmr'n+1 - n+1

opHl=yntl

Fig. 4. Syntax of METAKLAIM types, terms and values

We expect that the two main results established in Calcagno, Moggi, Sheard
and Taha [1], namely type safety for METAML and that METAML is a conser-
vative extension of SML, extend smoothly to METAKLAIM. In particular, we
have:

Theorem 1 (Type Safety). If N is a well-formed net, then

- N == err
— N == N’ implies that N’ is well-formed and L(N) C L(N').

4.1 MetaKlaim and Global Computing

Global computing demands programming applications with different degrees of
computational requirements and specific restrictions over resources. At the pro-
gramming level, what is needed are constructs which permit programming and
deploying a variety of computational policies to respond to the evolving de-
mands of the run-time environment. In this paper, we outlined the development
of METAKLAIM a basic core language for programming the temporal and spatial
dimensions of global computing. The possibility of interaleaving metaprogram-
ming activities with computational activities gives to METAKLAIM programmers
the ability of programming policies without requiring a deep knowledge of the
underlying system infrastructure. Indeed, the ability of directly accessing code
fragments provides a high flexibility. For instance, one can program policies that
constraint resource usages without rewriting the code of resource libraries. More-
over, platform independent code transformations can be programmed as well.



— Redexes r’ € R” at level i € {0,1}
0= | v}l |fixz.e|letz =12"Ine
| op(@°) op # nil and |[7°] = #op
| “e|runv® | %e

rloo= "0
— Evaluation Contexts E]' € EC} at level n € N with hole at level ¢ € {0,1}
E} ::= (vmr", Ep;=e,mF) | Ef'e | vV"E} | letx = Ej ine
| (@", Eie) | op(v", E';e) 0"+ 1+ [e] = #op
| (B | run B | (2) B
EM 4 = (omr T op" M = BT mr) | let = o™ in BT | fix 2 EPTY
| “Ef | RE}!
Bi+ =]
Evaluation Contexts for patterns Ep; ::= Ej* | (vp", Ep},D)
— Interactions a € A:=7|1:e| s(e) | i(v°)@l | r(v°)Ql | o(v®)@I
with FV(e) = FV(2°) = 0

Fig. 5. METAKLAIM’s redexes and evaluation contexts

There are several aspects, that are very important for global computing,
which are not adequately handled in this preliminary proposal, e.g. genericity of
SW components and security for systems of mobile components.

Genericity. In a global computing scenario most SW components available on
the network are expected to be highly parameterized. Functional abstraction is
not enough to express the desirable forms of parameterization. Also a limited
form of polymorphism, like that supported by SML, appears inadequate. For
instance, the full power of system F [18] is needed for expressing the type of
mobile process abstractions used in the more sophisticated implementations of
the nomadic data collector as we will briefly discuss in Section 5.

Security. The dynamic type-checking performed by the input and read primi-
tives of KLAIM provide a simple and effective mechanism to ensure that a value
fetched from a TS meets certain requirements. However, the expressiveness of
this mechanism is directly related to the expressiveness of the type system.
For instance, one would like to check that a process abstraction fetched from
a TS does not perform unwanted interactions (e.g. communication with a cer-
tain locality) or meta-programming activities (e.g. symbolic evaluation or code
execution). We believe that a promising approach is to adopt a type-and-effect
system [32,33,27].

5 Examples

We have already pointed out components available on the network are expected
to be highly parameterized, in order to accommodate a multiplicity of applica-



tions and to adapt to a variety of platforms and environments. A way to rec-
oncile genericity and efficiency is to use generative components, which embody
a method for constructing efficient object-code, once most of the parameters
for the component have been fixed. Kamin, Callahan and Clausen [24] give nu-
merous examples of components for generating object-code (for instance Java).
These components are described as higher-order macros in a functional meta-
language with Bracket and Escape constructs similar to those of METAML. We
give two specific examples, a linker and a nomadic data collector, that make use
of the process operations of HOTKLAIM and exemplify the additional advantages
of METAKLAIM over HOTKLAIM.

5.1 Dynamic Linking and Loading

In global computing programming one important issue is the ability to control
the loading policy of SW components. For instance, the JVM supports dynamic
linking and loading of classes [28, 14]. In some cases (localities with good connec-
tivity or thrusted localities) one wants to load components just-when-needed, in
other cases one may prefer to fetch in advance all components requested by a
certain application. The naive solution is to parameterized applications w.r.t. a
linker, and call the linker whenever a component (or service) is needed. This does
not ensure enough flexibility, a better approach is to define a generative compo-
nent parameterized w.r.t. a meta-linker. The meta-linker can decide whether to
load a requested component at code-generation-time or to postpone the loading
at run-time, namely by generating code for a call to the naive linker.

In the following example we assume that an application is parameterized
w.r.t. a linker, which given a name of a service either succeeds in establishing a
connection between the service and the application by returning an authorization
key, or raises an exception. We are not interested in the details of the linker, but
an abstract behavior could be: check whether the service (or its proxy) is present
locally, if not search for it remotely and copy it locally (or create a proxy). We
make use of the following types:

L localities

Proc processes (* e.g. the datatype with no values *)
Name service names

Key authorization keys

(* parameterized applications *)

Linker = Name -> Key (* linkers *)

App = Linker -> Proc

(* parameterized application code *)

MLinker = Name -> <Key> (* meta-linkers *)
CApp = MLinker -> <Proc>

The following process fetches applications from the local tuple place and
execute them by passing a linker

execute (self:L, linker:Linker): Proc =
fix exec:Proc. input(self, fn x!App => spawn(x linker, exec))



If during execution the application calls the linker 1link n and the linker
fails to make a connection to the service named n, then an exception is raised
(and the application stops). The following process works similarly, but fetches
application code and use a meta-linker:

Mexecute (self:L, mlinker:MLinker): Proc =
fix exec: Proc.
input (self, fn x![CApp] => spawn(run(x Mlinker), exec))

An invocation of the meta-linker will be of the form <. ..~ (mlinker n)...>.
Using the meta programming facilities, the meta-linker can decide whether to
invoke the linker immediately, i.e. mlinker n = <%(linker n)>, or whether
to generate code for invoking the linker, i.e. mlinker n = <%linker %n>. In
the first case, when the linker fails to make a connection, the code will not be
executed at all.

5.2 Nomadic Data Collector

In this section, we exemplify the use of mobile code by means of a simple dis-
tributed information retrieval application. We assume that each node of a dis-
tributed database contain tuples of the form (i,d), where i is the search key
and d is the associated data, or of the form (i,1), where 1 is a locality where
more data associated to i can be searched. We give three implementations: two
in HoTKLAIM, and the third in METAKLAIM. Hereafter we make use of the
previously introduced types and of the following additional types:

Data search keys and data
(* simple process abstractions *)
PA = L -> Proc
(* polymorphic types of process operations *)
Read = Input = V X:C. V Y:T. (L,X->Y) > Y
Qutput = V X:C. V Y:T. (L,X,Y) -> Y
Spawn = V X:C. V Y:T. (X,Y) > Y
Nil =V Y:T. Y
(* process abstractions with security checks *)
EnvK = (L,Key->Read,Key->Input,Key->Output,Nil,Spawn)
PAK = EnvK -> Proc
(* polymorphic types of process meta-operations *)
MSpawn = V X:C. V Y:T. (<X>,<Y>) -> <¥>

(* and similarly for the other types *)
(* code abstractions with static security checks *)
MEnvK = (<L>,Key->MRead,Key->MInput,Key->MOutput,MNil,MSpawn)
CAK = MEnvK -> <Proc>

Simple process abstraction in HOTKLAIM. ppa(i,u) is a process abstraction
activated by a process execute. execute fetches process abstractions from the
local tuple space and activate them by providing the locality of the node. The



parameter i is a search key, while u is the locality where all data associated to i
should be sent. After activation ppa(i,u) removes data locally associated to i
and forwards it to u, moreover ppa(i,u) sends copies of itself to localities that
may contain data associated to i:

ppa(i:Data, u:L) : PA =
fix pa:PA. fn self!L =>
spawn(fix p:Proc. input(self, fn (i, x!Data) => output(u, x, p)),
fix p:Proc. input(self, fn (i, 1!L) => output(l, pa, p)))

execute (self:L) : Proc =
fix exec:Proc. input(self, fn X!PA => spawn(X env, exec))

Process abstraction with security checks in HOTKLAIM. This implementation
uses more complex process abstractions, namely a process is abstracted also
w.r.t. surrogate process operations. Moreover, the surrogate communication prim-
itives require an extra parameter (an authorization key):

ppa(k:Key, i:Data, u:L) : PAK =
fix pa:PAK. fn (self’, _, in’ , out’, _, spawn’):EnvK =>
spawn’ (fix p:Proc.
in’ k (self’, fn (i, x!Data) => out’ k (u, x, p)),
fix p:Proc.
in’ k (self’, fn (i, 1'L) => out’ k (1, pa, p)))

execute (self:L, env:EnvK) : Proc =
fix exec:Proc. input(self, fn (X!PAK) => spawn(X env, exec))

Code abstraction with static security checks in METAKLAIM. This implementa-
tion refines the previous one by exploiting the meta-programming constructs of
METAKLAIM, and has advantages similar to those offered by a meta-linker. For
instance, depending on the key k, the meta-operation in’ k could generate an
input with no run-time overhead, or a deadlock nil (when the key does not
allow to read anything), or some customized run-time checks on what is read.

pca(k:Key, i:Data, u:L) : CAK =
fix ca:CAK. fn (self’, _, in’ , out’, _, spawn’):MEnvK =>
spawn’ (<fix p:Proc. “(in’ k (self’, <fn (%i, x!Data) =>
“(out’ k (<fu>, <x>, <p>))>))> ,
<fix p:Proc. “(in’ k (self’, <fn (%i, 1!'L) =>
“(out’ k (1>, <Yca>, <p>))>))>)

execute (self:L, env:[MEnvK]) : Proc =
fix exec:Proc. input(self, fn (X![CAK]) => spawn(run(X env), exec))

6 Conclusion

We introduced METAKLAIM as a basic calculus for handling the temporal and
the spatial dimensions of global computing. Our preliminary results demonstrate



that METAKLAIM can support programming of a variety of policies abstracting
from the underlying system infrastructure. The meta programming primitives
take care of describing how code manipulations is reflected in the underlying
infrastructure. As the work outlined in this paper will progress, we believe to
be able to demonstrate the full potentialities of METAKLAIM to address the
peculiar aspects raised by global computing.
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