The Partial Lambda-Calculus

Fugenio Moggi

Ph. D.
University of Edinburgh
1988

Abstract

This thesis investigates various formal systems for reasoning about partial func-
tions or partial elements, with particular emphasis on lambda calculi for partial
functions. Beeson’s (intuitionistic) logic of partial terms (LPT) is taken as the
basic formal system and some of its metamathematical properties are established
(for later application). Three different flavours of Scott’s logic of partial elements
(LPE) are considered and it is shown that they are conservative extensions of
LPT. This result, we argue, corroborates the choice of LPT as the basic formal
system.

Variants of LPT are introduced for reasoning about partial terms with a
restriction operator (LPT 4+ 1), monotonic partial functions (monLPT), A-terms
(Ap-calculus) and AY-terms (Ap,pY-calculus). The expressive powers of some
(in)equational fragments are compared in LPT and its variants. Two equational
formal systems are related to some of the logics above: Obtulowicz’s p-equational
logic is related to LPT + | and Plotkin’s Ay-calculus is related to one flavour of
LPE.

The deductive powers of LPT and its variants are compared, using various
techniques (among them logical relations). The main conclusion drawn from this
comparison is that there are four different lambda calculi for partial functions:
intuitionistic or classical, partial or monotonic partial functions.

An (in)equational presentation of the intuitionistic lambda calculus for (mono-
tonic) partial functions is given as an extension of p-equational logic. We conjec-
ture that there is no equational presentation of the classical Ap-calculus. Via a
special kind of diamond property, the (in)equational formal system is character-
ized in terms of B-reduction for partial functions and some decidability problems

are solved.

Acknowledgements

The help of my supervisor, Gordon Plotkin, has been essential for providing
the early motivation and discussion with him has always been extremely useful.
Correspondence with Pino Rosolini, especially in the early stages of my research,
has greatly influenced the work in this thesis.

I would like to thanks AT&T Bell Labs, in particular Dave MacQueen and
John Mitchell, for making it possible to visit the USA. When [was there |
had very fruitful discussions with Val Breazu-Tannen, who convinced me of the
importance of conservative extension results, and Rick Statman, who emphasized
the importance of Jacopini’s lemma. Conversations with Andrea Asperti, Pierre-
Louis Curien, Carl Gunter, Martin Hyland, Giuseppe Longo, John Mitchell, Axel
Poigné, Luke Ong, Edmund Robinson, Pino Rosolini, Andrzej Tarlecki, were also
helpful. A special thanks to Furio Honsell for critically reading a draft of this
thesis.

Duncan Baillie enlarged LaTeX when this thesis was growing, Paul Taylor
sent me his macros for diagrams (which I would never been able to define by
myself) and Julian Bradfield helped me for the english.

During these last four years the Department and the LFCS (Laboratory for
the Foundations of Computer Science) have provided a very stimulating environ-
ment and wonderful computer facilities.

I was financially supported by a University of Edinburgh Studentship and a
Research Assistantship in the LFCS.

[am especially grateful to Giuseppe Longo, my former supervisor in Italy,
who advised me to go to Edinburgh in the first place, and to my parents Carlo
and Anna, my relatives Marisa and Fosco and my sister Paola for supporting and

encouraging me all the way.

Declaration

This report contains the revised version of my Ph.D. thesis, according to the
recommandations of the examiners: J.M.E. Hyland, R. Milner and G. Plotkin.

Comments of any nature are greatly appreciated and can be sent to:

e Dr. E. Moggi
LFCS
University of Edinburgh
the King’s Buildings
EH9 3JZ Edinburgh
Scotland

e or to em@ed.lfcs via e-mail

Contents

Abstract
Acknowledgements
Preface

0 Introduction
0.1 Review of related work 0oL
0.1.1 First order logic and partial functions
0.1.2 Categories of partial maps
0.1.3 A-calculus and programming languages
0.1.4 Logics for computable functions and domain theory
0.2 Overview of the thesis
0.2.1 Prerequisites. Lo
0.2.2 Summary e

1 Formal systems
1.1 Comparing formal systems
1.2 Inference and formation rules
1.2.1 Languages and formation rules.
1.2.2 Formal systems and inference rules

1.3 Logics and modelso

2 The logic of partial terms
2.1 The language of partial terms
2.2 Classical free logic of partial terms
2.3 Intuitionistic free logic of partial terms

2.4 Formal systems

10
10
13
14

20
22
23

28
30
35
36
38
40

2.5 Soundness

2.6 Completeness

Meta-logical results

3.1 Coincidence of intuitionistic and classical logic
3.1.1 Coherent theories
3.1.2 Harrop theories L.
3.1.3 Counterexamples and discussion

3.2 Restriction of LPT to fragments
3.2.1 Language revisited L.
3.2.2 Formal systems revisited
3.2.3 Correctness and completeness
3.24 Discussion

3.3 LPE and its relation with LPT
3.3.1 The logic of total terms
3.3.2 The logic of partial elements
3.3.3 The relation between LPT and LPE
3.3.4 Concluding remarks L.

Formal systems for applicative structures

4.1 Equational fragments and variants of LPT
4.1.1 LPT with restriction operator
4.1.2 P-equational logic 0L
4.1.3 The monotonic logic of partial terms

4.2 The partial lambda calculus
4.2.1 Equivalence of the A,87n-calculus and CL; + ext. ~
422 Admodelso

4.3 Variants of the partial lambda calculus
4.3.1 The monotonic partial lambda calculus
4.3.2 Fixed-point operators

4.4 The lambda calculus of partial elements

Model-theoretic results
5.1 Type hierarchies. o0
5.1.1 Categories of (Kripke) structures

a8
29

72
72
72
74
82
84
85
88
91
101
101
102
104
109
111

112
113
115
118
124
127

. 130

136
137
138
139
143

5.1.2 Full type hierarchies 159
5.1.3 Full monotonic type hierarchies 161
5.1.4 Full continuous type hierarchies 164
5.2 Logical relations and partial homomorphisms 166
5.2.1 Correspondences between partial algebras 168
5.2.2 Logical relations between typed partial applicative structures171
5.2.3 Logical preorders on typed partial applicative structures . 174
5.2.4 Existence of partial homomorphisms 177
5.3 Closed termmodels L oo 185
5.3.1 The Xy,y-structure VALUE(A) 187
5.3.2 The Xy y(a)-logical preorder R 192
5.3.3 The closed term model AY(A) 195
5.4 The relation between operational and denotational semantics . . . 197
5.4.1 The relation between operational semantics and the typed
Av-calculus 200
5.4.2 The relation between operational semantics and the un-
typed Ay-calculus 202
Relations among formal systems 205
6.1 Preliminary definitions and conventions 206
6.2 The total formal systems L. 208
6.2.1 Intuitionistic versus classical logic 208
6.2.2 Conservative extension results 210
6.3 The partial formal systems00 213
6.3.1 Intuitionistic versus classical logic 213
6.3.2 Conservative extension results 215
6.4 The pure typed lambda-theories 217
Equational presentation 224
7.1 Phterms. 225
7.1.1 Closure w.r.t. *-substitution 228
7.1.2 Decidability and alternative inference rules 231
7.1.3 Discussion on pA-terms 245
7.2 ABnp-Equational Logico 248

7.2.1 Pure Afnp-equational Logic 249

7.2.2 Equivalence of ABnpEQL and JA,Bn+ [.
7.3 AfBnmonp-equational Logic
7.3.1 Pure ABnpmonp-equational Logic
7.3.2 Equivalence of ApmonpEQL and JmonA 8y + [.
7.3.3 Decidability of the d-preorder
7.4 Ap-algebras ... Lo
7.4.1 The non-monotonic case
7.4.2 The monotoniccase

8 Reduction
8.1 Basic definitions and facts o000
8.2 [-reduction
8.3 f-reduction and ABnmonp-equational logic
84 [-normal forms oL
8.5 Discussion on alternatives to pA-terms L.

Conclusion and further research

General concepts and notations
Relations o
Functions L
Families o
Expressions that may or may not denote
SEQUENCES . . v v v v i e e e e e

Metavariables

Indexes
Mathematical symbols L
Rules and axioms
Formal systems

Notions

Bibliography

256
260
261
265
266
275
276
285

287
288
296
308
316
321

323

326
326
327
327
328
329
329

330
331
334
337
338

343

Chapter 0

Introduction

Partial functions arise naturally in various mathematical theories relevant to com-
puter science, such as algebra and domain theory. In algebra partial functions
occur in relation to partial algebras, and (in algebraic specifications) are used
to model operations that may cause an abortive exception, or in connection with
behavioural equivalence (see [Bur82, BBTWS8I, Rei87, Sch87]). In domain the-
ory partial functions are disquised as total continuous functions between spaces
of partial elements (see [Sco70, SST1, Sco76, Plo81]), but a recent approach,
based on continuous partial functions, makes their role explicit (see [Plo85]).

This thesis studies formal systems for reasoning about partial functions in the
setting of first order logic and the lambda calculus. Models play a background,
but nevertheless important, role either by justifying the study of a formal sys-
tem, when it is sound and complete w.r.t. an interesting class of models, or as
a technical tool for studying the relations among formal systems. There is a
(confusing) wealth of formal systems, and a major achievement of this thesis is
to classify them in a common framework according to a few parameters and to
investigate (exhaustively) how they relate to each other.

There is no best formal system: instead each of them is better than the
others for certain applications. For instance, only the formal systems based on
intuitionistic free logic are sound w.r.t. interpretation in categories of partial maps
or topoi, the formal systems based on A-terms have a natural interpretation in
partial cartesian closed categories, the formal systems based on posets and with
(least) fixed-point operators are more appropriate for domain theory.

Our main objective is to provide a basis for proving equivalence of pro-

grams, therefore particular attention is given to the formal systems based on

9

10

A-terms (like the polymorphic predicate A-calculus PPA of [GMWT79]), since the
A-calculus is a paradigmatic programming language, and to equational formal
systems, since they provide the minimum required to express equivalence. An-
other major achievement is an (in)equational presentation for an intuitionistic
A-calculus of (monotonic) partial functions and the study of 3-reduction.

The following Section reviews the work that has directly influenced this thesis
and mentions some (more recent) related work. Section 0.2 explains the main

achievements of this thesis and gives a summary of each chapter.

0.1 Review of related work

The works related to this thesis can be roughly divided among four subject areas:
e first order logic and partial functions,
e categories of partial maps,
e JA-calculus and programming languages,

e logics for computable functions and domain theory.

0.1.1 First order logic and partial functions

There are two ways of representing partial functions in first order logic: as strict
total functions on partial elements or as single-valued relations. The first ap-
proach corresponds to making a theory of partial functions using total functions,
while the second approach is more direct and avoids the introduction of a new

concept (i.e. partial element).

The logic of partial elements

The logic of partial elements in [ScoT9, FouT77] is inspired by early work on de-
scriptions in formal logic (see [Sco67]). The description Ix.A(x) is a term that

may fail to denote, since it denotes an element a iff ¢ is the unique = s.t. A(x).
From our point of view, the main achievement of the logic is the intuitionis-
tically correct treatment of partial elements, in fact ([Sco79]): “in classical logic
. it is always possible to split the definition (or theorem) into cases according

as the partial element in question does or does not exists. In intuitionistic logic

11

this way is not open to us”. The idea is to permit a wider interpretation of
free variables, by introducing for each set X a superset X of partial elements,
and to interpret a term of sort X with a partial element, by turning partial
functions on X into strict total functions on X. In intuitionistic set theory,
the partial elements of sort X can be defined to be the subsets of X with at
most one element! and X can be identified with the extension of the existence
predicate E(Y') LS JreXaeY (over partial elements). Consequently, the
partial function f: X — X is turned into the strict total function f: X = X s.t.
fY = {zeX|FyeYa=f(y)

In [FouT77] the higher order logic of partial elements was proposed as a logic of
topoi, which avoids the restrictions on the rule of modus ponens and substitution
due to empty sorts; in fact in a topos there are objects without global sections.
This approach, however, seems to confuse the two unrelated problems of empty
types and nondenoting terms. Moreover, in (intuitionistic) higher order logic
the notion of partial element is actually redundant, since the superset of partial
elements can be defined at higher types according to the set-theoretic intuition.

From a computational perspective a logic with descriptions (and the set-
theoretic notion of partial element itself) is not particularly interesting, as it
is inconsistent with the view of partial elements as (denotations of) programs.
This computational view is investigated by Rosolini in the setting of higher or-
der intuitionistic logic and topoi (see [Ros86]), where he proposes the notion of
dominance, as classifier for the computable partial elements.

In [ScoT9] Dana Scott considers, among others, a first order logic of partial
elements without descriptions (LPE), which is quite liberal and it is consistent
with the view of partial elements as (denotation of) programs and even with all
partial elements exists. We consider an even more liberal logic of partial elements
(iLPE) and relate it to the Ay-calculus of [Plo75].

From a model-theoretic perspective LPE is not appropriate for reasoning about
partial algebras. In fact, given a partial algebra A (with carrier X) there is
in general more than one choice for the set of partial elements, so that A is
turned into a model of LPE. Therefore, the validity of an open formula in A
is ambiguously defined, as the definition involves a quantification over the set

of partial elements. For instance, if A is a total algebra, then the set of partial

Tto simply add a new element L for undefined would not be intuitionistically correct

12

elements can be anything between X and X (intuitionistically there is a whole
range of possibilities).

Since our general notion of model is based on partial algebras, we do not
take LPE as framework for studying other formal systems; nevertheless we will
investigate LPE and its relations with other formal systems. This investigation
shows that LPE has other (more technical) inconveniences, owing to free variables

ranging over partial elements.

A logic for partial algebras

Standard first order logic is for reasoning about mathematical structures where
(all sorts are inhabited and) functions symbols are interpreted by total functions,
therefore it is not sound for partial algebras. Partial algebras seem a very simple
generalization of total algebras, but people working in this area have come up
with all sorts of (bizarre) ideas about the meaning of an equation to the point of
suggesting three valued logic.

Burmeister’s survey paper (see [Bur82]) presents a nice and simple model
theory of partial algebras, based on a unified view of partial and total functions
as single-valued relations, and develops a sound and complete (two-valued) first
order logic of partial algebras. In Set Theory functions are single-valued binary
relations (Va,y,z.R(x,y) A R(z,z) — y = z), in other words a function f is
identified with its graph R. According to this view, a partial algebra (A, f4),
where f4 is a unary partial function, is actually a relational structure (A, R4),
where R4 is the graph of fA4.

The interpretation of (terms and) atomic formulae differs from the standard
one, because terms may not denote (e.g. f(z) = f(y)is trueiff “f(z) and f(y) are
both defined and equal”), but from the relational point of view it is the natural
extension of the interpretation in total algebras (see Remark 2.18 of [Bur82]).
In fact, to define when (A, R*) satisfies the formula F' (involving f) under the
evaluation p, one has to get rid of f (which is just a notational convention) by
replacing F' with a formula F” involving R only, so that F' is satisfied £ Fis
satisfied. F" is defined by induction on F', but the only interesting case is when F'
is atomic. For instance, the equation f(z) = f(y) is replaced by a clumsy formula
Ju,v.R(z,u) A R(y,v) A v = v, which is equivalent to the familiar meaning of

f(z) = f(y) when (A, f4) is a total algebra.

13

Burmeister reviews three (main) concepts of varieties, corresponding to three
kind of quasi-equations: we consider two of them (equivalent to equations in
the case of total algebras) when comparing the expressive power of equational

fragments.

The logic of partial terms

In [Bee85| the logic of partial terms (LPT) is introduced as a preliminary to the
theories of rules, e.g. the theory of partial combinatory algebras, where it is handy
to allow the formation of terms that may fail to denote, like {e}(z). LPT is a
notational variant modification of the logic presented in [Bur82]. More precisely,
LPT has an existence predicate ¢ |, while Burmeister has to write t = ¢, and it
distinguishes between constants and nullary partial functions, namely the former
exist and the latter may not exist. The existence predicate is very convenient
for formulating the inference rules of substitution, strictness and quantification
so that they no longer depend on the equality predicate. We take a sequent
calculus variant of LPT as our framework for studying other formal

systems.

0.1.2 Categories of partial maps

There have been various attempts to answer the question of “what extra structure
do we need on a category for it to be a well-behaved category of partial maps”.
In [RR86] (many of) these attempts are reviewed and compared. From our
perspective, the most relevant approach is the one in [Ros86], which is the first
to make explicit connections with intuitionistic logic, the theory of computation
and the lambda calculus. For completeness we recall how this approach originated
and developed.

The original idea of dominical category was presented by Heller at a conference
in Siena. His objective was to introduce a basic categorical setting for abstract
recursion theory, by describing axiomatically some properties of the monoid of
partial recursive functions (see [dPH86]).

In [LM84] Heller’s ideas are taken up and developed into concrete notions
of partial morphism and partial cartesian closed category (with enough points)

adequate for recursion theory at higher types.

14

Dominical categories are intended to capture axiomatically the idea of a cate-
gory of partial maps P(C, M), i.e. the category of partial maps in C with domain
in M, where C'is a category and M is a collection of monos in C (called dominion
in [Ros86] and domain structure in [Mog86]). This consideration and a topos-
theoretic approach (whose usefulness is demonstrated in [Hyl82]) led Rosolini to
the more general notion of p-category and to make the connection with topoi
(and higher order intuitionistic logic) by proving various embedding theorems of
an arbitrary p-category into a category of partial maps in a topos defined by
means of a dominance (see [Ros86]).

The categories P(C, M) are already present in [Obt86] (they are called cat-
egories of M-functional relations in C) together with categories with ordered
strict pre-cartesian structure that are essentially equivalent to p-categories, but
the notions of partial cartesian closed category and dominance are missing.

There is an important background difference between Rosolini’s and Obtu-
lowicz’s approach, which is made explicit in the introduction of [Obt86]: “In the
branch of category theory applied to logic there are two concepts of a logic of a
category. The first concept, due to Lawvere, is meant in such a way that if the
logical connectives and quantifiers have an interpretation in a category C', then
this interpretation constitutes a logic of a category C' The second concept is
due to Lambek A logic in Lambek’s sense of a category C' is an additional
equational structure on C| i.e. a system of partial operations defined on arrows
of C together with a set of equations describing properties of the operations ...”
[Ros86] uses Lawvere’s concept of logic (of a topos), while the aim of [Obt86]
(and [CO8T]) is to show that certain categories of partial maps have a logic in
Lambek’s sense and to develop equational presentations.

Obtulowicz also considers some applications to universal algebra and estab-
lishes an equivalence between p-categories and theories in a new logic, called
p-equational logic (see Chapter 7 of [Obt86]). Our (in)equational pre-
sentation of the intuitionistic lambda calculus for (monotonic) partial
functions extends p-equational logic, and it differs from the equational presen-
tations of partial cartesian closed categories developed in [CO87] in the same way
as Lambek’s logic for cartesian closed categories differs from the typed lambda

calculus (see [Lam80]).

15

0.1.3 \-calculus and programming languages

The direct connections between the pure A-calculus (i.e. the subject of [Bar81])
and functional programming languages sometimes do not go beyond the binding
mechanism of A-abstraction (see [McC62, Lan64]). This is not surprising if we
look at the history of the type free lambda calculus (Preface of [Bar81]): “Around
1930 the type free lambda calculus was introduced as a foundation for logic and
mathematics. Due to the appearance of paradoxes, this aim was not fulfilled,
however. Nevertheless a consistent part of the theory turned out to be quite
successful as a theory of computations. It gave an important momentum to early
recursion theory and more recently to computer science. ... As a result of these
developments. the lambda calculus has grown into a theory worth studying
for its own sake. People interested in applications may also find the pure A-
calculus useful, since these applications are usually heuristic rather than
direct. ...”

Types arise in various applications, for instance they are a common feature
of many programming languages, in logic they can be identified with formulae,
in (cartesian closed) categories they correspond to objects. As shown in [Sco80],
“nothing is lost in considering type free theories just as special parts of typed
theories”. For this reason, we give more emphasis to the typed A-calculus (and
its extensions), as it provides a more flexible and structured basis for applications

than the pure A-calculus.

Call-by-value, call-by-name and the A-calculus

In [Plo75] call-by-value and call-by-name are studied in the setting of the lambda
calculus: this study exemplifies very clearly the mismatch between the pure A-
calculus and (some) programming languages.

From an operational point of view, a programming language is completely
specified by giving the set Prog of programs and the evaluation mechanism
Eval: Prog — Prog, i.e. a partial function mapping every program to its resulting

value (if any).

In the setting of the lambda calculus, programs are identified with
the (closed) A-terms (possibly with extra constants, corresponding to

some features of the programming language). The evaluation mecha-

16

nism induces a congruence relation & on A-terms, called operational

equivalence, and a calculus is said to be correct w.r.t. &~ when

M = N (derivable in the calculus) implies M ~ N.

Plotkin’s intention is to study programming languages, therefore he accepts the
evaluation mechanism and looks for the corresponding calculus.

The A-calculus is not correct w.r.t. call-by-value operational equivalence,
therefore it cannot be used to prove equivalence of programs. Starting from
this observation, Plotkin introduces the A,-calculus and shows that it is correct
w.r.t. call-by-value operational equivalence. However, to prove the Church-Rosser
and Standardization theorems Plotkin proceeds by analogy and reuses some tech-
niques already applied to the A-calculus. In the case of call-by-name the situation
is much simpler, since only the 1 axiom is not correct w.r.t. call-by-name opera-
tional equivalence.

Plotkin discovers the Ay-calculus by operational considerations, and his only
criterion for judging a calculus is its correctness w.r.t. the operational semantics,
but in general there are plenty of correct calculi. On the other hand, we discover
the Ap-calculus by model-theoretic considerations, namely as the unique calculus

which is sound and complete w.r.t. a certain class of models.

The \,-calculus

The Ap-calculus is a formal system presented in [Mog86] and (with minor dif-
ferences) in Chapter 4 of [Ros86], which is sound and complete w.r.t. inter-
pretation in partial cartesian closed categories. The terms of the Aj-calculus
are typed A-terms, and the formal system is for deriving one-sided sequents
n.Ay, ..., A, = Ay, where 7 is a type environment and the A; are either ex-
istence statements (E(t)) or equivalences (t1 = t3). The (type free) Ap-calculus
proves more equivalences than the Ay-calculus (e.g. (Az.z)(yz) = yz), neverthe-
less it is still correct w.r.t. call-by-value operational equivalence. We will ezplain
the difference between the two calculus after presenting them in a common frame-
work.

In [Mog86] it is pointed out that the A,-calculus is not complete w.r.t. clas-
sical type structures of partial functionals. We consider modifications of the A,-
calculus that are sound and complete w.r.t. other classes of models, e.g. classical

type structures of (monotonic) partial functionals, and develop an equational

17

presentation of the A,-calculus (rather than one based on one-sided sequents),
which allows an analysis of #-reduction for partial functions.

In Chapter 4 of [Ros86] the A,-calculus is extended with fixed-point operators.
We consider a different A,-calculus with fixed-points, which is more appropriate

for the category of cpos and continuous partial functions (see [Plo85]).

Lazy A-calculus

In [Ong88] a theory of lazy (equivalently call-by-name) functional programming
languages is developed in the framework of the pure A-calculus. Sensible theories
(in [Bar81]) are incorrect w.r.t. call-by-name operational equivalence, therefore
they are replaced with lazy A-theories.

Luke Ong introduces also the Ap-calculus, a formal system sound (but not
complete) w.r.t. partial cartesian closed categories, and compares it to the A,-
calculus (of [Mog86]). A natural extension of the Ap-calculus, the untyped Az ¢-
calculus, obtained by adding a constant C' for convergence testing (first intro-
duced in [Abr87]), is also considered and proved sound and complete w.r.t. partial
cartesian closed categories with a reflexive object (D, — D) <1 D. He describes
also a (conservative) interpretation of the untyped A c-calculus in the typed
Ap-calculus, which is the straightforward way of translating call-by-name into

call-by-value (using closures).

0.1.4 Logics for computable functions and domain the-
ory

The use of logics for proving correctness of programs was pioneered in [Flo67,
Hoa69]. The programming languages considered in these early approaches are
very simple (while programs) and the formal languages of expressing proper-
ties of programs are a mixture of programming language and predicate calcu-
lus (Hoare’s triples). The main feature of these logics, e.g. Hoare’s logic, is
that they are programming language dependent and support a structured
methodology for proving correctness, i.e. properties are proved by induction on
the structure of programs.

We are interested in a different kind of approach, based on logics for rea-
soning about mathematical structures that provide models for (functional) pro-

gramming languages. Such a logic is programming language independent,

18

but potentially it can be used to prove properties of programs (like equivalence
or correctness). To exploit this potentiality the logic has to be flexible, so that
one can describe how a particular programming language is interpreted in a cer-
tain mathematical structure. More precisely, its language should be extendable
(to include the features of a programming language), it should be possible to
add (non-logical) axioms (to axiomatize the properties of these features) and the
logic itself should be uncommitted (so that any programming language can be
aziomatized).

The need for a mathematical semantics of programming languages led to
the Scott-Strachey approach to denotational semantics and the development of
domain theory (see [Sco70, SS71, Sco76, Plo81]). Denotational semantics takes
an abstract view of computations, based on continuous functions between
certain spaces of partial elements (cpos), rather than partial recursive functions
(on the natural numbers).

A first attempt at a logic for reasoning about cpos and continuous functions
was the logic for computable functions (see [Sco69]), which was subsequently
extended to the polymorphic predicate A-calculus PP (see GMWT9, Pau85]).
The idea is first to consider an extension of the typed A-calculus suitable for the
(cartesian closed) category of cpos and continuous functions (the intended model),
by adding constants for fized-point operators and least elements, and then to ax-
iomatize some properties of the intended model, like fixed point induction, in a
(classical) first order logic, whose formulae are built up from inequations between
A-terms (M < N).

In PP programs are identified by A-terms and properties (of a programs)
are ordinary first order formulae. As pointed out at Page 9 of [Sco69], PP
(as well as the logic of partial elements) is a theory of partial functions based

on total functions:

... classical type theory supposes total (everywhere defined)
functions, while algorithms in general produce partial functions. We do not wish
to reject a program if the function defined is partial — because as everyone knows
it is not possible to predict which programs will loop and which will define total
functions. The solution to this problem of total vs. partial functions is to make
a mathematical model for the theory of partial functions using ordinary total

functions.” More precisely, divergence is represented by the least element (L)

of a cpo and a partial (recursive) function f: N — N becomes a strict function

19

fJ_: NJ_ — NJ_ .
There are various criticisms that can be made to PPX (and domain theory),

more or less related to the way partial functions are represented:

e while programs (and similar programming languages) have a simple set-
theoretic semantics as partial functions from stores to stores, but their
denotational semantics (based on cpos and continuous functions) is com-

paratively clumsy.

e the way of expressing termination (existence) of a program (partial ele-

ment) ¢ is indirect “t # L7 and intuitionistically incorrect, according to

[ScoT9].

e the (choice and) interpretation of type constructors is based on the typed A-
calculus (i.e. a theory of total functions), rather than considerations about
(real) programming languages. For instance, in a lazy programming lan-
guage the values of type 71 X 75 are pairs of unevaluated expressions and
[r1 X 72] should be the lifted product ([r1] x [72])
gramming language the values of type 71 X 75 are pairs of values and [X 73]

should be the smash product [1] ® [72].

> while in a eager pro-

These considerations on domain theory and PPA (among others) led Gordon
Plotkin to take a different approach to denotational semantics, based on con-
tinuous partial functions, and to reformulate PPX using intuitionistic logic
of partial elements on top of a suitable term language, called metalanguage (see
[Plo85]).

The metalanguage is a typed functional language with a rich collection of
types (products, coproducts, partial function spaces and recursive types), it has
an operational semantics, based on eager evaluation, and a denotational seman-
tics, according to which types denote cpos (possibly without a least element)
and terms denote continuous partial functions. The two semantics are related by
a correspondence theorem between (operational) termination and (denotational)
existence, inspired by a similar result due to Martin-Lof (see [ML83] and Chapter
6 of [Abr87]).

The choice of eager evaluation makes it easier to translate programming lan-
guages into the metalanguage correctly, i.e. so that the operational and deno-

tational semantics obtained via the translation are the intended ones. In fact,

20

it is straightforward to translate lazy programming languages into typed eager
programming languages, while the reverse translation is in general impossible (or
at least very clumsy).

Since many programming languages can be correctly translated into the met-
alanguage, it is not necessary to extend the metalanguage for accommodating
them, and a logic for reasoning about them can be derived from that for the
metalanguage, while in PP\ it has to be aziomatized, by creating a new theory.
For the same reason, the correspondence theorem between operational and de-
notational semantics, unlike similar results for the A-calculus (e.g. [Wad76]), has

direct application to programming languages.

0.2 Overview of the thesis

We achieve three main objectives: to investigate the relations among various
formal systems, based on first order logic, for reasoning about partial (and total)
functions, to develop an (in)equational presentation of the intuitionistic lambda
calculus for (monotonic) partial functions, and to relate its (in)equality to a

suitable B-reduction for partial functions.

Relating formal systems. First, we show that the logic of partial elements
LPE is a conservative extension of the logic of partial terms LPT via a natural
translation (see Section 3.3). Then, we consider the relations among various
formal systems axiomatized in LPT. The kind of relations we establish is that a
formal system either is a conservative extension of or has more deductive power
than another formal system over a certain fragment (see Chapter 6). These
formal systems are classified according to their signature (language) and for each
signature according to three independent choices: intuitionistic logic vs. classical
logic, free logic vs. inhabited logic, partial functions vs. total functions. The
signatures correspond to the following classes of models: algebras, monotonic
algebras, type structures, monotonic type structures, type structures with fixed-
point operators and type structures with least fixed-point operators.

The formal systems are (more or less directly) inspired by the literature, for
instance: the classical inhabited logic for total algebras is the ordinary first order
logic, the intuitionistic free logic for partial type structures corresponds to the Ap-

calculus in [Mog86, Ros86], the classical inhabited logic for total type structures

21

with least fixed-point operators corresponds to a substantial subset? of PP (see
[Pau85]), the intuitionistic free logic for partial type structures with least fixed-
point operators corresponds to a subset of Plotkin’s reformulation of PP (see
[Plo85]).

We show that there are four typed lambda calculi for partial functions with
different deductive power on the equational fragment, and they are classified
according to two independent choices: intuitionistic logic vs. classical logic, type
structures vs. monotonic type structures.

The monotonic calculi are more useful for applications (in computer science).
On the other hand, only the intuitionistic calculi seem to enjoy an equational
presentation. These two considerations lead us to give more emphasis to the

intuitionistic lambda calculus for monotonic partial functions.

Equational and inequational presentation. We develop a formal system,
which extends p-equational logic (see [Obt86]), for deriving equations (between
untyped pA-terms) from a set of equational axioms. This formal system is sound
and complete w.r.t. the models of the intuitionistic untyped lambda calculus for
partial functions. Moreover, there is a set of inference rules similar to those for
the A-calculus, which generates the equations valid in all these models.

We develop also a similar formal system for deriving inequations from a set
of inequational axioms, which is sound and complete w.r.t. the models of the

intuitionistic untyped lambda calculus for monotonic partial functions.

Inequality and g-reduction In the (pure) A-calculus the relation between

pBn-conversion and [3-reduction can be summarized by:

M and N are 3n-convertible iff there exist two n-convertible® A-terms

M" and N’ s.t. M and N B-reduce to M’ and N’ respectively.

This result relies on three lemmas: S-reduction commutes with itself (Church-
Rosser property), f-reduction commutes with n-reduction and n-reduction can
be postponed after 3-reduction. In the intuitionistic untyped lambda calculus

for monotonic partial functions the situation is very different (see Chapter 8):

2e.g. the axioms for fixed-point induction are missing
3or equivalently with the same n-normal form

22

t1[D1 <ty Dy is derivable iff there exists a pA-term ¢ [D s.t.
tl rDl(_ﬁ Sdn)*t rD and tg rDQ(—)l Zdn)*t rD

where —7 is a suitable f-reduction for partial functions and the relation S
called dn-preorder, combines n-conversion and a preorder relation on pA-terms
due to the restriction operator. This result relies on a lemma, namely —; com-
mutes with itself up to S that involves the new notion of “_ commutes with
_up to _” (see Definition 8.1.2).

The decomposition of the inequality < into S-reduction —; and dn-preorder
San is very natural from a operational point of view. In fact, 3-reduction en-
capsulates the evaluation mechanism, while the dn-preorder is what is left of the
inequality after removing (). We expect the notion of “_ commutes with _ up

to 7 to be useful for studying other calculi, e.g. the non-deterministic lambda

calculus (see [Sha84]).

0.2.1 Prerequisites

The reader is supposed to be familiar with elementary set theory (see first chapter
of [Mon69]), first order logic (see [Ten78]) and the lambda calculus (see [Bar81,
Bar84]). Only few basic notions of category theory (category, functor and natural

transformation) are taken for granted (see [Mac71, LS86]).

23

0.2.2 Summary

The dependencies among chapters are given by the following diagram (where a
dashed connection means that only a small part of the target chapter depends

on the source chapter):

ch 1
ch 2
ch3p — ——— — - ~|ch4
ch 5 ch 7
1 ch 6|~ — — — — — — - ch 8

For each chapter we summarize its contents, and give some reading sugges-

tions and a list of relevant literature.

Chapter 1. This chapter contains some basic definitions and facts about formal
systems (considered as consequence relations), inference rules and logics, which
are repeatedly used in the other chapters. Particularly important are the methods
for defining formal systems, the criteria for comparing their deductive power and
the ways inference rules and models can be applied to establish relations between
formal systems. There are also few general remarks about languages, formation
rules and vartables.

At the beginning a superficial reading is enough.

24

References:
1.2 of [Tro73] (conservative and definitional extension),
[AczTT] (rules and inductive definitions),
Appendix C of [Bar81] (variables and substitution),
[Bar74] (abstract model theory).

Chapter 2. Two basic formal systems are introduced, the classical and intu-
itionistic logic of partial terms, on which most of the other formal systems depend.
The logic of partial terms (LPT) is just many sorted first order logic with some
syntactic sugar for partial functions, therefore the language, interpretation and
formal system of classical and intuitionistic LPT are very similar to those of
classical and intuitionistic first order logic (based on the sequent calculus). The
proofs of soundness and completeness are standard.
It is enough to read the main definitions and theorems (without proofs).
References:
[Bee85] (logic of partial terms),
[Gen69, Kleb52, MR77] (sequent calculus),
[Ten78] (interpretation, soundness and completeness),
5.1 of [Tro73] [vD86] (Kripke models, completeness for intuitionistic logic),
[Hen49, MR77] (completeness).

Chapter 3. Classical and intuitionistic LPT are compared, by considering some
fragments on which intuitionistic and classical LPT do (or do not) coincide, this
explains why the A-calculus is sound and complete w.r.t. both intuitionistic mod-
els (say cartesian closed categories) and classical models (say type structures).

We prove some cut-elimination results, parametric in a set of axioms, for
intuitionistic and classical LPT restricted to the negative fragment. A fallout of
these results is, for instance, a procedure to get from a set of first order axioms
to a set of equational inference rules that derive the same equations.

We introduce the logic of total terms and (the three flavours of) the logic of
partial elements. We extend the metalogical results for LPT (i.e. the coincidence
and cut-elimination results) to these other logics. Then, we compare LPT and
(three flavours of) LPE.

This chapter is particularly interesting for applications, since the conserva-

25

tive extension and cut-elimination results proved can be applied to many formal
systems, not just those in the thesis. These results are more or less implicit in
the literature. However, motivated by particular applications, we have improved
them slightly.

References:
[MRT7T7] (coherent logic),
1.10 of [Tro73] (Harrop and negative formulae),
5.1 and 5.2 of [Tro73] (the operation () — ()'),
[Gen69, Kle52, MRT77] (cut elimination),
[Sco79] (logic of partial elements).

Chapter 4. We introduce various formal systems axiomatized in the logic of
partial terms, ranging from partial equational logic (with restriction operators)
to the Ap-calculus (with least fixed-points), which is equivalent to extensional
partial combinatory logic. For each formal system we analyse the expressive
power of equational (or inequational) fragments.

P-equational logic is also considered, to provide the basis for the equational
presentation of the Ap-calculus, and the Ay-calculus is characterized in terms of
the intensional logic of partial elements.

This chapter has to be read, since most of the formal systems introduced here
are considered in subsequent chapters.

References:

Bur82] (equational fragments),
ODbt86] (p-equational logic),
Bee85] (weak extensionality),

Plo85] (the Ap-calculus),
Plo77] (PCF, the AY-calculus),

[
[
[
[Bar81, Mey82] (relation A-calculus - extensional combinatory logic),
[
[
[Plo75] (the Ay-calculus).

Chapter 5. Four model-theoretic techniques, applied in Chapter 6, are con-
sidered: (full) type hierarchies, logical relations, closed term models, the relation
between termination and denotation. = We give only the full type hierarchies

used in Chapter 6. Logical relations between (partial algebras and) partial type

26

structures are studied in the framework of first order logic, which allows a unified

approach to logical relations and Kripke logical relations. An original closed term

model construction for the A,pY-calculus is presented. We recall the relation be-

tween termination and denotation, due to G. Plotkin, and apply it to characterize

the existence-statements provable in the typed and untyped Ap-calculus.
References:

[Fri75, Plo80] (full type hierarchy),

[Fri7h, Sta85b, Sta85a, Plo80, Plo82, AL85, MMS8T] (logical relations),

[Sch87] (logical relations for partial algebras),

[Sta85a, BTC87, Mil77, Sto86] (closed term model),

[ML83, Plo85] (the relation between termination and denotation).

Chapter 6. The relations among (some of) the formal systems introduced in
Chapter 4 are systematically investigated by applying the techniques developed
in previous! chapters (see Chapters 3 and 5). The investigation is divided into
three parts: total formal systems, partial formal systems, pure theories. The
first part is essentially a review of scattered results from the literature, that have
not been presented in a uniform framework before, while the last two parts are
original.

This chapter is the main core of the thesis. The following chapters study in

greater depth only one formal system, the intuitionistic (monotonic) A,-calculus.

Chapter 7. PA-terms are introduced in order to develop an (in)equational
presentation for the intuitionistic (monotonic) A,-calculus along the lines of p-
equational logic. The equational formal system is related to the formal system
based on first order logic and pure inference rules are given, similar to those for
the pure A-calculus, to generate the smallest ABnp-theory. As first application
of the equational presentation, we show that the ¢-rule of the Ap-calculus can be
replaced by a set of equational axioms, and relate intuitionistic A,-models and
Ap-algebras.

The chapter is quite self-contained. In Chapter 8 only the properties of (pA-
terms and) the smallest ABpmonp-theory are used.

References:

4in few cases we rely on results about S-reduction, that are established subsequently

27

[Bar81] (analogies),

[Obt86] (p-equational logic),

[CO8T] (alternative approach to the one taken here),
Lecture I1I of [Sta85a] and [Jac75] (Jacopini’s lemma)

Chapter 8. As a second application of the (in)equational presentation, we
express the preorder relation g, corresponding to the smallest Agnp-theory, in
terms of two other relations: the one-step parallel G-reduction —; and the pre-
order relation Son (which is decidable). We also prove that the relation < between
B-normal forms is decidable.

This chapter is the second main core of the thesis, in which new techniques
are developed that generalize those applied to study J-reduction for the pure
A-calculus.

References:

[Bar81, Sha84] (analogies).

Chapter 1

Formal systems

In general by formal system we mean a pair (L,F), where L is a language and
F is a derivability relation on L (called also an entailment). The elements of the
language L are called sentences. The sets of sentences closed w.r.t. derivability
are called theories, and when ordered by inclusion they form an algebraic lattice.
Given a formal system, we define also the related notions of: aziomatization,

expressive power and restriction.

Definition 1.0.1 Formal System
A formal system is a pair (L,|), where L is a set and & is a subset of

P(L) x L which satisfies:

reflexivity if A€ T € P(L), then T A

transitivity f 7' A for all A€ T and T H A’ then T"F A’
compactness if T' = A, then there exists Ty Cg, T 5.t Ty = A

A F-theory is a subset T of L closed w.r.t. -, i.e. T ={A € L|T + A}.
TH(F) is the poset of F-theories ordered by inclusion.

Notation 1.0.2 Let 77 and T, be subsets of L:

o if 71 + A for all A € 15, then we say that 75, is derivable from 7} in F
(notation Ty - T5)

o if Ty F 15 and Ty - T, then we say that 77 and T3 are equivalent in I-.

28

29

Often sets of sentences on the right or left hand side of F will be treated as
sequences. For instance, T1, A, Ty F Ay, Ay stands for Ty U {A} U T, - {A;, Ay}
If 7' is a subset of L, then we write Thy(7") for {A € L|T F A}. Since Thy(7")
is the smallest F-theory containing 7', we call it the theory axiomatized by T
in F.
If Fis a subset of L, then we write F'(F) for Thi-(() N F', and call it the pure
theory of - over F.

A formal system is completely determined by the restriction Fq of the derivability

relation F to finite sets, in fact:
o L ={A[{A}Fo A}
o T'F A < there exists Ty Cy;, T s.t. Ty g A

The poset TH(F) is an algebraic lattice, and its finite elements (in the domain-

theoretic sense) are the theories axiomatized by finite subsets of L.

Remark 1.0.3 The construction of the algebraic lattice TH(F) from the formal
system I, is an instance of a more general construction, that given an information
system (L,Con,tq) builds a Scott’s domain (see [Sco82] and [WL84]). Unlike
[Sco82], we do not assume that the set L has a distinguished element A, for
the sentence true (see [WL84]), and we consider any finite subset of L to be

consistent, so there is no need for Con.

Subsets of L can be viewed either as sets of azioms or as sublanguages. In
the first case one is interested in what is derivable from a set of axioms, and
derivability is the natural preorder on sets of axioms (see above). In the second
case one is interested in what is expressible in a sublanguage, and the natural
preorder is different (see below). Correspondingly, there are two ways of building

new formal systems from a given one: by aziomatization and by restriction.

Definition 1.0.4 Axiomatization
If (L,F) is a formal system and T is a subset of L, then

o (_+TF) isthe formal system (on L) axiomatized by T in I, i.e.
T"+THAWT,TFEA.

30

Definition 1.0.5 Expressive Power and Restriction

If (L,F) is a formal system and Ly and Ly are subsets of L, then

e [y has more or equivalent expressive power than Ly w.r.t. = (L1 Cr Ly)
PEN for all A € Ly there exists T Cyy, Ly s.t. T and {A} are equivalent in
.

o (_tyz,) is the formal system - restricted to Ly, i.e.
+ m(,P(Ll) X Ll)

Notation 1.0.6 We write L; =- Lo, if L; and L, have the same expressive
power, and [y Cy Lo, if L; has strictly more expressive power than L,.

The subscript F is omitted when it is clear from the context.

There is an equivalent definition of Ly Cr L, namely: any theory axiomatized
by a subset of L; can be axiomatized by a subset of Ly. In fact, if Th(7) is
axiomatized by a finite subset 7", then we can find, by (compactness), Ty Cy;p, T
which axiomatizes Thy (7).

1.1 Comparing formal systems

Given two formal systems, the simplest way to compare them is to look at their
behaviour on a common sublanguage: conservative and definitional extension
(compare with 1.2 of [Tro73]). However, when the formal systems do not have
a common sublanguage, we need a more flexible way to compare them. For this
purpose, we define translation and related notions: relative interpretation and

equivalence.

Definition 1.1.1 Deductive Power and Conservative Extension

If (L1,F1) and (La,2) are formal systems s.t. -5 is an extension of 1 (i.e.
L1 C Ly and F1Ck3) and X is a subset of P(L1) X Ly, then

e 3 has more deductive power than - over X (F1CxF2) N

(F1 NX) C (F2 NX)

. . . A
e [is an extension of -1 conservative over X (F1C§h2) <

(F1 NX) = (F2 NX)

31

Notation 1.1.2 If F; and F;, are subsets of L, then we write
¢ HiCrrp by for |‘1CP(F1)xF2|‘2

[] l_lc%ﬂ_Fgl_Q fOI’ l_lccp(F1)XF2|_2

Intuitively, F} is the set of sentences that can be used to axiomatize theories,

while F5 is the set of sentences we want to observe.

We write -, C°y for F1C] . 2 and say that b5 is a conservative exten-

sion of F;.

Remark 1.1.3 The definition of “extension of _ conservative over _” is similar to

the definition of “conservative over _ relative to _” for theories based on (intu-

itionistic) predicate logic (see 1.2 of [Tro73]).

The following facts about Cx and C% can be used to derive other conservative

extension results\failures from known ones:

Lemma 1.1.4 Properties of C%

FiC5
restr —Y %2 x cY

F1C5& 2

1 1

In N
Fo C© k3

convex

1

Nk

Fo C% ks

F1C&F2C&F
trans ——X 2-X' 3

FC%Fs

F1 Cx 4
N

Fo C by

32

Definition 1.1.5 Translation and Pullback
A translation [from Ly to Ly is a function from Ly to Pgin(L2).
If = is a formal system on Ly, then:

e [*(F) is the pullback of - along I, i.e. the formal system on L s.t.
TIH)A iff I(T)F I(A), where I is extended additively to a function from
,P(Ll) to p(Lg)

Remark 1.1.6 If /(A) is allowed to be any subset of L,, then the relation 7*(l-)
may no longer be a formal system, since (compactness) may fail. In the def-
inition above, we cannot replace Py;n(La) by La, since Ly may not be closed
w.r.t. conjunction. For first order languages it is natural to impose some extra
requirements on translations, e.g. preservation of free variables, compositionality,

commutativity with connectives and quantifiers, preservation of atomic formulae.

Definition 1.1.7 Relative interpretation
If (L1,F1) and (La,F2) are formal systems and I is a translation from Ly to
Ly, then

e [is a relative interpretation of - in I =N

Tty A implies I(T) 4 I(A)

. A
e [is a conservative interpretation of -y in -, <—

Remark 1.1.8 F; is a conservative extension of t; iff the identity translation
Id (i.e. Id(A) = {A}) is a conservative interpretation of F; in k3. Conversely, [

is a conservative interpretation of -y in k5 iff 7*(F2) is a conservative extension

of l_l.

Finally we want to define equivalence of formal systems. There is a very simple

definition based on the algebraic lattice of theories:

k1 is equivalent to b5 via fiff f: TH(F;) — TH(F3) is an isomorphism
of posets (algebraic lattices).

However, we give a more direct (but equivalent) definition, which stresses the

similarity with the notion of definitional extension (see 1.2.4 of [Tro73]):

33

Definition 1.1.9 Equivalence of Formal Systems
If (L1,b1) and (Ls,b2) are formal systems, then
e I, is a definitional extension of -, (F;C%/t,) N
F1C% and Ly Cr, Ly, t.e. 3 is a conservative extension of F1 and Ly has
the same expressive power as Ly w.r.t. 5.

e - is equivalent to -5 via I and J =N

— [is a relative interpretation of F1 in by
— J is a relative interpretation of -5 in by
— {A} and J(I(A)) are equivalent in t-1, for all A € Ly
— {A} and I(J(A)) are equivalent in t=y, for all A € Ly

The relation between definitional extension, equivalence and isomorphism be-

tween algebraic lattices is summarized by the following propositions.

Proposition 1.1.10 Characterization of definitional extension

Fo is a definitional extension of =1 iff there exists a translation J s.t. -y is
equivalent to -5 via Id and J, where Id is the identity translation. W.l.o.g. one
can also require that J(A) = {A} for all A € L.

Proof First we prove the implication from left to right. We define the translation

J and prove that J(A)Fy A and Aty J(A) for all A € La:

e since Ly Cp, Ly, then there exists 7' C L; which axiomatizes Thy,({A}).
Therefore

Tl—gAandAl—gT

e by (compactness), there exists J(A) Cy;, T' s.t.
J(A)Fy Aand AlF; J(A)

The other properties for equivalence follow easily from F;C°3.

Then we prove the other implication:

e since {A} and J(A) = Id(J(A)) are equivalent in F; for all A € Ly, then
Ly G, Ly

34

e since Id is a relative interpretation of -y in 5, then FChk,
We have still to prove that T'C Ly, A€ Ly and T 5 A implies T' -, A:

e since J is a relative interpretation, then

J(T) 1 J(A)

e since J(T') = J(Id(T)) is equivalent to 7" in F (for any 7'), then
TH A

Proposition 1.1.11 f is an isomorphism of posets from TH(l1) to TH(F2) iff
there there exist two translations I and J s.t. f = [: TH(Fy) — TH(F2) and

is equivalent to 9 via I and J.

Proof We prove only the implication from left to right. For each A € L; we
define a finite subset 1(A) of Ly (the definition of .J is similar):

e since f is an isomorphism of posets, then
f preserves finite elements
e since Thy,(A) is a finite elements, then f(Thy (A)) is a finite element.
Therefore there exists a finite set [(A) s.t.
F(The,(4)) = The, (I(4))
We prove that f = I:

e by definition

the morphism [preserves lubs

e since f is an isomorphism of posets, then

it preserves lubs

e since any 7' € TH(F4) is the lub of {Thy, (A)|A € T'}, then

f(T) =Uaer f(Thy,(A)) = by definition of I(A)
UaerThe, (I(A)) = by definition of 1
I(T)

The properties for equivalence are straightforward to check. 1

35
1.2 Inference and formation rules

Languages and formal systems will be defined by giving a set of rules. Associated
with a set of rules there are certain induction principles, that can be used to prove
properties of a theory or define functions over a language. The formal systems
introduced in this thesis are based on Gentzen’s sequent calculus (see [Gen69))
and their languages are (essentially) sets of sequents of many sorted first order

logic.

Definition 1.2.1 ([Acz77]) Rules
If L is a set, then:

e a (finitary) rule on L is a pair (P,C) € Pin(L) X L

o the set Ip(7T) inductively defined from a subset T' of L by a set R of rules
on L is the smallest subset of L s.t.:

— IfAeT, then A € 1r(T)

— If P Cyip Ip(T) and (P,C) € R, then C € 1g(T)

o the formal system F¥ generated by a set R of rules on L is the smallest

formal system on L containing R, i.e.

THUA &S Aelp(T)

e a derivation of A € L from T by R is a finite tree Il of elements of L s.t.:

— ettherll=A and AeT

— or there exist Ay,..., A, € L and derwations 11; of A; from T by R
s.t. ({A1,..., A}, A) € R and

o a sel R of rules is deterministic EN

(P,C),(P",C) € R implies P = P’

Notation 1.2.2 Rules will be presented in a schematic way, by using metavari-

ables ranging over syntactic entities, like terms or formulae, which are clear from

36

the context (see [Gen69, Kle52]). More precisely, the rule schema (referred as

(name))
name side-condition
corresponds to the set of all instances of (P, C) satisfying side-condition.

Inductively defined sets enjoy the following R-induction principle (see [AczT7]):
o if Pis a property s.t.

—if AeT, then P(A)
— if (P,C) € R and P(A) for all A € P, then P(C)

then P(A) for all A € Ix(T)

Remark 1.2.3 R-induction is usually called induction on the structure of
derivations. Sometimes we also use induction on the size (e.g. the number of

nodes) of derivations.

1.2.1 Languages and formation rules

Languages will be sets inductively defined from the empty set by a determin-
istic set of rules (called formation rules). Since the set of formation rules is
deterministic, functions (on a language) can be defined by induction on the

structure of elements. In fact:

Proposition 1.2.4 ([Acz77]) If R is a deterministic set of rules, then each
element of 1r(0) has exactly one derivation, and the relation “A occurs in the

derivation of B” is a well-founded partial order on 1g(0).

Some syntactic entities (e.g. terms and formulae) are built up from variables,
whose sort is specified by a type environment (i.e. a function from a finite set of
variables to sorts), by means of constructors (i.e. constants, connectives, quan-
tifiers, etc.), that may bind some of the variables. The formation rules for these
entities define a set of assertions s € S(n) (the notation n F s: S is also widely

used in the literature), whose meaning is:

s is a well-formed entity of kind S in the type environment 7.

37

There are two kinds of formation rules (in the presence of variables) either (z)
for some variable x
T m S; =n(x)
or (¢) for some constructor ¢, where the formation rule (¢) is a composition of
the following basic rules:
{s: € Si(n)|1 <1< n}
c(s1,...,8,) € S(n)

I' Crin S'(n)
(') € S(n)

s€ Snlax:7)
c(x:1.5) € S(n)

Notation 1.2.5 We use the following notations for sets of syntactic entities with

free variables:

e S(n) is the set of all syntactic entities s s.t. s € S(n) is derivable from the

formation rules
e S is the set of all syntactic entities s s.t. s € S(n) for some g

e Sy is the set of all syntactic entities s s.t. s € S(0)

Unlike terms and formulae, sequents (and sentences) do not have free variables.
Therefore, their formation rule is a composition of basic rules followed by a
universal closure rule, which binds all variables in the type environment 7
(hence all free variables in the syntactic entity s):

s € S(n)
7.5 € Seq

Remark 1.2.6 To avoid the complications related to bound variables, we assume
that syntactic entities are defined up to a-conversion (see Pages 26-28 and Ap-
pendix C of [Bar81]).

For a syntactic entity s one can define the set FV(s) of free variables in s and
the substitution s[z:=t] of ¢ for = in s. This will be done for terms and formulae

of first order logic, after being more specific about the language (see Section 2.1).

38

1.2.2 Formal systems and inference rules

When a set of rules is used to define a formal system, its elements are called

inference rules.

Notation 1.2.7 We recall some standard terminology from Mathematical Logic
(see 1.11 of [Tro73]). If (L,F) is a formal system, 7" is a subset of L and (P, C)

is an inference rule on L, then
o (P,C) is derivable in <& P+ C

e (P,C) is admissible in T PN Cyin T implies C € T

Remark 1.2.8 Formal systems based on natural deduction cannot be described
by inference rules: they require instead deduction rules, that can bind free vari-

ables and discharge assumptions in a derivation.

If (La,F2) is a definitional extension of (L1,F1), we describe a procedure that
for any set R of inference rules for 5 (i.e. R generates 3) returns a set of
inference rules for ;. This procedure depends on a translation J from L, onto

Ly, whose existence is guaranteed by Proposition 1.1.10.

Proposition 1.2.9 Collapse of inference rules
Let R be a set of rules on Ly and Ly C Ly. If J is a translation from L, to
Ll s.t.

o J(A) and {A} are equivalent in FR, for all A € Ly
o J(A)={A}, for all A€ L,
then the formal system § is generated by the set of rules
J(R) & {{J(P), A)|3(P,C) € R.A€ J(C)}

Proof By the first property of J, the rules in J(R) are derivable in F¥ and

therefore in 7 . So we have to prove only kﬁgMR):

e by induction on the derivation of A from 7' by R
for all T C Ly and A € Ly if T F® A, then J(T) H/(®) J(A)

39

e by the second property of J
forall T C Ly and A € Ly if T F* A, then T /() A

If (L1,F1) is the pullback of (Lg,F2) along a translation / (with certain prop-
erties), we describe a procedure that for any set R of inference rules for 3 returns

a set of inference rules for .

Proposition 1.2.10 Pullback of inference rules

Let I be an injective function from Ly to Ly. If R is a set of rules on Ly s.L.
o C € I(Ly) implies P Cy, 1(Ly) for all (P,C) € R
then the formal system I*(F%) is generated by the set of rules
I"(R) 2 {(P,C)[(I(P),1(C)) € R}

Remark 1.2.11 The result above is applied mainly when [is the inclusion of L,
into Ly and R does not contain cut-like inference rules. In fact, if R contains
cut-like inference rules, then any theorem can occur in the derivation of any other

theorem, therefore the image of I has to include Ig().

Proof By definition of I*(R), the rules in I*(R) are derivable in I*(F). So we
have to prove only I*(F%) CH"®) or equivalently for all T C L; and A € L, if
I(T) FR I(A), then T F"(®) A We show, by induction on the derivation of A
from I(T') by R that for all C € Ly if A = I(C) and I(T) F* A, then T FI"(F) C:

e [(C)e I(T) = C €T, by injectivity of I.
e (PPA)e R= by IH.

— Since A = I(C) € I(Ly), by the property of R
there exists Q) Cyi Ly s.t. P = 1(Q)

— by IH for P
TR Q

— by the rule (Q,C) € I*({P, A)) C I*(R)
TR ¢

40

1.3 Logics and models

By logic we mean a triple (L, Mod, =), where L is a language, Mod is a class of
models and |= is a satisfaction relation. We introduce also the derived notion of
logical consequence relation. Logics will be used to justify a formal system, by

proving that it is sound and complete for some logic.

Definition 1.3.1 Logic and logical consequence relation

A logic is a triple (L, Mod, =), where L is a set, Mod is a class and |= is a
subclass of Mod x L.

The logical consequence relation, also denoted by |=, is the subset of

P(L) x L s.t.
Tl A< foral M € Mod if M |= A’ for all A’ € T, then M = A

Remark 1.3.2 In practice, L is a language inductively defined by a deterministic

set of rules and M = A is defined by induction on the structure of A.

Notation 1.3.3 We introduce some terminology in relation to models. Let M be

a model:

o if M = Aforall A €T, then we say that M is a model of 7' (notation
M =T), M satisfies T', T is valid in M or T is true in M.

e if M |= P implies M |= C, then we say that the rule (P, C) is admissible
(or valid) in M.

Definition 1.3.4 Soundness and Completeness
Let (L, Mod, =) be a logic and (L,F) a formal system:

e I issound (for =) iff FC|=
e I is complete (for =) iff =CF

Soundness and completeness results are very useful even when one is interested
only in formal systems. In fact, one can establish relations between formal sys-

tems as a consequence of model-theoretic results.

Proposition 1.3.5 Embedding and Counterexamples
Let (Ly,F1) and (La,F2) be formal systems s.t. F1Cky and b, is sound and
complete for the logic (L;, Mod;, |=;) (fori=1,2)

41

o embedding FC% g2 provided
for all My € Mod, there exists My € Mod, s.t.

1. forall A€ Fy if My =1 A, then My |5 A
2. for all A€ Fy if My =2 A, then My =1 A

e counterexample - Cxly provided

for some (T, A) € X s.t. T Fy A there exists My € Mody s.t.
M1 |:1 T, but not M1 |:1 A.

Proposition 1.3.5 can be applied also to prove that a translation [from L; to Lo
is a conservative interpretation of Fy in 5 (equivalently Fi= I*(F3)), provided

we pullback the logic (Ls, Mods, |=2) along [in the same way as F.

Definition 1.3.6 Pullback of Logics
Let I be a translation from Ly to Ly. If (L2, Mod,|=) is a logic, then its
pullback along I is (Ly, Mod, I*(|=)), where MI*(=)A <2 M = I(A).

Proposition 1.3.7 Let [be a translation from Ly to Ly. If - is sound (com-
plete) for the logic (L2, Mod, =), then I*(F) is sound (complete) for the logic
(L1, Mod, I*(|F)).

Proof Straightforward. 1

Chapter 2

The logic of partial terms

In this chapter we introduce a first order logic for many sorted partial algebras

and more generally relational structures with partial functions.

Just considering partial functions as single-valued relations would be
too clumsy, because equations would become formulae involving exis-
tential quantifiers and conjunctions. Moreover, for each partial func-
tion fin the structure one would have to add an axiom saying that the
corresponding relation py is single-valued, i.e. if pf(T,y) and ps(T, 2)

then y = z.

The language is essentially that described in [Bur82] and Chapter VI of [Bee85]
with sequents on top. For each many sorted signature we define two logics,
classical and intuitionistic free logic of partial terms (LPT), that share the same
language, but have different classes of models. The logical consequence relation

of each logic can be described by a set of inference rules in a sequent calculus

style (see [Gen69, Kle52]).

Remark 2.0.8 The sequent calculus presentation stresses the similarities between
the formal systems for classical and intuitionistic logic better than any other
presentation of first order logic (e.g. natural deduction or Hilbert-style). This is

particularly useful when comparing classical and intuitionistic formal systems.

These logics provide a framework for defining other (logics and) formal sys-
tems. In fact, all formal systems introduced in this thesisare equivalent to a
formal system aziomatizable in one of the two logics, possibly restricted to a
fragment of the language. For instance, the language of the partial lambda cal-

culus (Ap-calculus) is not a first order lz}f}guage (because of lambda-abstraction),

43

but the A,-calculus is equivalent to a formal system directly axiomatizable in first
order logic.

As an alternative to LPT we could have chosen the Logic of Partial Elements
(LPE) described in [ScoT9, FouT77], where the fundamental concept is that of
partial element and partial functions are represented as strict functions on partial
elements. However, LPE is not such a simple-minded and straightforward choice
for the kind of structures we want to consider, i.e. partial algebras. In particular,
the set of partial elements of a (Kripke) partial algebra is not completely specified
by the (Kripke) partial algebra itself. In Section 3.3 we will discuss in more details
LPE and its relations with LPT.

2.1 The language of partial terms

Languages are sets of sequents and will be defined according to the following

pattern:
1. a set of sorts
2. for each sort and type environment a set of terms
3. for each type environment a set of formulae
4. a set of sequents

This pattern is already familiar from many sorted first order logic (see [Ten78]),
although in the literature it is more common to take as languages sets of formulae
or closed formulae instead of sets of sequents.

Sequents are syntactic entities of the form n.I'y = I'y, where the antecedent
I'; and the succedent I'; are finite sets of formulae whose free variables are typed
in the type environment 7.

There are features that are common to all many sorted first order languages
(e.g. logical connectives and quantifiers), while others (e.g. sort or constant sym-
bols) may change. A many sorted first order language will be specified by a
signature. We may impose some constraints on signatures to capture features of
the models, that we want to describe; e.g. in the case of applicative structures
we want also function spaces and an application operation for each pair of sorts

(see Definition 4.2.9).

44

Definition 2.1.1 Signature

A signature ¥ for partial algebras is:
1. a set Sort(X) of sort symbols T
2. for each T € Sort(X) a set Const,(X) of constant symbols c

3. for each T € Sort(¥)" and 7 € Sort(¥) a set Functz)_.(X) of function
symbols f

4. for each T € Sort(X)" and a set Pred=(X) of predicate symbols p

For simplicity we assume that all these sets are disjoint and countable.

Notation 2.1.2 We introduce some terminology for signatures:

e a signature ¥ is included in ¥’ (notation ¥ C ¥') iff Sort(X) C Sort(%')
and for all 7 € Sort(X) and 7 € Sort(X)™:

— Const,(X) C Const (%)
— Functz)—.(¥) € Functz_,(X)
— Predz(X) C Pred=(X')

o If ¥ is a signature and 7 € Sort(X), then we write X7 for ¥ restricted to

7, i.e. the biggest signature included in ¥, whose only sort symbol is 7

o If ¥ and X' are signatures, then we write ¥ & ¥’ for the union of ¥ and

Y/ i.e. the smallest signature which includes both ¥ and ¥’

Remark 2.1.3 In LPT it is convenient to consider only signatures ¥ with a ex-
istence predicate _ | .€ Pred.(X) and an equality predicate - =, _ € Pred, .(X)
for any 7 € Sort(X). These predicates have a standard interpretation (see Sec-
tions 2.2 and 2.3), namely: ¢ |, means that the term ¢ is defined, and ¢ =, ¢/
means that the terms ¢ and ¢’ are both defined and equal. The subscript 7 will

be omitted when it can be derived from the context.

Type environments are used to specify the sorts of free variables (alternatively

we would have to attach the sort to each occurrence of a variable):

45

Definition 2.1.4 Type Environment
Given a signature Y., a type environment n for ¥ is a function from a

finite set of variables to Sort(X). For type environments we write x:7 (instead

of x:=7) for the function {{z,7)}.

Definition 2.1.5 Language of LPT over X

Given a signature X,

1. the set Term” (n) of terms of sort 7 in the type environment n
2. the set Form™ () of formulae in the type environment 7

3. the set Seq” of sequents

are defined by the following formation rules:

: _—
T € Termf(z)(r)

—————— ¢ € Const (¥
‘ ¢ € Term®(n) ‘ onst, (%)

{t: € Termz (n)]i € |7[}
f({tili € [71)) € TermZ (n)

[€ Functz)—-(X)

1 L € Form®(n)

{t; € Term%(n)ﬁ € 7|}

(eI € Form™(y) » € Predr(®)

Ay € Form™ (n) A, € Form™ (1)
A; A Ay € Form™ (n)

A

Ay € Form™ (n) A, € Form™ (1)

\%
A; V A, € Form™ (n)

Ay € Form™ () Ay € Form® (7))
_)
A; — Ay € Form® (n)

A € Form* (n|z: 7)
Vz:7.A € Form™(7)

46

A € Form™ (5 |z: 7)
Jz:7.A € Form™(7)

Iy Chin Formz(n) 'y Chin Formz(r])
nI'n =1,¢€ SeqE

Notation 2.1.6 The definition of Term®(5) is extended to indexed families of
sort symbols (according to the general conventions). If " is a type environment,
then an element o of Term?,(r]), i.e. a function mapping variables in dom(n’) to

terms of the appropriate type, is called n’-substitution.

Notation 2.1.7 p(t) is called an atomic formula (L is not atomic). Negation
—A is defined as A — L, while the logical constant true T is defined as —L.
Kleene equality t; ~ t5 is an abbreviation for (t; |— t1 = t2) A (t2 | — t1 = t2).

If f and ¢ are two I-indexed families of terms in Term%, then we write f =, ¢
for the set of formulae {f; =5, ¢;|¢ € I}. A similar convention is used for other
predicate symbols of given arity.

We write A(I') for the conjunction (in some irrelevant order) of the formulae
in the finite set I', and a similar convention is used for V.

We write (Vay:71,...,2,: 7, . A) for (Vaqimy... . Va,:7,.A) and V. A for uni-
versal quantification of A w.r.t. all the variables in dom(n) (in some irrelevant

order). Similar conventions are used for 3.

Notation 2.1.8 Often antecedents and succedents will be treated as sequences
(rather than sets) of formulae. For instance, n. = T'1, A,T'; stands for the
sequent . = 'y U{A}UT'3. We will also make use of the following shorthands:

o 'y = I'; stands for the sequent n.I'y = T'y, where 1 is a type environment
for the free variables of I'; UT; s.t. Ty U’y € Form™ (n). Since each predicate

and function symbol has a unique arity, then 5 (if it exists) is unique
e 7.I" stands for the sequent .0 =T

o If A is a formula, then A may stand for the sequent) = A

The following properties of the languages defined above are obvious and in

the sequel they will be used implicitly:

47

Lemma 2.1.9 Signature Extension preserves Well-Formedness

If ¥ C X, then for all type environments n and sorts T for Sort(X):
e Term? (y) C Term™ (1)

e Form®(n) C Form™ ()

e Seq” C Squ/

Lemma 2.1.10 Type Environment Extension preserves Well-Formedness

Given a type environment n and a sort T for X:

o ift € Term>(n) then t € Term” (z:7|n)

o if A€ Form®(n) then A € Form™ (z:7|7)

o if (n.Ty == T'y) € Seq” then (z:7|n.[y = T'y) € Seq™
We recall the familiar notion of free variable and substitution:

Definition 2.1.11 Free variables and Substitution
The set FV(_) of free variables of _ is defined by induction on the structure

of terms and formulae:

{z}
0

e

e FV(z)

(1>

e FV(c)
e FV(f(1)) 2 Ui FV (i) and similarly for predicates and logical connectives
o FV(Vz:7.A) 2 FV(A) — {z} and similarly for the existential quantifier.

If o is a n-substitution, then the o-substitution instance _[o] is defined by

induction on the structure of terms and formulae:

A {J(x) if € dom(o)

¢ 2[o] = x otherwise

e f(1)]o] 2 f(tlo]) and similarly for predicates and logical connectives

48

o (Va:7.A)0] 2 Yz T.Alo] and similarly for the existential quantifier.
By a-conversion we can assume that x is not in dom(o) and does not occur
free in o(x') for any ' € dom(o)
The definition of FV(_) and _[o] is extended, in the obvious way, to families and

sets of terms or formulae.

The application of a substitution to a well-formed expression results in a well-
formed expression provided every substituted variable has the same sort as the

term it is substituted with.

Lemma 2.1.12 Substitution preserves Well-Formedness

Given a signature ¥ and a n'-substitution o € Term?,(r]):

o Ift € Term>(n|n') then t[o] € Term> ()

o If A € Form™(n|n') then A[o] € Form®(n)

o If (n|n'. Ty = TI'y) € Seq™ then (n.I'1[o] = T'1[0]) € Seq™
Definition 2.1.13 Fragments

e A fragment of the formulae is a subset F' of Form® closed w.r.t. sub-
stitution, i.e. if A € Form® () is in F and o € Term? ('), then Alo] is in
F.

e A fragment of the sequents is a subset F' of Seq” closed w.r.t. sub-
stitution, i.e. if (n.I = I") is in F and o € Term (1), then (y'.I'[0] =
[M[o]) is in F.

Notation 2.1.14 We will make use of the following notations for fragments:

o If ... is a set of connectives and quantifiers, i.e. ... C {L A VIV —}, then
Frag™(...) is the fragment of Form® built up from atomic formulae by using

only ... as constructors.

Moreover, Frag™(...)(n) and Frag3(...) are the intersection of Frag™(...)

with Form™(5) and Formj respectively

e JSeq” is the fragment of Seq™ whose elements are of the form 5.I' = A,

i.e. the succedent is a singleton.

49

o if F and F' are fragments of Form®, then {F} = {F'} is the fragment of
Squ whose elements are the sequent .I'y = I'; s.t. ['; is a finite subset
of F' and I'y is a finite subset of F".

Moreover, {F'} = F" is the intersection of {F'} = {F’} and JSeq”.

2.2 Classical free logic of partial terms

The definition of ¥-structure is essentially that in [Bur82, Bee85] and differs from

the usual definition for many sorted first order logic in two ways:

e the interpretation of a sort symbol may be the empty set (this is why the
logic is called free). We allow empty sorts both for the sake of generality,

and because they arise quite naturally

e the interpretation of a function symbol is a partial function, and therefore

the interpretation of a term (given a denotation for its free variables) may

be undefined

Morphisms between X-structures are defined as weak homomorphisms (see [Bur82]);
this amounts to interpreting partial function symbols as (single-valued) relations
and to taking the usual homomorphisms between relational structures as mor-
phisms. This choice of morphism is crucial to get the right definition of Kripke
Y-structure (see Definition 2.3.1).

Definition 2.2.1 Structure, Morphism and Reduct Functor
Given a signature ¥, we define the category of X-structures Struct(X):

o A Y-structure A in Struct(X) is a function A defined on the symbols of
Y and satisfying the following properties:

1. if 7 € Sort(X), then T4 is a set, possibly empty.
Since (4|7 € Sort(¥)) is a Sort(X)-indexed family of sets, we can

use the general conventions and write fA for the product [lic; fA,

whenever f is an I-indexed family of sorts.
2. if c € Const,(X), then A € 74
3. if f € Functz—.(X), then fATA 74

4. _ 12 is the set T4

50

A is the diagonal relation on 74, i.e. {{a,a)la € 74}

. =, _
6. for the other predicate symbols, if p € Pred=(X), then p* C 74
e A Y-morphism ¢ from A; to Ay is a Sort(X)-indexed family of total

functions ¢_: 7 — 742 5.t

1. if ¢ € Const,(X), then ¢t = ¢_(cM)

2. if f € Functz—,(2) and fA1(a) is defined, then

[(¢=(@) = 6.(f*(@))

3. if p € Pred=(X) and @ € p™, then ¢ _(a) € p™

Given two signatures ¥ and ¥’ s.t. ¥ C Y/, the reduct functor _[X is the
functor from Struct(X') to Struct(X) s.t. for all ¥'-structures A:

1>

FA

o if 7 € Sort(¥), then 7AME
o if c € Const (%), then cAM® 2 A
o if f € Functz—(X), then fA™ 2 fA
o if p € Pred=(%), then pAl* £ pA
and for all ¥X'-morphisms ¢:
e (%), S ¢, for all T € Sort(X)
Notation 2.2.2 If 5 is a type environment, then an element p of 7 is called an
n-environment.
The interpretation of terms and formulae depends on an environment, which

assigns an interpretation to the free variables that may occur in them.

Definition 2.2.3 Interpretation in a Structure
Given a X-structure A, the denotation [t]7}' of a term t € TermZ(n) in an

environment p € n is defined by induction on the structure of t:

A
~

o [z]4 ~ p(x)

° [[c]];‘ é A

o [FD]A 2 FA(IA)

o1

[t]2 is either an element of T4 or is undefined.
The assertion “p € n* satisfies the formula A € Form™(n)” (A,p = A) is
defined by induction on the structure of A:

o A p = p() N [i]# (is defined and) is in p*

ApEANA < ApkE A and A, p = Ay

ApEAVA S ApkEAior ApE A

AplEA — Ay &5 if A pl= Ay, then A, p = A,

A pEVr:1.A N A, plz:=al= Aforall a € 74

o A pEde:r.A =N A,plz:=a = A for some a € 74
The sequent n.I'y = Ty is valid in A (A = n.Ty = Ty) iff:

o forall p e ntif A,p =T, then A, p = A for some A € T,

Notation 2.2.4 If p is an n-environment and f is a J-indexed family of terms
in Term® (1), then [/ is (according to the general conventions) the J-indexed
family ([[f]]]fb € J), provided [[fj]]f | for all 5 € J.

Moreover, if I' C Form® (5), then the assertion A,p =T is true iff A,p = A
for all A € I'.

From the definition of interpretation in a model it is easy to show that the validity
of a sequent in a ¥-structure does not depend on the interpretation of the symbols

of ¥ that do not occur in the sequent, in fact:

Lemma 2.2.5 Satisfaction Lemma

Given ¥ C X' a Y -structure A, a type environment n for ¥ and an n-
A)..

environment p € nA1¥ (=7
o ift € Term>(7), then [e]AT™ ~ [t
o if A€ Form®(n), then AlS,p=Aiff A,p=E A

o if .1y =Ty € Seq”™ then AL =nly =Ty if A =T, =T,

52
2.3 Intuitionistic free logic of partial terms

For intuitionistic Logic there are various definitions of model: topological models,
Kripke and Beth models (see [vD86]), logical categories and topoi (see [MRT77,
LS86]). All of them induce the same logical consequence relation, so the choice
is quite arbitrary.

We have chosen a variant of Kripke models, which is equivalent to the Kripke-
Joyal semantics in a functor category SETY (see [LS86]). With this definition
any intuitionistic theory is the theory of a model (see Lemma 2.6.11); even the
inconsistent theory has a model, namely the one with K empty. The usual
definition of Kripke model (see [Tro73, vD86]) corresponds to those K that are
partial orders with a least element. And most of the Kripke models defined in

the sequel will be over a partial order with a least element anyway.

Definition 2.3.1 Kripke Structure and Reduct Function

Given a signature ¥ and a small category K, the category of Kripke Y-
structures over K is the functor category Struct(X)K.

Given two signatures ¥ and X' s.t. ¥ C Y/, the reduct functor _[Y from
Struct(X’) to Struct(X) induces a reduct functor (_[X)¥ (also denoted by _¥)
from Struct(X)K to Struct(X)K

Notation 2.3.2 An element a of K is usually called a stage of knowledge. We
write a < o to indicate that there exists a morphism from «a to o’ in K.
We write 75 for the functor from K to SET s.t. 75(a) = 75(®) and 75(f) =
B(f)_. The functors 7 and n® are defined similarly.
If ffa — o is a morphism in K and ¢ € 75%(a), then we write ay for a

after f, i.e. the element 75(f)(a) of 7%(a’). We introduce similar shorthands for

5 (f)(@) and n®(f)(p).

The interpretation of terms and atomic formulae at a certain stage of knowl-
edge « is exactly their interpretation in B(«). But for non atomic formulae the
interpretation at o may depend on that at o’ > « (in a suitably transformed

environment).

Definition 2.3.3 Interpretation in a Kripke Structure
Given a Kripke Y-structure B: K — Struct(X), the denotation [[t]]f’“ of a

term t € Term> () in an environment p €) at a stage o is [[t]]f(a).

33

The assertion “p € n°) satisfies the formula A € Form™(y) at stage a”
(B,a,plA) is defined by induction on the structure of A:

e B, a,plp(t) = B(a),p E p(?)

B,a,plFAi A Ay <= B,a, p|-A; and B, a, p|-As

B,a,p|-A1 Vv Az N B,a,p|-A;r or B, a, p|-As

B,a,p|-Ar — Az PE

for all fra — o' if B, o, py4|l-A1, then B, o, p;[l=As

B,a, p|FVa:1.A =N

B,d' pysle:=al|-Afor all fra — o and a € 7B
e B a,plJz:7.A N B,a,plz:= al-A for some a € 75()
The sequent n.I'y = T'y is valid in B (B|f-n.I'y = T'y) iff:

o for all @ € K and p € 75 if B, a, p|-I'y, then
B, a, p|-A for some A € I'y

The functoriality of Kripke ¥-structures is reflected also in the interpretation:

Lemma 2.3.4 Functoriality of the Interpretation w.r.t. «
Given a signature Y, a type environment n for X, a Kripke Y -structure

B:K — Struct(X), f:a — o' and an environment p € p5(*);
o Ift € Term®(n) and [t]5* is defined then [[t]]fr’;“' = ([[t]]f’a)rf

o [fA € Formz(r]) and B, a, p||=A then B, o', p;|-A

Remark 2.3.5 Categorically the functoriality of [[t]]f"”‘ means that the family

B (see

((Ap € T]B(O‘).[[t]]f’“ﬂoz € K) is a quasi-natural transformation from n® to 7
Definition 5.1.7). Similarly, the functoriality of B, «, p|-A means that the family

Up € nB|B, a, p|-A}|a € K) is a sub-functor of n®.

From the definition of interpretation in a Kripke model and its functoriality it is

easy to show that:

o4

Proposition 2.3.6 If A is a closed formula and L is a weakly initial stage of
knowledge (the least stage, if K is a partial order), then the sequent (.0 = A is
valid in B, i.e. B|FA, iff the environment O satisfies A at stage L, i.e. B, L, }|FA

Also for Kripke Y-structures, the validity of a sequent does not depend on the

interpretation of the symbols of ¥ that do not occur in the sequent:

Lemma 2.3.7 Satisfaction Lemma
Given ¥ C Y/, a Kripke ¥'-structure B: K — Struct(X’), a type environment
n for Y, a stage o € K and an n-environment p € nB=(@)(= 5B(e));

o ift € Term>(7), then [t]E1e ~ [t] B
o if A€ Form®(n), then BIY, a, p|-A iff B, a, p|-A

o if n.T, =T, € Seq™ then BE|n.I'y = 1y iff Bln.Th = I';

2.4 Formal systems

The satisfaction relation |= between Struct(X) and Seq™ induces a logical con-
sequence relation =¥ on Seq” (see Definition 1.3.1). This logical consequence
relation can be alternatively described by a formal system for deriving sequents
from (non-logical) assumptions (see [MR77]). Sections 2.5 and 2.6 will be devoted
to proving that the logical consequence relation and the formal system defined
below are the same.

The formal system has the (cut) rule, which is not derivable from the other
rules, although it is admissible in the theory generated by them (see the Haupt-
satz of [Gen69]). We include the axioms for _ | and - = _, in order to capture the
standard interpretation for these predicates. The inference rules are divided in
three classes: general rules, rules that describe the meaning of terms (including
the axioms for existence and equality) and rules that describe the meaning of

formulae.

Definition 2.4.1 The Formal System Free KLPT
K is the formal system on Seq™ generated by the following inference rules:

General rules:

1
% T, A— AT}

7]1.F1 - Fll
72 LT]l.Fl, FQ = Fll, F/2

thinning

T].Fl,A — Fll T]FQ - A,F/Q
T].Fl,rg —— F/I,F/Q

cut

Rules for terms:

subst

nIhy=1t],1] nle:m.Iy =1}

n.Iq, Doz =t] = I, Te: =]

Azxioms for existence:

Ez ol
Feel,

E.fi f(f) L= T |~ i € dom(7)

Epip) =T |= i € dom(7)

Azxioms for equality :

refl z =,z

Symm & =, Ty — Tg =, 1

trans x1 =; 9,29 =; T3 = 1 =, T3

cong.f T ==7, f(T) |.= f(T) = f(T')

cong.p T = T, p(T) = p(T)

Rules for formulae:

1 = 7].F17J_ - FQ

5]

A =

— A

V=

— V

= —K

1=

= 3

V—=

— Vi

26

7].F1,AZ' — FQ
T].Fl,Al ANAy =T,

T].Fl — Al,rg T]Fl - AQ,FQ
T].Fl - Al N AQ,FQ

T].Fl,Al - FQ T].Fl,AQ - FQ
T].Fl,Al VA, =T,

T].Fl - Ai,FQ
'I].Fl —— Al \% AQ,FQ

'I].Fl - Al,rz 7]F/17A2 - IVQ
n.Fl,F’l,Al — A2 = FQ,F/Q

T].Fl,Al — AQ,FQ
T].Fl > Al — AQ,FQ

eI, A =T,
n.ly,de: 7 A =T,

nIly =1t],1; nIy = Alz:=t],T,
n.I'y = de:7. A, T

nIv=1];1, nI, Ale:=1t] =T
nIy, T, Ve: 7. A =T, T

nle:r.y = A, 1
n.I'y = Ve:7.A, T,

Remark 2.4.2 In first order logic it is not necessary to use sequents to describe

the formal consequence relation. In fact, the sequent (n.I'1 = I'z) is equivalent

to the closed formula (Vn. A (I'1) — V(I'2)).

The inference rules of the formal system ki for intuitionistic logic (FreeJLPT)

are only a minor modification of those for 5. In fact, all the inference rules for

classical logic are valid in Kripke X-structures, except (= —x) and (= Vi),

which are valid only when I'; is empty.

57

Definition 2.4.3 The Formal System FreeJLPT
L is the formal system on Seq™ generated by the inference rules for F¥, with
the rules (= —k) and (= Vi) replaced by:

T].Fl, Al - A2

>
! 7]F1 - Al — A2

nle:r. Iy = A
\
— V1 ny = Ve:7.A

Alternatively to get the intuitionistic formal system on the JSeq™ fragment, one

can restrict all the inference rules for classical logic to JSeq™ (see [Gen69] or

[Kle52]), in fact:

Proposition 2.4.4 If T C JSeq” and T F} n.I'y = Ty, then there exists a
formula A in TyU{L} s.t. n.I'y = A is derivable from T by using only inference

rules restricted to JSeq”.
Proof By induction on the derivation of n.I'y = I';. I

The formal system for classical logic can be axiomatized in that for intuitionis-
tic logic by adding either the axiom (schema) of the excluded middle or that of
double-negation. Also the formal system for the usual many-sorted structures,
where all types are inhabited and all functions are total, can be easily axioma-

tized.

Definition 2.4.5 Variants of LPT

The logic of partial terms has eight variants:

Free J 0
N n LPT + N
Inhabited K tot

each of them is aziomatized in the free intuitionistic logic of partial terms (FreeJLPT

over ¥) by a suitable combination of the following azioms:

e axioms for classical models, either

excl AV -A

a8

or

o axioms for models with all sorts inhabited

inhab dz:7.T

e axioms for models with all functions total

tot f(z) L.

2.5 Soundness

Soundness of the formal system F§ w.r.t. the logical consequence relation =5
amounts to showing that the inference rules for -5 are valid in any X-structure.

This is easily proved by using the following lemmas:

Lemma 2.5.1 Environment Extension preserves Meaning
Given a signature ¥, a type environment n for ¥, a X-structure A, an envi-

ronment p € n* and a € T4

o Ift € Term(n) then [t]* ~ [t]4

z:=al|p
o If A cForm™(n) then A,z:=alpE A<= A pEA

Lemma 2.5.2 Substitution Lemma
Given a signature ¥, a type environment n for X, a X-structure A, an envi-

ronment p € n* and t € Term® (n) s.t. [t]4 =a €A
o Ift' € Term®(n|x:7) then [t[x:= t]]]“;‘ ~ [t

plzi=a
o If A€ Form™(n|z:7) then A, p = Alz:=t] <= A,plz:=a | A
For intuitionistic logic, soundness of F{. w.r.t. |=J, is proved in a similar way,

but to show the validity of the rules (=—;) and (= V;) we have to use also

functoriality of the interpretation in Kripke ¥-structures (see Lemma 2.3.4).

Theorem 2.5.3 Soundness

Fs is sound w.r.t. =y

29

2.6 Completeness

The proof of completeness follows Henkin (see [Hen49]), but some extra care is
required, because the addition of new constants forces some sorts to be inhabited.
Completeness of F¥ w.r.t. = amounts to proving that: for all signatures X,
sets T' C Squ and n.I'' =TIy, € Squ it T 5 n.I'y = I'y, then there is a
Y-structure A which is a model of T' but does not satisfy n.I'y = T's.

e By the Deduction Lemma (see Lemma 2.6.2), this is equivalent to: for all
signatures Y, sets of sequents 7' C Seq” and a finite set of closed formulae
I' Chin Formg, it TH5 0.1, then there is a X-structure A which is a model
of T' but does not satisfy any of the formulae in I"

e Then we introduce the auxiliary notion of classically T'-complete set and
prove the Separation Lemma (see Lemma 2.6.4): if T I/ (.T', then there is
a classically T-complete set (on an extension of ¥), which does not contain

any of the formulae in I’

o Finally, the Characterization of the term model Ay gy corresponding to a
classically T-complete set H on ¥ (see Proposition 2.6.8) provides the last
link for the proof of the Completeness Theorem (see Theorem 2.6.9)

For intuitionistic logic the definition of intuitionistically T-complete set and the
proofs of the Deduction and Separation Lemmas are exactly the same as the
ones for classical logic, provided F* is replaced by -’. However, intuitionistically
T-complete sets correspond to stages of knowledge in the Kripke term model
B(s 1), rather than to Kripke models of T'. The Characterization of B(s ry, unlike
that of Az gy, makes use of the Separation Lemma (see Proposition 2.6.11).
Moreover, the Completeness Theorem (see Theorem 2.6.12) becomes a rather
simple consequence of the Characterization of By 1y .

In the separation lemma and for the term model constructions we have to

extend a signature with extra constant symbols and use the following conventions:

Notation 2.6.1 A set (' of new constant symbols for ¥ is a set disjoint from
(the sets in) ¥ together with a function from C' to Sort(X) assigning to each
element of (' its sort. Similarly, a new constant symbol ¢ of sort 7 for X is

a symbol not in X.

60

The set C' (symbol ¢) can be viewed as a signature s.t. Sort(C') is Sort(X) and
Const,(C) is the set of symbols in C' whose sort is 7 (the other sets are empty).
Therefore, in the sequel we write ¥ W C' (X W ¢) to denote the union of ¥ and the

signature corresponding to C' (c¢).

Lemma 2.6.2 Deduction Lemma

Given a signature ¥ and a set T C Seq” :

o Ifn.Iy =T, € Seq” and A € Form?, then
Thyn AT =T iff T, Aby nI'y =15

o Ifx ¢ dom(n), z:7|n.Iy = I'y € Seq™ and ¢ is a new constant of sort T
for X, then
Thyairinly =Ty iff T by nTife:=c¢] = Tz =]

Proof In both cases the two implications are proved separately. The implication

from left to right is the easy direction, and it follows from:
® (77A7F1 - FQ),A l_E 77F1 - FQ
o (v:7|n.I'y = T13) by, n.I'1[z:=c] = T2]z: = ¢]

The implication from right to left is by induction on the derivation of the r.h.s.,

and the only cases that require some care are the basic steps of the induction:

o —ifT AbFy n.I'y = I'; because
n.I'y =Ty isin T, then
T Fy n.A,T1 = I's by (thinning)
—if T, A Fy n.I'y = I’y because
n.I'y = Ty is 0.A, then
Tky 0.A = A by (log)

o — if T'kyy,. n.I1[z:=c] = I'z[z: = ¢] because
n.Iiz:=¢] = I'yfaz:=¢] is in T, then
x does not occur free in I'y or I'y, so

T Fy x:7[n.I'y = I'y by (thinning)

61

— i T Fgy. n.Ty[z:=c] = I';[z: = ¢] by (E.c), then
n.Iifz:=c] = Tyz:=c]is b.c |, so
Tky ax:r2x |, by (E.x)

Definition 2.6.3 Complete Set
Given a signature ¥ and a set T C Seq”, a set H C Form is T-complete
on X iff:

1. L ¢H
2. For all A € Form> if T,H by A, then A € H
3. If A,V Ay € H, then Ay € H or Ay e H

4. If dz:7.A € H, then there exists t € Termf(@) s.t.
tl€e H and Alz:=t] € H

It is easy to show that a classically T-complete set is maximal consistent, i.e. for
all A € Formy if H, A /% 1, then A € H (see [Hend9]). In fact, if H, A IS L,
then =A ¢ H, but ~AV A is in H, because it is a tautology in classical logic (but
not in intuitionistic logic), therefore A € H, by the third property for complete
sets. However, there are maximal consistent sets that are not classically complete,

because they may not satisfy the fourth property for complete sets.

Lemma 2.6.4 Separation Lemma

Given a signature Y, a set C' of new constant symbols for ¥, with Ng symbols
for each sort, and a set T C Seq™, then for all T Cy;, Form? s.t. T VS 0.1 there
is a signature X, with ¥ C ¥, C X W C, and a T-complete set H on ¥, s.t.
A& H forall AinT

2¥C we define, by induction on n, an

Proof Let A, be an enumeration of Form
increasing sequence (¥, H,) (where ¥, C ¥ & C is a finite extension of ¥ and

H, C Formg™):

e basic step
HO = @
EO =X

62

e inductive step

Let C,, be the set of new constant symbols for ¥, occurring in A, ; there

are two cases to be considered:

— if T, H,, A, W5 ye, 0.1 then there are two subcases:

x If A, = Jz:7.A then
H,1 = H,U{A,, Alz:= |}
En—l—l EEnL‘!’JCnL‘HC

where ¢ € (' is a new constant symbol for ¥, & (),

x else
Hn—|—1 = Hn U {An}
En—|—1 = En W Cn

— else
Hn—l—l = Hn
E'rL—I—l = En

The rest of the proof will establish that ¥, 2 Upewdin and H 2 Unew H,, satisfy
the statement of the lemma. For each of the four properties in the definition of
T-complete set we prove a claim that essentially amounts to showing that H has

that property.
Claim 2.6.4.1 T, H, I/5, 0.I

Proof By induction on n. The non trivial cases (in the inductive step) are:
e the first subcase of the first case. Let A, = dx:7.A, we have to show that
if 7', Hy,, Jz: 7. A /g e, 0.1, then
T, H,, e 1. A, Alz:=c] /gy, we 0.1
— Assume that
T,H,, Je: 17 A, Alei=c] by we,we 0.1

— By the Deduction Lemma
T, Hy by e, 7307 A A =T

— By the inference rule (3 =)
T H,ty o, dJ2:7.A =T

63

— By the Deduction Lemma
T,H,,3z:7. Ay o, 0.0

contradiction

e the second case follows immediately from the IH (actually it is the only

case where the TH is used)

From the previous claim it follows easily that L & H and A ¢ H for all A in T.
Claim 2.6.4.2 If T H \y_ Ay, then T, H,, A, s e, 0.

Proof

e By compactness of I there exists m > n s.t.

T,H, g A, (and therefore X, & C), C X,,)

e assume that

T,H,, Ay by ue, 0.7

e By the Deduction Lemma

e By compactness of -, ¥, W), C ¥, and H, C H,,
T Hyty A, =T

e By the inference rule (cut)
T, Hy by 0.1

which contradicts the previous claim

From the previous claim it follows easily that for all A € Formg« if T, H by A,
then A € H.

Claim 2.6.4.3 Gwen m s.t. A]V A, A} and A} have at least one index < m
in the enumeration of Formy®®, if A\ v A, € H,,, then A} € H,, or A, € H,

64

Proof It is not possible that T, H,, gy A} = I' and T, H,, Fy A}, = T
otherwise by the inference rule (V =), the Deduction Lemma and the hypothesis
AV A} € H,, it follows that T', H,, Fy 0.I', which contradicts the first claim.
So taking n < m s.t. A, is A} or A} and T, H,, Ify, A, = T, we prove that:
T,H,, Ay s e, 0.1

e Assume that

T,Hy, Ay by e, 0.7

e By the Deduction Lemma

e By compactness of -, ¥, W), C ¥, and H, C H,,
T, Hm l_Em An — F

contradiction

By construction and n < m it follows A, € H,, I
From the previous claim it follows that if A}V A} € H, then A} € H or A}, € H.

Claim 2.6.4.4 If Jx:7.A = A, € H, then there exists ¢ € Const,(X,) s.t.
Alz:=c]€e H

Proof

e By the second claim

T7 Hn7 ATL VEnLtJCn wr

e By construction
Alz:=c] € H and ¢ € &,
e By the inference rule (E.c)

T, Hbtg cl-

e By a consequence of the second claim

cl,e H

65

From the second and fourth claim it follows that if dx:7.A € H, then there exists
t € Term™ () s.t. t |€ H and A[z:=t] € H 1

The crucial property of a classically T-complete set H on ¥ is that it is the set
of closed formulae valid in a certain model A(s gy of T'. However, the definition

of A(s, m) itself relies only on few closure properties of the atomic formulae in H.

Definition 2.6.5 Acceptable set
A subset H of Form} is ¥-acceptable iff

1. if ¢ € Const(X), then ¢ |,€ H

2. if f(t) |,€ H, then t; |=,€ H for any i € dom(t)

3. ifp(t) € H, then t; |=,€ H for any i € dom(t)

4. ift |,€ H, thent=,t€e H

5. ifty=,t, € H, thenty =ty € H

6. ifty =, 13 andty =,t3€ H, thent, =, t3€ H

7. ifT =27 Cpin H and f(T) |,€ H, then f(I) =, f(T') e H
8 ift =1 Cyin H and p(1) € H, then p(t') € H

Remark 2.6.6 The properties of an acceptable set ensure that functions and
predicates are strict and _ = _is a congruence relation. Both classically and
intuitionistically complete sets are acceptable. In fact, the closure properties
above are a consequence of the second property for complete sets, more precisely
they can be derived from the general rules and the rules that describe the meaning

of terms (see Definition 2.4.1).

Definition 2.6.7 The Term Model A(s)
Given a X-acceptable set H the Y-structure Ay gy is defined by:

1. tAem 2 {[t] |t |.€ H} , where [t], £ {t|t = ' € H}

1>

2. Ao = [c]y

3. fAe (@) 2 { @y #fO) e H

undefined otherwise

66

4. [, eptom S pM) e H

Proposition 2.6.8 Characterization of Ay g)
Let H be a classically T'-complete set on ¥ and A = A gy. Then, for all

type environments n, environments p € n* and substitutions o € [p:

o Ift e Termf(r]), then [[t]];‘ ~ {[t[a]]H iftlc] le H

undefined otherwise

o If A € Form™(n), then A, p = A <= Alo] € H

Moreover, A =T

Proof The first statement is proved by induction on ¢. The basic cases x and ¢
are trivial (in fact, o |,Cy; H as o € [[p), so we consider only the case f(1).
First we prove that if f(7)[o] € H, then [f(£)]7' ~ [f(T)[o]]4

e by the second property of complete sets
t;[o] € H for any 1 € |t
e by IH applied to ¢;
[t]7 = [Elol]ly
e by definition of []7' and f#
LA = AL € 121) = [FEloD]y
Then we prove that if [f(£)]# is defined, then [f(2)]* = [f(%)[o]],
e by definition of []7!
[[fi]];‘ are defined for any i € |¢| and fA(([[fi]]ﬂi € |t])) is defined
e by IH applied to ¢;
[t]7 = [Elolly
e by definition of f4

(f(Elo]) Le H and) fA(EL] € [2)) = [f(EoD]y

67

The second statement is proved by induction on A. The basic case p(t) is
similar to the case f(t) for terms. The second property of complete sets is used

in all cases. The third and fourth properties of complete sets are used only in the
proof of (A1 V A)[o] € H implies A,p = A1 V Ay and (Jz:7.A)[o] € H implies
A, p |E dz: 7. A, respectively.

Since in classical logic Ay — A, is formally equivalent to = A; V Ay and Vz: 7. A
is formally equivalent to —3z:7.-A, it is enough to show that A,p E —A iff
—Alo] € H (this is the only place where the first property of complete sets is
used):

e assume that A, p = - A, then

A, p E A is not true, by definition of A, p = _
e By IH
Alol ¢ H
e By the second property of complete sets
Alo] Vv -Alol e H
e By the third property of complete sets
-Afo] € H
conversely

e assume that ~A[o] € H, then

A & H, by the first and second property of complete sets
e By IH

A, p E A is not true
e By definition of A, p = _

A.p -4

A = T follows easily from the second statement and the definition of A 1

Theorem 2.6.9 Completeness

F¥ is complete w.r.t. =%

68

Proof We prove that for all sets T C Seq” and n.I'y = I'; € Seq”
o if T A nI'y = Iy, then there is a model of T" which does not satisfy
T].Fl - FQ
Take a set C' of new constant symbols (of the appropriate sorts), one for each

of the variables in dom(n), and a substitution v € Term?ﬂc(@) that establish a

bijection between dom(n) and the set C' of new constant symbols for ¥.

e Assume that

T|7/§ T]Fl :;>F2

e by the Deduction Lemma
T,T1[7] #3we 0.12[]
e by the Separation Lemma
there is an extension ¥’ of ¥ W C and a T'U {I';[y]}-complete set H' on ¥’
s.t. A[y] € H' for all A in T’y
o By the Characterization Lemma for Ay g)
A gy E T and Ay gy, 0 = T[], but
not Az iy, 0 = Aly] for any A € Iy

therefore .I'y = T'; is not valid in Az gy

e by the Satisfaction Lemma

Ay lE E= T, but 5.I'y = I'; is not valid in A a8
1

In order to prove completeness for intuitionistic logic, we define for any set
T of intuitionistic sequents over X a Kripke model By), whose theory is ex-
actly the theory axiomatized by T in k3. The stages of By) correspond to

intuitionistically T-complete sets on an extension of X:

Definition 2.6.10 The Kripke Term Model B(s 1)

Given a set T of sequents over ¥ and a set C = {¢;|t € wxw} of new constant
symbols for X s.t. for all n € w the set C, 11 — C,, has Ny symbols of each sort,
where C,, is {¢;|t € n X w}; the Kripke X -structure B,y over Kz 1) is defined
by:

69

° (E/,H/) € K(gj) <é>

- N CY¥and ¥ CYXW(C, for somen € w

— H' is intuitionistically T'-complete on X'
and (Zl,Hl) S (EQ,HQ) é 21 g 22 and H1 g HQ.
[] B(EJ“)(E/,H/) é A(E’,H’)

o By (f) ([t]y,) £ [t]y,, for all t |.€ H

Since an intuitionistically complete set on ¥’ is ¥'-acceptable (see remarks after
Definition 2.6.5), B(x 1) is well-defined.
The characterization of Bz 1y (unlike the one for Ay p)) makes use of the

Separation Lemma:

Proposition 2.6.11 Characterization of By 1)
Let T be a set of sequents on ¥, K = Kz 1) and B = Bz 1y. Then, for all

type environments n, o = (X', H') € K, environments p € 7% and substitutions

ocellp:

o Ift € Term®(n), then [t]5> ~ { [t[o]] g iftlo] le H'

undefined otherwise

o If A € Form™ () then B,a, p|-A < Alo] € H'

Moreover, BlFn.I'y = 1y iff T F§, n.I'y =15

Proof The first statement is proved as in Proposition 2.6.8.

The second statement is proved by induction on A. The only cases that are
treated differently from Proposition 2.6.8 are — and V. Since they are quite
similar, we consider only —. It is easy to prove that if (A; — Ay)[o] € H', then
B,a,p|FA1 — Ag; in fact for all o = (X", H") € K and f:a — o (there is at

most one such f):

e assume that
B, o', prsl=As

e By IH applied to A,
Aol € H"

70

e By the assumption on H' and H' C H"

(A1 — Ay)lo] € H”

e By the second property of complete sets
AQ[O’] € H”

e By IH applied to A,
Baalap[f”_AQ

by definition of B, a, p|--, it follows that B, «, p|F A1 — As.
To prove that if B, a, p|FA;1 — Az, then (A; — Ay)[o] € H', we need the

separation lemma (see Lemma 2.6.4):

e assume that

(A1 — As)[o] & H'

e By the second property of complete sets
T, H' W, Ai[e] — Ajo]

e By formal derivation

T, H' ., Ai[o] = Aj|o]

e By the Deduction Lemma
T, H', Ailo] % Azo]

o take n s.t. X C ¥ W (), then by the Separation Lemma
there is a signature X", with ¥/ C ¥" C ¥ W (41, and an intuitionistically
T U H' U{A[o]}-complete set H"” on X" not containing A;[o]

o let o/ 2 (X", H") and f:a — o € K be the unique from « to o', then by
IH
B, psl-As but not B, o', pys[-A2

e by definition of B, a, p|l--
B,a, p|-A1 — A; does not hold

71

By Soundness, to prove that if T'F3, n.I'y = I'y, then B|-5n.I'y = Ty, it is

enough to show that B|-T', which follows easily from the second statement and
the definition of B.

For the other implication we prove that if T' I, n.I'y = I'y, then B does
not satisfy n.I'y = I';. Let C be the set of new constant symbols used in the
definition of Bz 1y (see Definition 2.6.10). Take a substitution v € Term?wc(@)

that establishes a bijection between dom(n) and a finite set C' C C of new

constant symbols for . Since C' is finite, there exists n s.t. C’ is included in C,,.

e Assume that

T }7/%: T]Fl - FQ

e by the Deduction Lemma
T7 Fl[’)/] |7/JEL+JC’ @FQ[’YL

e by the Separation Lemma there is an extension ¥’ C X W (41 of X &
and an intuitionistically 7' U {I';[v]}-complete set H' on ¥’ s.t. A[y] ¢ H’
for all A in I'y

e let a= (¥, H')eKandp 2 (Y] € n%@), by the second statement

B, a, p|Az, but not B, a, p|-A for any A € Iy

therefore .I'y = I’y is not valid in B

Theorem 2.6.12 Completeness

F{ is complete w.r.t. L

Proof Given a set T C Seq” and a sequent n.I'y = I'y € Seq™, if T /% n.T; =
I'y, then we can apply the characterization of the Kripke X-structure Bz 1) (see
Proposition 2.6.11). Therefore, B(s 1y is a model of T and it does not satisfy
n.I'n =1 1

Chapter 3

Meta-logical results

In this chapter we establish some general facts about LPT (see Sections 3.1 and 3.2)
used for proving conservative extension results between formal systems by simply
looking at the sequents that aziomatize them (in LPT) or at the inference rules
that generate their pure theories.

In Section 3.3 we take a critical look at the logic of partial elements (LPE),
by considering three flavours of LPE and by discussing the relations among them

and LPT.

3.1 Coincidence of intuitionistic and classical
logic

In this section we give two results on coincidence of intuitionistic and classical
LPT (see Theorems 3.1.5 and 3.1.15). Theorem 3.1.5 is implicit from 5.2 of
[MRT77], but we did not find anything like Theorem 3.1.15 in the literature.

3.1.1 Coherent theories

Coherent formulae and coherent sequents have been investigated quite exten-
sively, especially in relation to geometric morphisms between toposes. A formal
system for Coherent Logic can be found in 5.2 of [MR77]. The most familiar theo-
ries axiomatizable on the coherent fragment are the equational, quasi-equational
and essentially algebraic theories (see [KR77]). We are interested in only one
property of the coherent fragment, namely that classical and intuitionistic logic

induce the same logical consequence relation over it (see Theorem 3.1.5).

Definition 3.1.1 Coherent Formulae -

73

A formula is coherent if it is in the fragment Frag™(L A V3)
A sequent is coherent if it is in the coherent fragment

{Frag™(L A V3)} = Frag”(L A Vv3)

Remark 3.1.2 The fragment {Frag”(1LAV3)} = {Frag”(LAV3)} has the same
expressive power as the coherent fragment, therefore the restriction to one-sided

sequents can be dropped.

Proposition 3.1.3 Local property of Coherent Formulae
Given a Kripke Y -structure B over K, for all type environments n, coherent

formulae A € Frag™(L A V3)(n), stages o € K and environments p € n5();
o B.a,p|-A iff B(e),p E A
Proof By induction on the structure of A 1

An easy consequence of the local property of coherent formulae is:

Proposition 3.1.4 If B is a Kripke model of a set T of coherent sequents and
a is a stage of knowledge, then B(«) is a classical model of T

The two propositions above can be used to establish the meta-logical result we

are interested in:

Theorem 3.1.5 Coincidence of the Free Logics
Let L be the coherent fragment {Frag™(LAV3)} = Frag®(LAV3), then intu-
itionistic and classical free logic coincide on L, i.e. FreeJLPT C§%,; FreeKLPT.

Proof We have to show that for all sets T' of coherent sequents and coherent
sequents n.I'y = Aj:

The implication from left to right is obvious. By completeness for intuitionistic
logic and the definition of B|_, to prove the other implication it is enough to
show that B, «a, p|A; for all Kripke models B of T', stages o and environments

ps.t. B,a,p|FTy.
e by the local property of coherent formulae (see Proposition 3.1.3)
B(a)v P |: Iy

74

e since B(a) E T (see Proposition 3.1.4), by Soundness for classical logic

B(Oé),[) |: A2

e by the local property of coherent formulae

Bvava_AQ

3.1.2 Harrop theories

In the sequel, we will investigate theories that are not axiomatizable by coherent
sequents. The typical sequents that fail to be coherent are those for extensional-

ity, e.g. extensionality of total functions
ext. = (Vzitaz=yz) = ax =y

However, these theories are axiomatizable by Harrop sequents.

Intuitionistic theories axiomatized by Harrop formulae have been widely in-
vestigated (see 1.10, 5.1 and 5.2 of [Tro73]) and they enjoy nice properties, the
most familiar ones being the disjunctive and existential properties (see Proposi-
tion 3.1.11 and 5.2.10 of [Tro73]). These two properties provide also a foundation
for higher order logic programming (see [MNS87]).

Classical and intuitionistic logic differ over the Harrop fragment. However,
it is possible to make the two logical consequence relations coincide (see Theo-
rem 3.1.15), by restricting them to a smaller fragment (and by using the inhab-
ited logics, see Definition 2.4.5). The sequent for extensionality of total functions
above is in this smaller fragment, but other sequents are not, e.g. extensionality

of partial functions (see Definition 4.2.9)

ext.~ (Vzitaz~yz) ==y

The proofs of Theorems 3.1.11 and 3.1.15 rely on the properties of a special
Kripke term model (see Proposition 3.1.10), whose connections with classical

term model constructions are not made explicit in the literature:

o the initial algebra for an algebraic theory is an instance of the Initial Model

for a T C {Frag™(L A V3)} = Frag™(L) (see Proposition 3.1.12)

75

e the open term model for a lambda-theory (see [Bar81]) is an instance of
the Free Model for a 7' C {Frag™(L A V3V)} = Frag™ (L) (see Proposi-
tion 3.1.14).

Definition 3.1.6 Harrop Sequent
n.I' = A is an Harrop sequent if it is in the Harrop fragment
{Frag®(L A V3V —)} = Frag” (L)

Remark 3.1.7 Harrop formulae, as defined in 1.10.5 of [Tro73], and Harrop se-
quents are equivalent, in the sense that any theory axiomatizable by Harrop
sequents is axiomatizable by Harrop formulae and conversely. For convenience

we recall the definition of Harrop formulae:

e an atomic formula and | are Harrop formulae

if A; and A, are Harrop formulae, then A; A A, is a Harrop formula

o if A is a Harrop formula, then Vz:7.A is a Harrop formula

if Ay is a Harrop formula, then A; — A; is a Harrop formula

It is obvious that if A is a Harrop formula (in particular one in Frag™(L)),
then the sequent n.I' = A is equivalent to the Harrop formula . A (T') — A.
Conversely, if A is a Harrop formula, then the sequent 1.4 is equivalent to a

finite set T}, 4 of Harrop sequents defined by induction on A:

e if A is an atomic formula or L, then

Ty.a = {n.A}

o if A= A; A A, then

A
Tn.A = Tn.Al U Tn.Ag

o if A=Vz:7.A, then
Tn.A é Tn |z:T. A’

o if A=A, — A, then
T77~A é {U/.Fl,Al > A2|7]/.F1 — A2 € Tn.A’}

In classical logic any formula, say A, is equivalent to a Harrop formula, e.g.

(A — L) — L, because of the double-negation axiom (see Definition 2.4.5).

76

Definition 3.1.8 The Kripke Term Model B(LXT)
Given a set T' of sequents over X, the Kripke Y -structure B(L&T) over K(LXT)
is obtained by extending Bz) of Definition 2.6.10 as follows:

° K(LE’T) is Kz, 1) with a new stage of knowledge L at the bottom

) B(L&T)(J_) 2 A¢s my, where H is the Y-acceptable set {A € Formg [T F§, A}

of closed formulae intuitionistically derivable from T'.

At the other stages it is like Bz 1)

o B () () = [ty for all t | € H and f: L — (', H').

For the other morphisms of Kz 1) it is like B(s 1)

Remark 3.1.9 Since H (above) is Y-acceptable and it is included in any 7-
complete set, then B(L&T) and B(LE’T)(f)T are well-defined.

B&7T) is the result of applying the operation () — (), defined in 5.2 of

[Tro73], to the Kripke model B(s 7). Similar definitions, used to prove the dis-

junctive and existential properties, can be found also in [vD86, Acz68|.

It B(LxT) satisfies a sequent, then that sequent is intuitionistically derivable from

T but B(L&T), unlike Bz 1), may not be a model of 7.

Proposition 3.1.10 Characterization of B(L&T)
Let T' be a consistent set of Harrop sequents on . Then, B&7T)|FU.F1 = I

Proof The implication from left to right follows from the properties of B(r 5y (see
Proposition 2.6.11).

Let K = K(LXT) and B = B(LXT). By Soundness (see Theorem 2.5.3), to
prove that 7' K3, n.I'y = I'y implies B||-n.I'y = Iy, it is enough to show that
B|FT, i.e. for all axioms n.I'y = Ay € T, stages o € K and environments
p € nB)if B a, p|-Ty, then B,a,p|-As. If « is not L, then it follows from
Proposition 2.6.11. So we have to check only the case when « is L.

Take a substitution o € [] p:

e assume that

BaJ—HO”_Fl

7

e by the Substitution Lemma (see Lemma 2.5.2)
B, L, 0|-T[o]

e by Functoriality (see Lemma 2.3.4) for all (¥, H') € K
I'y[o] Cyin H'

e by the Separation Lemma (see Lemma 2.6.4)

T l_%: Fl[O']

e by formal derivation

T Aslo], i.e Aslo] € H

e since A, is atomic, by definition of B (see Definition 3.1.8)
B, L, 0|-Asx[o]

e by the Substitution Lemma (see Lemma 2.5.2)
Ba 1, P ”_A2

K(sz) (unlike Kz 7)) has always a least stage of knowledge, as required by the
more restrictive definition of Kripke model (see [Tro73, vD86]). From this, it
follows easily that the theory of B(L&T) has the disjunctive and existence prop-
erties. These properties can be established also by proof-theoretic methods (see

[Pra65]).

Theorem 3.1.11 Disjunctive and Existence properties
The theory generated by a consistent set T of Harrop sequents satisfies the

disjunctive and existence properties, i.e.:
V if T 0.A1V Ay, then T HL 0.A; or T H, 0.A,

3 if Ths 0.3z:7.A, then T F{, 0. A[z: =t] for some t s.t. T 3, 0.t |,

Proof The two properties are proved in a similar way, so we consider only the
existence property. We make essential use of the characterization of B(L&T) (see
Proposition 3.1.10).

Let B = B(L&T) and H = {A € Form3|T 5 A}:

78

e assume that 7+ §.3z: 7. A

e by the characterization of B

B|F0.3z: 7. A

e by Proposition 2.3.6
B, L, 0|F3z: 7. A

e by definition of B, a, p||-- and B, there exists ¢ s.t.
tl,€ H (ie. TFy, 0.t |;) and
B, La:=[t]5|-A

e by substitution lemma

B, LQ|FA[z:=1]

e since | is the least stage of knowledge, by functoriality
B,a,l|A[z: =], for all stages «

e by definition of B|_
BIF0.A[z: =]

e by the characterization of B

TH 0.Alz: =]

If we consider a consistent theory axiomatized by a set of sequents 1" in
the intersection of the coherent and Harrop fragments (e.g. quasi-equations
t =1 =t = t'), then the Y-structure B(LXT)(J_) is a model of T' (usually
called the initial model of T'), which satisfies only those closed atomic formulae

derivable from 7', more precisely:

Proposition 3.1.12 The Initial Model for Harrop Theories without V and —
Let T C {Frag®(L A v3)} = Frag®(L) be a consistent set of sequents and
A= B&7T)(L).'

o if AcFragi (LAVI), then TH, A<= A A

79

Moreover, A =T

Proof The first statement follows immediately from Lemma 2.3.6 and Proposi-
tions 3.1.10 and 3.1.3.

A =T is an immediate consequence of Propositions 3.1.10 and 3.1.4 1

The previous result can be improved by considering consistent theories axioma-
tized by a set of sequents T in {Frag”(L A VIV)} = Frag”(L) plus the axiom
(inhab) for models with all sorts inhabited (see Definition 2.4.5). The exact

statement 1s:

there is a model of T' + inhab, which satisfies only those formulae in

FragE (L A Vv3V) derivable from T' + inhab
The axiom (inhab) is not in the Harrop fragment, but it is easy to show that:

Proposition 3.1.13 If C' is a set of new constant symbols for X, with at least
one symbol for each sort , then LPT (over XWC) is an extension of Inhabited.PT

(over X)) conservative over P(Seq™) x Seq™.

Proof If A is a ¥ W C-structure, then A[Y is inhabited (by the assumptions on
(). On the other hand, if A is an inhabited X-structure, then it is always possible
to interpret additional constant symbols. In particular, A can be extended to
a 2 W C-structure. By Proposition 1.3.5, the claim follows from the two facts

above. I

Then the statement above is a consequence of the following proposition:

Proposition 3.1.14 The Free Model for Harrop Theories without —

Given a set C of new constant symbols for ¥, with Ny symbols for each sort,
let T C {Frag™(L A v3V)} = Frag™(L) be a consistent set of sequents over
YWl de Ty L, and A= B(LEMQT)(J_). Then:

o if A€ Fragi®(LAVIY), then T Fyyp A <= A0 = A
Moreover, A =T

Proof The first statement is proved by induction on the number of connectives
and quantifiers. The implication from left to right follows from Proposition 3.1.10
and a semi-local property for formulae in Frag®™ (L AVIVY):

80

Claim 3.1.14.1 Given a Kripke Y -structure B over K, for all type environments
n, A € Frag®(L A Vv3V)(n), stages a € K and environments p € %)

o if B,a,p|-A, then B(a),p = A
Proof By induction on A 1

For the implication from right to left the only non trivial case is when A is a

universally quantified formula. First we establish the following fact:

Claim 3.1.14.2 If T F,» Alz:= ¢] and ¢ € C, does not occur in A, then
Thyye Vo7, A

Proof Assume that 7'+, A[z:= (]

e By compactness of 7, there exists Cy Cy,p, C s.t. ¢ € Cp and
T Fawcgue Alz:= (]

e By the Deduction Lemma and formal derivation

T e, Vo:7.A

e By compactness of -’

T e Ve 7. A

Now we prove that A, = Va: 7. A implies T+, Va: 7. A:

e assume that A, 0 | Vz:7. A

e since (' is infinite, there exists ¢ € C,; which does not occur in A, by

definition of A, p |= _ and Substitution Lemma
A) |E Alz:=]

e by IH applied to Alz:= |
T Hue Alz:= (]

e by the claim and the assumptions about ¢

T e Ve 7. A

81

To show that A is a model of T we prove that for any n.I'y = A, € T and
pentif A p =Ty, then A, p = A,. Take a substitution o € [] p:

e by the Substitution Lemma (see Lemma 2.5.2)
“47® |: FI[U]

e since ['[o] Cy4p Fragng(J_ A V3Y), by the first statement

T'Fywe T [U]

e by formal derivation

TFgue Az [U]

e since A, is atomic, by definition of A (see Definition 3.1.8)
“47® |: AQ[U]

e by the Substitution Lemma (see Lemma 2.5.2)
“47 P |: A2

Theorem 3.1.15 Coincidence of the Inhabited Logics
Let L be {Frag™(AV.L)} = Frag®(L), then intuitionistic and classical in-
habited logic coincide on L, i.e. Inhabited LPT C5,; Inhabited KLPT.

It is clear from the proof below that the coincidence result for inhabited logics
can be improved as follows: 7'}, A iff T F¥ A for all T C {Frag®(LAVIY)} =
Frag™ (L) and A € Fragy (L A vaV).

Proof We have to prove that Inhabited/LPT and Inhabited KLPT have the
same consequence relation on the fragment {Frag™(AVL1)} = Frag™(L). The
inclusion from left to right is obvious.

The other inclusion is proved by contraposition.
Take a set C" of new constant symbols (of the appropriate sorts) one for each
of the variables in dom(n) and a substitution v € Term?wcl(@) that establish a

bijection between dom(n) and the set C’ of new constant symbols for ¥. Take

also a set C' of new constant symbols for ¥ W C’, with Ry symbols for each sort:

82

e assume that

T + inhab I3, n.I'T = A,
e by the Deduction Lemma
T, T1[y] + inhab 500 Az[7]
e by Proposition 3.1.13

T, Flh] VJEUJC’BJC A2[7]

e because of the equivalence between Harrop sequents and Harrop formulae
(see Remark 3.1.7), we can treat I'1[y] as a set of sequents in {}} =
Frag™ (L) Since T'U {I'1[y]} is consistent over ¥ & C’ & C, we can apply
Proposition 3.1.14 and get a classical model A of T'U {I'1[7]} s.t.

A = Aj[y] does not hold
e By Soundness

T, T[] wcnee A2l]
e by Proposition 3.1.13

T,T1[y] + inhab 5,00 Aaly]

e by the Deduction Lemma
T + inhab 5 n.I'y = A,

3.1.3 Counterexamples and discussion

By some counterexamples, we show that there is little space for improving the re-

sults on coincidence of classical and intuitionistic logic (see Theorems 3.1.5 and 3.1.15).

Proposition 3.1.16 [ntuitionistic and classical free (inhabited) logic do not co-
incide on the fragment {Frag(—)} = Frag(0)

Proof Take a signature ¥ with (at least) three propositional constants p;, p; and

p3. Let T be the set of sequents

{((pr = p2) = p3), (pr = p3)}

83
T 5 ps by formal derivation. On the other hand, any Kripke X-structure over
{L < T} s.t.
e at stage | none of the predicates is true
e at stage T both p; and p3 becomes true, while p; remains not true

is a model of T', but does not satisfy ps3 1

Proposition 3.1.17 [ntuitionistic and classical free (inhabited) logic do not co-
incide on the fragment {Frag(V)} = Frag(V)

Proof Take a signature ¥ with (at least) one sort symbol 7, two propositional

constants p; and p3 and an unary predicate p;. Let T be the set of sequents

{(z:7mp2(x) V1), (Va:7.pa(x)) = p3), (;n = p3)}

T 5 ps by formal derivation. On the other hand, any Kripke ¥-structure B over
{L < T} s.t.

e at stage | neither p; nor ps is true, while py(a) is true, for all a € 75(4)

o at stage T both p; and p; becomes true and there is a new element b of

sort 7 that comes into existence s.t. p(b) is not true

is a model of T', but does not satisfy ps3 1

Proposition 3.1.18 Intuitionistic and classical free logic do not coincide on the
fragment {Frag(V)} = Frag(0)

Proof Take a signature ¥ with only one sort symbol 7 and two propositional

constants p; and py. Let T be the set of sequents

{{(Vz: 7.p1) = pa), (x:7.pa) }

T 5 p2 by formal derivation. On the other hand, any Kripke ¥-structure B over
{L < T} s.t.

e at stage L none of the predicates is true and 75 is empty

e at stage T p, becomes true and 75(1) becomes inhabited, while p; remains

not true

84

is a model of T', but does not satisfy p, 1

We conjecture that intuitionistic and classical inhabited logic do not co-
incide on the fragment {Frag(V)} = Frag(d). However, they coincide on
{Frag(V)} = Frag(3!), because the 3! can be removed by introducing a partial
function which picks up the unique witness (this restricted form of skolemization
is intuitionistically correct).

All the axioms of LCF (see [Sco69]) are in {Frag™(AV.L)} = Frag™(Ll),

except the axiom for fixed-point induction:
A(L), (V. A(2) = A(fz)) = A(Y)

where A is a conjunction of inequalities. We do not know whether classical and

intuitionistic LCF are the same on the atomic fragment.

3.2 Restriction of LPT to fragments

When one looks at the inference rules for the A-calculus, (partial) equational
logic and so on, the impression is that they are just the inference rules of a
first order theory (with some syntactic sugar, e.g. A-abstraction) restricted to
the equational fragment. However, to check that the inference rules formalize
what they are supposed to, one has to prove soundness and completeness w.r.t.
a class of models (for a first order theory). The proof involves fairly standard
techniques, but it is quite long (as we have seen for LPT).

Most of the formal systems considered in this thesis are on first order lan-
guages rather than on smaller languages (like the equational fragment), but in

this section

we set up a method that given a set of axioms T C Seq” and a T'-
closed fragment F of Seq” (see Definition 3.2.6), produces a set of
inference rules on F' to generate the elements of F' that are derivable

from T in LPT (see Definition 3.2.9 and Theorem 3.2.12).

If there are no axioms (i.e. T =), then the simple minded idea is to take the
inference rules of LPT restricted to F' (i.e. premisses and conclusion must be

in F). Gentzen’s cut-elimination result (see [Gen69]) implies that this simple

method works, when F' = {F'} = {F'} and F' is closed under subformulae.

85

When T is not empty, we have to add the axioms (in 7') as inference rules
and we need only a restricted cut-rule, where the cut formula is a substitution
instance of a formula in 7' (see Chapter 5 of [MR77]). Then, the simple method
works, when F' satisfies the condition above and T' C F'.

However, these results are not completely satisfactory. For instance, if T" is the
set of axioms for extensional combinatory logic, then F' must contain Frag® (V)
(because of the extensionality axiom), while we can easily give a set of inference
rules on the equational fragment {§} = Frag™(0)).

The basic idea to improve the results above is that the sequent
O.Vz:7.p1(z) A p2(z) — plz) = ¢

can be viewed equivalently as the inference rule (schema)

nle: ., pi(2), pa(x) = p(a)
nI'=g¢q

(see (RT,;) in Definition 3.2.9). In order to carry out this transformation, we

consider only sequents in the fragment {Frag™(AV —)} = Frag™(0)).

Remark 3.2.1 From a pragmatic point of view this restriction is not so drastic,
for instance all formal systems in the thesis can be axiomatized by this kind
of sequent. Moreover, we can replace the three constructors A, V and — with
a compound one (V_. A () — _), which makes explicit the connection between
formulae in Frag™(AY —) and higher order one-sided sequents (see [SH84]) and
drastically reduces the number of formation and inference rules, although they

become more complex (see Definitions 3.2.2 and 3.2.9).

3.2.1 Language revisited

We introduce a new set of formulae (s-formulae, s- for sequent) and a new set of
sequents (s-sequents). There is only one way of combining s-formulae together
to build a s-formula (n.I' — A), which is essentially the way of combining s-
formulae to build a one-sided s-sequent. We define also a translation Iy from
s-sequents to sequents. By pulling back along it (see Definition 1.3.6) we can

define intuitionistic and classical logic on s-sequents.

Definition 3.2.2 Revisited Language of LPT

Given a signature X,

86

1. the set AForm™(n) of atomic formulae in the type environment
2. the set SForm™(7) of s-formulae in the type environment 7
3. the set SSeq™ of s-sequents

are defined by the following formation rules:

{T; € TermZ (n)li € |7}
p({t:li € |T])) € AForm™ (n)

p € Pred=(%)

I'y Chin SForm™ (nln") A, € AForm™ (nln")
(7.1 — Ajy) € SForm®(7)

I'y Chin SForm™ (n) I's Chin AForm™ (n)
nIy=1%¢€ SSqu

Notation 3.2.3 JSSeq” is the fragment of SSeq™ whose elements are s-sequents
with exactly one formula in the succedent. In the sequel we will make use of the

following shorthands for s-formulae and s-sequents (see also Notation 2.1.8):
e If A is an atomic formula, then it may stand for the s-formula 0. — A

o If . = A is a closed s-formula, then it may stand for the s-sequent

nI' = A

Remark 3.2.4 The intended meaning of an s-formula (n.I' — A) is given by a
translation from SForm® to Frag™(AV —) defined by induction on the structure

of s-formulae (and extended to SSeq™ in the obvious way):
o I(n.I'1 — Ay) 2 (V. AN L(1I'1) — Ag)
o L(nIy = Ty) 2 (nL(I) = Ty)

I, has an inverse translation, i.e. any A in Frag™(AV —) is equivalent (in JLPT)
to the conjunction of a finite set S4 of s-formulae (more precisely their IL-

translation) defined by induction on A:

87

e if A is an atomic formula, then

Sa 2 {A)

o if A= A; A A, then
Sa 2S84 USy,

o if A=Vaz:7. A’ then
Sa 2 {x:TLT].Fl — A2|7],F1 — A, € SA'}

o if A=A, — A, then
Sa 2 {n.T'1,S4, — Asln.T1 — Ay € Sa} . It may be necessary to rename
the bound variables in A’ to make sure that the variables in 1 do not clash

with the free variables in Sy, .

Moreover, any sequent 5.y = I'; in {Frag™(AV —)} = {Frag™(0)} is equiv-
alent to the (Is-translation of the) s-sequent n. U {S4]4 € I'1} = I's.

The translation I induces an interpretation of s-formulae (and s-sequents) in

a (Kripke) X-structure:

Definition 3.2.5 Interpretation in a Structure
Given a Y-structure A, the satisfaction relation A,p |E A is defined by in-

duction on the s-formula A:

e ApEmnmly— A <& for all py € it
it A,plp1 =T, then A plp: | Ay

Given a Kripke X -structure B: K — Struct(X), the satisfaction relation B, a, p|-A
is defined by induction on the s-formula A:

o B a,plFn.I'y — Ay < for all fia — o and p1 € nf(al)
if Aa 0/7 Pry IJolH_Fh then “47 O/a Prfo)l”_Al

Certain fragments of SSeq” enjoy an important closure property w.r.t. the

revisited inference rules (see Theorem 3.2.12).

Definition 3.2.6 T'-closed Fragment
Let T C JSSeq”™. A fragment F of SForm® is T-closed iff:

Lif(n.I' = A)e Fand (/1" = A") €T, then IV Cy;, F

88

2. if(nl = A)eT and (' — A") €T, then I" Cy;, F

A fragment F of SSeq™ is T-closed iff ' = {F'} = {Frag™(0)} for some
T-closed fragment F' of SForm®.

Example 3.2.7 Let 7' = {F} = Frag™(})), where F' is a set of s-formulae.
We consider three possibilities for F' and for each of them we give the smallest

T-closed fragment of SSeq” together with some well-known axiom in 7T

e Ifevery formulain F is of the form 5.0) — A, then the set of atomic formulae

n.l = A is T-closed and extensionality for total functions is in T

(Vzxz=yz) =z =y

o If every formula in F' is of the form 5.ty |,...,t, | — A, then the set of
existentially conditioned atomic formulae n.ty |,...,t, |= A is T-closed

and extensionality for monotonic partial functions is in T’

(Vzaxz | s az<yz)=ax<y

o If every formula n.I' — A in F is s.t. all formulae in [' are atomic, then
the set of quasi-atomic formulae n.I' = A, where T' is a set of atomic
formulae, is T-closed and the axiom of fixed-point induction (see [Sco69])

isin 7T

A(L), (Ve A(z) — A(fz)) = A(YS)

3.2.2 Formal systems revisited

Any formal system F on Seq” induces, via the I-translation, a formal system
on JSSeq”®, which we will call I as well. In this section we consider the formal
systems on JSSeq” induced by classical and intuitionistic logic of partial terms:

< and . For each set T C JSSeq™ we define two sets of inference rules on

89

SSeq™ to generate the set of s-sequents derivable from 7" in F¥ and % respectively
(see Section 3.2.3).

The main feature of these sets is the absence of cut-like inference rules, i.e.
rules that have at least one formula in the premisses which is not a subformula
in the conclusion (or in 7'). More precisely, to derive a s-sequent in a T-closed
fragment F' from the revisited inference rules (for 7') it is enough to use the

inference rules restricted to F' (see Theorem 3.2.12).

Remark 3.2.8 The restriction to JSSeq™ implies that:

e any s-sequent is equivalent to an s-formula and it is I;-translated to a Harrop

sequent

e any theory is consistent, since the trivial model, where all atomic formulae

p(t) are true, satisfies all s-sequents.

From the point of view of JLPT the restriction is particularly natural (see 2.4.4).
However, for KLPT we have to allow, at least in the intermediate steps of a

derivation, s-sequents with more than one formula in the succedent.

Definition 3.2.9 Revisited Inference rules for LPT
Let T C JSSeq™ and Tyt be T plus the azioms for equality (see Defini-
tion 2.4.1). The inference rules for Thippr(T) on SSeq® are:

Ex nle:7y =2 |, 1}

E.c nly = ¢ |, [}

T]'Fl = f(z) lﬂrll

E.fi -
fl T]-FI =1 l?nrll

i € dom(?)

T p(1). T
i 1= p(1), 1

) = i € dom(?
iy pp— . LR

{m.I'n = o(z) |,I|z € dom(nz)}

{m s T, Ts[o] = As[o], I | o€ Termi (m)
(T]3'F3 - Aé) € FQ}

7]1.F1 > AIQ[O'],F/I

T]Q.FQ — A/2 € Fl

90

{m.I'n = o(z) |,I|z € dom(nz)}

{m s T, Ts[o] = Ag[o], I | o€ Termi) (1)
(n3.I's — A3) € Is}

7]1.F1 > A/Q[O'],Fll

RTpt T]Q.FQ - A’2 € Tpt

o I'Fi Iy =Ty N n.I'y = T’y is derivable by the inference rules for
Thrrpr(T).

o 'y n.I'h = A & n.I'y = A, is derivable by the revisited inference
for Thyppr(T), i.e. the inference rules for Thippr(T) restricted to JSSeq®,
i.e. with T} = 0.

Remark 3.2.10 If 7' n.I'y = I'y, then I'y is nonempty, because in all infer-

ence rules the succedent of the conclusion is nonempty.

The set of inference rules (R7),;) seems quite complicated, but if one considers
specific examples of 7', then the rules in (R7}:) become more familiar. For in-
stance, if T is {(Vz.2z | — 2z < yz) = ¢ < y}, i.e. the axiom of extensionality

for monotonic partial functions, then (R7}:) includes the following rule
{nI' =t |,I"=1,2}

Nzl tiz |= t1z < tyz, 1"
T]F - tl S tQ,F/

Moreover, (—==) and (RT,;) can be explained as a combination of the more
elementary inference rules for LPT given in Definition 2.4.1. This will be done

through an example.

Example 3.2.11 Let us consider the instance of the inference rule (R7}:) with
m =0 and Ty = T} = 0. To justify it we derive the conclusion Aj[c] from
the premisses and the axiom 7y.I'y = A, by the inference rules of KLPT (see
Definition 2.4.1).

e since o(x) | for all # € dom(n,) (this is the first set of premisses in (R7,:)),
we can repeatedly apply (subst) and derive the o-substitution instance

I';[o] = Aj}]o] of the axiom in T,.

91

e we derive A for all (closed) formulae in the antecedent I';[o] and by repeat-

edly applying (cut) we derive the required formula.

We still have to show how to derive A € I';[o] from the second set of premisses
in (RT,). Since I'y is a set of s-formulae, A is the o-substitution instance of

an s-formula (n3.I's — Aj) in I';. Therefore, we want to derive the s-formula

ns.I'3[o] — Al[o]:
e by the second set of premisses in (R7};)
n3.l'slo] = Aj[o]
e by repeatedly applying (A =)
n3. A (I's[o]) = Aj]o]
¢ by (=—)
- A (Tslo) — Ao
e by repeatedly applying (= V)
Vns. A (I's[o]) — Aj[o], which is the Is-translation of s-formula
n3.I's[o] — Aj[o]
The next result is a particular instance of Proposition 1.2.10.

Theorem 3.2.12 Closure w.r.t. Derivation

Let T C JSSeq” and F be a T-closed fragment of SSeq®.
IfTFy nl'y =Ty, and n.I'y =1’y € F, then any s-sequent in any derivation
of n.It =Ty is in F.

Proof The statement is proof by induction on the derivation of .I'y = 'y by
the revisited inference rules (restricted to JSSqu) of Definition 3.2.9. 1

3.2.3 Correctness and completeness

We claim that F& and Fy, are the same relation on JSSeq*.

e The inclusion -5 Cky, means that the revisited inference rules are correct

for deriving consequences of T' in Iy.

92

e The other inclusion, 5 Ck§,, means that the revisited inference rules are

also complete, i.e. they can derive all consequences of T"in Iy

Theorem 3.2.13 Correctness
If T C JSSeq™ and T FE& n.T'y = A,, then T Fy .1y = A,.

Proof The Ii-translations (see Remark 3.2.4) of the revisited inference rules for

Thrpr(7T) are derivable from the inference rules for LPT and the set of axioms

L(T). I

The proof of completeness is based on a term model construction similar to
the one used in Section 2.6 to prove completeness of LPT.

Because of completeness of KLPT, the inclusion F*CH*" amounts to proving
that: for all signatures ¥, T C JSSeq™ and 5.I'y = A, € JSSeq”, if T /5K
n.I'y = A, then there is a X-structure A4 which is a model of T" but does not
satisfy n.I'y = A,.

e By the Deduction Lemma (see Lemma 3.2.16), this is equivalent to: for
all signatures ¥, T C JSSeq™ and A € AForm, if T' /2 (). A, then there
is a X-structure A which is a model of 7" but does not satisfy any of the

formulae in A

e Then we introduce the auxiliary notion of classically T'-s-complete set and
prove the Separation Lemma (see Lemma 3.2.19): if T FA¥ (. A, then there
is an intuitionistic 7-s-complete set (on an extension of), which does not

contain the atomic formula A

The definition of classical T-s-complete set differs from that of classical
T-complete set, because the conditions for existential formulae and dis-
junctions are replaced by a condition for s-formulae. This difference affects

also the proof of the Separation Lemma.

o Iinally, the Characterization of the term model Az gy corresponding to a
classically T-s-complete set H on 3 (see Proposition 3.2.21) provides the

required model.

The definition of Ay gy and (the proof of) its characterization are as in
Section 2.6.

93

Throughout the proofs we rely on the derivability (in F**) of the inference rules
(log), (thinning), (subst) and (cut). Since they are not among the revisited
inference rules, their derivability has to be proved (see Lemma 3.2.14).

The proofs of the Admissibility and Deduction Lemma for F*’ are essen-
tially the same as the ones for F**. The proof of the Separation Lemma (see
Lemma 3.2.20) is simpler, because the definition of intuitionistically T-s-complete
set does not involve any condition for s-formulae. The definition of the Kripke

term model Az 1) and its characterization are, mutatis mutandis, as in Sec-

tion 2.6.

Lemma 3.2.14 Admissible Inference Rules
For any T C JSSeq” the following inference rules are admissible in the set
generated by the revisited inference rules of Definition 3.2.9

10g m LT]Q.FI, (7]2.F2 — A/Q)7F2 > A/27F/1

T]l.Fl - Fll
72 LT]l.Fl, FQ = Fll, F/2

thinning

nIy=1t],1] nle: .y =T}%
n.Iq, Doz =t] = T, [z = 1]

subst

Iy, (. I = A') =1}

nln' I, I = A" T,
T].Fl,rz — F’l,ré

cut

Proof (log) is proved by induction on the degree deg(n,.I'; — Aj), where

0 ifT =90
max{deg(A)|A €'} +1 otherwise

e By (E.z), for all € dom(n,)

deg(n.I — A') & {

mlne T, (el — AY), Ty = o |,

e By IH |, for all (n5.I's — A%) € I'y
(since their degree is less than deg(n2.I'y — A}))

mn2 3T, (2T — AY), T, I's = AL, T

94

e By (—=) (for the identity substitution)

mne T, (2. L2 — AY), Ty = AL T

(thinning) is proved by a straightforward induction on the derivation of ;.I'1y =
r:

e (E.z) = immediate by (E.z).
e (E.c) = immediate by (E.c).

e (E.fi) = by IH and (E.f.i).
Let m.I'y = f(¥) |+, T" be the premiss of the last rule (i.e. (E.f.i)) in the
proof of n.I'y = TI'}.

— by IH
2 LTh.Fl, FQ > f(%) lT, F/, F/2

— by (E.f.)
n2lmI1, Ty =t |5, 1", 1%

e (E.p.i) = similar to the case (E.f.i).
e (—=) = similar to the case (E.f.i).
e (R.T,;) = similar to the case (E.f.i).

(subst) is proved by induction on the derivation of n|z: 7.I'y = I'},. The only

case where the proof differs from that for (thinning) is:
Ex nple:rly =z |, 1"
when we must derive 5.1,z =t =t |, 1], [z: = t]:

e from the first premiss n.I'y =t |, '} of (subst), by (thinning)

n.I'y, Dofer=t] =1t |, 1], ["[z: = 1]

(cut) is proved by lexicographic induction on the degree deg(n’.I' — A’) of
the cut formula and the derivation of n.I'1, (n".I' — A") = I'|. We proceed by

95

case analysis on the last rule in the derivation of 5.I';, (n’.T' — A’) = T} and

IH . The only case where the proof differs from that for (thinning) is:

{nT1,(n'.T = A") = o(x) |,T"|
z € dom(n’)}
{nlns.L'1, (I — A),Is[o] = Ajo], I"|

—
- n.Iy, (n'. I — A') = A'[o], I

o€ Term? (n)

when we must derive .I'y, 'y = A'[o], [, ['}:

e by IH and (thinning), for all x € dom(n’)
nIy, Iy =o(z)], 1" T}

e from the second premiss n|n’.I's,I' = A’ T}, of (cut), by (thinning)
n LT]/.Fl, FQ, T - A/, F/, F/2

e by repeatedly applying (subst)
n.I1,T, o] = A'lo], ", T,

o If deg(n’.T — A’) = 0, then I' = {) and we have derived the required

s-sequent. Otherwise let n + 1 = deg(n’.I' = A’) =n + 1, by IH
n|ns.I'1, e, Us[o] = AL[o], [V, T for all (n3.I's — A}) € T

e since deg(ns.I's[o] — AL[o]) < n for all (n3.I's — A%) € T', then by IH we

can repeatedly apply (cut) with cut formula in I'[o]
T].Fl, FQ = A’[O’], F/, F/2

Remark 3.2.15 For the set generated by the revisited inference rules restricted

to JSSeq™ only the restricted versions of the inference rules (log), (thinning),

(subst) and (cut) are admissible.

The admissibility of (cut) is proved by the same kind of induction used by

Gentzen to prove cut-elimination (see [Gen69, Kle52]).

Lemma 3.2.16 Deduction Lemma

Given a signature ¥ and T C JSSeq” :

96

o Ifn.Iy = T, € SSeq” and A € SForm?, then

o Ifx & dom(n), z:7|n.I'y = T'y € SSeq™ and ¢ is a new constant of sort T
for X, then

TES xirnly = Ty iff T HY. nThjei=c¢] = Tz =]
Proof The proof is similar to that of Lemma 2.6.2. 1

Definition 3.2.17 s-Complete Set
Let ¥ be a signature and T C JSSeq™.

o a set H C SForm is classically T-s-complete on X iff

1. for all (n.I' = A) € SFormy if T, H F&< 5. = A,
then (n.I' - A) e H

2. for all (n.T' — A) € SForm3 if (n.I' — A) & H, then
there exists o € Term?(@) st. 0 |nChin H and Tlo] Ty H, but
Alo| ¢ H

e a set H C SForm; is intuitionistically T-s-complete on X iff

1. for all (n.I' = A) € SForm} if T, H ¥’ n.I' = A, then
(nI' - A)e H

Remark 3.2.18 The second condition for classically T-s-complete sets is the
counterpart of the third and fourth condition in the definition of classically com-
plete set (see Definition 2.6.3). In fact, in classical logic =(Va:7.4; — Aj) is
equivalent to (Jz:7.-A; V Ay). Since this equivalence is not provable in intu-
itionistic logic one should not expect to have a second condition in the definition

of intuitionistically T-s-complete set.

Lemma 3.2.19 Classical Separation Lemma

Given a signature Y., a set C' of new constant symbols for ¥, with Ny symbols
for each sort, and T C JSSeq®, then for all ' C i, AForm? s.t. T /S5 .1 there
is a signature X, with X C X, C X W C, and a classically T-s-complete set H
on X, s.t. A€ H for all A inI”

97

Proof Let A, be an enumeration of SFormy®“, we define, by induction on n, an
increasing sequence (X,, H,,I',) (where ¥, C ¥ & C is a finite extension of X,

H, T SFormgn and I', Cyyp, AFormgn):

e basic step

Ho

—

0

0
I’
b

N

0

e inductive step
Let C,, be the set of new constant symbols for ¥, occurring in A, = (n.I' —

A), there are two cases to be considered:

— if 'A%, 0.H,, A, =T, then

H,.w=H, A,

la=1,

Yo =2, 60,
— else

H,p1 = H,, T[]

Ly =T, Aly]

Yot1 = X, W C, W cod()

where 7 is a n-substitution which assigns to each € dom(n) a differ-

ent new constant symbol for ¥, W C),

The rest of the proof will establish that ¥, 2 Unewdin and H 2 Unew H,, satisfy
the statement of the lemma. For each of the two properties in the definition of
classically T-s-complete set we prove a claim that essentially amounts to showing

that H has that property.

Claim 3.2.19.1 T'tA* 0.H, =T,

Proof By induction on n. The only non trivial case (in the inductive step) is the
second one. Let A, = (n.I' = A), we have to show that if I' -y, - 0.H,,(n.I' —
A)=1T,, then

T |7/EnL+JCnL+Jc0d('y) Q)HTH F[’Y] - A[VL FTL

98

e Assume that

T l_En&JCnLﬂcod('y) wH’fH F[’Y] = A[7]7 FTL

e By the Deduction Lemma
T l_EnLtJCn T]HTH F — A7 Fn

e By the assumption and the inference rule (cut)

which contradicts the IH

From the previous claim it follows immediately that A ¢ H for all A in I".

Claim 3.2.19.2 Let (n.I' = A) = A,. If T,H F¥< n.I' = A, then T /35 ,¢
0.H,, A, =T,

Proof By compactness of F** there exists m > n s.t. T, H,, F3* A, (and there-
fore ¥, W C,, C ¥,,). By the Deduction Lemma, T' e 0.H, = A,.

o Assume that
THE e, 0.Hy Ay =T,

e since ¥, W C, C X, by compactness of -
THE §.H,, A, = T,

e since H, C H,, and I', C I';,, by (thinning)

THE).H,, A, = T,

e By the inference rule (cut)
T, H,y F¥ 0.H, = T,

which contradicts the first claim

Claim 3.2.19.3 If (n.I' — A) = A, &€ H, then there exists v € Term?‘”(@)
mapping variables to constants s.t. U'y] Cpin H, but A[y] € H.

99

Proof Since A, ¢ H, then T' -3, 0.H,, A, = I',. Therefore, by construction

there exists a n-substitution v mapping variables to constants s.t.
o Y] Crin H
o Aly] €'
o v E Term?“’(@)
We still have to show that A[y] € H or equivalently A[y] € H,, for all m > n:

e assume that for an m > n

Ayl € Hy,

e since A[y] € I',11 C Ty, by (log)
T 0.H, =T,

which contradicts the first claim

Lemma 3.2.20 Intuitionistic Separation Lemma

Given a signature Y, a set C' of new constant symbols for ¥, with Ng symbols
for each sort, and T C JSSeq™, then for all A’ € AForm? s.t. T /% (0. A" there
is a signature X, with ¥ C Y, C ¥ W C, and an intuitionistically T-s-complete
set H on ¥, s.t. A ¢ H.

2¥C we define, by induction on n, an

Proof Let A, be an enumeration of SForm
increasing sequence (¥, H,) (where ¥, C ¥ & C is a finite extension of ¥ and

H, Csin SFormE"):

e basic step
HO = @
EO =X

e inductive step
Let C,, be the set of new constant symbols for ¥, occurring in A, = (n.I' —

A), there are two cases to be considered:

100

- if T 4o, 0.H,, A, = A’, then
Hn—l—l = HnyAn
En-l—l = En ! Cn

— else
Hn—l—l = Hn
En—l—l = En

For intuitionistically T-s-complete sets there is only one property to check, and
we need only the analogue of the first two claims in Lemma 3.2.19 (with T,
replaced by A’). The first claim is immediate, while the second claim is proved

as in Lemma 3.2.19. I

From now on we proceed as in Section 2.6. The term models Ax gy and B(s 1)
(below) are as in Definitions 2.6.7 and 2.6.10, but with complete sets replaced by

s-complete sets.

Proposition 3.2.21 Characterization of Az m)
Let T C JSSeq™, H be a classically T-s-complete set on ¥ and A = A my-

Then, for all type environments n, environments p € ™ and substitutions o €

[Ip:
o If A € SForm™ (), then A,p = A <= Als] € H
Moreover, A =T
Proof See proof of Proposition 2.6.8. 1

Proposition 3.2.22 Characterization of B(x 1
Let T C JSSeq®, K = K1) and B = Bz). Then, for all type environments
n, a= (Y, H') €K, environments p € @) and substitutions o € [] p:

o If A € SForm™ () then B, a, p|-A < Alo] € H'

Moreover, B|Fn.I'y = Ay ff T FY .1y = Iy

Proof See proof of Proposition 2.6.11. 1

101

3.2.4 Discussion

It is possible to make some simple improvements to Theorem 3.2.12, e.g.

e by allowing | as an atomic formula, so that s-formulae have the same
expressive power as negative formulae (Frag®(AV — L), see 1.10.6 of

[Tro73])

e by sharpening the definition of T-closed set.

It would be more interesting to extend the revisited inference rules well beyond
the negative fragment, possibly to the entire language of LPT. An idea in this

direction is to use a more complex compound constructor
(n.I' = {ni. Al <@ < n})
whose intended meaning is
(V. A (1) — v{In;,. Ai]l << n})

Then, any formula is equivalent (in JLPT) to one built up from atomic formulae
by this compound constructor, but on the r.h.s. of — we must allow non atomic

formulae.

3.3 LPE and its relation with LPT

In this section we compare the logic of partial terms (LPT) with the logic of
partial elements (LPE) and set the framework for relating A,- and A;-calculus
(see Section 4.4). En passant we mention also the logic of total terms (LTT,
a different name for the familiar first order logic), give revisited inference rules
for LTT and LPE (similar to those for LPT) and state results about coincidence
of intuitionistic and classical logic in LTT and LPE.

For simplicity we consider only single sorted inhabited logics and give
more emphasis to classical logics, but the results of this section hold, mutatis

mutandis, in more general settings. We fix three signatures (one for each logic):

Zth Zpe and Zpt-

Definition 3.3.1 Conventions for signatures

Ett C Zpt

e

102

e Y is a signature with one sort ¢, one constant ¢, one unary function f and

one unary predicate p
o Yy is X plus equality - = _
o Y, is ¥ plus existence E(_) and equivalence _ = _ for partial elements
o 3., is Xy plus existence _ | for partial terms

Remark 3.3.2 The language for single sorted inhabited logics is simplified

as follows (compare with Definition 2.1.5):

e We remove sort symbols, because there is only one sort.

e In a sequent n.I' = 1" we could remove the type assignment 7, because
there is only one sort and it is inhabited. However, in some inference rules
we would have to add side conditions to ensure that certain variables are

not free in the conclusion.

For clarity we prefer to keep the type environments and force inhabitation

by having a constant in the signature.

3.3.1 The logic of total terms

LTT can be defined as LPT + tot (see Definition 2.4.5) restricted to the set of
sequents without _ |. Clearly LPT + tot is a definitional extension of LTT, since
the term existence statements t | convey no information (i.e. they are tautologies
of LPT + tot). However, we want to go further and give a procedure to derive
Gentzen’s inference rules for LTT (see [Gen69, Kle52]) from those for LPT. Then,
we can apply the same procedure to the revisited inference rules for LPT and get

much simpler revisited inference rules for LTT (see Definition 3.2.9).

Definition 3.3.3 The translation from LPT + tot onto LTT

The translation ¥ from the language over Y., to the language over Yy is:

o (t l)T is T and AY is A for the other atomic formulae

o ' commutes with logical constants, connectives and quantifiers

° ("7-F1 — FQ)T _ { {r].erase(Fl)T — FQT} if Ty = erase(FQ)
0 otherwise

where erase(I') is ' — {t | |t € Term}.

103

Remark 3.3.4 ! satisfies the conditions of Proposition 1.2.9 when R is the set
of inference rules for LPT + tot, therefore LTT is generated by the _t-translation
of the inference rules for LPT. Moreover, these inference rules are exactly those

for Gentzen’s sequent calculus (see [Gen69, Kle52]).

Definition 3.3.5 Revisited Inference rules for LTT

T

The translation _* s extended to the revisited language as follows:

o (n.T — A)' is n.erase(T')" — AT

Given a signature X for LTT and T C JSSeq”, let Ty be TptT, t.e. T' plus the
axioms for equality in LTT. The inference rules for Thgprr(T') on SSeq™ are:

{mlns. Ty, Tslo] = Aslo], 1| o € Termi) (1)
(UB-FS - Aé) € FQ}

I AL el
T T = ALo], T} Ttz Az €L
{ni|ns.T, Ts[o] = Ai[o].T}| & € Term? (1)
(73.T's — A}) € To} "
RTtt s 3 3 2 7]2.F2 — A/2 € Ttt

nl.Fl = A/Q[O'], Fll

The coincidence results for intuitionistic and classical LTT are similar to those

for LPT (see Section 3.1).

Proposition 3.3.6 Coincidence results for LTT

o [ntuitionistic and classical free LT'T coincide on the fragment

{Frag®(L A V3)} = Frag®(L A V3).

o [ntuitionistic and classical inhabited LTT coincide on the fragment

{Frag™(AVL1)} = Frag”(L).

Proof The results follow immediately from Theorems 3.1.5 and 3.1.15, because
LTT is axiomatized in LPT by a set of sequents (tot) included in both fragments.

104

At the beginning of Chapter 2 we sketched a translation of LPT in LTT,
where partial functions are represented by single-valued relations. Because of
this, the coincidence results for free LT'T and free LPT are interderivable. The
coincidence result for inhabited LPT cannot be derived from the corresponding
result for LTT, because atomic formulae of LPT are translated to formulae in
Frag™(3A). However, the following improved coincidences for inhabited Logics

are interderivable:

Inhabited KLPT is an extension of InhabitedJLPT conservative over
P({Frag™(L A VIV)} = Frag™(3!' A L)) x Frag®(L A v3V) , and
similarly for LTT.

3.3.2 The logic of partial elements

The logic of partial elements is usually presented as an higher order logic with a
topos-theoretic interpretation (see [Fou77]). However, in [Sco79] the logic is given
incrementally: existence (and quantifiers), equivalence and equality, functions
and relations, descriptions, higher order. By LPE we mean the logic described
in the first three sections of [Sco79], but we consider two other flavours (see
Definition 3.3.7): iLPE and LPE + 1. Roughly speaking, the difference among

the three flavours is:
e in LPE + I there is exactly one nonexisting element
e in LPE there is at most one
e in iLPE there are no restrictions on their number.

iLPE is not considered in the literature, since the topos-theoretic semantics takes
(intuitionistic) indiscernability of partial elements for granted. But it plays an
important role as the logic behind the Ay-calculus and makes very clear the con-
nection with the A -calculus (see Section 4.4). We describe the logic of partial

elements (LPE) in an indirect way.

First, we translate the language of LPE into that of LTT, via an
injective function _*. Then, we define the bare LPE as the pullback
of LTT along F (see 1.1.5). Finally, we aziomatize LPE in the bare
LPE.

105

The translation * explains bare LPE in terms of LTT by saying that existing
elements are a subset of the partial elements and quantifiers are relativized to

existing elements. ¥ gives also a procedure to derive the revisited inference rules

for LPE from those for LTT.

Definition 3.3.7 The formal systems LPE, iLPE and LPE + 1
The translation Y from the language over ¥,. into the language over Yy

extended with the unary predicate E is:
o (1= tg)E is t1 =ty and AY is A for the other atomic formulae
o P commutes with logical constants and connectives
o (V:c.A)E is (Vao.E(z) — A®)
o (32.4)" is (3z.E(z) A AY)

® ('I]Fl - FQ)E 18 (T]FlE - FQE)

The bare logic of partial elements (bare LPE) is the pullback of LT'T along

the translation .

The intensional logic of partial elements (iILPE) is the formal system axiom-

atized in bare LPE by the following axioms for existence:

E.c E(e)

E.f E(f(z)) = E(z)
E.p p(z) = E(z)

The logic of partial elements (LPE) is the formal system axiomatized in

iLPE by the following axiom for equivalence:

in (E(@) »2=y),(B(y) ma=y)— o=y

The logic of partial elements with descriptions (LPE + 1) is defined in Sec-
tion 6 of [ScoT9].

106

Remark 3.3.8 On page 681 of [Sco79] there is a slightly different definition of _F,
s.b. (th = tg)E is E(t1)VE(ty) — t; = t3. This translation rules out the intensional
approach, by forcing (in) even in the bare LPE, and makes equivalence and
equality interdefinable.

The axiom (E.c) has been added to make LPE closer to LPT, but in doing so
we can no longer view free variables of LPE (that range over partial elements) as
generic constants. (E.f) and (E.p) are the axioms (str) for strictness. There are
equivalent formulations for the axiom (in) of indiscernability, but they are not

s-formulae (and therefore unsuitable for the revisited inference rules).

To obtain the revisited inference rules for LPE we can simply pull back the

revisited inference rules for LTT along P (extended to the revisited language).

Definition 3.3.9 Revisited Inference rules for LPE

E

The translation _* is extended to the revisited language as follows:

o (n.T — A" is (n.E(y),TE — AY)
where E(n) is the set of formulae {E(z)|z € dom(n)}.

Given a signature ¥ for LPE and T C JSSeq™, let T,. be the pullback of TE
along ¥, i.e. T plus the axioms for equivalence in bare LPE.

The inference rules for bare Thirpr(T') on SSeq® are:

{m.I'1 = E(o(z)), ||z € dom(nq)}

{m ns.E(ns), I'1, I's[o] = Aj[o], 11:’

(ns.I's — A}) € ;|} i Termi(m)
: 3

o m.I'y = ALfo], T ne.I'y — AL eIy
{m [ns.E(ns), 1, Ts[o] = As[o]. I & € Term?® ()
(n3.I's — A’) ! N2
RTpe N3.13 3 2 T]Q.FQ — A’2 c Tpe

T]l.Fl = AIQ[O'],F/I

For ThiiLpr(T) one has to add the inference rules:
E.c n.I'1' = E(¢), 1"}

nT1 = B(f(7). T

E.fi Lied t
M =R € om(?)

107

I 1), 1" _
E.pi 7 1:>P(z), L i € dom(1)

oy = E(t), T

Finally for Thgrpr(T) one has to add also the inference rule:

7]1.F1,E(t1) — tl = tg,rll nl.Fl,E(tg) - tl = tg,rll

Rin
7]1.F1 - tl = tg,rll

Remark 3.3.10 The set of revisited inference rules for LTT satisfies the condi-
tions of Proposition 1.2.10, when I is _F, therefore bare Thirrpr(T') is generated
by the pullback of the revisited inference rules for ThKLTT(TE) along the trans-
lation _®. We cannot apply Proposition 1.2.10 to pullback the inference rules of
LTT, because in the cut rule the cut formula can always be taken outside the
image of I. However, we can overcome this problem by using a restricted cut
rule s.t. the cut formula is in the image of I: this will still be enough to derive

all consequences of a set of axioms in the image of I (see Chapter 5 of [MR77]).

The coincidence results for intuitionistic and classical LPE are dependent on
the flavour, and only in the case of iLPE they are similar to those for LPT (see
Section 3.1).

Proposition 3.3.11 Coincidence results for iLPE

o [ntuitionistic and classical free iILPE coincide on the fragment

{Frag®(L A vV3)} = Frag®(L A V3).

o [ntuitionistic and classical inhabited iLPE coincide on the fragment

{Frag™(AVL1)} = Frag”(L).

Proof The coincidence of intuitionistic and classical free bare LPE on the coherent
fragment {Frag™(L A vV3)} = Frag™(L A V3) follows from the first statement
in Proposition 3.3.6. In fact, bare LPE is the pullback of LTT along P (see
Definition 3.3.7) and the pullback of the coherent fragment (over ¥;) along is
the coherent fragment (over Y,.). Since the axioms of iLPE are in the coherent
fragment, the same coincidence result holds for iLPE.

To prove the second statement we cannot use . because the pullback of

{Frag®(AV.L)} = Frag™(L) along P is a proper subset of {Frag™(AV1)} =

108

FragE(J_). Therefore, we introduce a new conservative interpretation (of bare
LPE in a formal system axiomatized in LPT).

Let ¥ be the signature },; extended with a sort (5 and two unary partial
functions in: 1y — ¢ and out: t — 1. We define a translation ¥ from the language

over Y, into the language over X:
o (E(t) is out(t) |.,
o (11 = tz)P is t; =, t, and AY is A for the other atomic formulae

o " commutes with logical constants and connectives

o (V:c.A)P is (Vy: ep. A" [z = in(y))])
o (3z.A)" is (Fy:wp. A% [2: = in(y)])
e (n.I' = Fz)P is (U-FlP = FZP)

This translation, unlike ¥, does almost commute with quantifiers, in particular
it maps {Frag™(AV.L)} = Frag®(Ll) into {Frag™(AVL)} = Frag™(L).

Let Az, be the following set of axioms

in y:goout(in(y)) =y
out z:c.out(z) |= in(out(z)) = x

tot.f f(x) |

It is easy to see, by model-theoretic considerations, that _F is a conservative
interpretation of bare LPE in LPT + Ax,., i.e. bare LPE is the pullback of LPT +
Az, along *'. Then we can proceed as in the proof of the first statement, because
intuitionistic and classical inhabited LPT 4 Az, coincide on {Frag™(AVL1)} =
Frag™ (L) (see Theorem 3.1.15). 1

The axiom (in) of LPE is outside both fragments, therefore we do not expect

to get the coincidence result of iLPE. In fact:

Example 3.3.12 f(z) = g(«) is derivable from f(L1) = ¢g(L1), E(L) = E(x)
and F(x) = f(z) = g(x) in KLPE but not in JLPE.

109

In LPE 4 I any fragment containing all term-existence statements E(¢) has the

same expressive power as the entire language, in fact (Theorem 6.6 of [Sco79]):
A «—— E(clA) is derivable in LPE + I, for any formula A.

Therefore, it is impossible to have any coincidence result (without imposing re-

strictions on the terms).

3.3.3 The relation between LPT and LPE

The relation between LPT and LPE can be summarized by saying that there is
a conservative interpretation of LPT in all three flavours of LPE (see Proposi-

tion 3.3.14).

Definition 3.3.13 Translation of LPT in LPE

The translation _° from the language over ¥, into the language over X, is:

o (t1 = t3)° is the equality E(t;) Aty =ty of bare LPE (shortly t; = t5) and
A°® is A for the other atomic formulae
o _° commutes with logical constants, connectives and quantifiers
o (n.Ih =T13)° is (n.E(n), A° = T,°)
Let ¥ be a signature for LPE:

o ESeq” is the fragment of Seq” s.t. the sequent n.T'y = Ty is in it ifE(n) C

I'y (i.e. all free variables are required to range over existing elements).

e EqSeq” is the fragment of Seq® built up by using the equality = (of bare
LPE) instead of equivalence =.

e EEqSeq™ is the intersection of the fragments EqSeq™ and ESeq™.
The fragment EEqSeq is actually the image of _°.

Proposition 3.3.14 Embedding of LPT in iLPE

_° is a conservative interpretation of LPT in iLPE.

110

(e}

Proof It is easy to prove that _° is a relative interpretation, therefore we have
only to prove the implication: if (n.'y = I'y)° is derivable from T° in iLPE,
then n.I'y = I'y is derivable from 7" in LPT.

By Proposition 1.3.5, it is enough to show that for all models A of LPT there
exists a model A’ of iLPE s.t. A satisfies a sequent iff A’ satisfies its translation.
We claim that the required A’ is the model A, obtained by adding to A a

nonexisting element L. I

Remark 3.3.15 A, is actually a model of LPE +1 (and LPE), therefore the

o}

proof of Proposition 3.3.14 shows that _
LPT in LPE + 1 (and LPE).

is also a conservative interpretation of

Proposition 3.3.16 Embedding among the flavours of LPE

iLPE C%qSeql—EqSeq LPE C%Seql-Seq LPE—I—I

Proof We prove iLPE Cf goqriqseq LPE first. The inclusion iLPE C LPE is
obvious, therefore we have only to prove the other inclusion for the formal systems
restricted to EqSeq.

By Proposition 1.3.5, it is enough to show that for all models A of iLPE there
exists a model A’ of LPE s.t. A and A’ satisfy the same sequents in EqSeq.
We claim that the required A’ is the model A/ =,, i.e. A modulo the congruence
a=, b E(a) or E(b) implies a = b.

To prove LPE Cfgeqrseq LPE + L, it is enough to show that for all models A
of LPE there exists a model A’ of LPE + 1 s.t.

o A’ satisfies all sequents in ESeq satisfied by A
o A satisfies all sequents satisfied by A’

We claim that the required A’ is the model A, obtained by first stripping A of

all nonexisting elements and then adding a nonexisting element L. 1

A proof of LPE Cfgeqrseq LPE + 1 for intuitionistic logic is sketched in 6.4 of
[ScoT9].

111

3.3.4 Concluding remarks

By Proposition 3.3.14, we can identify LPT with LPE restricted to the EEqSeq
fragment. On this fragment LPE is uncontroversial, in the sense that the conse-
quence relation is flavour independent (see Proposition 3.3.16). However, outside

EEqSeq the differences become apparent, e.g.:
e) (E(z)VE(y) = 2 =y) = x = y in LPE but not in iLPE
e E(z)F L in LPE + I but not in LPE.
Among the three flavours, only LPE seems a suitable alternative to LPT, in fact:

e iLPE does not capture the set-theoretic view of partial functions as single-
valued relations, because two strict functions may yield the same result
when applied to existing elements, while being different on some nonexisting

elements.

e from a computer science prospective, intuitionistic LPE + I is unsatisfac-
tory, because there are too many partial elements to view all of them as
denotation of programs (see [Ros86] for a more flexible approach based on

dominances for classifying only some partial elements).

At these point it is possible to see another (more technical) reason, besides those
mentioned in the introduction, for preferring LPT to LPE, namely the absence
of coincidence results for LPE.

On the other hand, the notion of partial element (taken as primitive) opens
new possibilities, that are not thinkable in the framework of LPT. For instance,
iLPE is a very natural weakening of LPE, obtained by simply dropping one

axiom, but it seems impossible have a similar weakening of LPT.

Chapter 4

Formal systems for applicative
structures

In Definition 2.4.5 we have defined, for each signature . eight formal systems

on the same language Seq”:

Free J 0
N n LPT + N
Inhabited K tot

All of them are axiomatizable in free intuitionistic logic of partial terms (F'reeJLPT
over).

In this chapter we introduce other formal systems, that are either directly
axiomatizable in LPT or equivalent (at the level of terms) to a formal system
axiomatizable in LPT. These formal systems are defined only for signatures ¥
that satisfy certain closure properties. For simplicity we consider only formal
systems for inhabited models, but we will mention the modifications required

when empty types are allowed. The formal systems are divided into two groups:

e formal systems for partial algebras (that are directly axiomatizable in LPT),
i.e. LPT and its variants: LPT + [(LPT with restriction operator) and
monLLPT (monotonic LPT)

e formal systems for extensional partial combinatory algebras (that are di-
rectly axiomatizable in the A,Bn-calculus), i.e. the A, 8n-calculus (the par-
tial lambda calculus) and its variants: the mon\,3n-calculus (the mono-
tonic partial lambda calculus), the A, Y #n-calculus (the fixed-point partial
lambda calculus) and the A,pY n-calculus (the least fixed-point partial

lambda calculus).

112

113

We consider also the untyped partial lambda calculus, although there is a
natural conservative interpretation of it in the typed partial lambda calculus

(similar to that given in [Sco80] for the untyped lambda calculus).

In the study of reduction we will consider also the partial lambda calculi

without the axioms (3) or (n).

We are mainly interested in the partial lambda calculus, but it is useful to con-
sider partial algebras as well, since they provide a simpler case study, that has
been extensively investigated in the literature (see [Bur82]), and that can sug-
gest ways of tackling problems in the partial lambda calculus. We will study
expressive power of equational fragments and equational presentation with this
incremental approach. Moreover, in order to understand the differences between
partial and total lambda calculus, it is important to compare embeddability of
partial algebras in models of the typed partial lambda calculus versus embeddabil-
ity of (total) algebras in models of the typed (total) lambda calculus.

The variants of the partial lambda calculus are inspired by the denotational
semantics of a functional language in the category of cpos and continuous partial
functions (see [Plo85]). Note that cpos cannot be completely described in first
order logic, i.e. they are not the class of models of a first order theory, therefore
we can only axiomatize some of their properties. The A,pY Bn-calculus is the
variant closest to the denotational model, but the other variants, namely the
monAp An-calculus and the A, Y Bn-calculus, enjoy an alternative characterization
in terms of a reduction.

We consider two other formal systems: p-equational logic (see [Obt86])
and the Ay-calculus (see [Plo75]). We prove that p-equational logic amounts to
LPT + I restricted to a suitable fragment. We give an account of the A;-calculus
in terms of the intensional logic of partial elements (see Section 3.3) and stress

its connections with the partial lambda calculus.

4.1 Equational fragments and variants of LPT

In the literature on many sorted algebras and the lambda calculus one is usually
concerned only with equational theories, i.e. sets of equations between terms
closed w.r.t. the inference rules. For partial algebras there are different notions

of equation and term existence statements become of interest as well. These

114

notions of equation can be described in the language of LPT and their common
feature is that they specialize to equations in the case of total algebras (see
[Bur82]). In this section we compare the expressive power of these fragments in
LPT. The overall picture is quite confusing, but we will argue that this is due
to a lack of terms. In fact, if we add a binary restriction operator to LPT, then
there are only two equational fragments with different expressive power. In the
ApB-calculus the picture is even simpler, since all equational fragments have the

same expressive power (see Theorem 4.2.8).

Definition 4.1.1 Term Existence and Equational Fragments

o term ewistence statements (T E-statements) t |

e existentially conditioned TE-statements (ECT E-statements)
ti],... t, l=1t]

e existence equations (E-equations) t1 = t;

e sirong equations (S-equations) t =~ s, i.e.

(tl l—) tl == tz) N (tg l—) tl = tg)

e existentially conditioned E-equations (EC E-equations)
bl =t =1

e existentially conditioned S-equations (EC S -equations)
fo Lty =t et

There are six term ezxistence and equational fragments with different expressive
power (in LPT). The clear conclusion that one can draw by comparing them is
that EC E-equations are the most expressive, although for stating equivalence or

termination of programs, S-equations and 7' E-statements are more natural.

Theorem 4.1.2 Expressive power in LPT

TE C E
N
S <C TEUS
N N
ECS ¢ FECE = ECTEUECS

Proof the inclusions are quite easy to prove:

115

o T'E C FE, because t | is equivalent to the F-equation t = ¢
o K CTEULS, because t; = t; is equivalent to the conjunction t; | At; ~ ¢,

e KCS C ECE, because (A — t ~ t') is equivalent to the conjunction
(ANt >t =t)A(AAY |—t=1)

To show that no other inclusion or equivalence (which is not derivable by transi-
tivity from the ones indicated) can be added to the picture, it is enough to show
that TE ¢ ECS and S € F.

To show that TE ¢ ECS, we have to find a formula A € TE which is not
derivable from {A’ € FCS|A F A’} I/ A (this is a general method). Consider
the signature ¥ whose only symbol is a unary function f. We prove that the
formula f(x) | has the required property. In fact, for any ECS-equation ¢; |
ooyl =t

e {1],...,t, |=t ~ 1" is derivable from f(z) | implies
e t ~ t' is valid in the total free X-algebra implies

e ¢ and ¢’ are syntactically equal implies

oty |,...,t, |=t ~ t'is derivable in LPT

Therefore, f(x) | is not derivable from {A" € ECS|f(x) |[F A’}, because it is
not a theorem of LPT.

Similarly, for S ¢ E we can show that the formula f(z) ~ f(y) has the
required property. In fact, the only E-equations derivable from it are of the form
r = z, i.e. the F-equations valid in the partial free Y-algebra (where f is the

everywhere diverging function) 1

4.1.1 LPT with restriction operator

In a formal system with more deductive power than LPT some of the fragments
may become equivalent, for instance in LPT + tot all equational fragments have
the same expressive power. However, if we just add more axioms to LPT the
resulting formal system is in general no longer sound for partial algebras. Instead,
the general idea we follow is to consider a definitional extension of LPT over X

axiomatized, say by T', in LPT over a signature X’ s.t. ¥ C ¥'. This is equivalent

116

to saying that any Y-structure can be extended in a unique way to a model of
T. Therefore, the new symbols in ¥’ have a standard interpretation in a model
of T, like _ | and _ = _in a Y-structure, and the axioms 7' capture formally this
standard interpretation, like the axioms for existence and equality.

In this section we consider a definitional extension of LPT obtained by adding
a binary restriction operator (used also in [CO87]) and reexamine the expressive

power of the equational fragments.

Definition 4.1.3 LPT + |
The logic of partial terms with restriction operator (LPT + I) over ¥,

is the formal system axiomatized by | in LPT over X, where

e X, is a signature for partial algebras with restriction, i.e. a signature for
partial algebras with a restriction operator [, ., € Funct(; -,)—-(2})

for any 11,75 € Sort(X))
o [is the axiom

f (a1 f$2 =

Notation 4.1.4 We write ¢, [t; for [(¢1,%2) and use the convention of associating
the restriction operator to the left.

Moreover, if D is a finite set of terms, then the expression ¢ [D will be treated

as a shorthand for ¢[t,[... [t,, where t;,...,t, is a list of the elements in D

(possibly with repetitions). The vagueness in the definition of ¢ D does not

cause problems, because the terms ¢[¢1]... ¢, and t[t]]... [t

.. are provably
equivalent in LPT + | provided {¢,...,t,} = {t],..., 1. }.

Remark 4.1.5 In LPE the restriction operator may actually change the class of
models, because it forces them to have certain partial elements (like the descrip-
tion operator does). The restriction operator ¢ A considered in Definition 6.5
of [ScoT9] (where A is a formula) is more expressive than that considered here,
and some partial elements definable by it cannot be regarded as programs (see

Section 3.3 for similar considerations about LPE +1I).

Throughout this section we fix a signature X, for partial algebras with re-

striction and ¥ will be ¥, without restriction operators.

117

Proposition 4.1.6 For any Y-structure A there exists a unique model A of
LPT + | over ¥} s.t. A =A%

Proof To get a model of LPT + [the interpretation of the restriction operator

f -, has to be the first projection from TlA X TQA to TlA 1

Theorem 4.1.7 Expressive power in LPT + |

TE C E
N
S = ECE
Proof By Theorem 4.1.2 S C ECE = ECTE U ECS, therefore to prove S =
ECE it is enough to show that ECTE U ECS C S:

o KCTE C S, because A{t; |,...,t, |} — t | is equivalent to the S-
equation x [{t1,...,t,} ~ x{t1,... t,,t}

o KCS C S, because A{t; |,...,t, |} — t ~ t' is equivalent to the S-
equation ¢ [{t1,...,t,} ~t'[{t1,... 1.}

S & E is proved as in Theorem 4.1.2 1

The relations between the equational fragments of LPT and LPT + | are (see
Proposition 4.1.17): TE* = TE*', E* = E*! and ECE* = S*t. In other
formal systems the restriction operator is already definable and does not increase
the expressive power of the equational fragments. For instance, in CL, (see

Definition 4.2.9) t1 [t can be defined as Ktt,.

Remark 4.1.8 For free logic the addition of the restriction operator is not enough
to prove Theorem 4.1.7, since A{t; |,...,t, |} — ¢t | may not be equivalent
to the S-equation z[{t1,...,t,} ~ x{t1,...,t,,t}. However, if we add also
a sort 1 (and a constant * of that sort), whose standard interpretation is the

singleton {#}, then the ECT E-statement above is equivalent to *[{ty,...,¢,} ~
«Mtn, . bt

118

4.1.2 P-equational logic

P-equational logic is introduced in [Obt86] as a method for classifying partial al-
gebras, which has common features with equational logic: p-term, *-substitution,
p-equation, p-theory. As in Obtulowicz, we consider only single-sorted algebras,
but it is straightforward to extend p-equational logic to the many-sorted case.
In Chapter 7 we will extend p-equational logic to give an equational presentation
of the intuitionistic partial lambda calculus. In this section we investigate the

relation between p-equational logic and LPT + [, namely we prove that

e every X -term ¢ is provably equivalent to a X-p-term s(t). Therefore p-

equations have the same expressive power as S-equations in LPT + T.
e p-equational logic is LPT + | restricted to the fragment of p-equations.

A byproduct of these two results is an algorithm to decide equivalence of terms in
LPT+ [, namely ¢; ~ t3 is derivable in LPT + I iff s(¢1) and s(¢2) are syntactically

equal. In other words X-p-terms are like canonical forms for X)-terms.

Definition 4.1.9 ([Obt86]) P-equational logic pEQL

o D isaX-d-term iff

— D is a finite set of X-terms of the form f(1)
— any subterm of D of the form f(t) is in D

MID is a Y-p-term iff

— D is a X-d-term

— M is a X-term, and if M is of the form f(t), then M is in D

e x-substitution (for p-terms):

e a p-equation is a pair (M D ~ NIE) of p-terms and
pS is the set of p-equations.

119

e a set T of p-equations (considered as ordered pairs of p-terms) is a p-
theory iff it is a *-substitutive equivalence relation, i.e. closed w.r.t. the
inference rule

[Dy >t Dy t3[D3 >~ t4f Dy

(t11D1)*[x: =13 D3] > (t2[D) *[x: =14 Dy

*subst

T F MID ~ NIE in p-equational logic =N MID ~ NIFE is in any
p-theory which contains T

Notation 4.1.10 We identify D with y[D, where y is a fized variable. For in-
stance, D ~ E means that y[D ~ y[FE.

Remark 4.1.11 The intuition behind a d-term D is that it is closed w.r.t. deriv-
ability, i.e. if {t | |t € D} = f(?) | is derivable in LPT, then f(f) € D

It is well-known that an equational theory can be described by a category with
finite products, where morphisms are (equivalence classes of) terms and com-
position is substitution (see [KR77]). For p-equational logic there is a simi-
lar description that uses a category with ordered strict pre-cartesian structure,
where morphisms are p-terms and composition is *-substitution (see [Obt86]).
This description relies on few properties of *-substitution, that are an immediate

consequence of the definitions above:

Proposition 4.1.12 Properties of *-substitution

o p-terms are closed w.r.t. x-substitution, t.e.
if MID and NTE are p-terms, then
(MD)*[z:= NIE] is a p-term

o *-substitution is associative, i.e.

ify ¢ (FV(MID) — {«}), then

(MID)x[z:= NTE])*[y: = PIF] = (M[D)*[z:= (N[E)*[y:= P F]]
o two independent *-substitutions commute, i.c.

ife#y, x & FV(PIF) andy ¢ FV(NIE), then

(MID)+[z:= NTE])*[y: = PIF] = (M[D)*[y:= P F])*[z: = NI E]

Remark 4.1.13 The last property justifies the use of parallel x-substitution:

(tI1D)x[x1:=t [D1]... [xn:=t,[Dy

120

We define an algorithm that given a ¥)-term ¢ returns a X-p-term s(t), which is

provably equivalent to ¢:

Definition 4.1.14 Saturation
The saturation s(t) = st(¢)[sd(t) of t is defined by induction on the structure

of the ¥y-term t:

o S(f(T) 2 fstE) M Ast(D)} U (Usd (D))

o s(t11ts) 2 st(ty) Isd(tr) U sd(ty)

Proposition 4.1.15 P-terms are saturated
If t is a Y-term, then sd(t) is the set of subterms of t of the form f(1).
IfttD is a p-term, then s(t[|D) =t1D.

Proof The first statement is proved by induction on the structure of the ¥-term

t.

The second statement follows immediately from the first one and the definition

of p-terms. 1

Proposition 4.1.16 [f{ is a X-term, then s(t) is a X-p-term and t ~ s(t) is
derivable in LPT + |

Proof By induction on the structure of the ¥-term ¢. 1

Proposition 4.1.17 Expressive power in LPT + |

TE* = TE*
N
E* = E¥
N
St = pSE = ECE®

Proof By Proposition 4.1.16, we can always replace a ¥;-term with a X-p-term,

in particular any S™t-equation is equivalent to a ¥-p-equation (S*t C pS¥).

121

e TE* C TE*! is obvious. So we have to prove that a T E¥'-statement is
equivalent to a set of T E*-statements. In fact, if M D is a ¥-p-term, then
M D | is equivalent to the conjunction of the following T E*-statements:

—t | foranyt e D
- M|
e £¥ C E*! is obvious. So we have to prove that a E*!-equation is equiv-
alent to a set of E¥-equations. In fact, if M[D and N[FE are X-p-terms,
then M[D = N|E is equivalent to the conjunction of the following 7' E*-
statements and E*-equation:
—t | foranyt €D
—t|foranyt € E
- M=N
e From Theorem 4.1.7, it follows that ECE* C S*!. So we have to prove
only that any p-equation M[D ~ NI[F is equivalent to a set of EC E*-
equations. In fact, a p-equation M [D ~ N[FE is equivalent to the conjunc-
tion of the following FCT E*-statements and EC E*-equation:
- NMtl|teD} =t] foranyt' € E
- NMt]|te E} =1t | forany t' € D

-MNMtlteD}->M=N

We prove that p-equational logic and LPT + | are the same formal system on
p-equations, by showing that any p-theory 7' is the set of p-equations valid in a
Kripke ¥-structure By.

Remark 4.1.18 Although JLPT + | and KLPT + | coincide on the p-equational
fragment, there are p-theories which are not the theory of one classical partial

algebra.

Definition 4.1.19 The Kripke Term Model By
Given a p-theory T', the Kripke Y -structure By over Kr is defined by:

122

o Ky is the set of ¥-d-terms ordered by inclusion
o if D e Ky, then A= Byp(D) is the structure s.t.:

— A2 [t Dh]p| (D~ Dy UD) €T}, where
[tl rDl]D é {tg rD2|(t1 rDl UbD ~ tg rDQ U D) € T}
A A

A 2o,

— FAEIDli € 7)) & { FEOHEYU (D), if it ds in A

unde fined otherwise
o if 1Dy — Dy (i.e. Dy C Dy), then

Br(f)([t1D]p,) 2 [t1D],

Proposition 4.1.20 Characterization of By
Let T be a p-theory, D € Ky and A = Br(D). Then, for all type environments
n, environments p € n* and substitutions o € [p:
. . . . A
o Ifte Termbzf(n), then [[t]];)“ ~ {[(S(t))*[d]]p if it s in e

undefined otherwise
Moreover, for any pair of ¥Xy-terms Br|t; ~ tg iff s(t1) >~ s(tz) € T
Proof The first statement is proved by induction on ¢. For simplicity we assume
that o 1s z: = N[FE, the general case is a straightforward generalization.
The basic cases x and ¢ are similar, so we consider only the case ¢. To prove
the statement it is enough to show that ¢[D ~c¢[EU D isin T.
e by reflexivity
ctlD ~clD
e since [N E], is in ¢*, then
D~FuUD

e by applying (*subst) to substitute a variable y that occurs neither in D nor
in the £

clD = (cD)*[y:= D] ~ (c[D)*[y:= FUD]=clEUD

123

The inductive steps f(¢) and ¢, [t are similar, so we consider only the case f(?).
Let n = [f| , M;D; = (s(t;))*[z1:= NIE] (for all : € n) and M = (M;]i € n).
By IH for the t; and by definition of f4:

[F(M)H{f(M)} U (UienDi)]p ifit is in o

1A
HOI { unde fined otherwise
but (s(f(2)))*[y:= NIE] = f(M)I{f(M)} U (U;e, D;) U E. Therefore, to prove

the statement it is enough to show that
D) M)} U (UienDs) U D = J) H ()} U (UignD3) U E U D

The proof proceeds like that for the basic cases.

The implication from right to left of the second statement follows immediately
from the first statement. For the other direction, let M;D; = s(t;), we consider
the denotation of the terms in the environment p; 2 [o]p, corresponding to the

identity substitution o (i.e. o(z) = z[0)) at the stages Dy and Ds:

L. [My[D:]p, = by the first statement
t]|BP1 = by the assumption
[[P1 y p
Br.Di _
[to];77+ = by the first statement
[M2] D],

2. [My[D1]p, = by the first statement
1Z752 = e assumption
5P by th pti

Bp,Dy _
[t2] ;772 = by the first statement
[M2] Ds]p,

Now we have to derive the pA-equation My [Dy >~ M, [D;:

e by the first identity above
M1 rDl ~ M2 rDl U D2

e from the second identity above, by (*subst)
D1 U D2 ~ D2

e by reflexivity
My Dy >~ My D,

124

e by applying (*subst)
M, rDl UDy ~ M, rDQ

e by transitivity
LM1 rDl ™~ LMQ rDQ

Theorem 4.1.21 p-equational logic is LPT + | restricted to the fragment pS,
ie. T'H MID ~ NIFE in p-equational logic iff T' = M|D ~ NIE in LPT + |
for every p-equation M|D ~ NTFE.

Proof The implication from left to right is easy to prove, in fact it is enough to
prove that the inference rules for p-equational logic ((refl), (symm), (trans) and
(*subst)) are derivable in LPT + .

For the other implication we rely on an easy corollary of Lemma 4.1.20 (and
Proposition 4.1.15): Br|ti [D1 ~ to[Dy iff t1[D1 ~ t2[Dy € T for any pair of
p-terms. We prove that M[D ~ N[E € T, provided M[D ~ N|FE is derivable
from 7" in JLPT + | and T is a p-theory containing 7":

e since 1" is a set of p-equations, by Lemma 4.1.20
Bypl-T'

e since By is a model of JLPT, by soundness
Br|-M D ~ NIE

e since M[D ~ NIFE is a p-equation, by Lemma 4.1.20

MID~NIEET

4.1.3 The monotonic logic of partial terms

In this section we introduce monLPT, the variant of LPT for ordered partial
algebras and investigate the expressive powers of the inequational fragments.

monLPT provides a base for the monA,#n-calculus (and the A,pY fn-calculus).

125

Definition 4.1.22 monLPT
The monotonic logic of partial terms (monLPT) over X,on is the formal

system axtomatized by mony, in LPT over ¥yon, where

® Yoon 18 a signature for monotonic partial algebras, i.e. a signature for
partial algebras with a partial order <,€ Pred; (Y¥mon), for any 7 €
Sort(Xmon)

e mon, is the set of arioms:

refl x <,z

asymm xy <; Tg, Ty <7 Ty = T1 =7 T3

trans 1 <; x93, vy <; 13 = 11 <, T3

mon.f ¥ <= @, (7) L= f(7) <, f(@)

Notation 4.1.23 We write t<t’ for the formula (¢ |— ¢t < t').

For ordered partial algebras it is more natural to consider inequations; they
are defined like the corresponding equations, but = and ~ are replaced by < and

< respectively:

Definition 4.1.24 Inequational Fragments
e existence inequations (Ein-equations) t; < 5

e sirong inequations (Sin-equations) t15ts, i.e.

1]l— 1t <t

e euistentially conditioned E-inequations (EC Ein-equations)

il ot =t <t

e existentially conditioned S-inequations (ECSin-equations)

t Lt =t

126
In monLLPT and monLPT + | the expressive powers of the inequational fragments

are related according to the same pattern given for the equational fragments.

Theorem 4.1.25 Expressive power in monLPT

TE C Ean

N
Sin c TEUS:in
N N
ECSin ¢ FECEin = ECTEUECSin

Theorem 4.1.26 Expressive power in monLPT + |

TE C Ewn
N
Sin = ECEin
There is also a variant of p-equational logic corresponding to monLPT + | re-
stricted to the fragment of p-inequations (i.e. Sin-equations between p-terms):
monp-equational logic. The same theorems (and corresponding proofs) for p-
equational logic hold mutatis mutandis for monp-equational logic, so we will only

give the main definitions and theorems.

Definition 4.1.27 monp-equational logic monpEQL
e « p-inequation is a pair (M DN IE) of p-terms and

pSin is the set of p-inequations.

e asetT of p-inequations (considered as ordered pairs of p-terms) is a mono-
tonic p-theory iff it is a *-substitutive preorder relation, i.e. it satisfies

the axiom
incl DB

and is closed w.r.t. the inference rule

1 [D1<ta [Dy t3[D3ty Dy
(t11D1)*[x: =13 D3| (t2 1 Do) [x: = ta| Dy]

*subst

T+ MIDLNTE in monp-equational logic N MIDLNTE s in any

monotonic p-theory which contains T

127

Proposition 4.1.28 Expressive power in monLPT + |

E¥in = E¥nin
N
S¥tin = pS¥in = ECE®in
Proof The proof is similar to that of Proposition 4.1.17. The only difference is
in proving pS¥in = ECE¥in. In fact, a p-inequation M DN [E is equivalent
to the conjunction of the following ECT E*-statements and EC E¥in-equation:

e AM{t||teD}—t|foranyt e FE

e N{t]|[teD} = M<N

Theorem 4.1.29 monp-equational logic is monLPT + | restricted to the frag-
ment pSin, t.e. T'H MIDLNE in monp-equational logic iff T - MTDLNTE
in monLPT + [for every p-inequation MDLNITE.

4.2 The partial lambda calculus

In this section we introduce the partial lambda calculus as an extension of LPT
obtained by adding a new formation rule (for lambda-abstraction) and some ax-
ioms. Since its language is not a first order one (because of lambda-abstraction),
we cannot axiomatize it directly in LPT. Therefore, we introduce another formal
system, extensional partial combinatory logic, defined by axiomatization in LPT,
and show that it is equivalent to the A\, Bn-calculus at the level of terms, i.e. the
two translations of the equivalence commute with predicates, logical connectives
and quantifiers, e.g. equations are translated into equations. A similar equiva-
lence will be stated also for the A,3-calculus. Because of this equivalence, one
can apply the results about LPT to the study of the partial lambda calculus.
The partial lambda calculus comes in two flavours: typed and untyped.
The typed partial lambda calculus is essentially many-sorted, while the untyped
partial lambda calculus is single-sorted. We will study both the typed and un-
typed (partial) lambda calculus. Since the two calculi are very similar and have
many properties in common, it would be redundant to prove them twice, there-

fore we will prove a common property only for the untyped calculus. In fact,

128

when a property does not rely on the type structure, types are just a syntactic

nuisance.

Definition 4.2.1 Language of the typed Ap-calculus

A signature) for typed partial applicative structures is a signature
for partial algebras with function spaces 7, — 7 € Sort(X,) and application
app,, ., € Funct(; s, -y~ (X5) for any 7,7 € Sort(X,).

The language of the Ay-calculus over Xy is the language generated by the
formation rules for LPT over ¥, (see Definition 2.1.5) and the formation rule

t € Term>*(n|a:7)
(Az:7.t) € Term™ ,(n)

T—1!

Notation 4.2.2 We say that a sort ¢ is a base sort if it is not a function space.

Definition 4.2.3 Language of the untyped A,-calculus
A signature X, for untyped partial applicative structures is a single-
sorted signature for partial algebras with one application app € Funct(, ,)—,(X)).
The language of the Ay-calculus over Xy is the language generated by the
formation rules for LPT over ¥, (see Definition 2.1.5) and the formation rule

t € Term™*(n|z: 1)
(Az:1.t) € Term™* ()

Notation 4.2.4 We (remove the subscripts and) write ¢1, for app(ty,t2), we also
use the convention of associating application to the left. We (remove the sort of

the bound variables and) write Axq,...,x,.t for Azq.(... Az, t) (if n > 1).

Definition 4.2.5 The \,3n-calculus
The typed (untyped) partial lambda calculus (A\,8n-calculus) over ¥ is
the formal system on the language of the Ay-calculus over X, generated by the

inference rules for LPT and the set of axioms A\, (31, where

e Y\ is a signature for typed (untyped) partial applicative structures

129

o \, (1 ts the set of axioms

EX (Az:7t) |

£~ Vot = t) = (Ax:7.t) = (Ax: 7.t)

B (Ae:irt)r ~t

n Aze:r.fa)=f

Remark 4.2.6 Besides the A 37n-calculus there are three weaker calculi obtained
by dropping either (n) or (3) or both: the A,3- the Ayn- and the A,-calculus.
In analogy with LPT, both the typed and untyped A, 37n-calculus (as well as the

weaker calculi) have the following variants on the same language:

Free J 0
N N AfBn + N
Inhabited K tot

Moreover, there is also the partial lambda calculus with restriction operator
(Ao + [-calculus).

Since the axiom (inhab), for inhabited structures, is derivable in the untyped
partial lambda calculus, we do not distinguish between F'ree and Inhabited un-

typed partial lambda calculus.

Notation 4.2.7 When convenient the suffix “-calculus” is dropped, e.g. JA,3
stands for the JA,3-calculus.
The total variant of the A, 3n-calculus is called either the A, 37 + tot-calculus
or the A\¢fBn-calculus.

In the A, 3-calculus the equational fragments have the same expressive power:
Theorem 4.2.8 Expressive power in the A,3-calculus

TE C E = ECE

Proof In the A\ 3-calculus S = ECE, because the restriction operator ¢, ft; is
definable as (Az,y.x)t1ts (see Theorem 4.1.7). So we have to prove only that
S C E. In fact, the S-equation ¢; ~ t; is equivalent to the E-equation (Az.t1) =

(Ax.t3), provided x occurs neither in ¢; nor in ¢, 1

130

4.2.1 Equivalence of the)\ ,3n-calculus and CL, + ext. ~

We define extensional partial combinatory logic (CL, + ext. ~) and show that
there are two translations between A-terms and CL-terms that induce an equiva-
lence with the A,37n-calculus. For simplicity we consider only the untyped A, 37-

calculus.

Definition 4.2.9 Extensional partial combinatory logic CL, 4 ext. ~

Partial combinatory logic (CL,) over Ycy, is the formal system axioma-
tized by CLy in LPT over X¢r,.

Extensional partial combinatory (CL, + ext. ~) over Xc1, is the formal

system axiomatized by the axiom (ext. ~) in CL, over X¢r,, where

e Y is a signature for partial combinatory algebras, i.c. a signature for
partial applicative structures with combinators K,S € Const,(X¢1,) and
canonical representatives c¢; € Const,(Xc1) for any function symbol f

mn ZCL
o CL, s the set of axioms

K Key ==z

S Sxyz ~ xz(yz)

E.S Szy |
E.cy ¢57 | if f takes |T| + 1 arguments
¢ crr =~ f() if f takes no arquments
¢ ¢5T ~ f(T) if f takes |x| > 1 arguments

o (ext. ~) is the axiom

ext.~ (Vziraz~yz) ==y

131
Notation 4.2.10 We write I for the identity combinator SKK.

Remark 4.2.11 When there are function symbols, canonical representatives are
essential to define abstraction in CL, (see Definition 4.2.14). It is not necessary
to have a canonical representative for application, since the I combinator can be

used instead.

Remark 4.2.12 In Chapter VI of [Bee85] partial combinatory algebras are con-

sidered in conjunction with the extensionality principle
ext. = (Vzivaxz=yz) =z =1y

The axiom (ext. =) is too weak to support A-notation. In fact, there is not
a canonical choice for the interpretation of Az.M, unless V.M |. However,
(ext. =) is in the fragment of the language where intuitionistic and classical
inhabited logic coincide, therefore CL, + ext. = is easier to study than CL, +
ext. ~. In an extensional partial applicative structure (i.e. a model of
(ext. ~)) an element is uniquely determined by its applicative behaviour, therefore

there is at most one element which satisfies the axioms of K (S or ¢).

In CL, (and similarly in the A,3-calculus) one can w.l.o.g. consider only terms

with no function symbols apart from application.

Proposition 4.2.13 Elimination of function symbols in CL,
In CL, every term t is equivalent to a term t' with the same free variables

and no function symbols apart from application

Proof t' is defined by induction on the structure of ¢; the only interesting cases

are:

A

o (JO) =efd

A :
o (f(t1,..., 1)) = sty ...t if f takes at least one argument

The proof of equivalence between the A, 35-calculus and CL, 4 ext. ~ follows
quite closely that for the ABn-calculus and extensional combinatory logic (see

[Bar81]). The main difference is that we cannot define abstraction in CL, as in

132

[Bar81], i.e. N*z.P = KP if © ¢ P, because in general CL, I/ (A\z.P) |; so we

have to use the other abstraction Ajz.P, which does not have the property

(\r2.P)ly:= Q1 = Ara.(Ply:= Q) if y £ & Q

In order to prove the equivalence we fix a signature X¢p, for partial combina-
tory algebras and a signature X, for partial applicative structures obtained from
Yor by removing K, S and ¢s. In the rest of this section CL-term means a CL-
term with no function symbols apart from application, since any other CL-term

is equivalent to one of them (by Proposition 4.2.13). We define two translations:
e L from A-terms over ¥, to CL-terms over Y,
e * from CL-terms over X¢r, to A-terms over ¥,

and prove that they establish an equivalence between A-terms and CL-terms.

Definition 4.2.14 Abstraction in CL, and Translations

e the abstraction [z]t in CL, is defined by induction on the structure of t.

— [z]z 2 [where 1 2 SKK
— [z]2! 2 Ko if v # a2
— [z]e 2 Ke

A

= [2](tat2) = S([z]t) ([2]t2)

e the translation t“" from A-terms to CL-terms is defined by induction on

1 and makes use of the abstraction in CLy:

_ .ITCL

e
S

_ CCL

CL
- 0

_ A _)
— f(t)CL = cftCL if f takes at least one arqument

— (Az.)“" = [2]tCL

(e

c
A :
= ¢4l of f takes no arguments

A

e the translation t* from CL-terms to A-terms is defined by induction on t:

133

- K& Az, y.x

- SM= ha,y, z.x2(y2)

Remark 4.2.15 Both translations preserve free variables and can be extended to
formulae and sequents in the obvious way. The translation (_)A commutes with
substitution, i.e. #'*[z:= t*] = (#[z:=1])", but the other translation does not,
because of abstraction, e.g. if ' = Ay.x and t = (yz), then t’CL[:L‘: =19 = K(y2)
but (¢[z: = t])“" = $(Ky)(Kz).

Lemma 4.2.16 Properties of abstraction in CL,

The following formulae are derivable from CLy:

CLy.EX ([2]t) |

CLp.0 ([z]t)e ~t

Proof By induction on the structure of the CL-term ¢ 1

Lemma 4.2.17 Properties of ()" in CL, 4 ext. ~
The following formulae are derivable from CL, + ext. ~~:

tl= ([2))e: = 1] = [2)(¢]e: = 1])

sub.CL, t | = t/“"[z: = t0] ~ (H'[x: = t])“"

Proof The first statement is proved by induction on the structure of the CL-term
t'. The only non trivial case is t' = & # 2’, when we have to prove that Kt = [2']¢

under the assumption ¢ | (and 2’ & t):

134

by ¢t | and the axiom (K)

Ktz' =t

by the derived axiom (CL,.5)
([2"]t)a" =t

e by transitivity

([2"]t)a" = Kta'

by extensionality and =’ & ¢
([2']t) = Kt

The second statement is proved by induction on the structure of the A-term ¢’.

The only non trivial case is abstraction, when we have to use the first statement

Lemma 4.2.18 Properties of abstraction in the A,3-calculus

The following formula is derivable in the \,B3-calculus:
o (Az.tY) = ([z]t)
Proof By induction on the structure of the CL-term ¢ 1

Theorem 4.2.19 Equivalence on Terms

o YL s a relative interpretation of the \,Bn-calculus in CL, + ext. ~

o * is a relative interpretation of CL, + ext. ~ in the \,Bn-calculus

o ClLy+ext. by ¢ o 0

o \On by, t o tOF

Proof The first statement is proved by showing that the translation of the infer-
ence rules for the A,Bn-calculus are derivable in CL, + ext. ~. Each inference
rule for LPT is translated into itself, except for (subst). However, the translation
of this inference rule can be derived by using (sub.CL,) (see Lemma 4.2.17). The
translation of the other axioms for the A, 3n-calculus can be easily derived by

using (CL,.E.)), (CL,.3) and (ext. ~) (see Lemma 4.2.16).

135

The second statement is proved by showing that the translation of the infer-
ence rules for CL,+ext. ~ are derivable in the A, 35-calculus. Each inference rule
for LPT is translated into itself. The inference rule (subst) does not cause any

problem, because the translation

commutes with substitution. The translation
of the other axioms for CL, + ext. ~ can be easily derived.
The third statement is proved by induction on the structure of CL-terms.
The fourth statement is proved by induction on the structure of A-terms and

we have to use Lemma 4.2.18, when ¢ is an abstraction. 1

Corollary 4.2.20 Equivalence of the A,37n-calculus and CLj + ext. ~

The ApBn-calculus and CLy, + ext. o~ are equivalent via the translations (_)A

and (_)CL

Also the A,B-calculus is equivalent to a formal system axiomatized in LPT.
The proof is similar to that for the A,3n-calculus plus some extra complications
due to the lack of extensionality, that have already been considered in the liter-

ature (see [Mey82]).

Notation 4.2.21 We write B for the composition combinator S(KS)K and e
for S(KI), while ¢, is defined by induction on n:

e

® ¢ €

= Be(Be,)

® €nt1

Definition 4.2.22 Partial combinatory logic with choice operator, CL,+eext. ~,

over Xy, s the formal system aziomatized by eext. ~ in CL, over X¢y,, where
e Y, is a signature for partial combinatory algebras

o cext. >~ is the set of arioms

cext. ~ (Vzirxz > yz) = ex = ey

136

eK K = K

€S S = €3S

€Cf Cf = €1 if f takes no arguments

€Cf Cf = €,41C if f takes n+ 1 arguments

Theorem 4.2.23 Equivalence of the A,3-calculus and CL, + eext. ~
The AyB-calculus and CL, + eext. >~ are equivalent via the translations (_)A

and (_)CL

4.2.2 A-models

The translation from A-terms to CL-terms provides an indirect way of inter-
preting a A-term ¢ in a (Kripke) Scp-structure A, namely [t]# is [t“*]4. In
general such an interpretation is unsatisfactory, because (subst) is not admissi-
ble. However, when A is a (Kripke) extensional partial combinatory algebra (or
a partial combinatory algebra with choice operator), all the inference rules of the
Apfn-calculus are admissible (by Corollary 4.2.20).

Actually, there is a more direct description of this interpretation in environ-

ment model style (see [Mey82, MM8T]):
Definition 4.2.24 A-interpretation in extensional partial combinatory algebras
Given a Kripke extensional partial combinatory algebra B over K, the deno-

tation [[t]]fj’CY of a A-term t € Term™ () in p € %) at a stage a is defined by

induction on the structure of t:

o [2]5° 2 p(x)

° [[c]]f’a R B@)

o [F(D)]5> & fBE([F]5)

137

o [[()\;c.t)]]f’a 2 d, where d is the unique element of 5(®) s.t.

app®©)(dyy, a) = [t], 7.z, for all fia — o’ and a €)

For the A,-calculus without (/) we need a more general notion of A-interpretation,

that generalizes that of functional domain (see [Mey82]):

Definition 4.2.25 \-structure and A-interpretation

A A-structure A is a Xy -structure plus a partial function (partial morphism)
WA (A — A) — A (in the category SET, of Definition 5.1.5). The denota-
tion [t]7' of a A-term ¢ € Term>™*(n) in p € n* is defined as in Definition 2.2.3

plus an extra clause for A-abstraction:

[ha.t)]A = WA(Na € A LA)

plzi=a

Similarly, a Kripke A-structure B over K is a Kripke Yy -structure over K plus
a partial morphism UA: (1A —k e 4) — A in the category KSET, (see Defini-

tion 5.1.9). The extra clause for A-abstraction is:

[[()\x.t)]]f’a 2 U (s), where s is the consistent family of partial func-
tions at « (see Definition 5.1.7) s.t. s; = da € LB(Q’).[[t]]fr’?[I::a for

all fra — o

Remark 4.2.26 In a A-structure all the inference rules of LPT are admissible

and in addition the following axiom (similar to (cong.f)) is valid:
cong. A (Va:et ~t'),(Azt) |= (Ax.t) = (Ax.t')

but the axioms (E.\) and (£. ~), may not be valid.
There is a canonical way of extending a (Kripke) extensional partial applica-

tive structure A (i.e. a model of (ext. ~)) to a A-structure, namely

UA(f) 2 d, where d is the unique element of ¢4 s.t. app?(d,a) ~
f(a) for all a € *

4.3 Variants of the partial lambda calculus

In this section we introduce some variants of the typed partial lambda calculus

(similar variants can be defined also for the untyped partial lambda calculus)

138

inspired by the denotational semantics of a language, the metalanguage, in the
category of cpos and continuous partial functions (see [Plo85]). We consider only
the type constructor for partial function spaces and the definition of functions
by recursion, the other type constructors of the metalanguage have been left out

for the sake of brevity, and they do not cause any problem.

4.3.1 The monotonic partial lambda calculus

Once sorts are interpreted by posets, partial function spaces ought to have a par-
tial order uniquely determined by those on their components. Following Plotkin
we take the most natural extension to partial functions of the pointwise order for

total functions, namely f < ¢ <& for all 7 if f(z) | then f(z) < g(x)

Definition 4.3.1 The monA,3n-calculus
The monotonic partial lambda calculus (monA,37n-calculus) over Lmony
is the formal system axiomatized by mony, +&.< in the A\, Bn-calculus over Yoy,

where
® Yoon) 18 a signature for monotonic partial applicative structures
e mon, s given n Definition 4.1.22 and .5 is the aziom

£ (Vaoirigt) = (Aa:nt) < (Aa: .t

Remark 4.3.2 One may well consider some other orders instead of the pointwise
one (e.g. Berry’s order for stable functions), or consider other orders consistent
with the pointwise order for total functions, but then the partial cartesian closed
category defined in [Plo85] is no longer suitable as intended model. For instance
if the order on functions is

<y &£ for all z if flz) | or g(z) |, then f(z) < g(x)
then the appropriate partial cartesian closed category of cpos is the one where
partial morphisms are continuous partial functions (in the sense of Plotkin) whose
domain is (not only an open set, but) also a closed set. In this category 1 — A
is isomorphic to A + 1.
The mon),fn-calculus is equivalent to extensional monotonic partial

combinatory logic, i.e. the formal system axiomatized by mon, + CL, + ext.g

139

in LPT over a suitable signature ¥yonct, (for monotonic partial combinatory

algebras), where (ext.g) is the axiom

ext.g (Vzimaazgyz) = <y

In the mon\,B-calculus the inequational fragments have the same expressive

power:

Theorem 4.3.3 Expressive power in monl, /3

TE C Fin = ECFEin

4.3.2 Fixed-point operators

The canonical way of having recursive definitions in the setting of the lambda
calculus is to introduce a fixed-point operator Y, € Funct(,_,_,(X) for any sort

7 (see PCF in [Plo77]).

Remark 4.3.4 In the standard model of PCF the fixed-point operator Y satisfies

the axioms

tot.Y Yf = f(Yf)

tot.y fr<r=Yf<x

However, in the category CPO, of cpos and continuous partial functions (see
Definition 5.1.12) cpos are not required to have a least element, and some con-
tinuous function f: D — D may have no fixed-points, e.g. the successor function
on the natural numbers with the flat order (i.e. m < n iff m = n). On the
other hand, partial function spaces have always a least element and for them one
can define a least fized-point operator. Therefore, the only fixed-point operators

allowed in a signature are those for function spaces.

Definition 4.3.5 The A\, Y #n-calculus
The fixed-point partial lambda calculus (A\,Y 3n-calculus) over ¥,y is

the formal system axiomatized by Y in the A\ Bn-calculus over Yy, where

140

e Y.y is a signature for typed partial applicative structures with fixed-
points, i.e. a signature for typed partial applicative structures with fixed-
point operators Y, ., € Const((r,—r)—rj—ry)—r—n(2ny) for any 7,73 €
Sort(Xyy)

o Y s the axiom

Y YF = (\z.F(YF)z)

Remark 4.3.6 In the untyped A,3-calculus there is already a term satisfiying
the axiom (Y), therefore this untyped variant is not particularly interesting.
The A, Y Bn-calculus is equivalent to the formal system axiomatized by the
axioms YF' | and YFz ~ F(YF)x in extensional partial combinatory logic over
a suitable signature X¢ry.
The axiom (Y) is particularly convenient as a rewriting rule for extending the

definition of one-step parallel reduction (see Section 8.2).

In a model of A,37n there can be more than one way of interpreting the constant
Y so that the axiom (Y) is satisfied. However, in models based on cpos the
intended interpretation of Y is the least fixed-point operator, which is captured

axiomatically by the following variant.

Definition 4.3.7 The A, pY Bn-calculus
The least fixed-point partial lambda calculus (A pY Bn-calculus) over
Ymonry @8 the formal system axiomalized by g+ Y in the mon,Bn-calculus over

Y monny, where

® Yo on\y 8 a signature for typed monotonic partial applicative structures with

fized-points
o Y is given in Definition 4.3.5 and p is the aziom

p Ao Ffe) f=YF<f

Notation 4.3.8 We introduce some syntactic sugar for NY-terms (see [Plo85]),

which is particularly convenient in connection with the A,pY Bn-calculus:

141

e we write L, ,, for Y, . (I)
o we write pf:m — m Azt for Yo, (A fim — T Az TE)

Remark 4.3.9 The partial lambda calculi with fixed-points are somehow arbi-
trary, because they try to axiomatize continuous models, that cannot be com-
pletely captured in first-order logic. The A,pY Bn-calculus is definitely preferable
to the A, Y Bn-calculus, because the interpretation of the fixed-point operator Y
is uniquely determined. However, there are very natural improvements for bet-
ter capturing the intended model based on the category of cpos and continuous

partial function, for instance fixed-point induction:
Y.ind A[f:= LA (Vf.A— A[f:= Qe Ffz)]) = A[f:=YF]

where A is a conjunction of inequations (see [Sco69]) or more generally w-

inductive (see [Plo85]).

In a signature for typed partial applicative structures with fixed-points there is
no symbol Y, € Funct(HL)AL(Z) for a fixed-point operator of base sort «. We will
show that such a fixed-point operator, satisfying (tot.Y) and (tot.x), is definable
in the A¢pY Bn-calculus.

Lemma 4.3.10 Least weak fixed-point operator
In a model of the mon\,3n-calculus there is a unique element Y of sort (v —

t) — ¢, called the least weak fixed-point operator, satisfying the azioms

w.Y Y~ f(Yf)

w.u (ft)gt = (Y[t

In the A\opuY Bn-calculus the term Y (pF:(c—) = e Af.f(Ff)) satisfies the

azioms (w.Y) and (w.p)

Proof If Y and Y’ are two least weak fixed-point operators, then Y[~ Y'f,
therefore (by extensionality) Y = Y.
It is immediate (from the definition of ¥ and (Y)) that ¥ satisfies (w.Y). To

prove (w.u) we introduce a different least weak fixed-point operator Y’ and show

that Y < Y. Therefore, Y satisfies (w.Y) because Y’ does. Given a variable f

142

of sort ¢ — ¢, let g5 be the term (pg: (v — 1) — w.Az.f(gz)) and Y’ be the term
(Af.gsL).)

First, we prove that Y’ is a least weak fixed-point operator. (w.Y) is imme-
diate, because Y'f ~ g;L ~ f(gsL) ~ f(Y'f). To prove (w.u), let’s assume
(ft)<t and derive (Y'f)<t:

e from (ft)<t, by (8) and (£.<) one derives

Ay (e = o). f((Ay-t)y) < Ay (e — o)t
o by (n)
gr S Ayr(e—)t
e by monotonicity, (Ay.t)L ~ t (we assume y & FV(t)) and (ft)<t
Flas L)< ((Ay: (0 — o) t) L) = (fE)<t
e by the definition of Y’ and (Y)
(Y'f) = flgs L)<t
Then, we show that Y’ < V:
e from the definition of Y’ and gy, by (Y)

FOY'f) & F(flgrL)) =~ flgsL)

e by (¢

.<) and definition of \'%
MFYf) <Y

o by (1)
Y <Y
1

Remark 4.3.11 In the model based on cpos and continuous partial functions
(more generally, whenever Lz is undefined) Y is the everywhere diverging func-

tion L,_.,,, this explains the appellation weak given to V.

Proposition 4.3.12

The A\pY Bn-calculus is equivalent to the monhfn-calculus with least fized-
point operators Y . € Funct(,_,_.(X) for any sort T satisfying the arioms (tot.Y)
and (tot.p) (see Remark 4.53.4).

143

Proof The idea is to identify the fixed-point operator Y, _.,, with Y, ., and Y,
with Y. With this identification, it is easy to prove that in the A\¢fn-calculus:

e (tot.Y,) is equivalent to (Y., ,), because F(YF)= (Ax: 7. F(YF)x)
o (tot.pir,—r,) is equivalent to (pir r,), because F f = (Az:7.F fz)

e (tot.Y,) is equivalent to (w.Y)

e (tot.u,) is equivalent to (w.u)

To complete the proof it is enough to note that the axioms (tot.Y,) and (tot.u.)

(as well as (w.Y,) and (w.y,)) determine a unique element Y, (see Lemma 4.3.10).

4.4 The lambda calculus of partial elements

In [Plo75] Plotkin introduces the Ay-calculus, a variant of the (pure untyped)
A-calculus corresponding to the call-by-value operational semantics and correct
w.r.t. call-by-value operational equivalence. The inference rules given by Plotkin
are directly inspired by the call-by-value operational semantics.

Although, the partial lambda calculus is based on model-theoretic (rather
than operational) considerations, it is correct w.r.t. call-by-value operational
equivalence (by Corollaries 5.4.11 and 5.4.14); moreover, it is able to derive more
equivalences of programs than the Ay-calculus, e.g. I(xy) ~ (xy) is provable in
the A, B-calculus, but not in A, 3-calculus.

In this section we define the analogue of the partial lambda calculus for LPE
and iLPE (see Definition 3.3.7): the Ap./n- and Apen-calculus. We show that
the Apen-calculus corresponds to the A,-calculus (see Theorem 4.4.8), while the
Aipe3-calculus corresponds to Plotkin’s Ay -calculus (see Theorem 4.4.15).

Definition 4.4.1 The A .37- and Aipen-calculus
The (Aipe3n-) ApeBn-calculus is the formal system (on the language of LPE

for untyped partial applicative structures, see Definition 4.2.3) generated by the
inference rules for (\LPE) LPE and the following set of azioms:

EX E(Az.1)

144

(.= Vaet=t)= (Azt)= Azt

B E(x)= (Aet)x=t

1 E(f) = (\a.fo) = f

In order to apply the techniques available for first order logic we have to prove

that the Ap.fn-calculus is equivalent to a formal system axiomatized in LPE.

Definition 4.4.2 Extensional combinatory logic of partial elements
CLpe 4+ ext. = (CLipe + ext. =) is the formal system aziomatized in LPE
(iLPE) by the following axioms:

K E(2),E(y) = Kay ==

S E(z),E(y),E(z) = Szyz = z2(y=2)

E.S E(z),E(y) = E(Szy)

ext. = E(2),E(y),(Vzaz=yz) ==y

sCLpetext. = (sCLipetext. =) is the formal system (on the language extended
with a non-strict unary function fx) aziomatized in LPE (iLPE) by the azioms

above plus:

tot. fk E(fk(z))

fx Bly) = fx(z)y ==

145

Remark 4.4.3 CL,.+ext. = is the natural definition of extensional combinatory
logic of partial elements. In fact, its axioms are equivalent (in LPE) to the _°-
translation of the axioms for CL, + ext. ~. However, it is too weak to be
equivalent to the Ap.3n-calculus, so we have introduced sCLp. + ext. =.

There is an alternative axiomatization of sCLp. + ext. =, which does not

require an extension of the language with fxk:
strong z.dy.Vzyz =z

i.e. any partial element z is represented by an existing element y. Therefore, the
collection of partial elements is uniquely determined by the collection of existing

elements.

Lemma 4.4.4 the A\ipefn-calculus and sCLiye +ext. = are equivalent at the level

of terms.

Proof The proof of equivalence follows the same pattern as Section 4.2.1, the
only difference is the definition of abstraction [z]st in sCLjpe + ext. =:
A
o [z]x =1

o [z]a’ =

fx(a') if ¢ £ 2

éKC

o [z]sc

A
o [z]sfx(t) = ([z,y, z]zy)([x]st), where
[]- is abstraction in CL, (see Definition 4.2.14)

S([z]sta)([2]st2)

and an additional case in the definition of _*:

o (fi(1))

o [2]s(tits) 2

2 (Ay.t"), where y & FV(#)
1

Remark 4.4.5 The abstraction [z]z’ 2 Ko satisfies the required properties un-

der the assumption E(2'), but not in general.

Now we can treat the (Aipe3n-) ApeSn-calculus as a formal system axiomatized in

first order logic of partial elements.

146

Lemma 4.4.6 sCLj,. + ext. = is an extension of CLiye + ext. = conservative

over Seq = ESeq.

Proof We argue as in Proposition 3.3.16. It is obvious that sCLj,e + ext. = is an
extension of CLj,e 4+ ext. =, therefore we have only to prove the other inclusion
for the formal systems restricted to Seq - ESeq.

By Proposition 1.3.5, it is enough to show that for every model A of CL;,e+ext. =
there exists a model A’ of sCLjpe + ext. = s.t.

o A’ satisfies all sequents satisfied by A
o A satisfies all sequents in ESeq satisfied by A’

We claim that the required A’ is the model CI(A), i.e. the smallest substructure
of A containing all existing elements. In fact, any partial element a of Cl(.A) is
the interpretation of a CL-term ¢ in an environment p from variables to existing

elements, therefore fx can be interpreted by the function mapping a to the

interpretation of [y]t (y € FV(¢)) in p. 1
Remark 4.4.7 The conservative extension result for CLy. + ext. = follows im-
mediately from that for CL;j,e + ext. =, because CLp. + ext. = is axiomatized in

CLijpe + ext. = by (in).

Theorem 4.4.8 The correspondence between A,3n and A,e37n
The translation _° (of Definition 3.3.13) is a conservative interpretation of

the ApBn-calculus in the Apefn-calculus.

Proof Since the A,fBn-calculus is equivalent to CL, + ext. ~ and the A,.37-
calculus is equivalent to sCL, + ext. =, it is enough to prove that _° is a conser-

vative interpretation of CL, + ext. >~ in sCL,. + ext. =:

e the axioms for CL,. + ext. = are equivalent (in LPE) to the _°-translation
of the axioms for CL, + ext. ~, therefore by (the remark after) Proposi-
tion 3.3.14

_° is a conservative interpretation of CL, + ext. >~ in CLe + ext. =

e the image of _° is included in ESeq, therefore by Lemma 4.4.6

_° is a conservative interpretation of CL, + ext. >~ in sCLe + ext. =

147

To complete the proof we would have to show that the direct translation from the
Apfn-calculus to the Ap.Bn-calculus is equivalent (in the Aye#n-calculus) to: first
translate in CL, + ext. ~, then translate in CLy. + ext. = and finally translate

in the ApeBn-calculus. 1

° is a conservative

Remark 4.4.9 Along similar lines, one can also prove that _
interpretation of the A,f3-calculus into the Ape3-calculus. _° is not a relative
interpretation of the A,Bn-calculus in the Aj,.87n-calculus, as will be clear from

the conservative interpretation of the A, 3-calculus in the Aj,e3-calculus.

Now we turn our attention to the A, f-calculus and characterize it in terms

of the Ajpe-calculus.

{

Definition 4.4.10 ([Plo75]) The A\ f3-calculus A\,

rel M =M
M=N
symm ————
N=M

M=N N=P

trans
M=P
M=N P=qQ
cong.-
& MP = NQ
M=N

S

(Ax.M) = (Ax.N)

By (Az.M)N = M[z:= N] if N is a value
where a value is a A-term which s either a variable or a A-abstraction

Remark 4.4.11 We do not consider extra constants and é-rules, as done in
[Plo75], but such an extension does not affect the results below (nor their proofs).
Ay-models are not considered in [Plo75], but it is pointed out that: “in a
model one would expect that free variables would be interpreted as universally
quantified over a restricted domain”. This remark suggests that M = N in the
Ay-calculus should be interpreted as E(n) = M = N in the Aj,.-calculus, where

n is the set of free variables in M or N.

Definition 4.4.12 The revisited J;pe/3-calculus

Consider the following fragments of ESeq (see Definition 3.3.13):

o KT FE-statements are the sequents
E(n) = E(1)

o KS-equations are the sequents

E(?]) =1 =1y
The inference rules for Thy, (8)Aipe3 on ETEUES are:
—= E(n),E(z) = E(z)

E(y) = E(M - N)
E(n) = E(M)

=

E(n) = E(
E(n) =

. N)
(V)

=

refl E(n) = M=M

E(n)=M=N

YR = N=M
. E(n) = M=N E(n) = N=P
rans E(p) = M=P
E(p)=M=P En) = N=Q
cone E())— M-N=P - Q
cong.pp PV =M=N__ E() = B(M)

E(n) = E(N)
E.) E(p) = E(\z.M)

_ Em),E(x) = M=N o
£ = B) = o M= N x not free in E(n)

E(n) = E(N)
© E(n) = (Aa.M)N = M[z:= N|

148

Thy,.(3) is the subset of ETE U ES generated by the inference rules above.

149

Remark 4.4.13 In the A,.-calculus (but not in the Ajpe-calculus) the fragments
ETE and ES have the same expressive power as the _°-translation of the frag-

ments T'E and S (given in Definition 4.1.1) respectively.

Proposition 4.4.14 The set Thy, ,(3) is the set of sequents in ETEUES deriv-
able in the (JAipe3-) K Aipe3-calculus.

Proof The inference rules for Thy, (3) are the restriction of the revisited in-
ference rules for the JApe3-calculus (see Definition 3.3.9) to the FTE U ES
fragment.

The revisited inference rules for the JA.B-calculus satisty the conditions of
Proposition 1.2.10, when [is the inclusion of ETE U ES into SSeq, therefore
both sets of rules derive the same sequents in the FTE U ES fragment.

Since the revisited inference rules are sound and complete, JA (/) is the set
of sequents in ETE U ES valid in all models, i.e. derivable in the JA;jp.3-calculus
(from no assumptions).

Finally, we can replace the J\jpe3-calculus with the K ;. /3-calculus, because

they coincide on ETE U ES (see Proposition 3.3.11). 1

The connection between Plotkin’s Ay-calculus and the Aj,e3-calculus is fully de-

scribed by the following correspondence.

Theorem 4.4.15 The correspondence between A, 3 and Ajpef3
For all A-terms M and N :

1 if NBE M =N, then \peB - E(n) = M = N

2. e if\peBFE() = M=N, then \\BF M =N

o if \ipef - E(n) = E(M), then M has a value, i.c.
there exists a value V s.t. A, fEM =V

where 1 is a type environments, s.t. FV(M, N) C dom(n).

Proof The first statement is proved by induction on the derivation of M = N
by the inference rules for the A, 3-calculus (see Definition 4.4.10). The following
admissible inference rules in Thy,_,(3) make the proof completely straightforward

and clarify the role of the assumptions about #:

E(n) = E(N) if N is a value

— if N is a variable, say z, then € dom(n), therefore
E(n) = E(z) by (=)

— if N is a A-abstraction, then
E(n) = E(N) by (E.A)

E(n)= A

m FV(A) C dom(n)

by (thinning), we can assume w.l.o.g. that n C n’

150

— by substituting all variables not in n with I, we derive (by (subst))

E(n),E() = A
— Since E(I) (by (E.))), we derive (by (cut))
E(n) = A.

The second statement is proved by induction on the derivation of E(n) = A
in Thy,,(3) by the revisited inference rules (see Definition 4.4.12). The only

interesting cases are:

¢ (=) =

Since E(n) = Aisin ETEUES, then A must be E(z) for some variable

x, which clearly has a value.

e (E.-.1) and (E.-.2) =

By IH M N has a value, say V, and we have to prove that also M and N

have a value. The claim follows from results in [Plo75]:

— since values are closed w.r.t. §,-reduction, by the Church-Rosser prop-

erty (see Theorem 2 of [Plo75]) there exists a value Z s.t.

(MN) (and V) ,-reduces to Z

151

— by Corollary 1 of [Plo75] there exists a value 7’ s.t.

(MN) —> Z', where

—, is the one-step head reduction defined on Page 136 of [Plo75]
— by arguing like in the proof of Theorem 4 of [Plo75],

there exist two values K and L s.t.

M —: K, N =L (and (KL) =} 7'), therefore

both M and N have a value.

e () =
By IH N has a value, say V, and we have to prove that (Ae. M)N = M[z: =
NJ:

— since N = V, we can replace N with V' in any context, in particular
(\e.M)N = (\e.M)V and M[z:=V] = M[z:= N]

— since V is a value, by (3,)
(\e.M)V = M[z:= V], therefore
(\e.M)N = M[z:= N]

Remark 4.4.16 A correspondence, like that stated in Theorem 4.4.15, can be
established between the Ajp.3n-calculus and the A, B5-calculus, i.e. Plotkin’s call-
by-value lambda calculus with an instance (n,) of the p-axiom which is correct

w.r.t. call-by-value operational equivalence:
Ny (Az.Nz)=N if N is a value and = ¢ FV(NV)

However, before proving this correspondence, one would have to extend the

results in [Plo75] first, by taking into account (n,).

Chapter 5

Model-theoretic results

We gather some general techniques and results applied in the following chapter
for comparing the deductive power of some formal systems, but they may also
have different applications. The common feature of these techniques is that they
have a model-theoretic flavour, i.e. they involve constructing models or proving
properties of models. Apart from this, they are quite unrelated, therefore a more

detailed discussion of each technique is postponed to its corresponding section.

5.1 Type hierarchies

In this section we consider some model constructions for the typed partial lambda
calculus and variants. Some of these constructions are familiar from the litera-
ture, e.g. the full type hierarchy (see [Fri75, Plo80]), while the others are straight-
forward modifications of it. All of them are particular instances of a more general
construction, which amounts to fixing an interpretation of the base sort ¢ in a
partial cartesian closed category C, i.e. an object [¢] of C, and to extend [] to
function spaces by interpreting [r; — 7;] as the partial function space [r1] — [72]
in C (see [Mog86, Ros86]).

We introduce three cartesian closed categories of sets with structure:

o the category of sets and functions

(the full type hierarchy)

e the category of posets and monotonic functions

(the full monotonic type hierarchy)

152

153

e the category of cpos and continuous functions

(the full continuous type hierarchy)

and we give an explicit definition of their objects, morphisms and function spaces.
Each of these categories can be equipped with a suitable domain structure, i.e. a
collection M of monos with certain properties, so that it becomes a non-trivial

partial cartesian closed category, called:

e the category of _and _ partial functions

(the full _ partial type hierarchy)

Instead of giving the domain structure, we give an explicit definition of the partial

morphisms (as partial functions) and partial function spaces.

Remark 5.1.1 In a category of sets with structure a partial morphism from a to
b is, in general, a morphism from a sub-structure (subobject) of a to b. A partial
function ¢ from (the carrier) |a| (of @) to |b] may correspond to more than one
partial morphism from a to b, because two sub-structures of @ may have the set
dom(g) as carrier. However, if A is a structure with underlying set X, then a
subset Y of X will be identified (as common practice) with A restricted to Y,
i.e. the biggest sub-structure of A with Y as carrier.

These categories of sets with structure have an intuitionistic counterpart, because
the proof of their relevant properties can be carried out in IZF. In particular, if
we replace SET with SETX | then the resulting (partial) cartesian closed category

of Kripke sets with structure is called:

e the category of Kripke _over K and _

(the Kripke full _ type hierarchy over K)

Remark 5.1.2 The classical type hierarchies are a particular case of Kripke type

hierarchies, namely when K is the category with one object and one morphism.

For the rest of this section we use the operation ¥7 introduced in

Notation 2.1.2 and fix the following signatures:

Definition 5.1.3 Conventions for signatures

Eset C Epo

154

o Y. is a signature for typed partial applicative structures, which does not

contain partial order symbols

o X, is a signature for lyped monotonic partial applicative structures, which
has only one base sort (i), no constant symbols, the only function symbols

are applications and the only predicate symbols are: _ |, _= _and _ < _

Remark 5.1.4 The assumptions about base sorts of ¥, have been made in order
to get simpler proofs. The other assumptions (on constant, function and predicate
symbols of ¥,,,) make sure that any of the full _ hierarchies (defined in the sequel)
are uniquely determined by the choice of base type.

5.1.1 Categories of (Kripke) structures
Definition 5.1.5 Sets
o SET is the category of sets and functions

X —, Y is the set of functions from X to Y

o SET, is the category of sels and partial functions
X —,.; Y is the set of partial functions from X to Y

The extensional order <, on X —,.; Y is
f<eg < forallz e X if f(z)], then f(z) = g(x)

Remark 5.1.6 The extensional order can be defined in any category of partial

morphisms, namely f <. g¢ N
e the domain of f is included in the domain of ¢

e f is equal to ¢ restricted to the domain of f

In order to define the Kripke counterparts of SET and SET, we need some

auxiliary definitions:

Definition 5.1.7 Consistent families and quasi-natural transformations
If K is a small category, X and Y are functors from K to SET and a € K,
then

155

e F'is a natural transformation from X to Y (F: X —Y) &

F=<Fla€K>€Tlj.ex X(a) =5t Y(a) and for all fra — b
F,

X|(a) - Y(|a)
X(f) = jY(f)
X(b) —— Y (b)

e z is a global element of X (z € X) <&
r =< zq4]la € K >€ [,ex X(a) and for all fra — b

xTIE X(a)
X(f)l

TpE X(b)

e F' is a quasi-natural transformation from X to Y (F: X —Y) E
F=<F,la €K >€[luex X(a) —set Y(a) and for all fra — b

a

Fy
e s is a consistent family of functions from X to Y at a =N
s =< sg|fra — b >€ 110y X(b) —set Y(b) and for all fra — b and

g:b—c s

X|(b) 7, Y|(b)
X(9) l = lY(g)
X(¢) —— Y(e)

Sgof
e s is a consistent family of partial functions from X to Y at a N
s =< sglfra = b >€ [0y X(b) —set Y(b) and for all fra — b and
g:b— ¢

156

Remark 5.1.8 A more general definition of quasi-natural transformation, for an

arbitrary p-category, can be found [Obt86].

A global element of X: K — SET corresponds to a natural transformation
from the constant functor Aa: K.{*} (the terminal object of SETX) to X.

A consistent family of (partial) functions from X to Y at @ is just a (quasi-)natural
transformation from Xox to Yor, where 7: (K | a) — K is the projection functor

from the comma category (K | a) to K.

Definition 5.1.9 Kripke sets
o KSET is the category of Kripke sets over K and functions, i.e. the category
SETY of functors from K to SET and natural transformations
X —kset Y is the Kripke set of functions from X to Y, i.e. the functor
from K to SET s.t.
— (X —xkset Y)(a) is the set of consistent families of functions from X
toY ata
— (X —kset Y)(fra — b) is the function s.t.

5 < Sgoflgib — ¢ >

The evaluation morphism eval: (X —ks: V) X X — Y s the natural

transformation s.t. eval,(s,) = s;q,(2)
o KSET, is the category of Kripke sets over K and partial functions, i.e. the
category of functors from K to SET and quasi-natural transformations
X —kset Y is the Kripke set of partial functions from X to Y, i.e. the
functor from K to SET s.t.
— (X —kset Y)(a) is the set of consistent families of partial functions
from X toY at a
— (X —kset Y)(fra — b) is the function s.t.

5 < Sgoflgib — ¢ >

The partial evaluation morphism eval: (X —k e YV) X X — Y is the

quasi-natural transformation s.t. eval,(s, z) ~ siq,(x)

157

Remark 5.1.10 The function space presheaf X — ket Y is a standard construc-
tion in topos theory, while the partial function space presheaf X —gser Y is a

crossing between the function space and power set presheaf

Similar categories can be defined by replacing sets with posets and (partial)

functions with monotonic (partial) functions:
Definition 5.1.11 Posets
o PO is the category of posets and monotonic functions, where

— f is @ monotonic function from X to Y =N for all x,y € X of
r <xy, then f(z) <y f(y)

X —,, Y is the poset of monotonic functions from X to Y with the

pointwise partial order, i.e. f <x_ .y g & flz) <y g(z) forallz € X
o PO, s the calegory of posets and monotonic partial functions, where

— f is amonotonic partial function from X to Y =N foralz,ye X
2 <xy and f(z) 1, then f(z) <y f(y)

X —,, Y s the poset of monotonic partial functions from X to Y
with the pointwise partial order, i.e. f <x_ v ¢ N for all x € X of

f(x) 1, then f(z) <y g(z)

e KPO is the category of Kripke posets over K and monotonic functions, i.e.
the category POY of functors from K to PO and natural transformations
X —kpo Y ts the Kripke poset of monotonic functions from X to Y,

i.e. the functor from K to PO s.t.

— (X —kpo Y)(a) is the poset of consistent families of monotonic func-

tions from X to Y at a with the componentwise partial order, i.e.
s < EN 55 <X (5)—=po¥ (b) 3} forall fra — b

— (X —kpo Y)(f:ra — b) is the monotonic function s.t.

5 < Sgflgib — ¢ >

158

o KPO, is the category of Kripke posets over K and monotonic partial func-
tions, i.e. the category of functors from K to PO and quasi-natural trans-

formations

X —kpo Y is the Kripke poset of monotonic partial functions from
X toY, i.e. the functor from K to PO s.t.

— (X —kypo Y)(a) is the poset of consistent families of monotonic partial
functions from X to'Y at a with the componentwise partial order

— (X —kpo Y)(f:a — b) is the monotonic function s.t.
5 < Sgo5lgib — ¢ >

To get models with least fixed-points the categories in Definition 5.1.11 are not
completely satisfactory, because even when the least fixed-points exists, e.g. in
the full monotonic (partial) type hierarchy with base type a complete lattice
(see Definitions 5.1.19 and 5.1.20), they do not satisfy fixed-point induction (see
Section 5.1.3). Therefore we consider the following sub-category of PO:

Definition 5.1.12 Complete posets
e CPO is the category of epos and continuous functions, where

— X s a cpo <é> X is a poset s.t. any w-chain v1 < ... < x; < ...
has a lub U;z;

— f is a continuous function from X to Y N [is monotonic and

preserves the lub of w-chains

X —epo Y is the cpo of continuous functions from X to Y with the

pointwise partial order

e CPO, is the category of cpos and continuous partial functions (see [Plo85]),

where

— f is a continuous partial function from X to Y & f is @ mono-
tonic partial function and for any w-chain x; if f(U;x;) |, then there
exists n s.t. f(x,) | and U; f(xnq) = f(Uix;)

X —¢p0 Y is the cpo of continuous partial functions from X to Y with

the pointwise partial order

159

e KCPO is the category of Kripke cpos over K and continuous functions,
i.e. the category CPOX of functors from K to CPO and natural transfor-

mations
X —Kepo Y is the Kripke cpo of continuous functions from X to Y,
i.e. the functor from K to CPO s.t.
— (X —Kepo Y)(a) is the epo of consistent families of continuous func-
tions from X to'Y at a with the componentwise partial order
— (X —Kepo Y)(fra — b) is the continuous function s.t.

5 < Sgo5lgib — ¢ >

o KCPO, is the category of Kripke cpos over K and continuous partial func-

tions, t.e. the category of functors from K to CPO and quasi-natural trans-

formations

X —Kepo Y is the Kripke cpo of continuous partial functions from X
toY, i.e. the functor from K to CPO s.t.

— (X —kepo Y)(a) is the epo of consistent families of continuous partial

functions from X to'Y at a with the componentwise partial order

— (X —kepo Y)(f:a — b) is the continuous function s.t.
5 < Sgoflgib — ¢ >
5.1.2 Full type hierarchies

Definition 5.1.13 The Classical Full Type Hierarchy
Given a set X, the classical full type hierarchy with base type X is the
Y set-structure A defined by:

o "4 rE;—et é XT
A A
° appﬂ'1,7’2(f7$) = f($)
where X, is defined by induction on the structure of T

.XLéX

A
L4 XTlATQ = Xﬁ 7 set X’TQ

160

It is easy to see that A is extensional (i.e. il satisfies the axiom (ext.~) of
Definition 4.2.9), and it can be extended in a unique way to a model of the A\ [3n-
calculus (i.e there is exactly one way to interpret the combinators K and S that

makes this possible)

Definition 5.1.14 The Classical Full Partial Type Hierarchy
Given a set X, the classical full partial type hierarchy with base type X
is the Yy-structure A defined by:

o "4 rE;—et é XT
A A
o a‘ppTl,TQ(f’ I) & f(:[/.)
where X, is defined by induction on the structure of T
o X, 2 X

A

o XTlATQ = Xﬁ —set XTQ

A can be extended in a unique way to a model of the A\,Bn-calculus

Definition 5.1.15 The Kripke Full Type Hierarchy over K
Given a Kripke set X over K, the Kripke full type hierarchy over K with
base type X is the Kripke Ysei-structure B over K defined by:

o B TZZet é XT
o A

° appfl(@)(s, T) = sid, ()
where X, is defined by induction on the structure of T

o X, 2 X

A

o XTlATQ = Xﬁ —Kset XTQ

B can be extended in a unique way to a Kripke model of the A\fBn-calculus

Definition 5.1.16 The Kripke Full Partial Type Hierarchy over K
Given a Kripke set X over K, the Kripke full partial type hierarchy over
K with base type X is the Kripke Ysei-structure B over K defined by:

o BINL, 2 X,

161

° appfl(f_g(s,;v) R Sid, ()

where X, is defined by induction on the structure of T
o X, 2 X
o Xor 2 Xy, —kou X

B can be extended in a unique way to a Kripke model of the A\, Bn-calculus

Remark 5.1.17 The (Kripke) full partial type hierarchy gives models of the
Apfn-calculus with equality test D,:Const,_.,..(¥;) for any 7 € Sort(Xs.)

satisfying the axioms

Dzxx |

Dy |—= 2=y

(see also the notion of equoidal category with types in 5.2.1 of [Obt86]).
Note that mon),3-models with equality testing are trivial, i.e. each sort has at

most one element.

5.1.3 Full monotonic type hierarchies

There are model constructions for the monA,3n-calculus, similar to the ones
described in Definitions 5.1.13, 5.1.14, 5.1.15 and 5.1.16, but with sets replaced
by posets and (partial) functions replaced by monotonic (partial) functions.

If the base types are (Kripke) complete lattices, then the models below (see
Definitions 5.1.19, 5.1.20, 5.1.21 and 5.1.22) can be extended (in a unique way)
to a model of the A Y Bn-calculus. This possibility relies on two facts:

o if Y is a complete lattice, and X is a poset, then X —,, YV and X —,, YV

are complete lattices

o if Z is a complete lattice and f: Z — Z is a monotonic function, then f

has the least fixed-point z

For Kripke complete lattices there are similar results (compare with Section 5.1.4).

Therefore in a (Kripke) full monotonic (partial) type hierarchy with base type a

162

(Kripke) complete lattice we can define the least fixed-point operator as the least

fixed-point of the monotonic function
NY: (7 —p0 Z) —=po ZAF: 7 —py Z A XOF(Y Fz

However, in some full monotonic type hierarchies with base type a complete
lattice the least fixed-points do not satisfy fixed-point induction (Y.ind) (see
Remark 4.3.9).

Example 5.1.18 The full monotonic type hierarchy with base type the complete
lattice w + 1 (i.e. the solution to the domain equation X = X) has least fixed-
points, but they do not satisfy fixed-point induction.

Let s,g:w+ 1 — w + 1 be the monotonic functions s.t.

5(n):{n+1 ifn<w

w ifn=w

g(n)z{o ifn<w

1 ifn=w
¢(0) =0 and g(z) =0 — g(sz) =0, but g(Ys) # 0 for any fixed-point operator,

because the only fixed-point of s is w.

Definition 5.1.19 The Classical Full Monotonic Type Hierarchy
Given a poset X, the classical full monotonic type hierarchy with base
type X 1is the ¥,,-structure A defined by:

o AIST 2 X,
A A
o appy, . (f,7) = f(2)
where X, is defined by induction on the structure of T
o X, 2 X
. Xﬁ*ﬁ = Xﬁ 7 po XTQ

A can be extended in a unique way to a model of the monAn-calculus. Moreover,
if X is a complete lattice, then A can be extended in a unique way to a model

of the A\epY Bn-calculus (i.e there is exactly one way to interpret the combinators
K, S and Y that makes this possible)

163

Definition 5.1.20 The Classical Full Monotonic Partial Type Hierarchy
Given a poset X, the classical full monotonic partial type hierarchy
with base type X is the X,,-structure A defined by:

o ANNT 2 X,

A
~

o app? (f,z)~ f(x)

where X, is defined by induction on the structure of T
o X, 2 X

A
o XTlATQ = Xﬁ —po XT

2

A can be extended in a unique way to a model of the monA, Bn-calculus. Moreover,
if X is a complete lattice, then A can be extended in a unique way to a model of

the AppY Bn-calculus

Definition 5.1.21 The Kripke Full Monotonic Type Hierarchy over K
Given a Kripke poset X over K, the Kripke full monotonic type hier-
archy over K with base type X s the Kripke X,,-structure B over K defined

by:
o BIYT 2 X,
o A
o app5(2)(s,z) £ siq, ()
where X, is defined by induction on the structure of T
o X, 2 x
A
L X7'147'2 = Xﬁ —Kpo XTQ

B can be extended in a unique way to a Kripke model of the monfn-calculus.
Moreover, if X is a complete lattice, then B can be extended in a unique way to

a Kripke model of the \pY Bn-calculus

Definition 5.1.22 The Kripke Full Monotonic Partial Type Hierarchy over K
Given a Kripke poset X over K, the Kripke full monotonic partial type
hierarchy over K with base type X is the Kripke 3,,-structure B over K defined

by:

164

o BIYT 2 X,
° appfl(ﬁz)(s,;c) R Sid, ()
where X, is defined by induction on the structure of T
o X, 2 X
o Xoor, 2 X0 —kpo X,

B can be extended in a unique way to a Kripke model of the mon),3n-calculus.
Moreover, if X is a complete lattice, then B can be extended in a unique way to

a Kripke model of the A, 1Y Bn-calculus

5.1.4 Full continuous type hierarchies

There are model constructions for the A,pY Bn-calculus satisfying fixed-point in-
duction (see Remark 4.3.9) similar to the models described in Definitions 5.1.19,
5.1.20, 5.1.19 and 5.1.22, but with posets replaced by cpos and monotonic (par-
tial) functions by continuous (partial) functions.

The possibility of interpreting Y relies on the fact that if Z is a cpo with a
least element 17 and f: Z — Z is a continuous function, then f has the least
fixed-point z, which is the lub of the w-chain z; s.t. zo = Lz and z;41 = f(2;).

Any partial function space Z = X —.,, Y has a least element, namely the
everywhere divergent function L xy from X to Y. Therefore in a full continuous
partial type hierarchy we can define the least fixed-point operator as the least

fixed-point of the continuous function
N (7 —po Z) —epo ZAF 2 — o ZAx: X F(Y F)a
For Kripke cpos one can proceed in exactly the same way, more explicitly:

o | is the least element of a Kripke poset Z over K iff L is a global element
and L, is the least element of the poset Z(a)

o if a Kripke cpo Z has a least element and f: Z — Z is a continuous natural
transformation, then the least fixed-point of f is the global element z of Z

s.t. z, 1s the least fixed-point of f,

165

e any partial function space Z = X —x.,, ¥ has a least element, namely the

global element Lxy s.t. (Lxy), =< Lx@)ye)l|fia— 0>

Therefore, the least fixed-point operator can be defined also in a Kripke full
continuous partial type hierarchy.

On the other hand, for (Kripke) full continuous type hierarchies we must start
with a base type X that has a least element, in order to have an interpretation

for Y, in fact:

o if X and Y are cpos and Y has a least element 1y, then X —.,, Y has a

least element, namely the constant function Az € X. 1y

Definition 5.1.23 The Classical Full Continuous Type Hierarchy
Given a cpo X, the classical full continuous type hierarchy with base
type X is the ¥,,-structure A defined by:

o AN 2 X,
A A
i appTl,TQ(f7$) = f(.f)
where X, is defined by induction on the structure of T
o X, 2 X
L X’TlA'TQ é XTl _)CpO XTQ

If X has a least element, then A can be extended in a unique way to a model of

the AepY Bn-calculus

Definition 5.1.24 The Classical Full Continuous Partial Type Hierarchy
Given a cpo X, The classical full continuous partial type hierarchy

with base type X is the X,,-structure A defined by:

o AMYT 2 X,

o app? _(f,) 2 f(x)

where X, is defined by induction on the structure of T
o X, 2 X

A
o XTlATQ = Xﬁ —epo X’TQ

166

A can be extended in a unique way to a model of the A\,pY Bn-calculus

Definition 5.1.25 The Kripke Full Continuous Type Hierarchy over K
Given a Kripke cpo X over K, the Kripke full continuous type hierarchy
over K with base type X is the Kripke ¥,,-structure B over K defined by:

o BIYT 2 X,
o A
o appi?)(s,z) = sia, (2)
where X, is defined by induction on the structure of T
o X, 2 X
A
o XTlATQ = Xﬁ —Kepo X’TQ

If X has a least element, then B can be extended in a unique way to a Kripke

model of the \pY Bn-calculus

Definition 5.1.26 The Kripke Full Continuous Partial Type Hierarchy over K
Given a Kripke epo X over K, the Kripke full continuous partial type
hierarchy over K with base type X is the Kripke 3,,-structure B over K defined

by:
o BIYT, 2 X,
o appZe)(s,2) 2 sia, ()

where X, is defined by induction on the structure of T
¢« X, 2 X

A
L4 XTlATQ = Xﬁ —Kepo X’TQ

B can be extended in a unique way to a Kripke model of the ApY Bn-calculus

5.2 Logical relations and partial homomorphisms

The following is a well-known property of algebras:

167

a sub-algebra and an homomorphic image of an algebra A satisfy all
equations satisfied by A. In other words, if there exists a partial sur-
jective homomorphism from A to A'; i.e. a surjective homomor-
phism from a sub-algebra of A to A’, then A’ satisfies all equations
satisfied by A.

The notion of partial surjective homomorphism, called simply partial homo-
morphism, has been extended to type structures (see [Fri75]), where it cannot
be split into the more basic notions of extensional sub-structure and surjective
homomorphism.

Partial homomorphisms are a particular kind of logical relation (see [Sta85b,
Sta83]). The general idea behind logical relations is that the relation at type
o — 7 is uniquely determined by the relations at type o and 7.

In this section we define logical relations and partial homomorphisms for
(partial algebras and) typed partial applicative structures. For our purposes we
need also Kripke logical relations (see [MMS8T7]), but they are quite cumbersome

to define directly in terms of Kripke models, therefore

all logical relations will be defined axiomatically in the language of
LPT over suitable signatures and their properties will be proved by
formal derivation in JLPT.

It is useful to introduce the relevant notions for partial algebras first, since

most of their properties have nothing to do with the type structure.

Definition 5.2.1 The language of ¥-relations
If ¥ is a signature for partial algebras, then the signature X;, for Y¥-relations
between two partial algebras s ¥ W X' extended with a binary relation R_ €

Pred, /(X)) for any 7 € Sort(X), where
e Y/ is a disjoint copy of X

e ' is a bijective translation from the language over ¥ to the language
over X!, which maps a (term, formula or) sequent onto the corresponding
(term, formula or) sequent:

- (x) £ x', where x' is a new variable

- (e) 2 ', where ¢’ is the symbol of ¥’ corresponding to ¢

168

- @) = (@)
- p(0) 2 p(7)

— the translation commutes with connectives and quantifiers

We write R C B x B' for a (Kripke) ¥i.-structure and say that R is a
Y -relation between B and B'.

Notation 5.2.2 We write ¢, R_t; for the formula ¢; | — #; R #), and #; IN{T th, for
(tr L VI 1) =t R 1.

If f and ¢’ are I-indexed families in Term} and Term%l respectively, then

we write f R, ¢' for the set of formulae {f; R, gilz € I} (see Notation 2.1.7).

Moreover, if n is a type environment for ¥, then we write n R 5’ for the set of

formulae {z R, ,) 2’|z € dom(n)}.

5.2.1 Correspondences between partial algebras

There are two notions of logical relation between partial algebras, called semicor-
respondence and correspondence in 3.1 and 3.5 of [Sch85] (see also [Sch87]),
that generalize the notions of homomorphism and strong homomorphism be-
tween partial algebras (as defined in [Bur82]). These notions of correspondence
have been introduced to study behavioural inclusion and equivalence of partial
algebras.

We establish the main properties of correspondences and partial homomor-
phisms of partial algebras (see Lemma 5.2.5 and Theorem 5.2.6) that will be
further developed when considering typed partial applicative structures. We
define partial homomorphisms (of partial algebras) so that they preserve satis-
faction of EC FE-equations (see Definition 4.1.1), i.e. the most expressive among
the equations. There are more general notions of partial homomorphism, that
preserve satisfaction of E-equations only. Since the equational fragments have
the same expressive power in the A, 3n-calculus (see Theorem 4.2.8), then there
is only one natural notion of partial homomorphism for typed partial applicative

structures.

Definition 5.2.3 Correspondences and Partial Homomorphisms

If ¥ is a signature for partial algebras, then

169

e a Y-relation R is a ¥-semicorrespondence from B to B' iff R C B x B’
is a model of MLRg, where MLRg ts the set of azioms

MLR.c cR, ¢
MLR.f TR 7 = f(Z)R, f'(T')

e a X -relation R is a Y-correspondence between B and B’ iff R C B x B’

is a model of LRy, where LRy is the set of axioms

LR.c ¢cR_¢

LR.f TR-7' = [(7) R, ['(7)

e a Y -relation R is a ¥-partial homomorphism of partial algebras from
B onto B’ (notation R:B — B’) iff R C B x B’ is a model of PHomy,

where PHomg is LRy plus the set of axioms

LR.p TR T, p(T) = p'(T)
sury VYa'ir' Jx:ra R, 2

Remark 5.2.4 Semicorrespondences can be viewed as the morphisms of a suit-
able category, whose objects are Y -structures, and similarly for correspondences
and partial homomorphisms of partial algebras.

A correspondence R between B and B’ can be equivalently defined as a semi-
correspondence from B to B’ s.t. its opposite R P is a semicorrespondence from
B’ to B. From this definition it is obvious that the opposite of a correspondence
is a correspondence.

The name partial homomorphism is justified by the fact that whenever R C
B x B’ is a model of PHomyg, then each component R._ is the graph of a surjective
partial function (functionality follows from (LR. =)). We denote such a partial

function by H .

170

Lemma 5.2.5 Corresponding terms are related

Given a term t € Term®(n), then
1. nRn' =t R ' is derivable from MLRgy in JLPT

and similarly n R n' = t Rt is derivable from LRg in JLPT
2. nRn' =t |—t' | is derivable from MLRq in JLPT

and similarly n Rn' =t |«— t' | is derivable from LRy in JLPT

where t' is the term corresponding to t

Proof The first two statements are proved by induction on the structure of ¢,

while the other two statements are an immediate consequence of the first two,

since MRN' — (M |— N'|) and MﬁN’ﬁ(AM L— N"]). 1

Theorem 5.2.6 Existentially conditioned atomic formulae are preserved

Given an ezistentially conditioned atomic formula A € Seq™, i.e. a sequent

n.M |=> p(T) € Seq™, let A; € Form®(n) be the formula A(M |) — p(I), then
1. nRn' = A; — A} is derivable from LRy 4+ LR.p in JLPT
2. A’ is derivable from A plus PHomg in JLPT

where A’ is the sequent corresponding to A

Proof For simplicity we assume that 7 is z:7 and M is (M), so that A is the
sequent z: 7.M; |=> p(%) and A; is the formula M; |— p().
To prove the first statement we show that p’(f’) is derivable from the conjunc-

tion of x R ', My |— p(t) and M |:
e since M| |, by Lemma 5.2.5
M |
e since M; |— p(¢), by Modus Ponens
p(t)
o by (LR.p)

p(T)

171

To prove the second statement we identify the sequents z:7.4; and A :

e By the first statement

tRa' = A — A}

e By the inference rule (= —),

zRa' Ay = A]

e By A and the inference rule (cut),

rRa' = A

e By the inference rule (3 =),

(Jz:r.xRa') = A]

e By (surj) and the inference rule (cut),

A/

5.2.2 Logical relations between typed partial applicative
structures

We extend the results in the previous section to typed partial applicative struc-

tures. To make this extension as smooth as possible:

o we fix a signature Y, for typed partial combinatory algebras and a sig-
nature ¥ for typed partial applicative structures obtained from X¢p, by

removing K, S and ¢y

e we require that the translation ./ (in Definition 5.2.1) from the language
over ¥ (X¢r,) to the language over ¥/ (¥{) commutes with function spaces.

ie. (1 — 72) =7 — 75 (and canonical representatives, i.e. (¢f)' = ¢s1).

The following definition extends the notions introduced in Definition 5.2.3 to

typed partial applicative structures.

Definition 5.2.7 Logical Relations and Partial Homomorphisms
If ¥ is a signature for typed partial applicative structures, then

172

e a X-relation R is a ¥-m-logical relation from B to B' iff R C B x B’ is
a model of MLR, where MLR is MLRg (of Definition 5.2.3) plus the axiom

ext. R (Va,2’.xR_ 2" — fa RTQ flay = fR, ., F

o a Y-relation R s a Y-logical relation between B and B' iff R C B x B’
is a model of LR, where LR is LRy plus the aziom

ext. R (Vae, 2"z R 2" — fa f{m flay = fR, _, [

e o X-relation R is a ¥-partial homomorphism from B onto B’ (notation
R:B —B')iff R € B x B’ is a model of PHom, where PHom is PHomy
plus the aziom (ext. ﬁ)

Remark 5.2.8 The “m”, in “m-logical”, stands for monotonic, because the ax-
ioms (MLR.f) and (ext.R) are similar to that for monLPT and the monA,3n-
calculus. Moreover, a particular kind of m-logical relation will be used to con-
struct models of the typed monotonic partial lambda calculus.

Unlike correspondences, logical relations may not be m-logical relations (be-
cause of (ext. R)).

If B is a typed partial applicative structure with an everywhere divergent
function L in any function space, and there is an m-logical relation R C B x B’
whose components are (graphs of) surjective partial functions, then B’ has trivial

function spaces, since L R f for any f.

Proposition 5.2.9 A Y -logical relation R is uniquely determined by its base

components R, , where ¢ ranges over base sorts. More precisely for any 7,7 €
Sort(X)
fR. ., [l Ver,a'rjaR_ o' — fa ﬁﬁ fla

Similarly if R is a ¥-m-logical relation, then for any 71,72 € Sort(X)

R, = VYonairaR, o' — faR [

173

Proof fR_ _ [< Vaim,z":7{.aR 2 — fz ﬁﬁ f'z" follows immediately
from (LR.app) and (ext.ﬁ). The corresponding result for m-logical relations
follows from (MLR.app) and (ext. R). 1

The following lemma shows that for any pair of typed partial combinatory
algebras B and B’ a ¥-logical relation between BY and B'IY is also a Y¢p-

correspondence (indeed a Y -logical relation) between B and B’
Lemma 5.2.10 [IfX¢y, is a signature for typed partial combinatory algebras, then
e (LR.K), (LR.S) are derivable from ext. R + LR.app + CL, + CL, in JLPT

e (LR.cy) is derivable from ext. R + LR.app + LR.f + CL;, + CL,, in JLPT

Proof We prove only (LR.c¢y), for an unary function f. Because of (ext. R), it is

enough to show that z R ' implies csx ﬁn) .

e Assume that

zR, 2
o by (LR.f)
@R f()
e by (¢f), ie. cyr ~ f(x),

= ! 0
crr RT2 cyr

By the previous lemma (see Lemma 5.2.10) and the equivalence between the
Apfn-calculus over ¥ and CL, + ext. ~ over ¥¢, (see Theorem 4.2.19), it is
straightforward to derive from Lemma 5.2.5 and Theorem 5.2.6 their analogues

for logical relations and partial homomorphisms.

Lemma 5.2.11 Fundamental Lemma of logical relations

Given a A-term t € Term>(n), then

e Ry = tR 1t is derivable from MLR in the JA,Bn-calculus

and similarly nRn' =1 Rt is derivable from LR in the JA,Bn-calculus

174

where t' is the A-term corresponding to t

Theorem 5.2.12 Existentially conditioned atomic formulae are preserved
Given an ezistentially conditioned atomic formula A € Seq™, i.e. a sequent

n.M | = p(T) € Seq™, then
o A’ is derivable from A plus PHom in the A, fBn-calculus

where A’ is the sequent corresponding to A

5.2.3 Logical preorders on typed partial applicative struc-
tures

In this section we consider a particular kind of m-logical relation, called logi-
cal preorder on a typed partial applicative structure. The main application
of logical preorders is for constructing models of the monA,3n-calculus, in the
same way as models of the A¢#n-calculus (and its extensions) are constructed as
quotients of a typed combinatory algebra by a logical partial equivalence relation
on it (see [BTC87]). In Section 5.3 this technique is used to construct a closed
term model of the A, pY Bn-calculus.

Definition 5.2.13 The language of Y-relations

If ¥ is a signature for partial algebras, then the signature ¥y, for ¥-relations
on a partial algebra is ¥ extended with a binary relation R_ € Pred, .(X;,,) for
any T € Sort(X).

We write R C B x B for a (Kripke) Xp-structure and say that R is a

Y. -relation on B.

Notation 5.2.14 By analogy with the notation for logical relations (see after
Definition 5.2.1), we write t; R,T 1y for the formula ¢, |— ¢ R_?; and 4 ﬁT t, for
(t1] Vta |) — t1 R t5. If f and ¢ are I-indexed families in Term%, then we write
IRy, g for the set of formulae { f; R, gi|z € I}.

Definition 5.2.15 Logical Preorder
If ¥ is a signature for typed partial applicative structures, then

e a Y-relation R is a X-logical preorder on B iff R C B x B is a model
of LPO, where LPO 1is the set of azioms

MLR.c ¢R_¢

175

MLR.f TR;7 = f(Z)R, f'(T')
ext. B (Vz,2".aR_ 2" — fz R fla'y = fR, ., [
refl, R zR_ =z

trans. R 21 R_zg, 2o R 25 = 21 R_z3

If ¥ is a signature for monotonic partial algebras, then A Y.-relation R on a

B is consistent with < iff R C B x B is a model of

cons. R =z <, 2", 2'R_y,y <,y = zR_¥

Remark 5.2.16 A Y-logical preorder R C B x B would be a ¥-m-logical relation
(s.t. each R_ is a preorder), if it were not for the fact that in the signature ¥,
we do not have two disjoint signatures ¥ and ¥', as in the signature ¥, for
m-logical relations, because we want a preorder.

If ¥ is a signature for monotonic partial algebras, then the axiom (cons.R)
makes sense also for a Yj-structure R C B x B’. For a logical preorder R

consistency with < is equivalent to <C R, because of reflexivity.

Proposition 5.2.17 If R is a logical preorder of partial applicative structures
on B, then fR, _ . g <= (Va.fa R. ga)

Proof The implication from left to right follows immediately from (MLR.app)
and reflexivity (a R, a). For the other implication it is enough (by (ext.R)) to
derive fa RTQ gb from a R b:

e by the assumption Va.fa B,TQ ga
faR,, ga
o by reflexivity

gR .9

176

e by (MLR.app) and the assumption ¢ R b
gaR_ gb

e by transitivity
faR_ gb

The following definition extends a standard construction for monotonic alge-
bras (see Theorem 2.4.11 of [Sto86] for instance), and can be generalized straight-

forwardly to Kripke monotonic partial algebras.

Definition 5.2.18 The quotient of a structure

If B is a monotonic partial ¥-algebra (for simplicity we assume that the only
predicate symbols of ¥ are: _ |, - = _and - < _) and R C B X B is a consistent
Y. -logical preorder, then the quotient B/ R of B by R is the monotonic partial
Y -algebra defined by:

1. 8/R 2 {[d]|a € 78} | where

[a] £ {blaRbA bR a}

3. f5/7 (@) 2 { @) @]

unde fined otherwise

9 B/IR A [5]

4. la] <B/R[b] 25 aR b

The projection morphism HY is the S-partial homomorphism of partial al-

gebras which maps a to [a] (actually it is total)

Theorem 5.2.19 Properties of B/ R

If B is a monotonic partial applicative structure and R is a consistent logical
preorder on B, then B/ R is an extensional monotonic partial applicative struc-
ture and the morphism H® | which maps a to [a], is a partial homomorphism.
Moreover, if B is a partial combinatory algebra, then B/ R is a model of the

monA, An-calculus.

177

Proof We prove only that B/ R satisfies (ext.<) and that the morphism H &
satisfies (ext.ﬁ). (ext.g) follows immediately from Proposition 5.2.17. Since
H™(a) = [a], in order to establish the validity of (ext. f{) it is enough to derive

[f] = [g] from Va.[fa] =~ [ga]:

o by definition of [] and the assumption
Va.faR ga , which is equivalent to
(Va.faR ga A gaR fa) , which is equivalent to
(Va.faR ga) A (Va.gaR fa)

o by Proposition 5.2.17
fRgANgR [

o by definition of []
[f] = [g]

5.2.4 Existence of partial homomorphisms

In this section we give sufficient conditions for the existence of partial homo-
morphisms between partial applicative structures. As a matter of fact, these
partial homomorphisms H have a right-inverse In (see below), and the proofs
of existence construct the partial homomorphism H and its right inverse In by

combined induction on types.

Definition 5.2.20 Partial retraction
(H,In) is a X-partial retraction from B’ onto B iff

e H is a Y-partial homomorphism from B to B' (see remark after Defini-
tion 5.2.3)

e In is a X-morphism from B’ to B

e In is a right-inverse of H, i.e H_o In_=id for any 7 € Sort(X)

178

Remark 5.2.21 There are ¥-partial homomorphisms without a right-inverse, un-
less the category of (Kripke) Y-structures (over K) satisfies the aziom of choice:
“any surjective map has a right-inverse”. For instance, the category of sets satis-
fies the axiom of choice, but the category of Kripke sets over { L < T} does not.
Y-partial retractions (where ¥ is a signature for partial applicative structures)

should be compared with the partial retraction systems in [AL85]

For the rest of this section we use the operation ¥7 introduced in

Notation 2.1.2 and the signatures ¥, and ¥, of Definition 5.1.3.

Theorem 5.2.22 Existence of Y,.-partial homomorphisms

If B" is an extensional (Kripke) ¥gei-structure (over K), i.e. it satisfies (ext. =),
and B, is a (Kripke) 3¢ ,-structure (over K) s.t. there exists a partial retraction
(H,,In,) from B3, onto B,, then it is possible to extend (H,,In,) to a partial
retraction (H,In) from B' onto the (Kripke) full partial type hierarchy, say B,
with base type B,

Proof We give only the definition of H and In. Since B’ is extensional, (71 — 7-2)8,

can be treated as a set of partial functions.

o H, (9=
Vb,a.H, (b)=a— (gb] Vfal)— H, (g9b) = fa

i]n7'147'2 (f) é]nTg 0 f 0 HTl

The proof that they are well-defined and satisfy the required properties is left
out, since it is similar to that in [Fri75] and it follows the same pattern as Theo-

rem 5.2.26 I

Remark 5.2.23 Theorem 5.2.22 holds even if we drop the constraints on X,
by allowing extra constant, function and predicate symbols. In fact, given the
interpretation &’ of a constant, function or predicate symbol in B’, we can define
the interpretation of such a symbol in B so that (H, In) is still a partial retraction,

namely:
o 52 In(cP)

o f5(a) 2 In(f5(H(@))) (compare with the definition of In_ _
of Theorem 5.2.22)

in the proof

T2

179

The extension of Theorem 5.2.22 to arbitrary signatures for partial applicative
structures (and a similar extension is possible for Theorem 5.2.26) depends es-
sentially on the existence of a partial retraction (rather than a partial homomor-

phism) to get the extra choice required to define c?.

In [Fri75] it is proved that the ABn-calculus is complete for deriving the equations
(between A-terms) valid in the full type hierarchy with base type the set N of
natural numbers. A similar result can be proved for the full partial type hierarchy

with base type N:

Corollary 5.2.24 An EC E-equation is derwable in the K, Bn-calculus iff it is
valid in the full partial type hierarchy with base type the set N of natural numbers.

Proof The implication from left to right is obvious. For the other implication it
is enough to show (by the downward Léwenheim-Skolem theorem) that for any
countable model A of the K'A,3n-calculus there exists a partial homomorphism
from the full partial type hierarchy with base type N onto .A. But this is trivial
(by Theorem 5.2.22), because for any surjective partial function H from N to X
(which must exists because X is countable) there exists a right-inverse In: X —

N (by the axiom of choice) 1

Remark 5.2.25 The K\,f3n-calculus does not have an open term model, like
that for the A@n-calculus, therefore the proof of Corollary 5.2.24 cannot rely on
such a model (as done in [Fri75]).

The JA,Bn-calculus proves fewer equations than the KA, B7n-calculus, so it
cannot be complete for the full partial type hierarchy with base type N. However,

it has an initial model (see Theorem 3.1.10).

Theorem 5.2.26 Existence of ¥,,-partial homomorphisms

If B’ is an extensional monotonic (Kripke) ¥,,-structure (over K), i.e. it
satisfies (ext.<), and B, is a (Kripke) complete lattice (over K) s.t. there exists
a partial retraction (H,, In,) from B'[¥ onto B,, then it is possible to extend
(H,,In,) to a partial retraction (H, In) from B' onto the (Kripke) full monotonic
partial type hierarchy, say B, with base type B,

180

Proof The poset 75 is a complete lattice for any sort 7, because the poset of
monotonic (partial) functions from a poset X to a complete lattice Y is a complete
lattice (see Section 5.1.3). However, in the proof we must rely also on other basic

facts (about complete lattices), whose proof can be carried out in IZF.
1. the poset (P(X), C) of subsets of a set X is a complete lattice

2. if f: X — Y, then the function f.: P(X) — P(Y) (image along f), s.t.

fa A f(A)
is a monotonic function

3. if X is a complete lattice, then the function sup :P(X) — X (strict
supremum), s.t.

A { LX if X is inhabited

unde fined otherwise

is a monotonic partial function

4. if (X, <) is a partial order, then the function 2: X — P(X) (set below),
s.t.

Lr—{ye Xy <z}
is a monotonic function

The definition of H_and In_ and the proof of the induction hypothesis (IH;)
“(H,,In,) is a partial retraction from B'[¥7 onto B[X] " are by combined in-
duction on 7. We show that if IH,, and IH,, hold, then we can define H_ . and

In_ satisfying TH,, ..

1—7T2

o H_

—Ty

(9)=1f N Vb,a.H (b)=a— (gb] Vfal)— H_(gb) = fa

This definition is forced by the axioms for logical relations (see remark
after Definition 5.2.7). Moreover, H_ _

a relation), because H_ is surjective (by IH;,) and B’ is extensional

., is a partial function (rather than

o In7'147'2 (f) é SupJ_ 0 (InTQ 0 f 0 HTl)* 0 :

In_ . (f) is a monotonic partial function (even if f is not monotonic),
because sup |, _. and - are monotonic partial functions (as 7P is a complete

lattice)

181

Claim 5.2.26.1 If H_(b) = a, then In___(f)b~ In_(fa)
Proof First we prove that In(fa)In(f)b:

e assume In(fa) |

o since H_(b)=a
In(fa) € (Ino foH) (b)=A

e by definition of In(f)b
In(fa) < UA = sup, (4) = In(f)b

The proof of In(f)b<In(fa) uses monotonicity of f:

e assume In(f)b |, then exists & <b
Ing, (f(H,(8))) L

o by IH,,
H () < H,,(b) =

o since In(f(H(b))) |, by monotonicity of In,, (IH,,) and application in B,
Ing, (f(H,, (V) < In,,(fa)

e by definition of In(f)b
In(f)b < In(fa)

We prove the following properties:

o H__ . preserves <, ie. if H(g1) = fi, H(g92) = f2 and g1 < gy, then
f1 < fa. Since B’ is extensional, this is equivalent to fia foa for all a. By

IH,,, we can assume w.l.o.g. that there exists b s.t. H(b) = a.
— assume that fia |
— fia ~ H(g;b) (by definition of H_ __
g1b |

— by monotonicity of application in B

g1b < g2b

), therefore

182

— by IH,,
fia =~ H(g:1b) < H(g:b) ~ foa

o In preserves <, i.e. if fi < fy, then In(f1) < In(fz). Since B is

T1—T2

extensional, this is equivalent to In(f1)b<In(f2)b for any b. By definition
of sup, it is enough to prove that for any a; € (Ino fio H)*(?)) = A

A

there exists a; € (Ino fy0 H)_(b) = Az s.t. a1 < a,.

— by definition of Ay, there exists o' < b
ay = In,, (f(H,, (1))

— by monotonicity of In_ (IH;,) and application in B,
a1 = In,(Fi(H, (1) < In_(f2(H, (b)) 2 az
— by definition of A,

CZ1§CLQEA2

e (In H) is a partial retraction, i.e. H (In,_.(f)) = f By

T1—T2? T1—T2 T1—T2

definition of H this amounts to proving H (In(f)b) = fa from H_(b) =

T1—T2?

aand In(f)b| Vfa .

— by the claim
In(f)b = In(fa)
— since In,, is total (by IH,,), then
In(f)b = In(fa)
— by IH,,
H(In(f)b) ~ H(In(fa)) = fa
From the definition of H and the properties proved so far, it is obvious that I

is a X,,-partial homomorphism of partial applicative structures ((ext. ~) follows

immediately from the definition of . To prove that In is a ¥,,-morphism

TlATQ)

we have to show that In commutes with application, i.e. In__._ (f)In, (a) >~ fa:
e by IH,,
H(In(a))=a

e by the claim
In(f)In(a) ~ In(fa)

183

There is an analogue of Corollary 5.2.24 for the K'monA,37n-calculus:

Corollary 5.2.27 An ECEin-equation is derivable in the KmonA,Bn-calculus
iff it is valid in the full monotonic partial type hierarchy with base type the com-
plete lattice (P(N), C) of subsets of natural numbers.

Proof The implication from left to right is obvious.

For the other implication it is enough to show (by the downward Léwenheim-
Skolem theorem) that for any countable model A of the KmonA,#n-calculus there
exists a partial homomorphism from the full monotonic partial type hierarchy
with base type (P(N),C) onto A. By Theorem 5.2.26, it is enough to prove
that for any countable poset (X, <) there exists partial retraction (H, In) from
(X, <) onto (P(N),C). In fact, let f: N — X be a surjective partial function
(f must exist because X is countable), then In(a) = {n € N|f(n) < a} and
H(A) =a <= A= In(a) is a partial retraction 1

A (Kripke) full monotonic partial type hierarchy with base type a cpo is a
model of the A 1Y Bn-calculus, but it is not continuous, in particular it does not
satisfies fixed-point induction. In [Plo82] (see also [AL85] for a similar result)
there is an improvement for the total variant of Corollary 5.2.24 (see [Fri75]),

namely:

Theorem 5.2.28 ([Plo82]) Completeness w.r.t. the full continuous type hier-
archy The A\Bn-calculus derives all the equations valid in the full continuous type
hierarchy A with base type the flat cpo N of natural numbers with a bottom

element.

Proof We do not carry out a complete proof, instead we point out the crucial
steps that makes it different from Friedman’s proof (see Theorems 5.2.22 and
5.2.26).

The open term model of the A\@n-calculus satisfies the property that we are
trying to prove for A, therefore it is enough to construct a ¥,,-partial homo-
morphism from A to the open term model of the A3n-calculus (with the trivial
partial order). The induction hypothesis IH; required to construct the partial

retraction 1is:

184

H_ has a right-inverse In_ and it can be extended to a continu-
ous partial function Out_ (note that this induction hypothesis is

stronger than that in Theorem 5.2.26)

The definition of In__. (f) relies on the extra strength of IH, . In fact,
In_ . (f)is defined as the least total extension of the continuous partial function
In_ o foOut . Such a least total extension exists and is continuous, because
each sort is of the full continuous type hierarchy with base type N, is a cpo with
a least element.

To derive IH,, ., from IH,, and IH,, one makes essential use of certain prop-
erties of the open term model, namely to define Out, __ (f) one proceeds as

follows (w.l.o.g. we identify a term with its Sn-normal form):
e fix an enumeration x; of the variables of type 7

o let P = Out_(f(In, (z0)))
if the r.h.s. is undefined, then Out_ _ (f) is undefined, otherwise

e let z,, is the first variable that does not occur free in P

let N = Out, (f(In, (z,)))
if the r.h.s. is undefined, then Out_ _ (f) is undefined, otherwise

let Out(f) = (Ax,:7.N)

Remark 5.2.29 An analogue for the A, 37n-calculus of Plotkin’s result is not pos-
sible, because any full continuous partial type hierarchy, being a model of the
monApAn-calculus, satisfies more equations than those provable in the A,37-
calculus.

We do not know whether the inequations provable in the K mon,3n-calculus
are exactly those valid in all full continuous partial type hierarchies. However,
there is no way of extending Plotkin’s proof to this formal system, because the
Kmon),3n-calculus has no open term model.

The Jmon\,Bn-calculus has an open term model B (see Proposition 7.3.12),
so it is possible to carry out Plotkin’s proof, provided the open term model is

not only monotonic, but also continuous. Then, it should be possible to prove,

185

as in Plotkin, that there is a ¥,,-partial homomorphism from the Kripke full
continuous partial type hierarchy with base type the cpo (® to the open term

model B. We conjecture that:
in B there are no strictly increasing w-chains (ie. 21 < ... <x; < ...)

therefore the open term model B is (trivially) continuous.

5.3 Closed term models

In this section we describe a closed term model construction based on the call-
by-value operational semantics. We fix a monotonic partial algebra A and show
that it is embedded in a model AY(A) of the A Y Bn-calculus (which satisfies
also fixed-point induction, see Remark 4.3.9); therefore, the A, Y gn-calculus is
a conservative extension of monLPT. The construction of AY(A) is decomposed

in two steps:

e first we define a monotonic partial combinatory algebra VALUE(A) with
fixed-point operators (see Definition 5.3.15). VALUE(A) is based on the
call-by-value operational semantics Eval for ALY-terms over A (see Defi-

nition 5.3.10)

e then we introduce a suitable logical preorder R on VALUE(A) (see Defi-
nition 5.3.17), and prove that the quotient AY(A) of VALUE(A) by R is
a model of the A\ pY #n-calculus with least fixed-point operators satistying
fixed-point induction (see Theorem 5.3.22)

Remark 5.3.1 For simplicity, the construction of VALUE(A) and R (and ulti-
mately AY(A)) is carried out in ZF. However, it can be carried out unchanged

in IZF, starting from a Kripke monotonic partial algebra B.

The main step in the construction of AY(A), namely R satisfies a certain
family of least fized-point constraints (see Lemma 5.3.19), is borrowed from the

area of Full Abstraction (see Definition 3.2.12 of [Sto86]). We conjecture that:

AY(A) is inequational fully abstract, i.e. z <, y iff f(z)< f(y) for all
fim— ¢ (see [MilTT7]).

186

In Full Abstraction the construction of term models usually involves also
a completion step, since the concern is with the relations between operational
equivalence and semantic equivalence in continuous models. However, we are
mainly concerned with the relations between formal systems axiomatizable in first
order logic, therefore the restriction to equations (or inequations) and continuous

models is inappropriate.

Example 5.3.2 For every monotonic partial algebra A there is a continuous par-
tial algebra satisfying the same inequations (for instance, the ideal completion),
but this algebra, in general, is not even elementary equivalent to A.

Let A be the monotonic partial algebra of natural numbers (with the standard
linear order) with constants ¢, (one for each n € w) and one unary function suce
(the successor), then no continuous partial algebra is elementary equivalent to
A. In fact, suce has no fixed-point in A, while in any elementary equivalent
continuous algebra it would have a fixed-point, namely the lub of the w-chain

< cpln € w >

Definition 5.3.3 Signature with fixed-point approximations
A signature Xy for typed partial applicative structures with fixed-points
approximations is a signature for typed monotonic partial applicative structures

with fized-points with

e an everywhere undefined function 1, ,, € Const,, ., (¥\.v) for any

T1, T2 € SOIt(E/\Ly)

e ¢ fixed-point approximation Y, ., € Const((y—r)mmn—mn)mn—n(ZrLy),

for any 11,73 € Sort(Xx1y) and natural number n.

For the rest of this section we fix a X-structure A, where ¥ satisfies

the restrictions stated below, and the following signatures:
Definition 5.3.4 Conventions for signatures
Y C Y4 C Xaivw

o Y is the signature of A. We assume that it has only one sort symbol ¢, no

constant symbols and the only predicate symbols are: _ |, _= _and _ < _

187

o Y4 is the signature ¥ extended with a symbol ¢, € Const, (X 4) for each

element a € (A

o Y\ 1v(a) s the smallest signature for typed partial applicative structures with

fized-point approximations which includes ¥ 4

Remark 5.3.5 The restrictions on ¥ can be relaxed without affecting the con-
struction of A\Y(A) in a relevant way, namely by requiring only that all sorts of

Y. are base sorts.

5.3.1 The I, y(4-structure VALUE(A)

The aim of this section is to construct a monotonic partial applicative structure
VALUE(A). The construction relies on certain properties of a call-by-value op-
erational semantics for A-terms over Xy y(4). In the following definitions the

signature Xy vy(4) is used implicitly.
Definition 5.3.6 Values and Programs

o Value_ is the set of values of type 7, t.e. the subset of Term_ whose elements

are variables, constants or A-abstractions.

e Prog._is the set of programs of type 7, t.e. the set of closed A-terms of
type 7.

o ProgValue_ is the set of program values of type 7, i.e. the intersection of

Value, and Prog,

Remark 5.3.7 Values are closed w.r.t. substitution of variables by values, i.e. if

V and V' are values, then V[z: = V'] is a value.

The definition of —, below is the ALY(A)-counterpart of Plotkin’s —, for the
untyped call-by-value lambda calculus (see [Plo75]):

Definition 5.3.8 One-step Head Reduction

The one-step head reduction —, is the least relation on Term s.t.

M—, N
f(V,M,P)—, f(V,N,P)

1.v

V: € Value for alli € |V|

188

f can be either an application or a first order function in ¥ (X 4)

fv fleay, o y€a,) = Ca if fA(ar,...,a,) =a

By (Az:r. M)V —, Mz:=V] V € Value
Yov YoV =, L V € Value
YoV YoV = Az V(Y V)2) V € Value
Yy YV =, Az V(YV)z) V € Value

Lemma 5.3.9 —, issingle-valued, programs are closed w.r.t. —, and values are

not —,-reducible, i.e.
o if M -, N and M —, N', then N = N’
o if M —, N and M € Prog, then N € Prog

o if M —, N, then M ¢ Value

Proof The set of inference rules for —, is deterministic, therefore —, is single-
valued.
The second statement is proved by induction on M —, N.
In the conclusion M —, N of any of the inference rules the l.h.s. is never a

value, therefore values are not —,-reducible 1

Definition 5.3.10 Program Evaluation

The one-step evaluation function Evaly is the partial function from Term
to Term s.t. Evaly(M) = N N —, V.

The program evaluation function Eval is the partial function from Prog to
ProgValue s.t. Eval(M) =V LM -V

Remark 5.3.11 Single-step evaluation is well-defined, by Lemma 5.3.9. Similarly

program evaluation is well-defined, because for any M there is at most one value

Vst. M -2V,

189

Definition 5.3.12 Syntactic Approximation

e the approximation order C_ C_ _ is the least relation on Term s.t.

cong. has arity n
& O M C f(M N Y

MCN

A
cong (Az:7. M) C (Aa:7.N)

S I N V4 V € Value
YnY,CY

<, is the approximation order C, restricted to ProgValue_

e the n-approximation of M is the A\-term M, (where all occurrences of

Y have subscript < n) defined by induction on M:

-zl =z
- Ym rn = szn(m,n)
-YI.=Y,

— _I'n commutes with all other term-constructors

Lemma 5.3.13 Properties of C
1. C s a partial order on Term

2. Value ts upwards and downwards closed, i.e.

if M T N, then M € Value <= N € Value

190

3. C s substitutive, i.e.
if M T M and V' CT V" € Value, then M[z:=V'|C M'[z:= V"]

5. _I, is monotonie, v.e. if M T N, then M1, C NI,
Proof

L. reflexivity (M T M) is proved by induction on M.

Also asymmetry (M C N and N T M implies M = N) is proved by
induction on M, but it requires an extensive case analysis on the last rules
applied to prove M C N and N C M. The proof of transitivity (M T N
and N C P implies M C P) is similar to that of asymmetry.

2. easy

3. substitutivity is proved by induction on the proof of M T M’. In the
case (L), i.e. L T V, we use the assumption V" € Value to prove that

Viz:= V"] is a value
4. by (an easy) induction on the structure of M

5. monotonicity is proved by induction on the proof of M C N

Lemma 5.3.14 Monotonicity and Approximability of —,

1. if MT N and M —, M', then there exists (unique) N' s.t.
N —=, N and M'C N'

2. if M —, M" and n € w, then there exists (unique) N s.t.

Ml —y N and M'}, E N

Proof Both statements rely on Lemma 5.3.13 and are proved by induction on the
proof of M —, M’ (the IH is used only in the case (i.v)) and case analysis on
M. We consider only the case (Y.v) for the second statement, and write M, for

M},

191

e by definition of —, and _{,
M=YV -, Ae:r.V(YV)z)= M’
M) = Az 7.V, (Y, Vo))

Il
=

Mn+1 = Yn_|_1Vn_|_1 — ()\$ T.Vn+1 (ann+1)flf)

e therefore, we have to prove that

A7V (Yo Vo)) E (A 7.V (Y Vg) 2)

o let P be (Az:7.y(Y,y)z), then by V,, C V.41 and substitutivity

Ae: 7.V (Y Vo)z) = Ply:= Vo] CE Ply:= Vo] = Qa7 Vo1 (Yo Vi)2)

Definition 5.3.15 VALUE(A)
VALUE(A) is the Xy 1y(a)-structure of program values over A, i.e.

TVALUE(4) 2 ProgValue,

VALUE(4) 2

FYALUE(A) s the partial function s.t. fYARUEA)(T) 2 Eval(f(V))

Vy <VALUE(A) v/, N Vi <; Vo (or equivalently Vi C. V3)

Proposition 5.3.16 Properties of VALUE(A)
e VALUE(A) is a monotonic partial applicative structure
e VALUE(A) can be extended to a partial combinatory algebra

e VALUE(A) satisfies the azioms YF | and YFz ~ F(YF)x

Proof The only non trivial step to prove the first statement is to show that

application is monotonic and it makes essential use of Lemma 5.3.14. Suppose
that V; < V! (for 7 = 1,2) and V;V; =" V = Eval(V114), we have to show that
V' = Eval(V]'V]) exists and V < V"

e by Lemma 5.3.14, there exists V' s.t.

VIV) =2V and V C V'

192
e since values are upwards closed, then V' is a value, therefore (by definition
of Eval)
Eval(V1V2) < Eval(V/V})

The second and third statements are proved by a straightforward computation

(use the definition of —,). 1

5.3.2 The X,y -logical preorder R

In this section we define a ¥, y(4)-relation R on VALUE(A) and prove that it

is a consistent Xy y(4)-logical preorder (according to Definition 5.2.15).

Definition 5.3.17 The relation R
The ¥\1ya)-relation R on VALUE(A), i.e. a family of binary relations R

on ProgValue_, s defined by induction on 7:
o ¢, R ¢ PN <Ab forall a,b e *

¢ VR, ., V' < VW, WWR, W — VR, V'V

T1—72

Notation 5.3.18 If M and N are programs, then

e M R N means that both Eval(M) | and Eval(/V) | are defined and, more-
over Eval(M) R Eval(N).

e MR N means that Eval(M)R Eval(N) when Eval(M) is defined

For showing that R is a consistent ¥y y(4)-logical preorder on VALUE(A),
the main difficulty is to prove that R satisfies (MLR.Y). The proof of (MLR.Y)
relies on an auxiliary property, namely “R satisfies the least fixed-point con-

straints (U, M 1,) = M” (see Lemma 5.3.19).

Lemma 5.3.19 Properties of R
The ¥y1yay-relation R C VALUE(A) x VALUE(A) satisfies (MLR.app)
and (ext. R) of Definition 5.2.15, moreover:

1. R, satisfies (MLR.c,) for any element a € *, and (MLR.f) for any func-
tion symbol [of X4

2. R satisfies (MLR.L) and (MLR.Y)

193

3. R. s transitive

4. R, satisfies (cons.R), i.e. for all M, N, P,() € ProgValue,
ifM<,NR_P<,Q, then MR_Q

5. R_ satisfies the least fixed-point constraints (U, M ,) = M, i.e.

for all M, N € ProgValue_ if M1, R_N for alln € w, then MR_N
6. R satisfies (MLR.Y)

Proof The proof of (MLR.app) and (ext. R) is immediate from the definition of
R.

1. (MLR.¢,) is obvious from the definition of R,. To prove (MLR.f) we use
the monotonicity of f4, for simplicity let’s consider the case of an unary

function. We have to derive f(c,) R, f(¢) from Eval(f(c,)) | and ¢, R, e

e by definition of R,
a<Ab
e by definition of Eval and the assumption Eval(f(c,)) |, there exists ¢
s.t.
¢ = fA(a) and Eval(f(c,)) = c.
e by monotonicity of 4, there exists d s.t.
c<Ad= fAD)
e by definition of R, and Eval
Eval(f(c,)) = ¢ R, ¢q = Eval(f(c))

2. (MLR.L1) is immediate, because Eval(LV) is undefined. The proof of
(MLR.Y,) is by induction on n. The base case is immediate, because
1R L and Eval(YoV) = L for each value V. For the inductive step,
we use the fact that the program value ® = (AYAF A \x . F(YF)z) is re-
lated to itself, i.e. ® R @ (the proof is straightforward), and we prove that
Eval(Y,114) R Eval(Y, 41 B) is derivable from AR B:

e by definition of —,

Eval(Y,11A4) = Eval(®Y,A) and Eval(®Y, B) = Eval(Y, B)

194

e since ® R @, by the induction hypothesis (Y, R Y,) and the assump-
tion (AR B)
Eval(Y,114) = Eval(®Y,A) R Eval(®Y B) = Eval(Y B)

3. transitivity is proved by a straightforward induction on 7

4. (cons.R) is proved by a straightforward induction on 7. The base case is
obvious, because <, is the trivial partial order. For the inductive step we
prove that MAR,_ QB is derivable from M <, .., NR__ P <, ., Q,
AR, B and Eval(MA) |:

e by monotonicity of application (see Proposition 5.3.16) and Eval(M A) |
MA <, NA

e by definition of R
NAR,, PB

and Eval(NA) |

T1—72

e by monotonicity of application and Eval(PB) |
PB <, QB

o by IH
MAR_ QB

5. R, trivially satisfies the least fixed-point constraints, since M1, = M if
M € ProgValue, (i.e. M is of the form ¢,). For the inductive step we
prove that for any m € w Eval(MA)[,, R, Eval(NB) is derivable from
MT1,4x R, N, AR, B and Eval(MA) |, where k is the number of steps nec-
essary to evaluate Eval(M A), i.e. MA —F Eval(M A). Infact, Eval(MA) R, Eval(NB)
is derivable from Vm € w.Eval(MA)[,,, R, NB by IH .

e by Lemma 5.3.14
Eval(MA)l,, C,, Eval,"((MA)nsx)

o since Eval(MA)l,, € ProgValue_ and ProgValue is upwards closed,
by definition of Eval
EVallk((MA) [tr) = Eval((MA))

o since Al <, AR, B, by (cons.R)
Almir R, B

195

e by definition of R .

Eval(MA) 1, <;, Eval((MA)[4x) = Eval(M [Al gr) R,, NB
e by (cons.R)

EvalMA)!,. R NB

6. Since R satisfies the least fixed-point constraints (U,Y1,) = Y, to prove
(MLR.Y) it is enough to derive Y,, RY for all n, which follows from Y, RY,
(i.e. (MLR.Y,)) and Y, <Y, by (cons.R)

Proposition 5.3.20 R is a logical preorder
R is a consistent ¥y 1 y(a)-logical preorder on VALUE(A).

Proof Lemma 5.3.19 says that R is a consistent transitive m-logical relation on
VALUE(A), therefore the only property still to prove is reflexivity, i.e. VRV
for all V' € ProgValue. We prove that for all M € Term_(n) and substitu-
tions oy, 0 € ProgValue, (mapping variables to program values) if oy R, o3 and
Eval(M[o4]) |, then M[o1] R, Mo

The proof is by induction on the derivation of M € Term_(n) and it is similar

to the proof that the Fundamental Lemma of logical relations (see Lemma 5.2.11):

e if M is a variable, then it is obvious
e if M = c, then it follows immediately from (MLR.¢)

o if M = f(My,...,M,), then it follows from (MLR.f) and the induction
hypothesis for M; (1 <i < n)

e if M = (Ax.N), then it follows from (ext. R) and the induction hypothesis
for N

5.3.3 The closed term model \Y(A)

We show that the quotient AY(A) 2 VALUE(A)/ R is a model of the A\,pY 8-
calculus. From the properties of VALUE(A) and R, it is straightforward to show
that AY(A) is a model of the A\, Y #n-calculus. Therefore, the only difficulty is to
establish (p).

196

Lemma 5.3.21 R satisfies (x)
Let ® = (\F, f,x.F fx). Then for all program values M and N

e (Ax.MNz)=Eval(®PMN)R N implies (Ae. M(YM)z) = Eva(YM)R N

Proof We write M, for M|,. By Lemma 5.3.19, it is enough to prove that
Eval(YM)[,R N, i.e. (Ax.M, (Y, M,)x) R N, for all n. We prove (by induction
on n) that: (Ax.M,,(Y, M,)x)R N, for all m and n. For the base case (0) we
prove that (Az.M,,(YoM,,)x)AR NB is derivable from AR B:

e by L < N, M,, < M, reflexivity and consistency

®R®, M,,RM and LR N

e by definition of R and the assumption Eval(®MN)R N
OM,, L ROPMNRN

e by transitivity
oM, L RN

e by definition of R and the assumption AR B
oM, LAR NB

e since Eval((Az.M,,(YoM,,)x)A) ~ Eval(®M,, L A)

(MM, (YoM,)x)AR NB

For the inductive step (n + 1) we prove that (Az.M,, (Y 1My)2)AR NB is
derivable from AR B and (Ax.M,,,(Y,M,,)x) R N:

o by M,, < M, reflexivity, consistency and one assumption
R P, M,, RM and (M. M,,(Y,M,)z)RN
e by definition of R and the assumption Eval(@MN)R N

O M, (Ax. M, (Y, M,)z)ROMNR N

e by transitivity
OM,,(Ae. M (Y Mp)z) R N

197

e by definition of R and the assumption AR B
OM,,(Ae. M (Y, My)x)AR NB

e since Eval((Az.M,,(Ypy1 My)2)A) ~ Eval(®M,, (Ax. M, (Y, M,)x)A)
(A My (Y1 Myp)z)AR NB

Theorem 5.3.22 Properties of AY(A) indexdterm model, closed
The Xy 1y(a)-structure Y (A) 2 VALUE(A)/ R is a model of the A\ypY Bn-
calculus and XY (A) Y is (isomorphic to) A

Proof It is immediate from the definition of VALUE(A) and R (see Defini-
tions 5.3.15 and 5.3.17) that AY(A)[X is (isomorphic to) A. Since VALUE(A)
is a monotonic partial combinatory algebra (Proposition 5.3.16) and R is a
consistent logical preorder on VALUE(A) (Proposition 5.3.20), then (by Theo-
rem 5.2.19) AY(A) is a model of the mon\,3n-calculus.

The interpretation of Y in AY(.A) satisfies the equations YF | and YFa ~
F(YF)z, because VALUE(A) satisfies them and there exists a partial homo-
morphism from VALUE(A) to AY(A) (see Theorem 5.2.12). Since AY(A) is

(4) is a fixed-point operator (i.e. it satisfies (Y)). By

extensional, then Y*Y
Lemma 5.3.21, Y*Y() satisfies also (u), therefore it is a least fixed-point op-

erator 1

5.4 The relation between operational and de-
notational semantics

In this section we state a result due to G. Plotkin (see [Plo85] and Theorem 5.4.8),

namely:

a program terminates, according to the call-by-value operational se-
mantics of the metalanguage, iff it denotes, according to the deno-
tational semantics of the metalanguage in the category of cpos and

continuous partial functions.

Instead of the metalanguage in [Plo85] we consider a subset of it, namely the set
of A-terms over a signature X.,,; for typed monotonic partial applicative structures

with fixed-point operatorsand recursive types.

198

Remark 5.4.1 The metalanguage can be viewed as:

e a programming language (essentially the functional part of ML)
e a metalanguage for cpos and continuous partial functions

e the term language of a logic (for computable functions)

Actually the third view of the metalanguage is quite vague, since one can think

of different logics to put on top of the metalanguage.

Plotkin’s result is used to studying both the typed and untyped partial lambda
calculus (and it can be used to studying other formal systems) by giving a trans-

lation into the language over ¥,,;.

Definition 5.4.2 The signature for the metalanguage
Let Type be the set of open type expressions with partial function spaces and

recursive types, i.e.:
re€Typer:i= t | n—m | (ut.7)

the signature Y., for the metalanguage is the smallest signature for typed mono-

tonic partial applicative structure with fized-point operators s.t.

o Sort(X,.) is the set of closed type expressions (in Type)

o intro € Funct jp.—ur.)—pe.r(Emi) and elim € Functu y—rprzpe(Smi) for

any (pt.7) € Sort(X,.)

Notation 5.4.3 In the sequel we use the following shorthands for type expres-

sions:

e O is the type expression (ut.t)

e | is the type expression O — O

We also use the syntactic sugar for AY-terms (see Notation 4.3.8), mainly L.

Remark 5.4.4 In the category of cpos and continuous functions O and 1 are in-
terpreted by the initial and the terminal object, respectively. There is a straight-
forward translation from A-terms over .,,; to expressions of the metalanguage

in [Plo85], which maps Y to the expression (uY. AF.Ax.F(Y F)x) of the metalan-

guage and commutes with the other term constructors.

199

In the following definitions the signature Y, is used implicitly (see Sec-

tion 5.3.1 for similar definitions).
Definition 5.4.5 Programs and program values

e Prog_ is the set of programs of type 7, t.e. the set of closed A-terms of
type 7.

o ProgValue_ is the set of program values of type 7, i.e. the subset of Prog._
whose elements are A\-abstractions or terms of the form intro(c), where ¢ is

a program value. ¢ is used to denote program values.

Remark 5.4.6 Although the constant Y is not a program value, it has a value

(see below).

Now we define the operational semantics of the metalanguage, i.e. a partial func-

tion Eval from programs to program values.

Definition 5.4.7 Program evaluation
We write e = ¢ for Eval(e) = ¢ and e |} if e has a value |, i.e. there exists

a program value ¢ s.t. Eval(e) = ¢

Y= Y= (AF) a.F(YF)z)

A= (Azr.e) = (Az.€)

e1 = Az.e eg = ¢ efri=c = ¢
e1€9 — ¢!

app —

e — ¢C
intro(e) = intro(c)

intro =

e = intro(c)

elm— ————-
elim(e) = ¢

For our purposes it is not relevant to know the details of the intended interpre-
tation A,,; for the metalanguage, only some properties expressible in first order
logic are relevant. These properties together with the operational characteriza-

tion of _ | in A,,; are stated in the following theorem:

200

Theorem 5.4.8 ([Plo85])
There exists a Y,-structure A,,; which ts a model of the Free KA,puY 3n-

calculus and satisfies the properties:

o in A, the type O = (pt.t) is empty and any recursive type (ut.7) is iso-

morphic to T[t: = pt.7] | i.e.

empty z: 0.1

rec.l z:(pt.7).elim(intro(z)) =

rec.2 x:7[t: = pt.7].intro(elim(z)) = z

e for any program e the interpretation of e in A, exists iff e has a value,i.e.

A l=el iffel
Proof See [Plo85] 1

In order to use Theorem 5.4.8 for analysing the pure lambda-theories on the
term-existence statements (see Section 6.4), we have to define a translation in
the language over X, so that A,,; becomes a model of the pure theories (this
can be proved formally by using the properties of A,,; stated in Theorem 5.4.8).
However, this indirect interpretation gives only an upper bound on the term-
existence statements provable in a pure theory. To get a lower bound we show
that the operational semantics is represented in the (weakest among the) pure

theories, i.e. e = ¢ implies - e = e¢.
5.4.1 The relation between operational semantics and
the typed \,-calculus

Let X, be the signature for the pure typed A-calculus with one base sort
¢, then the translation ™ from the language over ¥, to the language over ¥,

is s.t.

o /=1

201

and it commutes with all other constructors.

Notation 5.4.9 If 5 is a type environment for X, then least, € ProgValuef,’n"f is

the substitution which maps each variable = to the least element of sort n(m)ml.

In the sequel we write neither the translation ™ nor the subscript 7.

Lemma 5.4.10 For all A-terms M € Term™ (n) if M|[least] ||, then there exists
a value V € Term™ (y) s.t. A\, F M ~ V and M[least] = V[least].

Proof The proof is by induction on the proof that M/[least] || and case analysis

on the structure of M.
o the base case (Y =) is impossible, by definition of ™

e in the base case (A =), M is either a variable or a A-abstraction, therefore

we can take V = M.

e in the inductive step (app =), M must be an application, say M;M,,
therefore we can apply the induction hypothesis to the M; and get some V;
(as M;[least] |}).

Vi can be either a variable or a A-abstraction (Az.M'), but the first pos-
sibility has to be excluded, otherwise Eval(M[least]) ~ Eval(Y(I)V;[least])
would be undefined (contradicting the assumption M [least] |}). Therefore
Vi = (Ax.M') and
Eval(M[least]) =
Eval(M;[least] Mz[least]) =
Eval((Az.M")[least] M[least]) =

(M'[o = V3] least])

By applying the induction hypothesis for M'[z: = V3], we get a value V s.t.
Mleast] = V[least].

We want to show that V satisfies also the other requirement, namely A, 3 I
M ~ V. In fact:

M = M; M; ~ by (cong.-) and IH

WiVa = (Aa. M)V, =~ by (5,)

M'[z:= V5] ~ by TH

V

202

e the remaining inductive steps, namely (intro =) and (elim =), are im-

possible, by definition of ™

Corollary 5.4.11 If M is a typed A-term (over X)), then the following asser-

tions are equivalent:
1. M[least] |
2. \NBFM|
3. K\puYBnk M |
4. A EM |

Proof

1 = 2, by Lemma 5.4.10.

2 = 3, because the KA, uY 3n-calculus has more deductive power than the
Ay B-calculus.

3 = 4, because A, is a model of the KA, pY Bn-calculus.

4 = 3. In fact, A,y = M | implies A,,; = M[least] | (by Substitution
Lemma) and this implies M[least] |} (by Theorem 5.4.8) 1

5.4.2 The relation between operational semantics and
the untyped \,-calculus

For the untyped pure theories it is possible to prove a result similar to Lemma 5.4.10
and Corollary 5.4.11, the only difference being that the source language is changed
and the translation ™ has to be changed accordingly.

Let X, be the signature for the pure untyped A-calculus, i.e. one sort
¢ and a binary partial function app, then the translation ™ from the language

over X, to the language over X, is s.t.
o M=V E (utt —t)
o (MN)™ = elim(M™)N™

o (Au: L.M)ml = intro(Ax: V.Mml)

203

and it commutes with all other constructors.

Notation 5.4.12 If 5 is a type environment for X, then least, € ProgValue?,’n"f

is the substitution which maps each variable = to the least element of type V.

Again, we write neither the translation ™ nor the subscript 7.

Lemma 5.4.13 For all A\-terms M € Term™ (n) if M|[least] ||, then there exists
a value V € Term™ (y) s.t. A\, F M ~ V and M[least] = V[least].

Proof The proof is by induction on the proof that M[least] || and case analysis

on the structure of M.

e both base cases, namely (Y =) and (A =), are impossible, by definition

of ml

e in the inductive step (app =), M must be an application, say M;M,,
therefore we can apply the induction hypothesis to the M; and get some V;
(as M;[least] |}).

Vi can be either a variable or a A-abstraction (Az.M'), but the first pos-
sibility has to be excluded, otherwise Eval(M[least]) ~ Eval(Y(I)V;[least])
would be undefined (contradicting the assumption M [least] |}). Therefore
Vi = (Ax.M') and

Eval(M[least]) =

Eval(elim(M [least]) M;[least]) =

Eval(elim(intro((Az.M')[least])) Mz[least]) =

Eval((Az.M")[least] Vz[least]) =

Eval((M'[z: = V3])[least])

By applying the induction hypothesis for M'[z: = V3], we get a value V s.t.
Mleast] = V[least].

We want to show that V satisfies also the other requirement, namely A, 3 I
M ~ V. In fact:

M = M; M; ~ by (cong.-) and TH

ViVa = (Aa.M")V,y =~ by (5,)

M'[z:= V5] ~ by TH

V

204

e in the inductive step (intro =), M is either a variable or a A-abstraction,

therefore we can take V = M.

e the inductive step (elim =) is impossible, by definition of "™

Corollary 5.4.14 If M is an untyped A-term (over X)), then the following as-

sertions are equivalent:
1. M|least] |
2. \BEM |
3. KmonAypnt= M |
4. A EM]

Proof

1 = 2, by Lemma 5.4.13.

2 = 3, because the K'monA,n-calculus has more deductive power than the
Ay B-calculus.

3 = 4, because A,,; is a model of the K monA,37n-calculus after the transla-
tion ™ from untyped A-terms (over X)) to A-terms over ¥,

4 = 3. In fact, A,y = M | implies A,,; |E M[least] | (by Substitution
Lemma) and this implies M[least] |} (by Theorem 5.4.8) 1

Chapter 6

Relations among formal systems

We investigate conservative extension results among some formal systems intro-
duced in previous chapters and gathered in Definition 6.1.3. To avoid an excessive
duplication of results, we give more emphasis to the relations among inhabited
formal systems. However, when there are major differences, the relations among
free formal systems will be pointed out.

First we review the relations among the total formal systems and then we
analyse the relations among the partial formal systems. The reason for having a

wide review of the total formal systems is twofold:

o the results on which it relies on are quite scattered throughout the literature

e it makes it possible to appreciate the different relations among the partial

formal systems

There are two major differences between the partial and total case, that deserve

to be mentioned here:

1. the equations between A-terms derivable in any of the total lambda calculi
are the same, while in the partial case there are four distinct equational

theories (see Theorem 6.4.5)

2. the least fixed-point partial lambda calculus is a conservative extension of
the logic of partial terms, while the least fixed-point total lambda calculus

is not a conservative extension of equational logic

The first difference has important implications for the development of subsequent
chapters on equational presentation and reduction for the partial lambda calculus,

in fact:

205

206

e it is very unlikely that the classical partial lambda calculi admit an equa-
tional presentation, because they involve some kind of case analysis even

at the equational level (see proof of Lemma 6.3.1)

e we have to develop an equational (actually inequational) presentation also
for the intuitionistic monotonic partial lambda calculus, because the equa-
tional presentation for the intuitionistic partial lambda calculus is not com-
plete (see Lemma 6.3.3). Besides, monotonic (and continuous) models are

important for computer science applications.

Most of the techniques used to prove these conservative extension results are quite
general and have also other applications, therefore they have been developed

independently.

6.1 Preliminary definitions and conventions

In this section we fix 6 signatures and 48 (actually 44) formal systems axiomatized
either in the logic of partial terms or in the typed partial lambda calculus. In
the rest of this chapter, the deductive power of these formal systems is compared

according to the criteria introduced in Definition 1.1.1.

Definition 6.1.1 Signatures

¥ C Ymon
N N
Yy C Xmonm:
N N

2y C XmonY

e Y is a signature for partial algebras, which does not contain function spaces,
i.e. sort symbols of the form 11 — 75, or partial orders, i.e. predicate symbols

of the form <.

® Yo on is a signature for monotonic partial algebras, which does not contain

function spaces

e Y, is a signature for typed partial applicative structures, which does not
contain partial orders or fized-point operators, i.e. constant symbols of the

form Y, 1,

207

® Yoony 18 a signature for typed monotonic partial applicative structures,

which does not contain fired-point operators

o Y,y is a signature for typed partial applicative structures with fized-points,

which does not contain partial orders

® Y on\y s a signature for typed monotonic partial applicative structures with
fized-points, which has only one base sort ¢ and the only predicate symbols

are: _ |, = _and _ < _

Remark 6.1.2 For the free formal systems the constraints for the signatures
ought to be stricter, because the extension of a signature with new constant
symbols may force some sorts to be inhabited. The assumptions about base sorts
and predicate symbols of ¥ ,,n1y have been made in order to get simpler proofs,

but they can be dropped without invalidating the results.

In Definitions 2.4.3 and 4.2.5 we have introduced two formal systems: the
logic of partial terms (FreeJLPT over ¥) and the typed partial lambda calculus
(Freed A, Bn-calculus over X)). Each of them has 8 variants on the same signature

(see Definition 2.4.5):

Free J LPT 0
N N N + N
Inhabited K A 87 tot

We have also introduced variants of LPT and the A,37-calculus on suitably ex-
tended signatures (see Chapter 4):

LPT C monLPT

N N
ApfBn C monA,fBn
N N

ApY By C o AppuYBn

By combining the various possibilities together we get 48 formal systems:

Definition 6.1.3 Formal systems

LPT C monLPT

Free J N N 0
N N ApBn C monA,Bny + N
Inhabited K N N tot

ApYBn C o AppY B

208

The partial (total) formal systems are xy)FS (xyFS+tot), where x, ¢ and FS
are metavariables s.t. x € {F'ree, Inhabited} (free versus inhabited logic),
Y € {J,K} (intuitionistic versus classical logic) and FS ranges over the 6

formal systems:
o LPT is the logic of partial elements over ¥ (see Definition 2.4.3)

e monLPT is the monotonic logic of partial elements ariomatized by mony in

LPT over ¥mon (see Definition 4.1.22)
o A\, (31 is the typed partial lambda calculus over ¥ (see Definition 4.2.5)

e mon),3n is the typed monotonic partial lambda calculus axiomatized by

mony, + .5 in the A\ Bn-calculus over Ymony (see Definition 4.3.1)

o)\, Y31 is the lyped fixed-point partial lambda calculus axiomalized by Y in
the A, Bn-calculus over Lyy (see Definition 4.3.5)

o M\, 1Y B s the typed least fized-point partial lambda calculus aziomatized by
mon, +&.5+p+Y in the A\yBn-calculus over Xmenry (see Definition 4.3.7)

Remark 6.1.4 Actually, there are 44 formal systems, because FreeppA,Y Bn+tot
and FreepA,uY Bn + tot are inhabited. In fact, the axiom inhab is derivable in
the FreeJ Y Bn-calculus.

6.2 The total formal systems

In this section we study the relations among the total formal systems y¥FS+
tot. This will be mainly a review of results already available in the literature on

the lambda calculus.

6.2.1 Intuitionistic versus classical logic

The following lemma explains why the A-calculus, as equational formal system,

is independent from the logic.

Lemma 6.2.1 Coincidence of the Inhabited A\;37n-calculi
Let L be {Frag™(AV.L)} = Frag®(L), then intuitionistic and classical in-
habited \¢fn-calculi coincide on L, i.e. InhabitedJ Sy C5.; Inhabited KA.

209

Proof By Theorem 4.2.19, the A¢n-calculus is equivalent at the level of terms
to the formal system axiomatized by CL, + ext. ~ +tot in LPT. Therefore, it is

enough to prove that
InhabitedJCL, + ext. >~ +tot Cyp Inhabited KCL, 4 ext. ~ +tot
e since the axioms (tot), (CL,) and (ext. =) are included in L and (ext. ~ +tot)

is equivalent to (ext. = +tot) in LPT, then

extensional total combinatory logic CL, 4 ext. >~ +tot is axiomatized in

LPT by a set of sequents T" included in L

e by Theorem 3.1.15 InhabitedJLPT C5,; Inhabited KLPT, therefore
InhabitedJCL, + ext. >~ +tot = InhabitedJLPT + T C5, 1
Inhabited KLPT + T = Inhabited K CL, 4 ext. >~ +tot

Theorem 6.2.2 Let L be the fragment {Frag(AVL)} = Frag(L), then for any
formal system FS (see Definition 6.1.3)

InhabitedJFS + tot Cjp; Inhabited KFS + tot

Proof If FS is either LPT or monLPT, then we proceed as follow:

e since the axioms (tot) and (mony) are included in L, then

FS + tot is axiomatized in LPT by a set of sequents 7" included in L.

e by Theorem 3.1.15 InhabitedJLPT C%,; Inhabited KLPT, therefore
InhabitedJFS + tot = InhabitedJLPT +T C5.;
Inhabited KLPT + T = Inhabited KFS + tot

If F'S is either A Bn, monA,Bn, A\, Y Bn or A,uY By, we replace LPT with the

A¢ffn-calculus and proceed in a similar way:
e since the axioms (mony), (£, <), (Y) and (p) are included in L and the
axiom (£.5) is equivalent to (£. <) in the A¢Bn-calculus, then

FS+tot is axiomatized in the A\;3n-calculus by a set of sequents T" included
in L.

210

o by Lemma 6.2.1 InhabitedJ\Bn Cipr; Inhabited K A\ Bn, therefore

InhabitedJFS + tot = InhabitedJ A\ + 1T Cjp
Inhabited K\ + T = Inhabited KFS + tot

Remark 6.2.3 The counterexamples to coincidence of intuitionistic and classi-
cal (inhabited) logic in Propositions 3.1.16 and 3.1.17 apply also to the total

inhabited formal systems.

For the total formal systems FreeiFS + tot, there are weaker conservative

extension results, namely:

e let L be the coherent fragment {Frag(L AV3)} = Frag(L AV3). If FSis
either LPT or monLPT, then

FreeJFS + tot Cipp Free KEFS + tot

e if F'S is either A,y or monA, 37, then (see [MMMS87, MMS8T]):

— FreeJFS 4 tot Cip FreeKFS + tot , but
— FreeJFS + tot Cgrp FreeKFS + tot

o if 'S is either A, Y37 or AppY 37, then Theorem 6.2.2 applies, because the
formal system Freei)F'S 4 tot is inhabited.

6.2.2 Conservative extension results

Given a partial algebra A, there is a trivial way to turn it into a monotonic
partial algebra, namely by interpreting < as the equality. In a similar way, one
can turn a model of the total lambda calculus into a model of the monotonic

total lambda calculus into.

Lemma 6.2.4 Relative Interpretation

Let (triv.<) be the aziom saying that “< is the trivial partial order”, i.e.

triv. < o1 < 19 <= 11 = X9

e (mony) is derivable from (triv. <) in FreeJLPT

o (£(.5) is derivable from (triv. <) in the FreeJ A Bn-calculus
Proof Straightforward

Theorem 6.2.5 Conservative extension results

For any x € {Free, Inhabited} and o € {J, K} (see Definition 6.1.3)

YYLPT +tot C° yx¥monLPT + tot

ne ne
XVALBn +tot C° x¥monA, By + tot

OFE O Ein
YA Y Bn + tot YA Y By + tot

Proof By Lemma 1.1.4, the conservative extension results y®¥LPT + tot

211

CC

XVALBn + tot and x¥A By + tot Cirp vALYSn + tot are derivable from the

others:

o YYLPT +tot C° y¢ymonLLPT + tot follows from monLPT C LPT + triv. <
(see Lemma 6.2.4). In fact

LPT LPT
Ia ne
monLPT C LPT + triv. <

therefore LPT C® monLLPT, by (convex) of Lemma 1.1.4

XV ApBn +tot C° xyypmonl, By + tot follows from monABn C A¢fBn +triv. <

(see Lemma 6.2.4) as for the previous conservative extension result

xYmonLPT + tot C® xy¥monA,3n + tot, because any monotonic algebra
A is embedded in the full monotonic type hierarchy with base type the
underlying poset of A (see Definition 5.1.21)

Inhabited KmonA, Bn+tot C5 ;. KA pY Bn+tot, because there is a Xpony-
partial homomorphism from the full continuous type hierarchy with base
type the flat cpo N to the open term model of the A3n-calculus with the
trivial partial order (see Theorem 5.2.28 and [Plo82, AL85]).

The general result yymon), 31 + tot Cfrgi,, YA 1Y 81 + tot follows from
FreeJ\fn Cip Inhabited K A\ fn (see [MMMS87, MMS8T]).

212

In the previous theorem we have shown that some formal systems are an
extension of others over a fragment rather than the entire language, e.g. Yo LPT+
tot Corp YA Y Bn+tot. Next, we show that these extensions are not conservative

over a slightly bigger fragment.

Theorem 6.2.6 Counterexamples to conservative extension results

For any x € {Free, Inhabited} and o € {J, K} (see Definition 6.1.3)

XYLPT + tot yYmonLPT + tot

NerE Nere
VALY By +tot Corr A pYBn + tot

Proof By Lemma 1.1.4, the counterexamples for the free formal systems Freep LPT+
tot and FreeymonLPT + tot are derivable from those for the inhabited formal
systems. The counterexample InhabitediypmonLPT + tot Crrg YA Y By + tot
is derivable from the others, by Lemma 1.1.4 and Theorem 6.2.5. Moreover, by

Theorem 6.2.2, it is enough to consider the classical inhabited formal systems

Inhabited KFS + tot:

o InhabitedKLPT + tot Crrr KA, YBn + tot, because there is a signa-
ture ¥ for partial algebras, a set Az;,; of E-equations and an E-equation
M = N, which is derivable from Az, in KA, YSn + tot, but not in
Inhabited KLPT + tot. The counterexample is due to G. Plotkin and can
be found in [BTMS8T7]:

Y is the signature with one sort, I, and the following constants and opera-

tions

(cond: I° — I; —:I* — I;suce: [— 1;0,1:1)
Ax;ne 1s the set of equations
— cond(0,z,y) =z
— cond(l,z,y) =y
—z—x=0
— suce(x) —x =1

0 = 1 is derivable from Az;,; in the AYn-calculus (i.e. KA, Y3y + tot),
but not in equational logic (i.e. Inhabited KLPT + tot)

213

o KA YBn+tot Corp KA uYBn+tot, because for any sort 7the E-equation
(pfir — 7.f) = Aei7.(py: 7.y) is derivable in KA pY By + tot, but not in
KA Y Bn + tot.

In fact, the l.h.s. and r.h.s. of this E-equation have different Y #n-normal
forms, therefore the E-equation is not derivable in the AY #n-calculus (i.e.

KX, Y B + tot)

Remark 6.2.7 By Lemma 1.1.4 and the conservative extension results of Theo-

rem 6.2.5, other counterexamples are derivable from the those of Theorem 6.2.6,

e.g.
XY A Bn + tot x¥mon, 3y + tot
NgrE NErE
VALY B +tot Corp YA uY By + tot

6.3 The partial formal systems

In this section we study the relations among the partial formal systems y¥FS.
The main differences between the partial and total lambda calculus are not
due to partial functions in itself. In fact, the analogues of Lemma 6.2.2 and 6.2.4

fail because of extensionality for (monotonic) partial functions.

6.3.1 Intuitionistic versus classical logic

The intuitionistic and classical inhabited A,37n-calculi do not coincide on L of
Theorem 6.2.2, because extensionality for partial functions (ext.~) (see Defi-
nition 4.2.9) is not in the fragment where intuitionistic and classical inhabited

logics coincide.

Lemma 6.3.1 There is an E-equation which is deriwable in the FreeK\,[3-
calculus but not in the InhabitedJ A Y Bn-calculus.

Proof Since EC E- and E-equations have the same expressive power in the JA,3-
calculus, it is enough to exhibit an £ C E-equation with the required property.

Let a: (¢ = ¢) — (¢ — ¢) — ¢, b:eand f,¢g:¢ — ¢ be four variables, then

(alf) 1, (alg) L, (afT) |, (agl) |, (afg) |= (agf) | (6.1)

214

is derivable from z = b in the KA\, 3n- but not in the JA Y Bn-calculus.

& = b means that ¢ is the singleton {b}, then (classically) ¢ — ¢ may have at
most two elements: the identity and the everywhere divergent function. A case
analysis of the possible values for f and g shows that the sequent 6.1 is valid.

On the other hand, consider the Kripke full monotonic or full continuous
partial type hierarchy over {L < T} with base type the one-element complete
lattice {b} (see Definitions 5.1.22 or 5.1.26), then ¢ — ¢ at stage L has three

elements unde f < inter < id, where:
o undef is the everywhere divergent function at 1 and T

e inter is the everywhere divergent function at 1 and becomes the identity

at T

e id is the identity at L and T

Let a be the Kripke partial function which at stage L is s.t.
b if inter < forid<gyg
a(f)(o) = |

unde fined otherwise
(at stage T we can take a(f)(g) to be always b) and let f = inter and ¢ = undef,
then the antecedent of the sequent 6.1 is valid, but the succedent is not.
The counterexample can be modified, so that we do not need the assumption

x = b. More precisely, let P be the A-term

P2 (Afro— (g eyl(fD)))

It is straightforward to show that the denotation of P is a retraction on ¢ — ¢,
which (classically) has at most two fixed-points: the identity and the everywhere
divergent function.

Then, the substitution instance of the sequent 6.1, obtained by replacing a
with the A-term (Af,g:¢ — c.a(Pf)(Pg)), is derivable from no assumptions in
the KA, 3- but not in JA,pY Bn-calculus 1

Theorem 6.3.2 Let L be the fragment {Frag(AVLl)} = Frag(L). If FS s
either LPT or monLPT, then

InhabitedJFS Cypp Inhabited KFS
If FS is either A, By, monA,Bn, A\, YBn or ApuY By, then

InhabitedJFS Corp Inhabited KFS

215

Proof The first statement is proved as in Theorem 6.2.2, while the second one

follows immediately from Lemma 6.3.1 1

For the partial formal systems Freey)FS + tot (when FS is either LPT or
monLPT) there are weaker conservative extension results similar to those for the

total formal systems, namely:

e let L be the coherent fragment {Frag(L AV3)} = Frag(L AVv3). If FSis
either LPT or monLPT, then

FreeJFS Cipp FreeKFS

e For the other free formal systems, the counterexample provided by Lemma 6.3.1

continues to hold.

6.3.2 Conservative extension results

The axiom (£.5) is not derivable from (triv. <) (see Lemma6.2.4) in the FreeJ,31-
calculus, because the axioms (£. ~) and (£.5) (see Definition 4.3.1) have a dif-
ferent structure. In fact, M ~ N is symmetric in M and N, while MN is

not.

Lemma 6.3.3 There is an E-equalion which ts derivable in the Freemonl,3-

calculus but not in the Inhabited K A\, B1n-calculus

Proof Since EC' E- and E-equations have the same expressive power in the JA, -
calculus, it is enough to exhibit an £ C E-equation with the required property.
Let a: (¢ — ¢) — ¢, b: e — ¢ and ¢: ¢ be three variables and let I’ 2 (Az.y (b)),
then
(al) L= (al) | (62)

is derivable in the JmonAp3-calculus but not in the KA, 37n-calculus.

It is easy to show (in the Jmon),B-calculus) that I’ < I, therefore by mono-
tonicity (al’) |= (al’) < (al).

On the other hand, consider the full partial type hierarchy whose base type is
the one-element set {c} (see Definition 5.1.14), let b be the everywhere divergent
function and a be the function s.t.

a(f) = {c if f(c) diverges

undefined otherwise

216

Then (al’) is defined, because I' is the everywhere divergent function, while (al)

is undefined

Theorem 6.3.4 Conservative extension results

For any x € {Free, Inhabited} and v € {J, K} (see Definition 6.1.3)

x¢YLPT C° xt¥monLPT = x¢¥monLPT
ne ne ne
X A0 XPmonAp 81 Chppriy XPAppY 1)
7
X¢APYIBW

Proof By Lemma 1.1.4, the conservative extension results yyLPT C° x¥A, 87

and yy¥monLPT C° xy¥monA,3n are derivable from the others:

e \YLPT C° x¢ymonLPT follows from monL.LPT C LPT + triv. < (see

Lemma6.2.4). The proof is similar to that of ¢y LPT+tot C¢ x¥ymonL.PT+
tot in Theorem 6.2.5

xYmonLPT C° x¥A,pY By, because any monotonic partial algebra is em-
bedded in a model of the least fized-point partial lambda calculus (see Sec-
tion 5.3). This result is based on a complicated technique, but yyLPT C°
XVAp Y By can be proved very easily. In fact, a partial algebra B is em-
bedded in the full continuous partial type hierarchy with base type the flat

cpo whose underlying set is (% (see Definition 5.1.26)

xYmonA, 8n Corpin XVApY 87, because for any typed extensional mono-
tonic partial applicative structure A there is a ¥,ony-partial homomorphism
(see Definition 5.2.7) from the full monotonic partial type hierarchy with
base type the complete lattice (P(¢*),C) to A (see Theorem 5.2.26)

! xJABn Corr XJ ALY B, because AY Bnp-equational logic is a conservative
extension of Af@np-equational logic over pA-equations (see Definition 7.3.2).
We can only give an informal argument, because \Y Bnp-equational logic
has not been defined. However, we conjecture that the results about Agnp-

equational logic extend smoothly to it.

Let M and N be pA-terms in #-normal form (since we consider typed terms

without fixed-point operator, this is not a restriction), then:

217

— M =~ N is derivable in \Y gnp-equational logic iff (see Theorem 8.4.4)
— M ~g4, N iff (since pA-terms are closed w.r.t. o4, for pAY-terms)

— M ~ N is derivable in Afnp-equational logic

We conjecture that KA 8y CoLp xK ALY By, but the proof above cannot
be modified, since there is no counterpart to AFnp-equational logic for the

classical partial lambda calculus

Theorem 6.3.5 Counterexamples to conservative extension results

For any x € {Free, Inhabited} and o € {J, K} (see Definition 6.1.3)

XVApBn Corr x¥mon),[n
NErE NErE

XY B Cors XUALLY 81
Proof

o YV, 80 Corr x¥monA, By follows immediately from Lemma 6.3.3

o \VA, 00 Crrre XYY B follows immediately from the corresponding coun-
terexample for the total formal systems xy¥ A, 81y + tot Crrr YA Y B+ tot

(see remarks after Theorem 6.2.6).

o yYmonA, By Crrr xYAspY By follows immediately from the corresponding

counterexample for the total formal systems (as the previous counterexam-
ple)

o \VAYBn Corr x¥AuYBn follows immediately from the corresponding
counterexample for the total formal systems Y A, Y Bn+tot Corg YA 1Y Bn+
tot (see proof of Theorem 6.2.6)

6.4 The pure typed lambda-theories

In this section we restrict our analysis to the pure typed lambda-theories
S(xFS), i.e. the set of S-equations, between pure typed A-terms without fixed-
point operator, derivable in y¥FS (see notation after Definition 1.0.1). En pas-
sant we mention the situation for the untyped pure lambda-theories. We take into

account also the pure typed lambda-theories of the A, n- and A@n-calculus.

218

First, we prove that there are at most six pure typed lambda-theories. Then,

we compare them on two fragments, namely the S-fragment and the T'E-fragment.

Theorem 6.4.1 Coincidence of Free and Inhabited formal systems
For any ¢ € {J, K} (see Definition 6.1.3)

o Iree A n Chrg Inhabitedy A7

o Freepmond,Bn Cirg,, Inhabitedip AgpY Bn

o I'reeJ A Bn+ tot Chrg KA pY By + tot

¢ FreepA,0n Corg Inhabitedp A\,Y By
Proof

o I'ree A n Cirg Inhabited A,57.

For any (Kripke) set X there is a partial retraction from X onto X + 1,
namely In,(a) =< 0,a > and H(<n,b>)=a<=n=0Ab=a.

Therefore, by Theorem 5.2.22, for any model B’ of the FreeA,3n-calculus
there exists a partial homomorphism from the full partial type hierarchy

B, whose base type is the set * + 1, onto B’.

Since ¢* + 1 is inhabited, then B is a model of the Inhabited),3n-calculus
(see Definitions 5.1.14 and 5.1.16). The conservative extension result fol-

lows from the preservation property of partial homomorphisms (see Theo-

rem 5.2.12).

o ['reeyymonld,fBn Cirg;, Inhabitedp A,pY 81 is proved like the previous con-

servative extension result.

Since for any (Kripke) poset (X, <) there is a partial retraction from (X, <)
onto (P(X), C), namely In,(a) ={z € X|z <a}=d and H,(A) = a <
A=a.

Therefore, by Theorem 5.2.26, for any model B’ of the Freemon,37-
calculus there exists a partial homomorphism from the full monotonic par-

tial type hierarchy B, whose base type is the poset (P(:%), C), onto B’.

219

Since (P(:F), C) is a complete lattice, then B is a model of the Inhabited\, 1Y Bn-
calculus (see Definitions 5.1.20 and 5.1.22). The conservative extension re-
sults follows from the preservation property of partial homomorphisms (see

Theorem 5.2.12).

o IreeJ A, Bn+tot CiLg KApY 31+ tot is a consequence of a result due to
Plotkin (see Theorem 5.2.28).

Assume that M ~ N is derivable in KA Y 87+ tot, we have to show that
it is derivable in F'reeJA,Bn + tot:

— by soundness, the full continuous type hierarchy with base type N
satisfies M = N

— by Theorem 5.2.28, M = N is derivable in the Agn-calculus

— since the inference rules of the ABn-calculus are derivable in FrreeJ A, Bn+
tot, then
M = N is derivable in FreeJA,8n + tot

T FreeJA,Bn Corg InhabitedJA,Y By, because AY Bnp-equational logic is
a conservative extension of Af@np-equational logic over pA-equations. As
in the proot of xJA,B8n Cip xJAYBn, we can only give an informal

argument, similar to that of in Theorem 6.3.4.

We conjecture that Free KA B8y Cgrg Inhabited KA,Y 3.

Remark 6.4.2 Untyped A-models are always inhabited, therefore there is no issue
of free versus inhabited untyped lambda calculi and the analogue of Theorem 6.4.1
is:

o YABn Cirs YA Y1, because there is a pure untyped A-term Y satis-

fying the axiom for fixed-point operators, namely AF.AA, where A =
(Af, 2z F(ff)x)

7 YmonA, B0 Corgin YApiY By we do not know if this is true.

T JA By +tot Cfg KA uY Bn+tot we do not know if this is true. However,
JApBn + tot CiLg KmonA, By + tot

220

We define six subsets of the S-equational fragment, i.e. the set of S-equations

between typed A-terms over Xy:

Definition 6.4.3 Pure theories

S(Tvﬂn)
N
S(ApBn) S S(KXfBn)
N N
S(Jmon),Bn) C S(KmonA,[n)
N
S(Atﬂn)

(M ~ N) e S(A\Bn) iff M = N is derivable in the typed Aipen-calculus
(see Definition 4.4.1).

Fquivalently (M ~ N) € S(A\fn) iff M = N is derivable in the typed
AyBn-calculus (see Definition 4.4.10 and remark after Theorem 4.4.15)

(M ~ N) e S(JABn) iff M ~ N is derivable in FreeJ\,8n
o (M~ N)e S(Jmon,pn) iff M ~ N is derivable in FreeJmonl,3n

o (M~ N)e S(KXBn) iff M ~ N is derivable in FreeK 37

(M ~ N) e S(KmonA,3n) iff M ~ N is derivable in Free Kmon\,3n

(M ~ N)e S(A\8n) iff M ~ N is derivable in FreeK \,3n + tot.
Fquivalently (M ~ N) € S(A8n) tff M = N is derivable in the typed
ABn-calculus

Remark 6.4.4 According to Theorem 6.4.1 (apart from the unproved conjecture
about YK A, Y(n) all the other pure typed lambda-theories coincide with one of
those introduced in Definition 6.4.3. More precisely, for any xy € {Free, Inhabited}
and ¥ € {J, K}

o (M~ N)e S(JApn)iff M ~ N is derivable in xJA,8n

e (M ~ N) € S(Jmon)\,f(n) iff M ~ N is derivable in yJmonA\,3n or
XS AppY B

o (M~ N)e S(KX,3n)iff M ~ N is derivable in x KA,

221
e (M ~ N) € S(Kmon\,n) iff M ~ N is derivable in yKmon\,3n or
XK Ap Y B

o (M~ N)e S(A3n)iff M ~ N is derivable in 1A, n+tot or ytpmonA,Bn+
tot or YA, 1Y Bn + tot

Now we establish proper inclusions among the six pure typed lambda-theories:

Theorem 6.4.5 Relations on the S-fragment

S(AvBn)
N
S(JApBn) C S(KXfBn)
N N
S(Jmon),Bn) C S(KmonA,[n)
N
S(Atﬁn)

Proof

e S(ABn) C S(JA,0n), because (Az.z)(xy) ~ (zy) is in S(JA,57n), but not
in S(Ayfn). In fact, the two side of the S-equations are different 3n-normal
forms w.r.t. the reduction for the A, 3n-calculus, therefore they cannot be

equated in the A 3n-calculus (see [Plo75]).

e S(Kmon),5n) C S(ABn), because (Ax, z.xz)(xy) ~ (Az.xyz)is in S(AFn),
but not in S(KmonA,5n). In fact, in any full partial type hierarchy (see
Definition 5.1.20), when z is the everywhere divergent function, the L.h.s.

is undefined while the r.h.s. is defined.

Since the TE U EC S-fragment has the same expressive power as the S-
fragment in the partial lambda calculus (see Theorem 4.2.8), the other proper

inclusions are a consequence of the following counterexamples:

o S(JmonA,fBn) € S(KA,01n),as ¢l |= xl | is derivable in FreeJmon\, 3y
but not in FreeKA,3n, where I 2 (Az.zbc) (see Lemma 6.3.3)

o S(KX,0n) € S(Jmon),fpn), as OIf |,O0fI |,0lg |,0¢1 |,0fg |—=
Ogf | is derivable in Free KA 8n but not in FreeJmon\, 37, where P is
the A-term (Af:¢ — ¢ Az:exffb) and O 2 (M,g:¢0 — ca(Pf)(Pg)) (see
Lemma 6.3.1)

222

Remark 6.4.6 For the untyped pure lambda-theories we conjecture the same
proper inclusions. However, we do not know whether S(JmonA,5n) € S(KA,37),
because there is no model similar to the full partial type hierarchy for the un-
typed partial lambda calculus. Anyway, by using Theorem 8.4.4, it is possible to
prove that S(JAp,8n) C S(JmonA,3n).

Strictly speaking T E-statments are not S-equations. However, any T FE-
statement is provably equivalent to an S-equation. Therefore, we can identify
the T'E-statements derivable in one of the typed lambda calculi with a subset of
its pure typed lambda-theory.

Proposition 6.4.7 T E-statements as S-equations
For any A-term M :

e E(M) << 1= (Ae.l)M is derivable in the Aipe-calculus
o M |<—= 1~ (Ae.)M is derivable in the \,[3-calculus
Proof Straightforward 1

Definition 6.4.8 Pure T E-theories

TE (A7)
N
TE(JA0Bn) C TE(KX,B1)
N N
TE(Jmon),Bn) C TE(KmonA,3n)
N
TE()‘tﬁ"?)

where TE(_) is the set {M | |(I1 ~ (Az.])M) € S(_)} for any pure typed lambda
theory S(.) in Definition 6.4.5.

Theorem 6.4.9 Relations on the T'E-fragment
TE()\VIBT])

TE(JX\Bn) = TE(K)\Ap)
1] 1]
TE(Jmon),pn) = TE(Kmon\,3n)
N
TE()‘t/BU)

223

Proof The coincidence of T'E (A1) with the four partial lambda-theories is an
immediate consequence of Corollary 5.4.11.

The inclusion TE(KmonA,3n) C T E(Afn) is obvious. 1

Remark 6.4.10 The same relations hold among the untyped pure lambda-theories
on the T'E-fragment. However, the proof of coincidence relies on Corollary 5.4.14

instead of Corollary 5.4.11.

Chapter 7

Equational presentation

The formal systems, for partial applicative structures, introduced in Chapter 4
are based on the language of first order logic, hence they have little in common
with the equational presentation of the lambda calculus used in the literature
(see [Bar81]). Without a similar equational presentation, it is very unlikely that
we can adapt the techniques developed for the lambda calculus to the study of
the partial lambda calculus, unless they are model-theoretic.

The aim of this chapter is to develop such an equational presentation for
the intuitionistic (monotonic) partial lambda calculus. It is unlikely that the
classical partial lambda calculus has an equational presentation. In Chapter 6
we support this claim on the ground that the classical partial lambda calculus
involves some kind of case analysis even at the equational level. In Section 7.4
we make this more precise by stating a conjecture (see Remark 7.4.3).

The basic idea is to extend (mon)p-equational logic (see Definition 4.1.9
and 4.1.27) to deal with A-terms. For simplicity, we consider only the pure
untyped (monotonic) partial lambda calculus, i.e. there is only one sort and the
only term-constructors are A-abstraction and application. However, the defini-
tions and theorems (of this chapter) extend easily to signatures containing extra
constants (and functions) and to the typed partial lambda calculus. We define
the analogue of p-terms in the presence of A-abstraction, called pA-terms, and
two formal systems on the set of pA-equations and pA-inequations (considered as

ordered pairs of pA-terms):

e \[pnp-equational logic (see Section 7.2), which is equivalent to the JA,37-

calculus restricted to F-equations

224

225

e Afnmonp-equational logic (see Section 7.3), which is equivalent to the

Jmon, Bn-calculus restricted to Ein-equations

ABnp- and ABpmonp-equational logic are very similar. Therefore, in Section 7.3
on Afnpmonp-equational logic, we indicate only what are the relevant differences

from AfBnp-equational logic.

7.1 PM-terms

We introduce a set of inference rules for generating pA-terms. There are other
sets of inference rules for pA-terms (see Definitions 7.1.11 and 7.1.19), but they
are not so conventent when one wants to prove, for instance, that a function
defined (by induction) on raw pA-terms (see below) satisfies a certain property,

when applied to a pA-term. In fact:

e the substitutive inference rule (*) (see Definition 7.1.11) is too different from
the formation rules for raw A-terms to exploit the inductive definition of

the function on raw pA-terms.

e the alternative inference rule (z7) (see Definition 7.1.19) is too cumbersome,
as it has an unbounded number of premisses and uses an auxiliary function

d(.) in the side condition and the premisses.

However, they will be used for other purposes.

Definition 7.1.1 Structural inference rules for pA-terms

The set pTerm of pA-terms is generated by the following inference rules:

T) € pTerm

111D, € pTerm t3f Dy € pTerm
z H{t1t2} U Dy U Dy € pTerm

z.app

111Dy € pTerm t3f Dy € pTerm
tltg r{tltg} U D1 U D2 € pTerm

app

t1D"UD € pTerm D € pTerm
(Az.tt1D')ID € pTerm
D is a d)\-term iff yID is a pA-term.

A z ¢ FV(D)

226

Notation 7.1.2 We identify D with y[D, where y is a fized variable. For in-
stance, D € pTerm means that y[D € pTerm.

Remark 7.1.3 The p-terms (as defined in Definition 4.1.9) are exactly those
generated by the inference rules above, except (). If the inference rule (\) were
replaced by the simpler rule

t1D" € pTerm D € pTerm

A
v (Az£1D")[D € pTerm

then the set of pA-terms would no longer be closed w.r.t. *-substitution.

We cannot give definitions by induction on the structure of pA-terms, because
they are defined by a set of rules which is not deterministic. To overcome this
problem we introduce a superset of the pA-terms, whose elements, called raw

pA-terms, are generated by formation rules.

Definition 7.1.4 Raw A-terms, raw pA-terms and raw dA-terms

The set r'Term of raw A-terms is generated by the following formation rules:

z € r'Term

t; € r'Term ty € r'Term
t1ty € r'Term

app

D Cyyp r'Term t € r'Term

A
(Ax.t1D) € rTerm

D is a raw dA-term ¢ff D C r'Term.

tID is a raw pA-term iff t is a raw A-term and D is a raw d\-term

The formation rules for raw A-terms are like those for A-terms, with the only
exception of (). Moreover, there is no extra formation rules for restriction

operators, as in the case of A[-terms.

Example 7.1.5 We illustrate with few examples the difference between A[-, raw

pA- and pA-terms. Let M0, N0, Pl and Q!0 be pA-term.

o (MI{P})N is a Al-term, but not a raw A-term.
MN {P} is a raw pA-term.

227

e MNI), M{z} and M[{NPQ} are raw pA-terms, but not pA-terms.
MN[{MN} , M) and M[{NPQ, NP} are pA-terms.

The restriction operator in (raw) pA-terms is meant to take care of divergence
in the background and should not be treated as an ordinary term constructor,

therefore some notions (e.g. that of subterm) have to be changed accordingly.

Definition 7.1.6 Subterms
Given a raw A\-term M we define the set subt(M) of its subterms and the
set subd(M) of its d-subterms:

o subt(z) 2 {z}
subt (M My) £ {M; My} U subt(M;) U subt(M,)
subt(Az. M D) £ {Az.M D} Usubt(M) U (Uyepsubt(N))
o subd(z) 2 {
subd (M M) £ subd(Ml) U subd(M,)
subd(Az.M D) £ D Usubd(M) U (Uyepsubd(N))
subt(_) and subd(_) are extended to raw d\- and pA-terms as follows:
o subt(D) £ Uyepsubt(N)
subt(M D) £ subt(M) U subt(D)
o subd(D) £ DU (Uyepsubd(N))
subd(M D) £ subd(M) U subd(D)
Notation 7.1.7 We say that a raw A-term is a value if it is a variable or a

A-abstraction (Az.t}D). We say that a raw A-term (and similarly for dA- and
pA-terms) M has no redundancies iff all N € subd(M) are not values.

It is immediate to see that pA-terms have no redundancies.

In the rest of this section we establish two basic properties of pA-terms:
e p)-terms are closed w.r.t. *-substitution (see Definition 4.1.9)
e it is decidable whether a raw pA-term is a pA-term

Each of the these two properties amounts to say that the set of pA-terms is

generated by a suitable set of inference rules.

228

7.1.1 Closure w.r.t. x-substitution

The set of pA-terms is closed w.r.t. *-substitution iff the inference rule () is
admissible. The simplest way to prove admissibility would be to derive (*) from
the structural inference rules for pA-terms. However, the inference rule (%) is
not derivable, and its admissibility must be proved by induction on the proof of
M1D € pTerm (see Proposition 7.1.10). When M is a variable, we rely on the

admissibility of two instances, (0-*) and (w-#), of the inference rule (*).

Lemma 7.1.8 (0-*) is admissible
The following inference rule is admissible in the set of pA-terms:

M'D € pTerm

0-+
D € pTerm

Proof By induction on the proof of M| D € pTerm:
e () = immediate (compare with the case (x.app))

o (z.app) =

To derive D € pTerm, i.e. y[D € pTerm, it is enough to apply the rule
(y.app) (instead of (x.app)) to the premisses of the last rule in the proof of
MID € pTerm.

e (app) = similar to the case (x.app)

e (\) = trivial

In fact, D € pTerm is a premiss of the last rule in the proof of M[D €
pTerm.

Lemma 7.1.9 (w-#) is admissible
The following inference rule is admissible in the set of pA-terms:

M'!D € pTerm E e pTerm
MIDUE € pTerm

W-3*

229

Proof By induction on the proof of M D € pTerm:

e (z) = There are two subcases: (y), (y.app). Depending on the last rule
in the proof of £ € pTerm (i.e. y[E € pTerm).

— (y) = immediate (compare with the subcase (y.app))

— (y.app) =
To derive x [E' € pTerm it is enough to apply the rule (z.app) (instead
of (y.app)) to the premisses of the last rule in the proof of £ € pTerm.

o (z.app) =

Let t1[Dy € pTerm and t5} D3 € pTerm be the premisses of the last rule
(i.e. (z.app)) in the proof of M D € pTerm.

By IH ¢, Dy U E € pTerm and
t3/ D3 U E € pTerm, therefore

MIDUE € pTerm by (x.app).
e (app) = similar to the case (x.app)

e (A\) = similar to the case (z.app)

The side condition ¢ FV(D U E) can be satisfied by renaming the bound

variable x, so that it does not occur free in E.

Proposition 7.1.10 (x) is admissible
The following inference rule is admissible in the set of pA-terms:

M'!D € pTerm NTE € pTerm
(MD)*[y:= N|FE] € pTerm

Proof By induction on the proof of M D € pTerm:
e () = There are two subcases: ¢ Zy and = = y.

— @ # y = the proof uses (0-*) and (w-*)
By the admissible rule (0-*) £ € pTerm, therefore
z[E € pTerm by the admissible rule (w-).

230

— x =y = trivial
In fact, the conclusion of (%) is N[F € pTerm.
e (z.app) =

Let t1[Dy € pTerm and t5} D3 € pTerm be the premisses of the last rule
(i.e. (z.app)) in the proof of M D € pTerm.

There are two subcases: © #Z y and z = y.

— ¢ #y = by IH (compare with the case (app))
- T =Yy =
by TH (11} Dy)*[y: = N1 E] € pTerm and
(tal D3)*[y: = NIE] € pTerm,
by (y.app) (D)*[y:= NIE] € pTerm, therefore
NI(D)*[y:= NIE] € pTerm by the admissible rule (w-+).
o (app) =

Let t1[Dy € pTerm and t5} D3 € pTerm be the premisses of the last rule
(i.e. (app)) in the proof of M [D € pTerm.

By IH (¢1]D1)*[y:= N[E] € pTerm and
(ts!D3)*[y: = NI FE] € pTerm, therefore

(M D)«*[y:= NIFE] € pTerm by (app).

e (A\) = similar to the case (app)

The side condition « € FV((D)*[y: = N[E]) can be satisfied by renaming

the bound variable z, so that it does not occur free in N[FE.

The admissibility result, above, suggests a different set of inference rules for

pA-terms, mainly based on *-substitution:

Definition 7.1.11 Substitutive inference rules for pA-terms

T2) € pTerm

231

a
bP x1za {122} € pTerm

111D, € pTerm t3f Dy € pTerm
(t11D1)*[xz:=1t2] D3] € pTerm

FD'"U D € plerm D € pTerm

2
A
(Az.ttD')ID € pTerm

x ¢ FV(D)

We claim that the substitutive inference rules generate the set of pA-terms. The

claim is a consequence of the following facts:

e the structural inference rules are derivable from the substitutive inference

rules

e the substitutive inference rules, except (*), are derivable from the structural

inference rules
e the inference rule (*) is admissible in the set of pA-terms

The first two facts are easy to prove, the third one is Proposition 7.1.10.

7.1.2 Decidability and alternative inference rules

To prove decidability of being a pA-term, we introduce a deterministic set of
inference rules for pA-terms (see Definition 7.1.19) s.t. the size of the premisses
is strictly less than the size of the conclusion. Therefore, to prove that a raw pA-
term M D is a pA-term we can proceed backwards by deterministically reducing
a goal to a finite set of smaller subgoals, according to the structure of the raw

A-term M (see Theorem 7.1.21).

Definition 7.1.12 The size size(.)
size(_) takes a raw A-term and returns its size. size(_) is defined by induction

on the structure of raw A-terms:
e size(x) 20
o size(tils) 214 size(t1) + size(tz)

e size(Ax.t]D) 214 size(t D)

232

size(_) is extended additively to raw pA-terms and raw d\-terms:
e size(D) 2 >tep size(t)
o size(t|D) £ size(t) + size(D)

Remark 7.1.13 size(_) is consistent with the subterm relation on raw A-terms,

i.e. if t; is a proper subterm of ty, then size(t;) < size(ts)

In order to define the set of alternative inference rules we need a function d(.)
which takes a raw A-term ¢ and returns the smallest D s.t. t[D is a pA-term,

when such a D exists (see Proposition 7.1.23).

Definition 7.1.14 d(.)

d(.) is a partial function defined by induction on the structure of raw A-terms
(if any of the expressions d(_) in the r.h.s. is undefined, then the whole r.h.s. is
undefined):

o d(z) 20

o d(tits) & {t:t,} Ud(t:) U d(ty)
U{d()|t' e d(ttD)— D} ifx ¢ FV(t) for allt’ € d(t}D) - D

unde fined otherwise

e d\e.t1D) A {
d() is extended additively to raw pA-terms and raw d\-terms:

o d(D) 2 Usepd(t)

o d(t[D) & d(t)ud(D)

It is obvious that for any raw A-term t it is decidable whether d(t) is defined and
d(t) is computed effectively from t.

Proposition 7.1.15 d(_) is monotonic

If EC D and d(D) is defined, then d(FE) is defined and d(E) C d(D).

Remark 7.1.16 Note that d(-) is monotonic w.r.t. the inverse of the inclusion
order on raw dA-terms (compare with the axiom (incl) of monp-equational logic
in Definition 4.1.27). In fact, this (not the inclusion order) is the natural partial
order on raw dA-terms (and raw pA-terms), because the more elements a d\-term

D has the more difficult it is for all of them to denote.

233

Lemma 7.1.17 Properties of d(.)
if M is a raw A-term, d(M) is defined and N € d(M), then:

1. size(N) < size(M)

2. FV(N) C FV(M)

3. N is a subterm of M

4. N is not a value

5. d(N) is defined and N € d(N) C d(M)

Proof all statements are proved by induction on the size of the raw A-term M.
We prove only the first one, since the others have similar proofs.
e ()= M=u

The statement is vacuously true, because d(z) = ()

e (app) = M = tyt3, the proof uses the IH .
If N € d(M) = {tita} U d(t1) U d(t2), then either N = t1t, = M, or
N € d(t;) for 7 either 1 or 2. In the first case size(N) = size(M), otherwise:
— since size(t;) < size(l1ty) = size(M), by IH
size(N) < size(t;)
— since size(t;) < size(M), then
size(N) < size(M)
e (\) = M = (Mz.t|D), the proof uses the IH .
IfNedM)=Uu{dt)|t e d(tID)— D}, then N € d(t') for some t” €
d(t1D) and t' € d(t"), therefore:
— since size(t [D) < size(Azx t|D) = size(M), by IH
size(t") < size(t|D)
— since size(t") < size(M), by IH
size(t') < size(t")
— since size(t') < size(M), by IH
size(N) < size(t')

234

— since size(t') < size(M), then
size(N) < size(M)

Proposition 7.1.18 d(.) is idempotent
If d(D) is defined, then d(d(D)) = d(D).
If ECA(D) (for some D), then £ C d(FE).
Proof The proof uses the fifth property of d(-) (see Lemma 7.1.17). By defini-
tion, d(D) = U{d(M)|M € D} and d(d(D)) ~ U{d(N)|IM € D.N € d(M)},

therefore:
e d(d(D)) is defined, because d(N) is defined for all N € d(D) (by the fifth
property).
e d(d(D)) C d(D), because d(N) C d(M)(C d(D)) for all M € D and
N € d(M) (by the fifth property).
e d(D) C d(d(D)), because N € d(N) for all N € d(D) (by the fifth prop-
erty).

If £Cd(D), then E C d(FE) is implied by N € d(N) for all N € F.

e by N € E Cd(D), there exists M € D s.t.
N ed(M)

e by the fifth property
N e d(N)

Definition 7.1.19 Alternative inference rules for pA-terms
If any of the expressions d(.) in the premises and side conditions is undefined,
then the whole inference rule is not applicable:
2 {t:1d(t;) € pTerm|tit, € D AT = 1,2} D
x D € pTerm

= (D)

, t1]/D € pTerm t2fD € pTerm

it € D
tita 1D € pTerm e

app

235

FD'"U D € plerm D € pTerm

2
A’
(Az.ttD')ID € pTerm

z ¢ FV(D)

To prove that, in the alternative inference rule (z’), the size of the premisses is

strictly less than the size of the conclusion, we rely on the following property:

Lemma 7.1.20 Decreasing Property
If d(t1t2) is defined, then size(t;[d(t;)) < size(d(t1t2)) (fori=1,2)

Proof

e by definition of d(.)
d(tltg) = {tltg} U d(tl) U d(tg)

e since t1ty is not a subterm of ¢;, by Lemma 7.1.17
t1ty & d(t;), therefore

size(d(t112)) = size(t1ty) + size(d(t1) U d(12))

e by definition of size(.)
size(t; [d(t;)) < size(tity) + size(d(t1) U d(t2)) = size(d(t112))

Theorem 7.1.21 Decidability
It is decidable whether M [D € pTerm is derivable from the alternative infer-

ence rules.

Proof We prove decidability of M [D € pTerm by induction on the size of the
raw pA-term M [D. There are three cases to consider, depending on the structure

of the raw A-term M:

e ()= M=ux

The only applicable rule is (2’). Therefore, x[D € pTerm is derivable iff
the side condition D = d(D) is true and the premisses ¢;1d(¢;) € pTerm
(for all t1¢2 € D and 7 = 1,2) are derivable.

236

The side condition is clearly decidable. To complete the proof of decidabil-
ity we have to show that the premisses are decidable, whenever the side con-
dition is true. By IH | it is enough to prove that size(¢;[d(t;)) < size(x [D),

whenever the side condition is true.

size(t; [d(t;)) < by Lemma 7.1.20

size(d(t1t2)) < by tity € D

size(d(D)) = by the side condition
(

The only applicable rule is (app’). Therefore, t1¢5[D € pTerm is derivable
iff the side condition t1¢3 € D is true and the premisses ¢;[D € pTerm (for
i = 1,2) are derivable.

The side condition is clearly decidable. To complete the proof of decidabil-
ity we have to show that the premisses are decidable. By TH | it is enough
to prove that size(t;] D) < size(t1t2 | D).

size(t; [D) = size(t;) + size(D) <

1 + size(t1) + size(tz) + size(D) =

size(tity) + size(D) = size(t1t21 D)
e (\) = M= (\ztlD)

The only applicable rule is (A’). Therefore, (Ax.t1D')ID € pTerm is
derivable iff the side condition ¢ FV(D) is true and the premisses

tI1D'UD € pTerm and D € pTerm are derivable.

The side condition is clearly decidable. To complete the proof of decidabil-
ity we have to show that the premisses are decidable. By IH | it is enough
to prove that (size(D) <)size(t[|D'U D) < size((Azx.t[D")| D).

size(t [D" U D) = size(t) + size(D' U D) <

size(t) + size(D') + size(D) < size((Ax.t[D")[D)

We claim that the alternative inference rules (of Definition 7.1.19) generate

the set of pA-terms. The claim is a consequence of the following facts:

237

e the alternative inference rules are derivable from the substitutive inference

rules (of Definition 7.1.11)

e the structural inference rules (z) and (\) (of Definition 7.1.1) are derivable

from the alternative inference rules

e the structural inference rules (z.app) and (app) are admissible in the set

generated by the alternative inference rules

The first fact is Proposition 7.1.22, the second is trivial and the third one is
Proposition 7.1.26 and 7.1.27. The structural inference rules (x.app) and (app)
are not derivable. To prove their admissibility, we rely on the admissibility of two
instances, (0-*) and (w-%), of the inference rule (*) (see Lemmas 7.1.24 and 7.1.25)
and on the characterization of d(t) as the smallest D s.t. ¢ [D is a pA-term, when
such a D exists (see Proposition 7.1.23).

Proposition 7.1.22 Derivability of the alternative inference rules
The alternative inference rules are derivable from the substitutive inference

rules.

Proof Derivability of (27) is the most difficult to prove and relies on the following
property of d(.):

Claim 7.1.22.1 D = UNJNQGD({NINQ} U d(Nl) U d(NQ)), ’LfD = d(D)
Proof

e since D = d(D), by definition of d(.)
for all N € D there exists M € D s.t. N € d(M)

o by the fourth property of d(_) (see Lemma 7.1.17)
N must be of the form N; Ny, therefore
D =d(D) = Uyepd(N) =
Uny vy end (N1 V3) = Uny vpen ({N1 N2 U d(IV,) U d(IVy)).

238

To prove derivability of an inference rule, we must derive the conclusion from
the premisses by the substitutive inference rules (provided the side condition is

satisfied).
° (v)) =
Suppose that D = d(D), we have to derive z [D € pTerm from N, [d(N;) €
pTerm (for all NyN; € D and 1 = 1,2).
— by the substitutive inference rules (app) and (*)
NNz H{N1 Ny} Ud(Ny) Ud(Nz) € pTerm (for all NyN; € D)
— by the substitutive inference rules (z) and (%)
zlUnyNyep ({ N1 N2} Ud(N;) Ud(Ny)) € pTerm
— by the claim
x D € pTerm

e (app’) =
Suppose that Ny N, € D, we have to derive Ny Ny [D € pTerm from N;[D €
pTerm (for ¢ = 1,2).
— by the substitutive inference rules (app) and (*)
N1N2 r{NlNQ} UubD S pTerm
- by N1N2 € D
NiNy D € pTerm
e (V)=

(A7) is trivially derivable, since (A) and (A’) are the same rule

Proposition 7.1.23 Characterization of d(-)
If MTD € pTerm s derivable by the alternative inference rules, then:

e (d(D) and d(t) are defined, and) d(t) Cd(D)=D

e {[d(t) Ud(FE) € pTerm is derivable by the alternative inference rules, for
adl ECD

239

Proof Both statements are proved by induction on the proof of M D € pTerm.
There are three cases to consider, depending on the last inference rule used.
The proof of the first statement is:

o (') = M = z, the proof uses the side condition.

D = d(D) by the side condition and d(z) 20CD trivially

o (app’) = M = ty1,, the proof uses the IH and the side condition.
D =d(D) by IH for t;} D (with i either 1 or 2).
We have to show that d(tit,) C D:
— by IH for ;1D
d(t;) € D (for i = 1,2), therefore
d(t1ty) = {t1t,} Ud(t1) Ud(ty) C {t1t2} U D
— by the side condition tt, € D
(d(t1ty) =){t1t} Ud(t;) Ud(ty) C D
o (V) => M = (Az.t}D'), the proof uses the IH and the side condition.
D =d(D) by IH for D.
We have to show that d(\z.t[D') C D:
— by IH for t}D' U D
d(t) Cd(D'UD) = D' U D, therefore
F24(t1D)-D' C(D'UD)- D' CD
— by IH for D
(£ C)D =d(D)
— by monotonicity of d(_) (see Proposition 7.1.15)
d(F) C d(D)(= D)
— by the side condition « ¢ FV(D)
z ¢ FV(F), therefore
d(Az.t}D') = d(F)(C D)

The proof of the second statement is:

240

e (') = M = z, the proof uses the side condition and the premisses.

We have to show that « [E € pTerm:

— since £ C D = d(D), by monotonicity of d(.)
d(E) € d(D)(= D)
— by idempotency of d(_) (see Proposition 7.1.18)
d(d(F))=d(E)C D
— the following assertions are derivable, since they are in the premisses
of the last rule (i.e. (7)) in the proof of M D € pTerm
{t;td(t;) € pTerm|tit, € d(F) At = 1,2}
— by applying the inference rule (z”)
zd(F) € pTerm

e (app’) = M = tyl,, the proof uses the IH and the side condition.

— by E C D and the side condition #,, € D
{titJUEC D
— by IH for ;| D
(t:1d(t1t2) U d(E) =)t 1d(t:) U d(tits) U d(E) € pTerm
— since t1t, € d(t115), by the inference rule (app’)
tita [d(t1t) U d(E) € pTerm

o (M) = M = (Az.t|D’), the proof uses the IH and the side condition.

By the first statement, d(Az.t[D') = d(#) C D = d(D), where F =
d(t1 D"y — D'. In the proof we rely on the equality

Claim 7.1.23.1 D' Ud(F) = d(t} D) U d(F)

Proof The claim is a consequence of the following inclusions:

— D' Cd(t1D'), in fact
by the first statement
(D' C)D'UD Cd(D'"UD)
by Proposition 7.1.18
D Cd(D)(C d(t1 D))

241

— d(t1D') C D'U F (by definition of F)
— F Cd(F), in fact
by the first statement (see case (1))
FCD=d(D)
by Proposition 7.1.18
F Cd(F)

Now we prove that (Az.t[D")[d(F)Ud(E) € pTerm

— by F C D (see case (\') in the proof of the first statement) and £ C D
D'UFUECD UDand FUECD
— by IH for ¢t} D'U D

t1d(t) Ud(D') Ud(F) U d(E) € pTerm, therefore

t1D' U d(F)Ud(E) € pTerm, by the claim
— by IH for D

d(F)Ud(E) € pTerm
— since FUE C D = d(D), by monotonicity of d(_) (see Proposi-
tion 7.1.15)

d(F U E) C D, therefore

z ¢ FV(d(F U E)), by the side condition = ¢ FV(D)

— by the inference rule (\')

Azt D) d(F)U d(E) € pTerm

Lemma 7.1.24 (0-#) is admissible
The following inference rule is admaissible in the set generated by the alterna-
tive inference rules:

MID € pTerm

0-*
D € pTerm

242

Proof By induction on the proof of M [D € pTerm:
o (V)=
To derive D € pTerm, i.e. y [D € pTerm, it is enough to apply the rule (y’)

(instead of (27)) to the premisses of the last rule in the proof of M|D €
pTerm.

o (app’) =
by IH for any of the two premisses of the last rule in the proof of M [D €
pTerm.

e (\') = trivial
In fact, D € pTerm is a premiss of the last rule in the proof of M[D €
pTerm.

Lemma 7.1.25 (w-%) is admissible
The following inference rule s admuissible in the set generated by the alterna-

tive inference rules:

MID € pTerm E € pTerm
MIDUE € pTerm

W-k

Proof By induction on the proof of M D € pTerm:

e (¢’) = M = z, the proof uses the side condition the premisses and F €
pTerm.

We have to show that z[D U E € pTerm. We rely on the fact that the
last rule in the proof of £ € pTerm (i.e. y[E € pTerm) must necessarily

be (y’).
— by the side conditions D = d(D) and £ = d(FE)
dDUFE)=d(D)Ud(E)=DUE
— the following assertions are derivable, since they are the premisses of

the last rules (i.e. (2’) and (y’)) in the proofs of M D € pTerm and
E e pTerm

{t;1d(t;) € pTerm|tit, € DUE AT = 1,2}

243

— by applying the inference rule (z7)
z[DUFE € pTerm

e (app’) = M = tyl,, the proof uses the IH and the side condition.

— by IH for ;[D
t,IDUFE € pTerm

— by the side condition t,t, € D
it e DUE

— by the inference rule (app’)
tity] DU E € pTerm

e (M) = M = (Mz.t|D’), the proof uses the IH and the side condition.

— by IH for ¢t [D'U D and D
tI1D'"UDUE € pTerm and
DUEFE € pTerm
— by the side condition € FV(D) and by renaming the bound variable

x so that it does not occur free in £
r ¢ FV(DUE)

— by the inference rule (\’)
(Axt!D")IDUE € pTerm

Proposition 7.1.26 (z.app) is admissible
The following inference rule s admuissible in the set generated by the alterna-
tive inference rules:

MID € pTerm NTE € pTerm
t{MN}UDUEFE € pTerm

z.app

Proof Suppose that both M D € pTerm and N[FE € pTerm are derivable by the
alternative inference rules. If we show that {MN}JUDUE =d({MN}UDUE)
and t;d(¢;) € pTerm (for all t1t, € {MN} U D U E and ¢ = 1,2) are derivable,
then z [{MN}U D U E € pTerm is derivable by the inference rule (z).

244

o {(MN}UDUE =d({MN}UDU E). In fact,
by Proposition 7.1.23
d(M) € D = d(D) and d(N) C E = d(E), therefore
d{MN}UDUE) =
({MN}Ud(M)Ud(N))ud(D)Ud(E) =
{MN}UDUE
o #;1d(t;) € pTerm (for all t1¢, € D and i = 1,2) and similarly for E. In fact,
by the admissible inference rule (0-)

D € pTerm is derivable, but the last inference rule in its derivation must

necessarily be (y’), therefore

t;1d(t;) € pTerm is derivable (for all ¢;7, € D and ¢ = 1,2)

e M[d(M) € pTerm follows immediately by Proposition 7.1.23, and similarly
for NId(N) € pTerm

Proposition 7.1.27 (app) is admissible
The following inference rule s admissible in the set generated by the alterna-

tive inference rules:
M'D € pTerm NTE € pTerm
MNMH{MN}UDUE € pTerm

app

Proof Suppose that both M[D € pTerm and N[E € pTerm are derivable by
the alternative inference rules. If we show that M[{MN}U DU E € pTerm and
NHMN}UDUEFE € pTerm are derivable, then MN[{MN} U D U E € pTerm

is derivable by the inference rule (app’).
e MI{MN}UDUE € pTerm and similarly for N. In fact,
by the admissible inference rule (y.app)
{MN}UDUPE € pTerm is derivable
by the admissible inference rule (w-*)

MMHMN}UDUE € pTerm is derivable

245

7.1.3 Discussion on pA-terms
Why consider the restriction operator?

In the JA,B-calculus the restriction operator is redundant (see Theorem 4.2.8),
but in the JA,-calculus (and the JApn-calculus) it does actually increase the

expressive power of equations.

Remark 7.1.28 In JA,+ [, any A[-term is provably equivalent to a pA-term (see
Proposition 7.2.13), but (Az.z[{yz}) is not equivalent to any A-term.

For studying f-reduction (see Chapter 8) we can identify terms up to provable
equivalence in the JA,-calculus (or the JApn-calculus) at most, and the choice

between A-terms and A [-terms is an issue. The natural counterpart of 3-reduction

for the JApB-calculus (Ax. M)N = M[z: = N] is a conditional reduction
N |= (Ae.M)N ~ M[z:= N]|

We claim that the restriction operator is necessary in order to define g-reduction
as a binary relation. In fact, there are two ways of turning this conditional

reduction into a reduction:
o (A\e.M)N ~ (Aa.M[z:= N|)N
o (A\e.M)N ~ M[z:= N]IN

The first option is quite unsatisfactory, because it modifies the #-redex without
removing it. However, it is the only option available, when we do not want the

restriction operator.

Remark 7.1.29 The second option does not make sense for pA-terms, because
(Ax.M)N and M[z:= N][N are not pA-terms. However, there is an alternative

reduction with the same underlying idea:
A MID)NMH(A. MID)N}UE ~ (M D)*[z:= NI FE]

Note that for pA-terms we do not have to keep track of N in the r.h.s., because
this is done in the background. In fact, when N is not a value N € E | by
definition of pA-term.

246

Now we explain why other notions of 3-reduction proposed in the literature are

not suitable for the JA,3-calculus (see also Theorem 6.4.5):

e (Ax.M)N ~ M[z:= N] the usual f-reduction is not correct. For instance,
if M = (A\y.z) and N = yz, then the L.h.s. is undefined when N is undefined,
while the r.h.s. is always defined.

o (Az.M)N ~ M[z:= N] (if N is a value) the 3,-reduction (see [Plo75]) is too
weak. For instance, if M = (Az.z) and N = yz, then the equation above is

not provable in the A 3-calculus, but it is provable in the JA,B-calculus.

Are p)A-terms canonical?

In section 4.1.2 we have shown that every term with restriction operators is
equivalent (in LPT + | as well as monLPT + [) to exzactly one p-term. Therefore
p-terms can be regarded as canonical forms and provable equivalence between
them is just syntactic equality. We show that pA-terms are not canonical forms

for Al-terms and that there are difficulties in trying to achieve this.

Definition 7.1.30 d-Conversion
Let M and N be two \[-terms.

o M~y N iff M ~ N is derivable in JA\, + | (d-conversion)
o M~ N iff M ~ N is derivable in Jmonk, + | (md-conversion)

These two equivalence relations are different on A[-terms (see Theorem 6.3.3),
therefore no set of A[-terms is canonical for both of them. These two equivalence
relations are syntactic equality on p-terms (by Theorem 6.3.4) and a-conversion

on A-terms (by an open term model construction).

Example 7.1.31 The equivalence relations ~; and ~,,; are not trivial and do

not coincide on pA-terms, more precisely:

e syntactic equality is properly included in ~;. In fact,

(Az.xMyz}) Hyz} ~a Az.20) Hyz}
One can find more elaborated examples by following the same general idea,

ie. A\e.MID)IEUF ~; (Ae.MIDUE)EUF (if z ¢ FV(E)).

247

e ~, is properly included in ~,,,.

Let I = (Az.z) and I' = (Az.x [{yz}), then
z{zl, 2l'} 0 x [{zl'}, but a [{z], 21"} £, x[{z]'}.

A p-term NTE is characterized as the biggest raw p-term with no redun-
dancies (see Notation 7.1.7) in its equivalence class w.r.t. d-conversion, or equiv-

alently:
e {t| |t € E} = N |[. i.e. all information about divergence is in £
o {t ||t € E} = t1ty | implies t;1; € F, i.e. E is closed w.r.t. derivability

We want to show that for certain A[-terms there is no biggest raw pA-term d-
convertible to it, unless we allow infinite terms. Therefore, we cannot make

pA-terms canonical by requiring them to be as big as possible.

Proposition 7.1.32 Let M, be defined by induction on n:

A

o My=yz

A

o My = Axa{M,})(Ax.x[{M,})

then the sequent My |, My |=—= My = M, 41 s derivable in JA, + | for all n,
but M,, | <= M,, | is not derivable in Jmond, + | unless n = m.

Therefore, if there exists the biggest d\-term D d-convertible to { My, M},
then it has to contain (something d-convertible to) M,, for all n, hence it has to

be infinite.

Proof It is easy to derive My |, My |=— M; = M,,1. For the other claim we
exhibit a counterexample, namely a Kripke A-structure (see Definition 4.2.25)

which is a model of the JmonA,-calculus.
o K is w with the inverse of the standard linear order <.
e The interpretation of ¢ is the lifting of 1 in the category of Kripke posets
over K and monotonic partial functions, i.e.
B is the poset {n € win < a + 1} with the standard order and

B(f)(n) = min(n,o’ + 1) for all fra — o (i.e. o' < a) and n € B (ie.
n<a+l).

248

e app®®) is the monotonic partial function s.t.

(e,)%{O‘H fasn<a+tl
app n,m) = unde fined otherwise

o Instead of defining ¥* we give only the clause for A-abstraction:

n+ 1 if nis the biggest o’ < « s.t.
[[()‘I-t)]]?’a 2 [[t]]B’a is defined

Prs |z:=a’+1
0 otherwise
We claim that B is a model of Jmon), + [. Moreover, if p is the environment
that maps every variable to 0, then for all stages o € K

a+1 fa<n
unde fined otherwise

(15 = {

[(Aa.x I M,)]5e = {a +1 ifa<n

n otherwise

7.2 A3Bnp-Equational Logic

In this section we introduce an equational presentation of the JA,Bn-calculus,
ABnp-equational logic, which consists of p-equational logic extended with one
inference rule ((¢)) and two axioms ((5) and (7)). We prove that A@np-equational
logic is JA,Bn + | restricted to the fragment of pA-equations, by extending the
proof given in Section 4.1.2 for p-equational logic.

The similarity between the pure inference rules (see Definition 7.2.3), that
generate the smallest A@np-theory, and those for the A3n-calculus (see Definition
3.2.3 of [Bar81]) makes it possible to (give definitions and) prove results for the
partial lambda calculus by analogy with the lambda calculus. With this approach
we will (define and) prove the analogues of some familiar (definitions and) results

from the literature on the lambda calculus:
e Jacopini’s lemma and the relation between A\-models and A-algebras

e (-reduction and the Church-Rosser property

Definition 7.2.1 A\@np-equational logic ABnpEQL

249

A set T' of pA-equations (considered as ordered pairs of pA-terms) is a A\pnp-

theory iff it is closed w.r.t. the inference rules

refl t[D ~tlD

11Dy ~ 131D, 15[D3 ~ t4f Dy
(t1 1 D1)*[x:=1t3] D3] >~ (t2[Da)*[x:= 14| Dy

*subst

teriLJDlﬁthD/ZUDQ DlﬁDQ

e 1D Dy ~ Owdal D D, FEV(PU D)

B Ayt!D)yl{(AyttD)y} ~tID 11D € pTerm

n (Ay.xyH{zy}) 10~z 10 y ¢ FV(z)

ThH MID ~ NIE in Apnp-equational logic (A\BnpEQL) N MID ~ NIFE is
in any A\Bnp-theory which contains T

Remark 7.2.2 There are three natural variants of Afnp-equational logic, ob-
tained by dropping either (3) or (n) or both: Anp-, ABp- and Ap-equational log-
ics. Each of them gives an equational presentation of the corresponding variant

of the JA,Bn-calculus.

7.2.1 Pure A\3np-equational Logic

To generate the smallest ABnp-theory, we introduce a set of (derivable) inference
rules, similar to that for the lambda calculus, which is partitioned into three

groups:

e the structural inference rules, that are similar to the structural inference

rules for pA-terms (see Definition 7.1.1)

o the inference rules for one-step parallel 3- and n-reduction

250

e symmetry and transitivity

Definition 7.2.3 Pure Inference Rules
The pure inference rules for A@np-equational logic is the following set of

rules on pA-equations:

zzld~zld

1/ Dy > 13Dy t3[D3 >~ t4f Dy

©-app x r{tltg} U D1 U D3 ~ T r{t2t4} U D2 U D4
app D1 >ty 1Dy t3[D3 ~ 141Dy
(tltg) r{tltg} U D1 UD3 ~ (t2t4) r{t2t4} UD2 U D4
teriUDlﬁtgrDéUDg DlﬁDQ
FV(D;UD
T M ID) Dy ~ Oa Dy Dy & FEVIDUD:)
t1|D1UDy >~ 131D ta| Dy >~ t4| D
$/3 1r 1 2 3r 3 2r 2 4r 4 ygFV(Dg)
ty|D1U Dy ~ 131D oyl Dy ~ 41D
3 lr 1 2 SF 3 2r 2 4f 4 yQFV(Dz)

' ()\ytl rDl)tQ r{()‘ytl rDl)tQ} U D2 ~ (t3 rDS)* [y = t4 rD4]

t1[Dy ~ty[D,
" Dty {1 Ds ~ 1,1 D,

y € FV(t)

symm

trans

Remark 7.2.4 One can easily extend the pure inference rules to generate the
smallest Ap-theory containing a set T' of pA-equations, by introducing two pure
inference rules (schemas) (z.7') and (7"). This would make the similarities be-

tween pure and revisited inference rules (see Definition 3.2.9) more apparent.

251

We claim that the pure inference rules generate the smallest A\3np-theory
pS(ABnpEQL). Since they are derivable in ABnp-equational logic, it is enough
to show that any pA-equation in pS(ABnpEQL) is derivable, or equivalently that
the inference rules of ABnp-equational logic are admissible in the set generated
by the pure inference rules. We prove only admissibility of (refl) and (*subst),
since the derivability of the other inference rules follows easily (e.g. the axiom
() is derived by using the pure inference rule () and reflexivity). Reflexivity
is derivable from the structural inference rules, while the inference rule (*subst)
is not derivable and its admissibility is proved by induction on the proof of
MID ~ NI|FE (see Proposition 7.2.9). There are strong similarities with the
proof that (k) is admissible in the set generated by the structural inference rules
for pA-terms (see Proposition 7.1.10). In particular, when the last rule in the
proof of M[D ~ NIE is () or (xz.app), we rely on the admissibility of two

instances, (0-*subst) and (w-#subst), of the inference rule (*subst).

Remark 7.2.5 If we remove any of the non-structural pure inference rules (but
(z.4) and (B) should be treated as one rule), then the inference rules (refl) and
(*-subst) are still admissible. This is apparent by looking at the proofs of admis-
sibility for (0-ksubst), (w-*subst) and (ksubst).

Proposition 7.2.6 (refl) is derivable
For any pA-term M[D the pA-equation M|D ~ MI[D is derivable from the
structural inference rules (of Definition 7.2.3)

Proof By induction on the proof of M [D € pTerm by using the structural infer-
ence rules (see Definition 7.1.1):
o () =

z [~ z) by the axiom (z)

o (z.app) =

Let t1[Dy € pTerm and t5} D3 € pTerm be the premisses of the last rule
(i.e. (z.app)) in the proof of M D € pTerm.

By IH t1[Dy ~ t;| Dy and ty [Dy >~ t5[Dy, therefore
M1|D ~ M!D by the inference rule (z.app)

252

e (app) = similar to the case (x.app)

e (\) =

Let t|D"U D € pTerm and D € pTerm be the premisses of the last rule
(i.e. (X)) in the proof of M D € pTerm.

By IH ([D'UD ~ t1D'UD and D ~ D,
x & FV(D), because it is the side condition of (), therefore
M 1D ~ M1ID by the inference rule (¢)

Lemma 7.2.7 (0-*subst) is admissible
The following inference rule is admissible in the set generated by the pure

inference rules:

MID~NIE
D~F

0-*subst
Proof By induction on the proof of M D ~ NIE:

e () = immediate (compare with the case (x.app))

e (z.app) =

To derive D ~ E, i.e. y[D ~ ylF, it is enough to apply the rule (y.app)
(instead of (z.app)) to the premisses of the last rule in the proof of M | D ~
NITE.

e (app) = similar to the case (x.app)

(¢) = trivial

In fact, D ~ F is a premiss of the last rule in the proof of M D ~ N[E.
e (z.3) = similar to the case (x.app)

e () = similar to the case (x.app)

(n) =

D~ E by IH

253

e (symm) —=-

by IH E ~ D, therefore D ~ F by (symm).

e (trans) = similar to the case (symm)

Lemma 7.2.8 (w-*subst) is admissible
The following inference rule is admissible in the set generated by the pure
inference rules:
M!D~NIE F~G
MIDUF ~NIEUG

w-*subst

Proof By induction on the proof of M D ~ N[E:

e (z) = There are three subcases: (y), (y.app) and (y.3). Depending on
the last rule in the proof of F '~ G (i.e. y[F ~ y[G).

— (y) = immediate (compare with the subcase (y.app))

— (y.app) =
To derive x [F ~ x [(it is enough to apply the rule (z.app) (instead
of (y.app)) to the premisses of the last rule in the proof of F' ~ G.

— (y.) = similar to the subcase (y.app)

o (z.app) =

Let t11 Dy ~ t3[Dy and t3[D3 ~ t4[D4 be the premisses of the last rule
(i.e. (z.app)) in the proof of M|D ~ N|E.

By 1H terl UF ~ tngQUGand
t3[D3U F ~ t,} Dy UG, therefore

MIDUF ~ NIEUG by (x.app).
e (app) = similar to the case (x.app)

e ({) = similar to the case (x.app)

The side condition @ ¢ FV(D U E U F U () can be satisfied by renaming

the bound variable x, so that it does not occur free either in F' or in G.

254

e (z./) = similar to the case (x.app)

e () = similar to the case (x.app)

e (7) = similar to the case (z.app)

e (symm) = similar to the case (x.app)

e (trans) = similar to the case (x.app)

Proposition 7.2.9 (ksubst) is admissible
The following inference rule is admissible in the set generated by the pure
inference rules:

MID~NIE PIF~Q|G
(M[D)*[y:= PIF]

*subst

2
=
5
*
=
[
D
A

Proof By induction on the proof of M D ~ N[E:

e () = There are two subcases: © Zy and = = y.

— @ # y = the proof uses (0-*subst) and (w-*subst)
By the admissible rule (0-*subst) F' ~ (&, therefore
[F ~ 2 [G by the admissible rule (w-*subst).

— x =y = trivial
In fact, the conclusion of (xsubst) is Pl F ~ Q[G.
e (z.app) =

Let t11 Dy ~ t3[Dy and t3[D3 ~ t4] D4 be the premisses of the last rule
(i.e. (z.app)) in the proof of M D ~ N|E.

There are two subcases: © # y and z = y.

— & #Zy = by IH (compare with the case (app))

255

- T =Yy —
by IH (t1[D1)*[y:= P
(t31Ds)*ly: = PIF] ~ (L4 Da)*[y: = Q1G]
by (y.app) (D)*[y:= PIF]
PND)x[y:= PIF] ~ QNE)*[y:= QG| by the admissible rule
(w-*subst).

12
—
=
~—
*
=)
Il
L
D!
—+
=
D
=
a
e}
=
¢}

o (app) =
Let t1[Dy ~ t3[Dy and t3[D3 ~ t4[D4 be the premisses of the last rule
(i.e. (app)) in the proof of M|D ~ N|E.

By TH (61 Dy)xly: = P =~ (11 D)+ [y = Q1G] and
(tslD3)*[y:= PIF] (FD4)*[y: = Q 1G], therefore
(MID)*[y:= PIF] ~ (NIE)[y:= Q[G] by (app).

e ({) = similar to the case (app)

The side condition € FV((D)*[y:= PF|U (E)*[y:= Q[G]) can be
satisfied by renaming the bound variable z, so that it does not occur free

either in P F or in QG
o (2.8) = similar to the case (z.app)
o (5) = similar to the case (app)
o (1) = similar to the case (¢)
o (symm)=
By (symm) QG ~ P F
by TH (N E)*[y:= QG] ~ (M| D)x[y: = P F], therefore
(MID)+[y:= PIF] ~ (N1E)*[y: = Q1G] by (symm).

e (trans) = the proof uses reflexivity

Let M|D ~ RIH and RIH ~ N|F be the premisses of the last rule (i.e.
(trans)) in the proof of M|D ~ N|E.

By reflexivity Pl F ~ P F,

256

By IH (M[D)«*[y:= PIF| ~ (RIH)*[y:= P|F] and
(RIH)*[y:= Pl F] ~ (N[E)*[y:= Q[(G], therefore

(MID)*[y:= PIF] ~ (NE)*[y: = QG] by (trans).

7.2.2 Equivalence of A\gnpEQL and JA,0n + |

In this section we establish the correspondence between Afnp-equational logic

and JA,8n + [, by extending the results of Section 4.1.2 as follows:

e in JA,+ [every Af-term t is provably equivalent to a pA-term s(¢). There-
fore, pA-equations have the same expressive power as S-equations in JA,Bn+

I. As pointed out in 7.1.3 there can be more than one pA-term d-convertible

to .

e)\3np-equational logicis JA, 31+ | restricted to the fragment of pA-equations.

Remark 7.2.10 Similar results hold for the formal systems without either (/)
or (n) or both. However, to prove the analogue of Proposition 7.2.17 for the
JAp- and JApn-calculus, we have to use a more general definition of model (see

Definition 4.2.25).

We extend Definition 4.1.14 of saturation to A[-terms, so that s(¢) is a pA-term

provably equivalent to ¢:

Definition 7.2.11 Saturation
The saturation s(t) = st(¢)[sd(t) of t is defined by induction on the structure

of the Af-term t:

o s(tils) 2 st(ty)st(t2) [{st(t1)st(t2)} Usd(t1) Usd(ta),

A
L] S(tl rtg) = St(tl) rSd(tl) U Sd(tg),
o s(\z.t) = (\z.s(t)) 10
The definition of s(-) is extended in the obvious way to sets of A|-terms:

o sd(D) £ Usepsd(t)

257

o s(t1D) £ st(t)[sd(t) Usd(D)

Example 7.2.12 pA-terms are not necessarily invariant w.r.t. saturation, e.g.

s((Ae.yz10)H{yz}) = (AeyzH{yz}) Hyz}

Proposition 7.2.13 Ift is a A-term , then s(t) is a pA-term and t ~ s(t) is
dertwable in JA, + |

Proof By induction on the structure of the A[-term ¢. 1

Proposition 7.2.14 Ift1D is a pA-term , then t1D ~ s(t|D) is derivable in
Ap-equational logic

Proof By induction on the proof of ¢t[D € pTerm by the structural inference

rules. I

We prove that ApBnp-equational logic and JA,8n 4 [are the same formal
system on pA-equations, by showing that any A@np-theory T' is the set of pA-
equations valid in a Kripke model By of JA 81 + .

Definition 7.2.15 The Kripke Term Model By
Given a A\Bnp-theory T, the Kripke partial applicative structure By over Kp
is defined by (see also Definition 4.1.19):

o Ky is the set of d\-terms ordered by inclusion
e if D € Ky, then A = By(D) is the partial applicative structure s.t.:
— AR IDi)p|(D ~ Dy UD) €T}, where

[ti1 D], & {t2 1 Da|(t1 1Dy U D ~ t,1 Dy U D) € T}

A [[tits M{tsta} U(DyUD [it is in o
— app” ([t1 I D1l p, [1 Du]) = {,&;j!f{i;;j (DDl jyftlzze:’fuzjeL

Yt

Moreover, for all type environments n, Af-terms t € Term;

(n), environ-

ments p € n* and substitutions o € [] p

M?ﬂg{WWth if it is in A

undefined otherwise

o if 1Dy — Dy (i.e. Dy C Dy), then

Br(f)([t1D]p,) 2 [t1D],

258

Proposition 7.2.16 By is a model of JA,6n+ |.

Proof We prove only that By is an extensional partial applicative structure, i.e.
it satisfies (ext. ~).

Let B = By, a = D, d; = [M;[D;], €) (for i = 1,2). We have to
show that d; = dy, whenever they have the same applicative behaviour, i.e.
app?)(d, b Q) o app®)(d, tpa) for all fra — o' and a € (B,

We consider the applications app®©’)(d; tf,a) when o is E; = {M;z}UD;UD
and a is a; = [z f@]E] (for j = 1,2).

1. [Myz[{Mz} U Dl]El = by definition of app?
app®#)(dy, a;) = by the assumption
appB(El)(dQ, a1) = by definition of app™
[Mazx [{Max} U D]y,

2. [Myz [{Mz} U DI]E2 = by definition of app”
app®#2)(dy, ay) = by the assumption
app®P2)(dy, ay) = by definition of app™
[Maz [{Myz } U D]y,

Now we have to derive the pA-equation My D1 U D ~ My Dy U D:

e by the first identity above
leL’ rEl ~ Mg.f rEl U E2
e from the second identity above, by (0-*subst)
E1 U E2 ~ EQ
e by reflexivity
MQ.I’ rEQ ~ Mg.f rEQ
e by applying (w-*subst)
MQZL’ rEl U E2 ~ MQ.I rEQ
e by transitivity Myx [E; ~ Myx [Es, i.e.
Ml.lf r{LleC} U D1 UbD ~ LM2$ T{Mgfﬁ} U D2 ub

259

e since x can be taken so that @ ¢ FV(M;[D; U D) (for ¢ = 1,2), by (§)
(Ae. Myxt{ Mz })[D1 UD ~ (Ax.Myx [{Max })[D2 U D

* by (7)
A Mz {M;z})ID;UD ~ M;D; U D (for i = 1,2)

e by transitivity
MiIDiUD >~ Myt Dy U D, therefore
di = [Mi[Di]p = [Ma Do) = de

Proposition 7.2.17 Characterization of Br
If T is a A\Bnp-theory, then Br|t; ~ ty iff (s(t1) ~ s(t2)) € T for any pair
of A\ -terms

Proof The implication from right to left follows immediately from the way A[-
terms are interpreted (see Definition 7.2.15).

The proof of the other implication is like that in Proposition 4.1.20. 1

Theorem 7.2.18 ABnp-equational logic is JA,Bn+ | restricted to pA-equations,
te. ' MID ~ NTE in ABnp-equational logic off ' M D ~ NTE in JA,Bn+
[

Proof The implication from left to right is easy, in fact it is enough to prove that
the inference rules for AfBnp-equational logic are derivable in JA,8n + |.

The proof of the other implication uses the characterization of By (see Lemma 7.2.17).
by Proposition 7.2.14, a pA-equation t1 [Dy =~ t3] D3 is equivalent to s(¢; D) ~
s(t21Dg), in ABnp-equational logic. Therefore, Lemma 7.2.17 implies that for any
pair of pA-terms By|t; ~ ty iff t; ~t, € T

We prove that M[D ~ NTE € T, provided M|D ~ N[F is derivable from
T"in JA,6n+ [and T is a ABnp-theory containing 7"

e since 7" is a set of pA-equations, by Lemma 7.2.17

By|-T"

260

e since By is a model of JA, 37, by soundness

By|-M|D ~ NIE

e since M[D ~ NTFE is a pA-equation, by Lemma 7.2.17

(MID~ NIE)eT

7.3 ABmmonp-equational Logic

In this section we introduce an inequational presentation of the JmonA,37-
calculus, AfGnpmonp-equational logic, which consists of monp-equational logic ex-

tended with one inference rule ((¢)) and four axioms ((3), (1), and their duals).

Notation 7.3.1 t;[Dy<ty [Dy is called the dual of ¢ [Dy <ty [D,. The dual of an
inference rule is the inference rule obtained by replacing premisses and conclusion
with their duals.

In ABnmonp-equational logic a pA-equation t; [Dy =~ t5[D, stands for the pair
of pA-inequations t1 [D1ty [Dy and its dual t5 [Dyt [Dy

Definition 7.3.2 A@npmonp-Equational Logic A#npmonpEQL
A set T of ph-inequations (considered as ordered pairs of pA-terms) is a
ABnmonp-theory iff it is closed w.r.t. the inference rules

incl tfDUELtID

i1 Di1gta [Dy lof Dyt Ds
D15t Ds

trans

t [D1<ta [Dy t3l Ds<ta[Dy
(t1 1 D1)*[x: =13 D3| (t2 1 Do) *[x: = ta] Dy

*subst

1D, UD <t IDLUDy Di<Dy

e D) Dis e DD, & F VDU L)

¢l

B Ayt!D)yl{(AyttD)y} ~t1D 11D € pTerm

n (Ay.xyH{zy}) 10~z 10 y € FV(x)

261

T+ MIDSNIE in Apnmonp-equational logic (ABnmonpEQL) N MIDENITE

is in any ABnmonp-theory which contains T

The differences between ABnpEQL and AFnpmonpEQL are smaller than the in-
ference rules suggest. In fact, both of them are obtained by extending the cor-
responding p-equational logic with the inference rule (¢) and the axioms (),
(n), and their duals. However, in ABnpEQL the duals are redundant, because
they can be derived by symmetry. Most of the results about ABnpEQL (see Sec-
tion 7.2) hold mutatis mutandis for A@nmonpEQL. So we will give the definitions
and state the main results, but we will skip all the proofs and technical lemmas,

unless there are relevant differences from those for Afnp-equational logic.

Remark 7.3.3 By interpreting a pA-equation as a pair of pA-inequations we get
a relative interpretation of ABnpEQL in AfnpmonpEQL. More precisely, if T' is a
ABnmonp-theory, then the set of pA-equations {t1 [Dy ~ t31 Ds|(t1 [D152 D2) €
T A (tal Dyt [D1) € T} is a ABnp-theory.

7.3.1 Pure Agnpmonp-equational Logic

To generate the smallest ABnmonp-theory, we introduce a set of (derivable) in-

ference rules.

Definition 7.3.4 Pure Inference Rules
The pure inference rules for ABnmonp-equational logic are the following

set of rules on pA-inequations:

x zDga D € pTerm

thID1<ta [Dy 131 D3<taf Dy
X r{tltg} U D1 U D3g$ r{t2t4} U D2 U D4

z.app

Lt D1t [Dy lsfDs<tal Dy
(tltg) r{tltg} U D1 U Dgg(t2t4) r{t2t4} U D2 U D4

app

t 1D, UD <t I DL U Dy Dy<Dy

z € FV(Dy U D,)

262

t11D1 U Dygtsf D3 tal Dot Dy

z.3 y € FV(D,)

3 t11 D1 U Dyt Ds taf Dyt Dy
()\ytl rDl)tQ r{()‘ytl rDl)tQ} U Dgg(tg ng)* [y = t4 rD4]

Y §Z FV(D2)

t 1 D1<ta [Dy
(Ay-tiy Mty }) [Di<tat Dy

y ¢ FV(t)

=

t3[D3t [Dy U Dy t4[Ds<ta [Dy
z[(Ds)*[y: = ta 1 Da] Sz TH{(Ay.t1[D1)ta} U Dy

x.[3°F

Y ¢ FV(D2)

t3[Da<ti [D1 U Dy ty 1 Dy<ta [Dy
(ta[Da)x[y: = taf Dy <Ayt 1 D1)ta H{(Ay-t1[D1)ta} U Dy

Br y ¢ FV(Dy)

tal Dyt [Dy
tat Do (Ay-tiy 1Mty })

0% D, Y ¢ FV(t)

111 D1t [Dy lof Dyt Ds
D15t Ds

trans

The difference between the pure inference rules for AgnmonpEQL and those for
ABnpEQL (see Definition 7.2.3) can be reduced to just one, namely the axiom
(z). In fact, the inference rules of Definition 7.2.3, with (symm) replaced by the
duals of the inference rules (z.3), () and (n), generate the smallest A3np-theory.

We claim that the pure inference rules generate the smallest Agnmonp-
theory pSin(ASnmonpEQL). The proof is similar to that given in Section 7.2.1
to show that the pure inference rules for A@np-equational logic generate the
smallest Afnp-theory, therefore we mention only those steps where there is a
difference, namely the case () in the proof of admissibility for (w-#subst) and

(*subst).

263

Remark 7.3.5 If we remove any of the non-structural pure inference rules (but
(z.4) and () should be treated as one rule and similarly for (z.5°) and (37)),
then the inference rules (incl) and (*-subst) are still admissible. This is apparent
by looking at the proofs of admissibility for (*incl), (0-*subst), (w-*ksubst) and
(*subst).

Proposition 7.3.6 (incl) is derivable
For any pA-term M|D and d\-term FE the pA-inequation MID U ESM D
is derivable from the structural inference rules (of Definition 7.5.4)

Proof Similar to the proof of Proposition 7.2.6 1

Corollary 7.3.7 (*incl) is admissible
The following inference rule is admissible in the set generated by the pure
inference rules:

MIDENIE
MIDUFSNIE

xincl F e plerm

Proof The inference rule (xincl) is actually derivable from (incl) and (trans).
However, we give a proof by induction on the derivation of M [Dg N [FE, which
is correct even when (trans) is removed (see S1dn in Definition 8.3.2).

e () = immediate.

In fact, z [DU F <z [0 is derivable by (z), since D U F' is a dA-term.

o (r.app) =

Let t1[D1gt2[Dy and t3] D3ta] Dy be the premisses of the last rule (i.e.
(z.app)) in the proof of M DN IE.

By TH tl rDl U thQ rDQ and
t3[D3 U F'ty [Dy, therefore

MIDUFZNIE by (xz.app).

e (app) = similar to the case (x.app)

264

(£) = similar to the case (z.app)

The side condition € FV(D U E U F) can be satisfied by renaming the

bound variable z, so that it does not occur free in F.
e (z.4) = similar to the case (x.app)
e () = similar to the case (x.app)

e (7) = similar to the case (z.app)

(trans) =

Let MIDRIH and RIHSNIE be the premisses of the last rule (i.e.
(trans)) in the proof of M DN IE.

By IH M D U FKRIH therefore MID U FNITE by (trans).

Lemma 7.3.8 (w-*subst) is admissible
The following inference rule is admissible in the set generated by the pure
inference rules:

MIDENITE FG
MIDUFLNIEUG

w-*subst

Proof By induction on the proof of MIDLN[E:

e (z) = There are three subcases: (y), (y.app) and (y.3). Depending on
the last rule in the proof of F G (ie. y[FLylG).

— (y) = (compare with the subcase (y.app))

- (y-app) =
z[Fga G, by applying the rule (z.app) (instead of (y.app)) to the
premisses of the last rule in the proof of F<G.
Therefore, x [F'U D G by the admissible inference rule (*incl).

— (y.) = similar to the subcase (y.app)

e the other cases are like Lemma 7.2.8

265

Proposition 7.3.9 (*subst) is admissible
The following inference rule is admissible in the set generated by the pure
inference rules:
MIDENIE PIFLQIG
(NTE)*[y:= Q1G]

*subst

<
S
*
=
|
v
!
A

Proof By induction on the proof of M DN E:

e () = the proof uses (0-*subst) and (w-*subst).
There are two subcases: ¢ #Z y and z = y.
-ty =
By the admissible rule (0-*subst) F'<G, therefore
z DU Fga G by the admissible rule (w-*subst).

- T =y =
By the admissible rule (0-*subst) D<@, therefore
PID U FZQ!G by the admissible rule (w-ksubst).

e the other cases are like Proposition 7.2.9

7.3.2 [Equivalence of A3nmonpEQL and JmonA,8n + |

In this section we establish the correspondence between \@Fnpmonp-equational

logic and Jmon\, 37 + [, namely:

e)\j3nmonp-equational logic is JmonA,3n + | restricted to the fragment of

pA-inequations.

We prove that A3nmonp-equational logic and JmonA,3n + | are the same formal
system on pA-inequations, by showing that any AfBnmonp-theory T' is the set of
pA-inequations valid in a Kripke model By of JmonA,3n + |.

266

Definition 7.3.10 The Kripke Term Model By

Given a ABnmonp-theory T', the Kripke monotonic partial applicative struc-
ture By over Ky is like that in Definition 7.2.15, where (t1]Dy ~ t31Dg) € T
means that (t1 D1t Dy) € T and (ta1 D2t 1D1) € T, moreover

[t 1 D], <A [t Ds]), <2 (i 1Dy U Dty [Dy UD) €T
for all D € Ky, and A = By(D)
Proposition 7.3.11 By is a model of JmonA, 81 + .

Proposition 7.3.12 Characterization of By
If T is a Apnmonp-theory, then Br|ti<ts iff (s(t1)<s(t2)) € T for any pair
of A\ -terms

Theorem 7.3.13 ABnmonp-equational logic is Jmonl,Bn + | restricted to pA-
inequations, t.e. T'= M[DLNE in ABnmonp-equational logic iff T = MDLNTE
in JmonA, By + |

7.3.3 Decidability of the d-preorder

In this section we show that it is decidable whether ¢; [D <t D3 is derivable in
Amonp-equational logic. This decidability result is particularly useful in connec-
tion with the Church-Rosser property for g-reduction to prove other decidability

results (see remarks after Theorem 8.4.4).

Remark 7.3.14 We claim decidability also for Aymonp-equational logic, but the
proof is far more complicated and we preferred not to give it.

We do not know whether Ap- and Anp-equational logic are decidable.

The idea to prove decidability is to remove the rule (trans) (but mak-
ing sure that it is admissible) and use structural rules s.t. the size of
the r.h.s. in the premisses is strictly less than the size of the r.h.s. in
the conclusion. However, the size of the 1.h.s. may increase, therefore

the argument cannot be carried over to ~, which is symmetric.

Some of the tools used to prove decidability of Amonp-equational logic have

already been developed in Section 7.1.2.

267

Notation 7.3.15 If D and F are dA-terms, then D C F is a shorthand for
V(titz) € E.3(tty) € Dty 1Dt [d(t) Aty [DSt 1d(ts)

Definition 7.3.16 Alternative Inference Rules
The alternative inference rules for Amonp-equational logic are the follow-
ing set of rules on pA-inequations:
D, CE D,
[Diga Dy

?

, I D1t Dy t31 D15t Dy
(t1ts) 1 D15 (tata) [Do

t 1Dy UD <t 1D, U D, DD,

app

& x ¢ FV(D{ U DY)

Remark 7.3.17 The alternative inference rules for pA-terms (see Definition 7.1.19)
can be obtained from the inference rules above by replacing t,[D;<t2[Dy with

t3f Dy € pTerm.

Theorem 7.3.18 Decidability
It is decidable whether t1 1 D<Kty [Dy ts derivable from the inference rules (),

(§) and (app’).

Proof By Theorem 7.1.21, it is decidable whether ¢; [Dy and ¢, Dy are pA-terms,
therefore we do not worry about that. We proceed by induction on the derivation
of t31 Dy € pTerm by the alternative inference rules (see Definition 7.1.19). There
are three cases to consider, depending on the structure of ¢,:

L. (2) =
t1[D1ty Dy is derivable iff ¢ = x and Dy C D,
but Dy C Dy is decidable, in fact the two quantifications are over finite sets
and the quantified formula is decidable, by TH .

111 D1<ta Dy is derivable iff ¢4 = (Ax.t31D3) (for some t31Ds), t31 D3 U
D1St4 rD4 U D2 and DlgDQ

but t31 D3 U D1ty Dy U Dy and Dy Dy are decidable, by TH .

268

3. (app) = t2 = (t4t})
t11 D1 <ta Dy is derivable iff ¢, = t4t) (for some t] and t7), ¢ 1 D1t 1 Dy
and tlll rDlgtIQ/ rDQ

but ¢} I D1ty Dy (and similarly for the other pA-inequation) is decidable,
by IH .

We claim that the alternative inference rules (of Definition 7.3.16) generate

the smallest Amonp-theory. The claim is a consequence of the following facts:

e the alternative inference rules are derivable in Amonp-equational logic (see

Definition 7.3.2)

e the pure inference rules (z) and (¢) (of Definition 7.3.4) are derivable from

the alternative inference rules

e the pure inference rules (trans), (z.app) and (app) are admissible in the set

generated by the alternative inference rules

The first fact is Proposition 7.3.19, the second is trivial and the third is Propo-
sitions 7.3.21, 7.3.23 and 7.3.24. The inference rule (trans) is not derivable. To
prove its admissibility we rely on the admissibility of (*incl) and (w-*subst) (see
Lemma 7.3.20). To prove admissibility of (z.app) and (app) we rely also on the
admissibility of (0-*subst) (see Lemma 7.3.20) and the derivability of (incl) (see
Lemma 7.3.22).

Proposition 7.3.19 Derivability of the alternative inference rules
The inference rules (x°), (app’) and (£’) are derivable in Amon-equational

logic.

Proof The derivability of (app’) and (¢7) is obvious. In fact, (app’) is an instance
of (app), while (£’) and (&) are the same rule. We show that (z’) is derivable in
Amon-equational logic.

If Dy =) the conclusion is an instance of (incl), otherwise

o let D be the dA-term {z;y;|1 <7 < |Dyl}

269

e from x[Dga D and Dy C Ds, by repeatedly applying (*subst)
D1 Dy U (U{d(t1) U d(ta)|(t1t2) € Da})

e but the r.h.s. is Dy, because
t;[Dy is a pA-term and (by Lemma 7.1.23) d(¢;) C D,

Lemma 7.3.20 Some admissible rules
The following inference rules are admissible in the set generated by the alter-
native inference rules:

MIDSNIE

0-*subst
*subs D<E

MID<NIE
MIDUFLNIE

*incl

MIDENIE FgG
MIDUFLNIEUG

w-*subst

Proof The three statements are proved by induction on the proof of M DN FE
(using the alternative inference rules).

Admissibility of (0-*subst):

e (2’) = immediate.

To derive DL E, i.e. yI DLy E, it is enough to apply the rule (y’) (instead
of (z7)) to the premisses of the last rule in the proof of MIDLNTE.

o (app’) =

By IH for any of the two premisses of the last rule in the proof of M [DL N [E.

o (') = trivial

In fact, DL FE is a premiss of the last rule in the proof of M DN E.
Admissibility of (*incl):

e (') = by IH and (2").

270

— by IH applied to the premisses D C F of the last inference rule (i.e.
(7))
DUFLCFE

— by the inference rule (z7)

z[DUFgztE

e (app’) = by IH and (app’).

Similar to the case (z).

e (¢{’) = by IH and (¢&’).
Similar to the case (z’), but it may be necessary to rename the bound
variable.

Admissibility of (w-*subst):

e (z') = by (*incl) and (z’).

— the premisses of the last inference rule in the proof of M[DLNIE
and F'<G must be

DC Eand FC &
— by the admissible inference rule (*incl)
DUFCFEUG

— by the inference rule (z7)

x[DUFLeEUG

e (app’) = by IH and (app’).
Let t1 1Dt F and t3fDtat E be the premisses of the last rule (i.e.
(app’)) in the proof of MIDLNIE.
— by IH

— by the inference rule (app’)
MIDUFSNIEUG

271

e (¢’) = by IH and (¢&’).

Similar to the case (app’), but it may be necessary to rename the bound

variable.

Proposition 7.3.21 (trans) is admissible
The following inference rule s admuissible in the set generated by the alterna-
tive inference rules:
PIFSMID MIDENTE
PIFENIE

trans

Proof By induction on the proof of M DN ['E (using the alternative inference

rules):
o (') = by IH , (w-*subst) and (z’).
Since M = x, the last inference rule in the proof of P[F <M D must also
be (z7).

Let F' C D C E be the premisses of the last rules (i.e. (z”)) in the proof of
PIFSMIDENIE. First we prove F' C F, i.e. for all (t113) € E we find
(t{th) € F st t/TF <t 1d(t;) is derivable:

— since D C F are the premisses of the last inference rule (i.e. (27)) in

the proof of M DL NE, then
there exists (#1t}) € D s.t. t{[Dt [d(t;) is a premiss of (z7)
— since F' C D are the premisses of the last inference rule (i.e. (27)) in
the proot of PIFM|[D, then
there exists (¢t5) € F s.t. t/TFti1d(t}) is derivable and
F< D is derivable (by (y’))
— since d(¢) € D (see Proposition 7.1.23), by the admissible inference

rule (w-*subst)
tTFSETD

— by IH for ¢ Dt 1d(¢;)
tHITES (L)

272

Then, we derive PIF =2 FgaE = NE from F C E (by (7).

e (app’) = by IH and (app’).
Since M is an application, the last inference rule in the proof of P FM | D
must also be (app’).
Let PLIFSM DN TE and Po[FS My DL Ny T E be the premisses of the
last rules (i.e. (app’)) in the proof of PIFSM DN IE.
— by IH for My DN, TE and My DNy TE
P1 ngNl rE and P2 ngNQ rE
— by (app’)
e (¢’) = by IH and (¢&’).
Since M is a A-abstraction, the last inference rule in the proof of P FM | D
must also be (app’).
Let P'TF'UFLM ID'UDLN'TE'UE and FDZE be the premisses of
the last rules (i.e. (¢7)) in the proof of PIFSM DN IE.
— by IH for M'{D'"U DEN'IE'U E and DLE
P'I'F'UFLN'|E'UFE and FSE
— x ¢ FV(F U E) (by the side conditions for (¢7)), therefore by (¢7)
PIF =M. P'MF)Fg(Axe . N'E"E=NIFE

Lemma 7.3.22 (incl) is derivable
For any pA-term M[D and d\-term FE the pA-inequation MDD U ESM D

is derivable from the alternative inference rules (see Definition 7.5.16).

Proof By induction on the proof of M [D € pTerm (using the alternative rules
of Definition 7.1.19):
e (') = by IH and (2’).

Let ¢;1d(¢;) € pTerm (for all 14, € D and ¢ = 1,2) be the premisses of the
last inference rule (i.e. (2’)) in the proof of M D € pTerm.

273

— since d(¢;) € DU E, by IH for the premisses
1D U EZt [d(t;) (for all t1¢; € D and 1 = 1,2)

— by the inference rule (z7)

MIDUE=z!DUE<zD =MD

e (app’) = by IH and (app’).

Let M;I D € pTerm (for ¢ = 1,2) be the premisses of the last inference rule
(i.e. (app’)) in the proof of M [D € pTerm.

— by IH for the premisses
M;1DU ESM; D (fori=1,2)
— by the inference rule (app’)
MIDUFE =M M;|DUELMM;ID =MD

e (M) = by IH and (¢&).

Similar to the case (app’), but it may be necessary to rename the bound

variable.

Proposition 7.3.23 (z.app) is admissible
The following inference rule is admuissible in the set generated by the alterna-
tive inference rules:

My D1 N TE, My Dy NoTEy
T f{lMlLMQ} U D1 U DQSI r{NlNQ} U E1 U E2

z.app

Proof Suppose that both M, DN, [E; and Myt Dy Ny Ey are derivable by
the alternative inference rules. If we show that for all (¢1¢3) in {N; N2} U 1 U F
there exists (t1t}) in {M; M3} U Dy U Dy s.t.

tH{ MMz} U Dy U Dyt () (for @ = 1,2) are derivable

then, z [{M;My}UD;UDy<a 1{N;No}U Ey U E; is derivable by the inference rule
(z7). There are three cases to consider, depending on which subset of {N; Ny} U
Ey U E; the term (t115) is in:

274

[] tltg = NlNQ -

We take t|t}, to be MM, and derive M, [{M; M5} U Dy U Dy N; [d(N;):

— from the assumption M;[D;< N;[E;, by the admissible inference rule
(*incl)
M;1{M; M} U Dy UDy N, TE;

— since d(N;) C E;, by (incl)
NilE; NiTd(N)

— by the admissible inference rule (trans)

M; 1H{M; M} U Dy U Dy N, [d(IV;)
® tltg € E1 -

— from the assumption My [D; <Ny [Ey, by the admissible inference rule
(0-*subst), Dy C E;. Therefore

there exists (#1t,) € Dy s.t. tiI D1 <t 1d(E)
— by the admissible inference rule (*incl)

t;» r{MlMQ} UDiUDyKt; rd(tz)

o 11ty € Ky — similar to the case {1, € F.

Proposition 7.3.24 (app) is admissible
The following inference rule is admaissible in the set generated by the alterna-
tive inference rules:

app M DN [By Myt Dy Ny E
My My tH{ MMy} U Dy U Dy NyNy TH{N;No} U By U B,

Proof Suppose that both M;[D,<N;[FE, and My [Dy Ny Ey are derivable by

the alternative inference rules.

e from the assumptions, by the admissible inference rule (y.app)

{M, My} U Dy UDy<{N, Ny} U E; U E,

275

e from the assumption M, D;<N; 1 E; (for i = 1,2), by the admissible infer-

ence rule (w-*subst)

Mi r{MlMQ} U D1 U DQSNZ r{NlNQ} U El U E2 (fOI’ = 1,2)

e by the inference rule (app’)
MMy H{M M3} U Dy U Dy Ny No H{ N1 N2} U By U Ey

7.4)\, ,-algebras

Extensional combinatory logic is not aziomatizable by equational axioms only,
otherwise the class of extensional combinatory algebras (or equivalently A-models)
would be closed under substructure. However, one can consider the variety of
A-algebras, i.e. the (total) algebras that satisfy the equations E(CL + ext. =)
provable in extensional combinatory logic. There is an alternative characteriza-
tion of A-algebras, namely they are the substructures of extensional combinatory
algebras (see [Bar82]). Therefore, an equation t; = 5 is valid in all extensional
combinatory algebras satisfying a set 7' of closed equations iff ¢; = ¢, is valid
in all A-algebras satisfying 7. In other words, we can use equational logic with
axioms F(CL 4 ext. =), instead of first order logic with the axioms CL + ext. =,

for deriving equations from a set T' of closed equations.

Remark 7.4.1 For A-algebras there is also a finite axiomatization, namely the
axioms CL of combinatory logic plus Curry’s azioms Ag, (see 7.3.15 of [Bar81]).

We have not found a finite axiomatization for A,-algebras.
Definition 7.4.2 (Monotonic) A,-algebra

e a A,-algebra is a classical model of S(JCL, + ext. ~), i.e. the set of S-
equations derivable in intuitionistic extensional partial combinatory logic

(see Definition 4.2.9)

e amonotonic A -algebra is a classical model of Sin(JCLy+mon,+ext.g),
the set of Sin-equations derivable in intuitionistic extensional monotonic

partial combinatory logic (see Remark 4.3.2)

276

Remark 7.4.3 There is a more restrictive definition of A,-algebra, namely a
model of S(KCL, + ext. ~). However, we do not expect that such algebras have
an alternative model-theoretic characterization in terms of classical exten-
sional partial combinatory algebras. Moreover, we conjecture that Theorem 7.4.9

below does not hold if we replace JCL, + ext. ~ with KCL, + ext. ~.

In this section we characterize A -algebras in terms of Kripke extensional partial
combinatory algebras. This characterization (see Corollary 7.4.11) is the model-
theoretic equivalent of the connection (see Theorem 7.4.9) between intuitionistic
extensional partial combinatory algebra JCL,+ext. ~ and the equational formal
system for Ap-algebras KLPT + S(JCL, + ext. ~).

We consider also monotonic Ap-algebras. There are only minor differences
between the monotonic and non-monotonic cases, therefore Section 7.4.2 states

only the main results and points out the relevant differences in the proofs.

7.4.1 The non-monotonic case

In this section we put to good use the equational presentation to prove the
analogue of Jacopini’s Lemma for A@p-equational logic (see [JacT5, Sta85al).
This lemma is more informative than Theorem 7.4.9, although we do not consider
other applications of it. The main applications of Jacopini’s lemma are to solve
consistency questions (see [Jac75]). For instance, R. Statman has applied it to

solve a consistency problem for the second-order lambda calculus (see [Sta86]).

Lemma 7.4.4 Jacopini-like Lemma

If T is a set of closed ph-equations of the form ull ~ vl0, then for all
t1[Dy ~ ty[Dy derivable in ABp-equational logic from T and all pairs of distinct
variables y,z & FV(t1[D1, t2| Dy) there exist n € w, pA-terms M; [E; and axioms
uill >~ v, eT (for1 <i<n)st forall0<i<n

(Mi T E;)*[y: = vi| 2= w;] > (M1 [By) *[y: = uiga |20 = viga] € pS(ABpEQL)

where My | Ey = Dy, My B 2 to] Dy and pS(ABpEQL) is the set of
pA-equations derivable in AGp-equational logic

Proof By induction on the derivation of t; [Dy ~ t5[Dy from T in ABp-equational

logic. In all cases the proof relies on the admissibility of the inference rules for

ABPEQL in pS(ASpEQL).

277

Notation 7.4.5 For convenience in the proof we write X for the finite set FV(¢; [D1, 121 Dy)U
{y,z} and o; and o) (1 < i < n) for the substitutions (y:= w;|z:= v;) and
(y:=vi|z: = ;).

o {1[D; >~ 1] Dy € T — immediate. In fact

—n21
- leElé’yf@
—u ot =t1Dy ~ Dy €T

satisfy the required properties (by (refl)).
o (refl) = immediate. In fact
~—n20
satisfy the required properties (by (refl)).

e () = immediate. In fact

1>

0

- n

satisfy the required properties (by (3)).

e (symm) =
By IH there exist

— n € w, pA-terms M![E! and axioms u’ [}
satisfying the required properties for the pA-equation to[Dy ~ ¢1 D1

~ ot (for 1 < i < n)

and the variables y and z

It is immediate to check, using the IH | that the “reverse sequence of pA-
terms and axioms”

- n

— M;E; (for 1 <7 <n)
) ~

1=

/ /
*/wn—i—l—l rEn—i-I—l

— u;f v [0 = Uity M) ~ VI i M) e T (for 1 <7< n)

satisfy the required properties for the pA-equation ¢, Dy ~ ¢, D, and the

variables y and z.

278

o (trans) =
Let t11 D1 ~ t1D and ¢t D =~ t31 D, be the premisses of the last rule (i.e.
(trans)) in the proof of 1Dy ~ t3f D,.

By IH there exist

— n' € w, pAterms M/ E! and axioms u}[0) ~ v/[0 (for 1 < i < n’)
satisfying the required properties for the pA-equation ¢;[D; ~ t[D
and the variables y and z

— n" € w, pA-terms M![E! and axioms u [>~ v/10 (for 1 < i < n")
satisfying the required properties for the pA-equation ¢[D ~ ¢, D,

and the variables y and z

It is immediate to check, using the IH (and (trans)), that the “concatenation

of the two sequences of pA-terms and axioms”

A
—nE2np 4

— M;E; 2 MI!TE! (for 1 <¢ <n') and
My yit B & MUTE! (for 1 < i < n)
D eT (for 1 <i<n')and

I
Ui [0 2 v 0= w1 >0/t e T (for 1 <i<n")

satisfy the required properties for the pA-equation ¢, [D; ~ ¢, D, and the
variables y and z. The admissible inference rule (trans) is used only for

deriving (LMn/ rEnl)*[O';/] ~ (L n'+1 rEn’—}—l)*[O—n’—}—l]-

o (§) =
Let #11 Dy U Dy ~ tt D, U Dy and Dy ~ D; be the premisses of the last
rule (i.e. (£)) in the proof of t1 [Dy ~ 13 Ds.
We assume that the bound variable z is not in X (otherwise we can rename

it). By IH there exist

— n' € w, pAterms M/ E! and axioms u}[0) ~ v/[0 (for 1 < i < n’)
satisfying the required properties for the pA-equation ¢} [D; U Dy =~
t5 1Dy U Dy and the variables y and =z

279

— n" € w, pAterms M/ E! and v [0 ~ v/ (for 1 < i < n") satisfying
the required properties for the pA-equation Dy >~ D, and the variables
y and z

we claim that

g

—n=n"+n"
— M;E; 2 (Ae. M!TE) Dy (for 1 <@ <n')and
Moy it B = ety 1Dy U Do) P EY (for 1 <4 < n”)
— Ul vl =uifd ~ o) eT (for 1 <i<n')and
Ui [0 2 v M0 =u/)~ o/t e T (for 1 <i<n")

satisfy the required properties for the pA-equation ¢, [Dy ~ ¢, D, and the

variables y and z.

We have to distinguish five cases for 0 <1 < n:

i =0 t,] Dy ~ (M Ey)x[o1] € pS(ABPpEQL), in fact

111Dy U Dy ~ (M{E])*[o1] (by IH for the first premiss)
Dy ~ Dy (by (refl))
ty 1Dy U Dy >~ (M E{ U Dy)*[o1] (by (w-#subst) and z ¢ X)
Ot D4 Dy = (e (M{EE) sl) 1D (by (6))
but (by definition of M;[F; and = ¢ X)
(Az. (M TE})*[o1]) [D1 = (My [Eqy)*[o4]

0<i<n (MIE)*[0o}] =~ (Miy1|Eiy1)*[ois1] € pS(ABpEQL) is proved as in the
case 1 = ()

En)*lop] > (Myyi 1 Epga)* [0] € pS(ABPEQL) follows by

(M,
(trans) from

(Mt E)*[ol)] ~ (Az.ty 1 DY U Dg) [Dy and
()\CU t/ D/ U Dg) rDl ™~ (Mn’—}—l rEnl+1)*[0'n/+1].

The first pA-equation is proved as in the case ¢ = 0, so we prove only

the second.
151Dy U Dy >~ t5 1 Dy U Dy (by (refl))
Dy ~ (EY)*[041] (by IH for the second premiss)

280

151 DYUDsUDy =~ (th 1 DyUDyUE oy (by (w-ksubst) and « ¢ X))
(A5 Dy U Do) Dy ~ (Ax.tyt Dy U Do) [(EY) * [op41] (by (€) and
z ¢ X)
but (by definition of M1 [En4r and « € X)
(Az.ty 1Dy U Do) HEY) %[0 g1] = (Mg [Eprgr) %[04

n' <i<n (M;lE;)x[o}] ~ (Miy1|Eiy1)*[0i41] € pS(ABpEQL) is proved as the

second pA-equation of the case 1 = n’

i=n (M, E,Hol] ~ t21 Dy € pS(ABPEQL) is proved as the case n’ <i <n

e (ksubst) = similar to the case (&).
Let ¢{ 1D} ~ ti D} and t{1 D} ~ tJ1 DY be the premisses of the last rule
(i.e. (*subst)) in the proof of 1Dy ~ t3|D,.
We assume that the substituted variable z is not in X (otherwise we can

rename it). By IH there exist

— n' € w, pAterms M![E! and axioms u![f) ~ v/[0 (for 1 < i < n’)
satisfying the required properties for the pA-equation ¢][D] ~ t, D}
and the variables y and z

— n" € w, pA-terms M/ E! and axioms u [~ v/ (for 1 < i < n")
satisfying the required properties for the pA-equation][DY ~ t7[DY

and the variables y and z

we claim that

>

—n=n'4+n"

— Mi[E; & (M!TED*[x:=t"}D"] (for 1 <i <n') and
My git Erys = (151 D4) %[= MUTE!] (for 1 < i < n")
— Ul vt =uifd ~ oM eT (for 1 <i<n')and

k3

Ui [0 2 v M0 =u?) >~ 010 e T (for 1 <i<n")

satisfy the required properties for the pA-equation ¢;[D; >~ t;[D, and the

variables y and z.

281

Remark 7.4.6 In Lemma 7.4.4 we can add the requirement that FV(M; [E;) C
X = FV(t1 D1, ta1Dy) U{y, z} (for 1 < ¢ < n). In fact, whenever = ¢ X, it
can be replace with the closed term I in every M;[E; without invalidating the
required properties.

Lemma 7.4.4 holds also for ApEQL (AppEQL and AgnpEQL). Since in ApEQL
the axiom () is not equivalent to any set of closed pA-equations, the lemma for

AGpEQL is not an immediate corollary of the lemma for ApEQL.

We do not prove Theorem 7.4.9 directly, because the relevant steps in the
proof would be mixed with irrelevant translations from CL-terms to pA-terms
and conversely. So we prove the theorem using Af-terms (see Lemma 7.4.7) and

then show that we can safely replace Af-terms with CL-terms (Lemma 7.4.8).

Lemma 7.4.7 Equational axiomatization of JA,8n + |

If Ty is a set of closed E-equations, then every S-equation t1 ~ ty derivable
in JApBn+ 1 from Tq is derivable in JA, + S(J X80+) from Ty without using
(€. ~).

Proof We take a set T of closed S-equations s.t.
1. Tg is derivable from 7" in JA,8n + |
2. s(T) satisfies the conditions of Lemma 7.4.4
3. T is derivable from Ty in JA, + S(JA,Bn +) without using (€. ~)

To show that T (with the above properties) exists, we assume w.l.o.g. that Tj
is a singleton, say {u = v}. In the general case T can be defined as the union
of the T's corresponding to {u = v} for (v = v) € To. Let T = {(Az.u) ~
(Az.v), (Az.zlu) ~ (Azx.xz)}. The first and second properties are easy to verify.
Therefore we prove only the third property.

(Az.u) ~ (Az.v) is derivable from u = v, in fact:

e since u = v, by strictness of =

u] and v |

o if M is a closed term and M |, then
by ((Az.y) =~ (Ay,z.y)y) € S(JABn +) and (subst)

282

(\e.M) =~ (Ay, z.y)M, in particular
(Az.u) ~ (Ay,z.y)u and (Az.v) ~ (Ay, z.y)v
o by congruence of app and u = v
(Ay, z.y)u = Ay, z.y)v
o by transitivity
Oza) = (Az.v)
(Az.xtu) ~ (Az.z) is derivable from u = v, in fact:
o since u = v, by strictness of =
wl
o if M is a closed term and M |, then
by ((\z.xty) ~ (Az.z)) € S(JApBn+ 1), and (subst)
(.2 M)~ (Ae.z), in particular
Oz.ztu) = (\e.z)
To prove the lemma we argue as follows:
o by assumption

1y =~ 13 is derivable from Ty in JA B8y + |

e since 7y is derivable from 7" in JA, 81 + [, then
1y =~ 15 is derivable from T in JA By + |

o by Proposition 7.2.13
s(t1) = s(ty) is derivable from s(T) in JA,Bn + |

o by Lemma 7.2.18
s(t1) = s(t,) is derivable from s(T') in AByp-equational logic

o since pS(ABpEQL) C S(JAp8n + 1), by Lemma 7.4.4 for s(ty) ~ s(t,)

there exist n € w, pA-terms M;[E; and azioms s(u;) =~ s(v;) € s(T) (for
I<i<n)st.forall0<i<n

(MitE:Wy: = vi|2: = wi] > (Mipa B Wy: = wiga |21 = viga] € S(JAB0+T)

where My | Eq 2 s(t1) and My 41 Enga 2 s(t2)

283

e since s(u;) | and s(v;) | (for 1 < ¢ < n) and ¢ ~ s(t) are derivable in
JA,B1 + I, then the following S-equations are in S(JA,8n + 1):
— t; >~ s(t;)
— (M1 By = s(ui) =
— (M B ol = (o) [

s(vi)] = (Ay, 2. M; [E;)ugv;

s(ui)] ~ (Ay, 2. M; [E;)vu;

e therefore, by transitivity
11 =~ ty is derivable from T in JA, + S(JA, 8y +) without using (&. ~)

e since T is derivable from Ty in JA, + S(JA, 60 + [) without using (£. ~),
then

11 =~ ty is derivable from Ty in JA, + S(JA, 81 + I) without using (€. ~)

Lemma 7.4.8 Equivalence of equational presentations
JAp+ S(JABn+ 1) without the aziom (€. ~) and JLPT +S(JCL, +ext. ~)

are equivalent at the level of terms.

Proof The equivalence is proved as the equivalence of the A,37n-calculus and
CL, + ext. ~ (see Section 4.2.1). The translation from CL-terms to A[-terms is
* (see Definition 4.2.14), the translation _“" in the opposite direction extends

(_)CL of Definition 4.2.14 with an extra clause for the restriction operator:

A
[] (tl rtg)CL = KtchtQOL

Theorem 7.4.9 Equational axiomatization of JCL, + ext. ~
If T is a set of closed E-equations, then every S-equation t; ~ t, derivable

from T in JCL, 4 ext. ~ is also derivable from T in JLPT 4+ S(JCL, 4 ext. ~).

Proof The claim is an immediate consequence of Lemma 7.4.7. In fact:
e by Theorem 4.2.19 we can replace JA 8y + | with JCL, + ext. ~

e by Lemma 7.4.8 we can replace JA, + S(JA, 87 + [) without the axiom
(€. ~) with JLPT + S(JCL, 4 ext. ~).

284

Remark 7.4.10 In the theorem above we can replace S(JCL, + ext. ~) with
the set of axioms CL, + Fy(JCL, + ext. o), as they are provably equivalent in
JLPT. Moreover, the formal system JLPT + S(JCL, + ext. ~) can be replaced
with KLPT 4 S(JCL, + ext. ~), since intuitionistic and classical logic coincide
on the S-fragment (see Theorem 3.1.5).

We conjecture that there is a direct proof of Theorem 7.4.9 based on the
revisited inference rules of JCL, + ext. ~ restricted to the EC E-fragment.

Corollary 7.4.11 Characterization of A,-algebras
The Ap-algebras are exactly the partial algebras B(«), where B is a Kripke
extensional partial combinatory algebra over some K and o € K s a stage of

knowledge.

Proof It is easy to prove that B(«) is a Ap-algebra. In fact, B is a Kripke model
of S(JCL,+ ext. ~) (which is provably equivalent to a set of coherent sequents),
therefore B(a) is a classical model of S(JCL, + ext. ~), by Proposition 3.1.4.

For the other inclusion, we show that any A,-algebra A, considered as a 3 4-
structure, is isomorphic to A" = B(LEA7T)(J_) (see Definition 3.1.8), where ¥4 is
Y extended with one constant symbol ¢, for each element a of ¢* and T is any
set of Harrop sequents equivalent to the set of axioms CL, 4 ext. >~ plus the set
Ey(A) of closed E-equations valid in A.

Let H be the set of closed formulae intuitionistically derivable from 7', then
there is only one ¥ 4-morphism from A to A’, which maps a € ¢* to [c,]y. To
prove that it is an isomorphism, we have to show that t; = t, € H iff t; = ¢, €
Ey(A). The implication from right to left is immediate, since Fy(A) C T

For the other implication we use Theorem 7.4.9:
e by definition of H and T

t1 = ty is derivable from Fy(A) in JCL, + ext. ~

e by Theorem 7.4.9
t1 = ty is derivable from Fy(A) in JLPT 4+ S(JCL, 4 ext. ~)

e since A is a model of S(JCL, + ext. ~) and Ey(A), then

A satisfies t; = 15

285

e therefore, by definition of Ey(A)
tl - tg € EO(A)

In JCL,, unlike JCL, 4 ext. ~, S-equations have more expressive power
than FE-equations, therefore we could try to improve Theorem 7.4.9 by allowing
T to be a set of (closed) S-equations, instead of E-equations. However, such an

improvement is impossible.

Proposition 7.4.12 Let Yy, be the signature for partial combinatory algebras
with three constants a, b and ¢, then there is a Ay-algebra A satisfying the S -

equation ac =~ be, but not ([x]ac) = ([x]bc).

Proof Let B% be the initial Kripke extensional partial combinatory algebra
(Zcw,T)

over Ycr, (see Definition 3.1.8), where 7" is any set of Harrop sequents equivalent

to CL, + ext. ~. We show that the A\ -algebra A = B(LEChT)(J_) has the required

properties:
e since ac | and bc | are not derivable in JCL, + ext. ~, then they are both
undefined at stage L, therefore

A satisfies ac ~ be

e since ([z]ac) = ([x]bc) is not derivable in JCL, + ext. ~, then
it is not satisfied at stage 1, therefore

A does not satisty ([z]ac) = ([z]bc)

7.4.2 The monotonic case

In this section we extend the result of Section 7.4.1 to Afmonp-equational logic.
The main difference is in the statement of Jacopini’s Lemma. In fact, ul0<v 0 €
T does not implies T'F v @< u 0, as the relation < (unlike ~~) is not required to

be symmetric.

286

Lemma 7.4.13 Monotonic Jacopini-like Lemma

If T is a set of closed pA-inequations of the form ulOLv 0, then for all
ti D1t [Dy derivable in ABmonp-equational logic from T and all variables y &
FV(t1]Dy,ta] Ds) there exist n € w, pA-terms M; [E; and axioms u; [§gv; [0 € T
(for 1 <i<n)s.t forall0<i<n

(M TE)*[y: = 0| K (Mig1 T Eip1) % [y: = uigq] € pSin(ABmonpEQL)

where My | Ey = Dy, My [Enyy 2 to] D2 and pSin(ABmonpEQL) is the set

of pA-equations derivable in AGmonp-equational logic

Proof By induction on the derivation of ¢ [Dy <ty [Dy from T in ABmonp-equational
logic. The proof is similar to that of Lemma 7.4.4:

o 11Dty Dy € T = immediate. In fact

Y
—u [0t =t 1 D1t 1Dy €T
satisfy the required properties (by (incl)).
e (incl) = immediate. In fact

A

0

- n
satisfy the required properties (by (incl)).

e () = similar to the case (3) of Lemma 7.4.4

/

(trans) = similar to the case (trans) of Lemma 7.4.4
e ({) = similar to the case (¢) of Lemma 7.4.4

e (ksubst) = similar to the case (*subst) of Lemma 7.4.4

Theorem 7.4.14 Inequational axiomatization of JCL, + mon, + ext.g

If T is a set of closed Ein-equations, then every Sin-equation t1ty deriv-
able from T in JCL, + mon, + ext.g s also derivable from T in JmonLPT +
Sin(JCL, 4+ mon, + ext.<)

Chapter 8

Reduction

In this chapter we define a relation —1 on pA-terms (see Definition 8.2.17) similar
to the one-step parallel reduction for the A3-calculus (see Chapter 3 and 11 of
[Bar81]). We have not defined a one-step reduction, because pA-terms are not
closed w.r.t. the simple minded one-step reduction. The relation — satisfies the
strong diamond property (see Corollary 8.2.18), but its symmetric and transitive
closure is not the equivalence relation ~ of A\,ApEQL', because —; does not
satisfy the inference rule (&).

We study only how f-reduction is related to A@npmonp-equational logic (see
Section 8.3), because this p-equational logic is more relevant than others for
applications to computer science and foremost because in the literature it is
unusual to study the relations between a reduction and a preorder. However,
there are similar results for the other p-equational logics. We do not consider
n-reduction, and the reason for this is explained in Section 8.3; instead we treat
n-conversion as part of a (decidable) preorder relation. We prove that < for
B-normal forms is decidable in Afmonp-equational logic and claim that it is
decidable also in Apnmonp-equational logic (see Section 8.4). We conjecture
that a similar decidability result holds for AfBnp-equational logic, but we have
not been able to prove it.

The crucial step for characterizing < of ABnmonpEQL is to establish that —4
has the diamond property up to the dn-preorder San (see Corollary 8.3.8).
In general <4, cannot be postponed after —; (see Example 8.3.11), therefore

the diamond property up to Sn is not an easy consequence of the diamond

the equivalence relation ~ of A, BpEQL is the symmetric and transitive closure of —1 U ~g,
where ~4 is d-conversion on pA-terms

287

288

property for —; (as in [Sha84]). If we had been able to define pA-terms so that
d-conversion on them is just a-conversion (see Counterexample 7.1.31), then the
relation between reduction for pA-terms and equivalence ~ of AGpEQL would

have been much easier and familiar.

8.1 Basic definitions and facts

In this section we define commutativity up to a binary relation (see Defini-
tion 8.1.2) and related concepts and the notions of w- and s-compatible relation
on pA-terms. Moreover, we establish some of their basic properties (see Proposi-

tions 8.1.4 and 8.1.6 and Lemma 8.1.9), that are applied in subsequent sections.
Lemma 8.1.1 General facts
1. If R s a reflexive relation on X and m < n, then R™ C R".

2. If R and S are symmetric relations on X, then RUS, RN S and R*

are symmetric.

3. If R and S are reflexive relations on X, then (RUS)* = (RS)*.
Proof Straightforward. 1

Definition 8.1.2 Commutativity
Let R, S and T be three binary relations on a set X.
e R commutes with S up to T' N
if ey Ty A ey Raxg Nyy Sya, then

there exist x3,y3 € X s.t. k3 S a3 Ays Rys A w31 ys
T

Ly ——— N

/V Y\

T2 Y2

EN z

N\ /

r3 —— Y3

289

o R commutes strongly with S up to T N

there exists f: X — X s.t. if ey T ys N vy Rxo Ayy Sya, then
22 S f(21) Ay2 B f(y1) A fz) T f(y1)

T
1 e (51
v N

e N
X2 Y2

RN e

N e
T

f@) ——— f(y)
We introduce also the following derived definitions:

e R commutes (strongly) with S iff R commutes (strongly) with S up to
Ay .

e R has the (strong) diamond property (up to T') iff R commutes (strongly)
with R (up to T).

e R can be postponed after S iff R" commutes with S

R
1 N
| |
Sl ls
R

Ly —— Y2

”

Remark 8.1.3 Only the definition of “_ commutes (strongly) with _ up to 7 is
new, the others are standard (see [Bar81]). If R commutes with S up to T,
then S commutes with R up to T°7, but in general not up to 7' (unless T is

symmetric).

Proposition 8.1.4 Postponement of R°? after R
If R and T are reflexive relations on X and R has the diamond property
up to T, then
(RURPUT) = (RUT)(R*PUT)"

290

Proof First we establish the following fact:

Claim 8.1.4.1 R commutes with (RUT)*.

Proof We prove, by induction on n, that if x1 Rxy and x; (RUT')" a3, then there
exists x4 s.t. 3 Rxy and x3 (R U T)*24. The basic case 0 is trivial, therefore

suppose that x; (RUT)"*! z3. There are two cases to distinguish, depending on

the first step:
e R =z R2{ (RUT)"zs.

— by the diamond property up to T and reflexivity of T
there exists @, s.t. x2 RT'x}, and 2} R},

— by IH for 2} (RUT)" x5
there exists x4 s.t. 23 Rxy and 25 (RUT)* x4

— by composing xy RT 2}, and z, (RUT)* x4
zy (RUT) 4

o I' = 1 T2 (RUT)" zs.

— by the diamond property up to 7' and reflexivity of R
there exists @, s.t. x2 RT'z}, and 2| R).

Therefore, we can proceed as in the case R.
|

We prove, by induction on n, that if (RU R UT)" z, then there exists y
st. 2 (RUT) y (R®?UT)*z. The basic case 0 is trivial, therefore suppose that
z (RUR?UT)"! z. There are three cases to distinguish, depending on the first

step:
e R = zRa'(RURPUT)" .
— by IH , there exists y s.t.
' (RUT)yand y(RPUT)* 2.

— by composing ¢ Rz’ and ' (RUT)*y
(RUT)*y

291

o ' = aT2'(RUR?PUT)"z. Similar to the case R.
o R? — ¢ R?2'(RURPUT)" 2.

— by IH , there exists y’ s.t.
' (RUT) y" and y' (RPUT)* z

— since @' Rx and 2’ (RUT)*y', by the claim there exists y s.t.
z(RUT)*y and y' Ry

— by composing y R°? y" and y' (R? UT)* z
(x(RUT))y (RPUT) =z

Remark 8.1.5 If 7' can be postponed after R, then Proposition 8.1.4 can be
improved, i.e. (RUR?UT)* = R*T*(R?)*. However, some of the Rs and T's
considered do not satisfy this additional requirement (see Theorem 8.3.10 and

Example 8.3.11).

Proposition 8.1.6 Erasing of R
If R and T are two relations on X, NF C X and f: X — X are s.t.

1. z R f(x)

if r € NF and z Ry, theny = x

2. ifxTy, then f(2)T f(y)
if t € NF and « Ty, then f(y) € NF

3. ifx Ry, then f(z) R f(y)
if t Ry and y € NF, then f(z) =y

then for all x and z in NF
t(RURPUTY z <= 21"z

The first property means that NF is a set of fix-points for R and f is a reduc-
tion strategy for R, therefore we can define a partial function nf(z) =y =N

dn.f"(x) = y € NF. The second property means that if 27"y and nf(x) exists,

292

then nf(z) T nf(y). The third property means that nf(z) = y iff «t R*y € NF.
The claim above implies that if x (RU R UT)* z and nf(x) exists, then nf(z)
exists and nf(x) T* nf(z), in particular © R*T*RP” z.

Proof We prove, by induction on n, that if z,z € NF and 2 (RUR*UT)" z, then
xT*z. The basic case 0 is trivial, therefore suppose that z (R U R U T')"*! z.
There are three cases to distinguish, depending on the first step:

e R = 2z Ry(RURPUT)" 2.

— By the first property, z =y
— ByIHforz=y(RUR?UT)"z

zT*z
e R?” —= ¢ R?y(RURPUT)"z.

— By the third and first property
v = f(y) and f(z) = 2

— by the second and third property
r=fly) (RURPUT)" f(z) = =

— by IH for 2 (RUR* U T)" 2

xT™* z
o I' = aTy(RURYUT)" 2.

— by the first property
v = f(z) and f(z) = =

— by the second and third property
z=f(z)T f(y) (RURPUT)" f(z) = =

— since « € NF, by the second property

fly) € NF
— by IH for f(y) (RUR*UT)"z
(xT)f(y) T~ =

293

Remark 8.1.7 If NF is closed w.r.t. 7' (i.e. @ € NF and 2Ty imply y € NF)
and R has the diamond property up to 7', then x (RUR?P UT)* z < 2 T" z
for all x and z in NF. However, some of the NF and 7' considered do not satisty

these requirements (see Theorem 8.4.4).

Definition 8.1.8 Compatible relations

Let R be a binary relation on pA-terms modulo a-conversion:

e R isw-compatible iff it is closed w.r.t. the inference rules (refl), (*subst)
and (w-§)

t1Dy Rt,1Dy D, RD,

"8 B 1D Df B (e 1 D3) 1

e R iss-compatible iff it is closed w.r.t. the inference rules (refl), (*subst)

and (&)

Lemma 8.1.9 Basic Facts

1. If R s s-compatible, then it ts also w-compatible.

2. If R and S are (w-compatible) s-compatible, then RN S is (w-compatible)

s-compatible.

3. If R and S are (w-compatible) s-compatible, then RS is (w-compatible)
s-compatible and (RU S)* is (w-compatible) s-compatible.

4. If S is w-compatible and R and T are s-compatible, then RST 1is s-
compatible and (RU SUT)* is s-compatible.

Proof First we establish some simple properties of compatible relations.

Claim 8.1.9.1 If R is a relation on pA-terms (modulo a-conversion) satisfying
(refl) and (*subst), then R satisfies also (0-ksubst), (w-ksubst) and is closed

w.r.t. renaming of free variables.

Proof We prove only closure w.r.t. renaming of free variables, as the other prop-
erties are proved similarly.
Given two variables @ and z, we derive (M [Dy)*[x: = z] R (M3 Dy)*[x: = 2]
from the assumption M, Dy R M;[D,:

294

by (refl)
2I0R =10

by (*subst) applied to the assumption
(MyIDh)*[x:=z] R (M| Dy)*[x: = 2]

. We show that R satisfies (w-£). Suppose that

[} Ml rDl RMQ rDQ
e ylEy Ryl E,

we have to derive
()\fL’Ml rDl) rEl R ()\.fMQ rDQ) rEQ

We assume that @ ¢ FV(E; U E,). In fact, we can always replace x by a
new variable z ¢ FV(M,D; U E;) and:

e rename the bound variable x with z without changing the conclusion,
because of a-conversion

o derive the first premiss with = replaced by z, because R is closed
w.r.t. renaming of free variables

Then, we proceed as follows:

o by (w-*subst)
My 1Dy U Ey R Myt Dy U By

o since z ¢ FV(E, U Ey), by (€)
(Az.My 1 D)L Ey R (Ax. My [Dy) [Ey

. easy.

3. (refl) is immediate.

(*subst) is straightforward. Suppose that

[} Ml rDl RMQ rDQ SMg ng

295

® N1 rEl RNQ rEQ SNg rEg
then by (*subst) applied componentwise

(]\41 rDl)*[l' = N1 rEl] R (Mg rDQ)*[$ = N2 rEQ] S (Mg rDS)*[$ = N3 rE3]

((w-¢) and) (£) requires some extra care. Suppose that

[J Ml rD1UE1RM2rD2 SMnggUEg
o ylEy RNo[Ey Syl Es
e T g FV(El U Eg)

we have to derive
()\$M1 rDl) rEl R ()\CL’MQ ng) rEQ S ()\.IfMg rD3) rEg

By arguing as in the proof of the first statement, we can assume that

x & FV(Fy):
e by (0-xsubst) applied componentwise to the second assumption
ylE1 RylEy Syl Es
e by (w-*subst) applied componentwise the first assumption
My 1Dy U Ey R My Dy U Ey S M Dy U Es
e since v ¢ FV(E; U E3 U E3), by (€) applied componentwise
(Ax. My D) Ey R(Ax. Myt Do) [Ey S (Ax. M3 Ds) | Es

Now we prove that (R U S)* is (w-compatible) s-compatible:

e by the third statement of Lemma 8.1.1
(RUS)* = (RS)*
e since RS is s-compatible, by repeating the argument above

(RS)™ is s-compatible for every n > 1. Therefore, its limit (RS)*

has to be s-compatible

4. By the first and third statements, RST is w-compatible. Therefore we
have to establish only (£). Suppose that

[} Ml rDl UElRMgrDQ SMnggTM4rD4UE4

296

o ylFy RNyIE; S Nl EsT ylEy
e T g FV(El U E4)

we have to derive
()\IMl rDl) rEl R (A;C-LMZ ng) rEQ S()\IMS ng) rEg T ()\171\44 rD4) rE4

By arguing as in the proof of the third statement, we can assume that

N3y Ns =y and € FV(FEy; U E3):

e by (w-*subst) for R and T
My 1Dy U By R My Dy U By and
Myt Dy U Es T My Dy U B,y
e since v ¢ FV(E, U F; U E3U Ey), by (¢) for R and T
(Ax. My D1) 1 Ey R(Ax. M3} Dy) | Ey and
(Ae. M3t Ds) 1 EsT (M. Myl Dy) [Ey
e by (w-¢) for S
(Ax. My Dy) [Ey S (Ax. M3} Ds)| Es and by composing with the other
two relations
(Ax. My D) Ey R(Ax. My Dy) [Ey S
(Ae. M3t D3) 1 EsT (M. Myl Dy) [Ey

Now we prove that (RU S UT)* is s-compatible:

e by the third statement of Lemma 8.1.1
(RUSUT)* = (RST)*
e since RST is s-compatible, by the third statement
(RST)" is s-compatible for every n > 1. Therefore, its limit (RST')*

has to be s-compatible

8.2 [-reduction

We define pAl-terms and raw Al-terms, roughly speaking, they are pA-terms and
raw A-terms with some of the B-redexes labelled. In order to define the one-
step parallel reduction —; on pA-terms, we introduce two functions from pAl-

terms to pA-terms: || and ¢(-) (see Section 11.1 of [Bar81]). The function ||

297

erases the labels, while ¢(_) contracts all the labelled -redexes (from the inside
to the outside). Then the one-step parallel reduction can be defined as (see

Definition 8.2.17):

o t1[Dy —1 t3[Dy <2 there exists a pAl-term ¢ [D s.t.
tl rDl = |t rD| and tg rDQ = ¢(t rD)

In other words, ;[Dy —1 t2] D3 holds iff ¢5[Dy can be obtained from ¢;[D; by
replacing (in a consistent way) some [-redexes with their contracta. We introduce
also a function ¢,,(-), the mazimum one-step parallel (see Definition 8.2.10), and

prove that —; has the strong diamond property (see Corollary 8.2.18).

Remark 8.2.1 For the AS3-calculus there is an equivalent definition of the one-
step parallel reduction, given by a set of inference rules (see Definition 3.2.3 of
[Bar81]). If one tries the same for the A,3-calculus (e.g. by taking the pure
inference rules without (), (symm) and (trans)), then the resulting relation not
only replaces some [-redexes with their contracta, but it may also move some
terms in or out of the body of a A-abstraction (because of (¢)). Moreover, the
diamond property for such a relation (which we expect to hold) cannot be proved
as in Lemma 3.2.6 of [Bar81], because the inference rules (z.app) and (x.3) escape

any simple case analysis.

The notion of f-normal form cannot be defined as in Chapter 3 of [Bar81],
because we do not have a one-step B-reduction. However, they can be defined

directly as pA-terms without 3-redexes.

Definition 8.2.2 [-redexes and -normal forms
o o (-redex is a raw A-term of the form (Ax.t1[D1)ts

e o f-normal form (shortly 3-NF) is a raw A-term, pA-term or dA-term

that does not contain [(-redexes

Remark 8.2.3 It is possible to consider a notion of reduction for the fixed-point

partial lambda calculus (see Definition 4.3.5), namely:

e a Y-redex is a raw \Y -term of the form Y,

e a Y-normal form (shortly Y-NF) is a raw AY-term, pAY-term or d\Y -

term that does not contain Y-redexes

298

We claim that the strong diamond property for —; (see Corollary 8.2.18) holds
for a wide class of reductions, and that this can be proved by techniques similar to
those developed in [Klo80] for establishing the Church-Rosser property of certain

combinatory reduction systems.

Definition 8.2.4 Structural inference rules for pAl-terms
The set plTerm of pAl-terms is generated by the structural inference rules

for pA-terms and two additional rules, (z.X') and (X'), i.e.:

>) € plTerm

111D, € plTerm 131 D; € plTerm
x H{tita} U Dy U Dy € plTerm

z.app

111Dy € plTerm 131 D; € plTerm
tltg r{tltg} U D1 U D2 € plTerm

app

t1[Dy U Dy € plTerm ta Dy € plTerm

N
) {(NMy.t1]D1)t2} U Dy € plTerm

Y §Z FV(D2)

t1 Dy U Dy € plTerm ta Dy € plTerm
()\/y.tl rDl)tQ r{()\/ytl rDl)tQ} U D2 € plTerm

y € FV(D,)

t1D"UD € plTerm D € plTerm

A
(Az.t1 D)1 D € plTerm

x ¢ FV(D)

Definition 8.2.5 Raw Al-terms, raw pAl-terms and raw dAl-terms
The set rlTerm of raw Al-terms is generated by the formation rules for raw

A-terms plus the formation rule (X'), i.e.:

z € rlTerm

t1 € rlTerm ty € rlTerm
t1ty € rlTerm

app

t1 € rlTerm Dy Cyyp, rlTerm ty € rlTerm
(Maz.t11Dq)ty € rlTerm

)\/

D Cyjy rlTerm t € rlTerm

A
(Az.t1D) € rlTerm

299

D is a raw dAl-term iff D C rlTerm.

tID is a raw pAl-term iff t is a raw A-term and D is a raw d\l-terms

Remark 8.2.6 Also the other definitions (and results) of Section 7.1, on pA-
terms, extend smoothly to pAl-terms. Although their extension to pAl-terms is

not stated explicitly, they will be used in the sequel.

The erasing |-| and the parallel reduction ¢(-) will be defined as functions
from raw pAl-terms to raw pA-terms, and only subsequently do we prove that
they can be restricted to pAl-terms (see Lemma 8.2.16). Similarly, the mazimum
one-step parallel ¢,,(-) will be defined as an endofunction on raw pA-terms, and
only subsequently do we prove that it can be restricted to pA-terms. We introduce

also an auxiliary endofunction r(_) on raw pAl-terms, which is essential to prove

Corollary 8.2.18.

Definition 8.2.7 Erase ||

|| is defined by induction on the structure of raw Nl-terms:

A
o |z| ==z

(1>

ot 2 {DENIDDIEL 713 = (Y1)

[t1]]¢2] otherwise
o [\z.tID| £ (Az.|tD])

|| is extended additively to raw pAl-terms and raw d\l-terms:
© [D| 2 Uien{ltl)
o [tIDI 2|t 1D

Remark 8.2.8 It is immediate from its definition, that |_| is additive (i.e. |D U
D'| = |D|U|D']), preserves free variables (i.e. FV(|t|) = FV(t)) and is the identity
on raw pA-terms (i.e. [t D] =t} D when ¢t[D € rlTerm).

Moreover, |_| commutes with substitution, i.e. |M[z:= N|| = |M|[z:= |N|]
for all raw Al-term M and N.

Definition 8.2.9 Parallel Reduction ¢(-)
é(-) and ¢4(-) are defined by combined induction on the structure of raw Al-

terms:

300

[:=¢(t2)] ifti = Nat|D)
)o(t2) otherwise

= ?(tg)] ifti = (Nat|D)

otherwise

é(-) ts extended additively to raw pAl-terms and raw d\l-terms:
o $(D) = Uiepda(t)
o ¢(tID) = (i) lo(D)

Definition 8.2.10 Maximum Reduction ¢,,(_)
ém(-) and ¢a(-) are defined by combined induction on the structure of raw

A-terms:

o ¢..(t1ts) A { E 1)£ = om(ta)] ift1 = (Ax.t|D)

Gm(t2) otherwise
A [Im(D)[x:= ¢m(tz)] if t1 = (At D)
Pma(tilz) = { {0 (t1) P (t2) } otherwise

[l

o ¢u(Az.t[D) 2 (A\2.6n(t1D)), dma(Az.tID) 20

ém(-) is extended additively to raw pA-terms and raw d\-terms:
¢ (D) = Uienralt)
A

Definition 8.2.11 Residual Reduction r(-)
r(-) and r4(-) are defined by combined induction on the structure of raw Al-

terms:

)] ifty = Nzt D)
FD)r(ty) ifty = (Ax.t|D)
r(tq)r(t2) otherwise

R r(D)]z: = 1(t2)] ifti = (Nat|D)
ra(tatz) = { {Nzx(tID)r(t2)} ifti = (Ax.tID)
{r(t1)r(t2)} otherwise

301

o t(Az.t[D) 2 (Aax(t1D)) , ra(Ax.t1D) 20
r(-) is extended additively to raw pAl-terms and raw d\l-terms:
A
° I(D) ~ UteDrd(t)
e r(tD)=r(t)lr(D)

Remark 8.2.12 It is immediate from their definition, that ¢(.), ¢,.(-) and r(-)
are additive (i.e. (DU D") = ¢(D)U ¢(D')), do not introduce new free variables
(i.e. FV(4(t)) € FV(t)) and remove redundancies (i.e. ¢(t) has no redundancies,
see Notation 7.1.7).

Moreover, if a raw pA-term ¢ D has no redundancies, then ¢(¢t[D)=t]D.

Lemma 8.2.13 ¢(_) commutes with substitution

For all raw Nl-terms M and N s.t. M has no redundancies
o ¢(M[y:= N]) = ¢(M)[y:= ¢(N)]

o Oy Mly:= NJ|) = ¢a(M)[y: = &(N)], if M is not a value.

In particular, ¢((M[D)[y:= NJ)
M|D without redundancies.

S(MID)y:= ¢(N)] for any raw pAl-term

Proof By induction on the structure of the raw Al-term M.

e () = M = x There are two subcases: #Z y and = y. In both subcases

the proof is immediate.

e (app) = M = t;t3. As M has no redundancies, then t; and ¢; have no

redundancies.

S(My: = N]) = gltaly: = N)o(taly: = N]) =

by IH for ¢; and ¢,

(o(t)y: = S(N))(d(t2)[y: = ¢(N)]) = ¢(M)[y: = ¢(N)].
¢a(M[y: = N]) = {¢(t:[y: = N])o(t2ly: = N])} =

by IH for ¢; and %,

{(e(t)[y: = (N ((t2)y: = S(N)])} = da(M)[y: = ¢(N)].

302

e () = M = (Na.t;[Dy)t. W.lo.g. we can assume that = does not
clash with y or N. As M has no redundancies, then ¢; and ¢, have no
redundancies and all t € D; are not values and have no redundancies.
¢(M[y:= N]) = (¢(t1[y: = N]))[z: = ¢(taly: = N])]
by IH for ¢; and ¢,

(¢(t1)[y: = ¢(N)])[z: = ¢(t2)[y: = ¢(N)]] =

since ¢(_) does not introduce new variables, by the assumptions on
(¢(t1)[x: = @(t2)])[y: = N] = ¢(M)[y: = ¢(N)].

¢a(Mly: = N]) = ¢(Dily: = N])[z: = ¢(t2[y: = N])]
by additivity and IH for ¢t € D; and t,

((D1)ly: = 6(N)])[z: = 6(t2)[y: = ¢(N)]] =

since ¢(_) does not introduce new variables, by the assumptions on

(¢(D)[z: = ¢(12)])[y: = N] = ¢a(M)[y: = ¢(N)].

e (\) = M = (Az.t11 D7) W.lo.g. we can assume that = does not clash
with y or N. As M has no redundancies, then #; has no redundancies and

all ¢ € Dy are not values and have no redundancies.

¢(M[y: = N]) = (Az.¢(t1 [Di[y: = N])) =
by additivity and IH for ¢; and ¢ € D,

(Az.¢(t1[D1)ly: = ¢(N)]) = ¢(M)[y: = ¢(N)].

Example 8.2.14 ¢,,(-) and r(_) do not commute with substitution, e.g. let M 2
zy and N 2 I, then ¢,,(M[z:= N]) =y while ¢,,(M)[z: = ¢(N)] = ly.

Lemma 8.2.15 for any raw Al-term M:
o (M) = [r(M)| and ¢4(M) = [ry(M))|
o ¢m(|M]) = ¢(x(M)) and ¢ra(|M|) = ¢(ra(M))

In particular, (M D) = [v(M|D)| and ¢,,(|M[D]) = ¢(x(M D)) for any raw
pAl-term MTD.

303

Proof Both statements are proved by induction on the structure of the raw Al-

term M (see Definition 8.2.4). We carry out in details the proof of ¢,,(|M]) =
¢(r(M)) and ¢na(|M]) = ¢(ra(M)).

e (r) = M =z immediate.
Om(|M]), ¢(x(M)) = & and ¢pna(|M]), d(ra(M)) = {z}.

e (app) = M =tyty by IH .

There are two subcases: (1)), otherwise. Depending on the structure of the

raw A-term #;.

- (A\) = t1 = (Az.t3]Ds).
G| M]) = bm([ta])[z: = dm(lt2])] =
by IH for ¢35 and ¢,
o(x(ts))[z: = ¢(x(t2))]
P((Na.x(t31Ds))r(t2)) = ¢(x(M)).
Omd(|M]) = ¢ (|Ds])[x: = ¢m([t2])] =
by additivity and IH for ¢t € D3 and t,
o(x(Ds))[z: = ¢(x(ts))] =
o({(Nw.x(ts[Ds))r(t2)}) = ¢(ra(M)).

— otherwise =
G ([M) = Sm([t1]) S ([22])
by IH for ¢; and ¢,
o(r(t1))o(r(t2)) = o(r(M)).
Oma(|M]) = {dn(lta])dm([ta])} =
by IH for ¢; and ¢,

{o(r(t1))d(x(t2))} = d(ra(M)).
o (V)= M = (Nz.t1]D1)t; by IH and Lemma 8.2.13.

Grn(IM]) = ¢n(ti])[z: = dm(lt2])] =
by IH for ¢; and ¢,

¢(r(t))[z: = ¢(x(t2))] =

since r(_) removes redundancies, by Lemma 8.2.13

o(r(ty)[z: = r(t2)]) = ¢(r(M)).

304

Pma(|M]) = ¢m(|D1|)[z: = ¢m([t2])] =
by additivity and IH for ¢t € D; and t,

¢(r(Dr))[z: = ¢(r(12))] =

since r(_) removes redundancies, by Lemma 8.2.13
Hr(Dy)fe: = 1(t)]) = Hlra(M)).
e (\) = M= (\at:|Dy) by IH .

Om(|M]) = (Az.gm ([t 1 D1])) =
by additivity and IH for ¢; and ¢ € D,

(Az.¢(r(t1 [D1))) = ¢(r(M)).
Similarly for ¢.q(|M|) = é(ra(M)).

Lemma 8.2.16 Preservation of Saturation

The functions |-|, ¢(-), ¢m(-) and r(-) preserve pAl-terms, i.e.
o ift|D € plTerm, then |t} D| € pTerm

o ift|D € plTerm, then ¢(t1D) € pTerm

o ift|D € pTerm, then ¢,,(t1D) € pTerm

o ift|D € plTerm, then r(t}D) € plTerm

Proof The claim for |_| can be proved by a straightforward induction on the proof
of t! D € plTerm. The claim for ¢(-) follows from that for |_| and r(-), because
é(tID) = |r(tD)| (see Lemma 8.2.15). The claim for ¢,,(-) follows from that for
#(-) and r(_), because if ¢ [D is a pA-term, then it is also a pAl-term, ¢} D = |t D)|
and ¢, (t1D) = ¢(x(t[D)) (see Lemma 8.2.15).

The claim for r(-) is proved by induction on the proof of M D € plTerm (see
Definition 8.2.4).

e () = immediate.

305

Let t1[Dy € plTerm and t3[Dy € plTerm be the premisses of the last rule
(i.e. (z.app)) in the proof of M| D € plTerm.

By IH r(¢1]Dy) € plTerm and r(t3]D3) € plTerm.
We have to prove that r(M [D) is a pAl-term. There are two subcases: (),
otherwise. Depending on the structure of the raw A-term t;.

t(MD) = a{(Ny.r(ts) [r(D3))r(t2) } Ur(Dy) Ur(Dg):

* since (Ay.r(t3)fr(Ds))tr(Dq) = r(t1[D1) € plTerm, then
r(t3)[r(Ds) Ur(D) € plTerm

— otherwise =
t(MD) = a{r(t1)r(t2)} Ur(Dr) Ur(Dy):
+ By (z.app)
x {r(t1)r(t2)} Ur(Dq) Ur(Dz) € plTerm

e (app) = similar to the case (x.app)

o (z.N) =
Let 11Dy U Dy € plTerm and t5] Dy € plTerm be the premisses of the last
rule (i.e. (z.))) in the proof of M D € plTerm.

We have to prove that t(M D) = x [(x(Dy))*[y: = 1(t2)] U t(D3) is a pAl-
term.
— By IH
r(t1 [Dy U D3) € plTerm and r(t5] D) € plTerm
— by (0-#) for pAl-terms
r(Dy) U r(Dy) is a dAl-term

306
— since y € FV(Dy), by (*) for pAl-terms

t(D) = (r(D1) Ur(Dg))*[y: = r(t21 D2)] is a dAl-term, therefore z [D
is a pAl-term

e (\') = similar to the case (x.)\')
e (\) = trivial

Let ¢t D" U D € plTerm and D € plTerm be the premisses of the last rule
(i.e. (X)) in the proof of M D € plTerm.

~ By IH
r(tfD'U D) € plTerm and r(D) € plTerm

— since r(-) does not introduce new free variables, by ()

t(MD) = (Ax.x(t)e(D) (D) € plTerm

Definition 8.2.17 One-step parallel reduction

The one-step parallel reduction — is the relation t;[Dy —1 t3] D, PN
there exists a pAl-term t[D s.t. 11Dy = [t1D] and t3{Dy = ¢(t1D). By

Lemma 8.2.16, —1 is actually a relation on pA-terms.

Corollary 8.2.18 Strong diamond property
If t41 Dy —1 ta[Dy, then t3[Dy —1 ¢ (ti[D1).

Proof By definition of —; there exists a pAl-term ¢ D s.t. ;[Dy = |[t] D] and
tg rDQ = ¢(t rD)

o by Lemma 8.2.16

r(t1D) is also a pAl-term
e by Lemma 8.2.15

ta Dz = [e(t1D)] and ¢y (t11D1) = (x(t D))
o by definition of —,

tal Dy =1 ¢m(ta1Dy)

307

Lemma 8.2.19 Soundness of —;
Ifty Dy —1 t2] Dy, then t1[Dy >~ t31 Dy ts derivable in ABpEQL.

Proof We show that |t[D| ~ ¢(¢]D) is derivable in ABpEQL by induction on
the proof of ¢t1 D € plTerm. The only interesting case is (z.\") (and (\')).
Let t11 D1 U Dy € plTerm and t3[Dy € plTerm be the premisses of the last
rule (i.e. (z.)")) in the proof of t [D € plTerm. We have to prove that

z[{(Ay-t1[D1)t2} U Do = a[¢(D1)]y: = ¢(t2)] U ¢(D2)
o by IH
t11D1 U Dy 2 ¢(t1) [¢(D1) U ¢(D2) and
tal Dy > §(12) 16(Ds)

e by the pure inference rule (z.3) (see Definition 7.2.3)

zH{(Ayta I D1)ta} U Dy 2 2 [(@(D1) U ¢(D2))*[y: = ¢(t21D2)] =
since y € FV(D3) and ¢(-) does not introduce new free variables

[o(Dy)[y: = é(12)] U ¢(Ds)

Proposition 8.2.20 Admissible Inference Rules for —;
—1 1s a w-compatible relation and satisfies the axiom () of A\Bp-equational

logic (see Definition 7.2.1).
Proof We have to prove that —; satisfies (refl), (5), (w-¢) and (*subst).

o (refl) = If t1D is a pA-term, then t[D is a pAl-term, [t[D| = t1D and
é(tID)=1t1D (as t[D has no redundancies).

o () = If tID is a pA-term, then M = (Nazt[D)z[{(Nx.tID)x} is a
pAl-term, |[M| = Azt D)z [{(Az.tID)x} and ¢(M) =t|D.

o (w-{) = If t|D and D' are pAl-terms, then M = (Ay.t[D)D" is a pAl-
term, [M] = (e Jt DD and 6(M) = (\e-6(t D) 16(D").

e (ksubst) = If ¢, Dy and ty3} Dy are pAl-terms, then M = (¢ Dq)*[y: =
ta[Do]is a pAl-term, [M| = ([t [D1|My: = [t21 Dz[] and ¢(M) = (¢(t1D1)
[y: = é(t2 Dy)] (by Lemma 8.2.13, as ¢ [D has no redundancies).

308

Remark 8.2.21 The relation — is not s-compatible and its symmetric and tran-
sitive closure is properly included in the set of pA-equations provable in ABp-

equational logic.

8.3 [(-reduction and AGnmonp-equational logic

In this section we want to relate the one-step parallel reduction — to the preorder
< of Afnmonp-equational logic (see Theorem 8.3.10). In order to do this, we

introduce the one-step dn-preorder <, , whose transitive closure is the preorder

1dn’
< of Apmonp-equational logic (see Lemma 8.3.5).

Remark 8.3.1 One may wonder why we did not define $n-reduction and relate
it to < of ABnmonp-equational logic via the d-preorder. 1t is straightforward to

define a notion of n-reduction on pA-terms

AeMzxtMz)ID —, M[D, provided ¢ FV(M). There is another
restriction on M [D (namely M € D if M is an application) to enforce

the correctness of n-reduction, but it is automatically satisfied, when

M|D is a pA-terms.

Then we can proceed as in Section 8.2 to prove a strong diamond property (see
Corollary 8.2.18) for n-reduction. However, one-step parallel n-reduction does
not have the diamond property up to the d-preorder <, (see Example 8.3.9),
therefore we have decided to take care of 5 in the dn-preorder.

We think that the problems with 7-reduction are due to its non-operational
nature, in the sense that an interpreter for a functional programming language

does not perform n-reductions.

Definition 8.3.2 (One-step) dn-Preorder

The (one-step) dn-preorder <, (<,) is the binary relation on pA-terms

1dn
generated by the pure inference rules, of Definition 7.3.4, for Apmonp-equational

logic (except (trans)).

Remark 8.3.3 The results stated in this section for the dn-preorder hold also for
the d-preorder <, (i.e. < of Amonp-equational logic), d-conversion ~4 (i.e. ~ of
Ap-equational logic) and di-conversion ~g4, (i.e. >~ of Anp-equational logic). The

proofs (and definitions) are actually simpler.

309

Proposition 8.3.4 Admissible Inference Rules for Sidn
The relation <, is s-compatible and salisfies the avioms (incl) and (n) of

ABnmonp-equational logic (see Definition 7.3.2).

Proof The rule (¢) is admissible, by definition of Sidn-
The proof that (incl) and (ksubst) are admissible in the set generated by the
pure inference rules for A@nmonp-equational logic (see Propositions 7.3.6 and 7.3.9)
can be reused to prove the admissibility in Sidn-

The axioms (refl) and (n) follow easily from (incl) (and the inference rules (n)
and (n°7)). 1

Lemma 8.3.5 Postponement of (trans) in ApmonpEQL

o
Sd'/7 - S1d77 :

Proof Since <

Sidp © Sap and <n is transitive, then g;dn C g To establish

Ndn'
the other inclusion, it is enough to prove that the axioms and inference rules
of Apmonp-equational logic are admissible in g’{dn, because San is the smallest
Anmonp-theory.

The satisfaction of the axioms (incl) and (7) follows from Proposition 8.3.4.
(trans) is immediate. Since <14y 18 s-compatible (by Proposition 8.3.4), Slan 18

also s-compatible (by Lemma 8.1.9). Therefore, <1gy satisfies (*subst) and (&).

The lemma below is not interesting in itself, but it is used several times in

the proof of the main lemmas.
Lemma 8.3.6
o Ify & FV(M), then
Sm((Ay-My{My})N) = ¢pm(MN) and
Oma((Ay-My{My})N) = ¢na(MN).
o Ify @ FV(M) and M is a A-abstraction, then

Ay My {My}) = ¢n(M)

Proof We prove that ¢,,(Ay.My[{My})N) = ¢,(MN). There are two cases:
(A), otherwise. Depending on the structure of the raw A-term M.

310

e (A\) = since y € FV(M), we can assume that M = (\y.P[E).

G ((Ay MyH{My})N) = ¢((Ay.PIE)y)[y: = ¢ (N)] =
¢m(P)[y: = ¢m(N)] = ¢m(MN)

e otherwise = neither My nor M N are [-redexes.

Gn((Ay.MyH{My})N) = ¢ (M)yly: = ¢ (N)] =
since y € FV(M) and ¢,,(-) does not introduce new free variables

Om(M)op(N) = ¢ (MN).

Gmd((Ay Myt {My})N) = ¢na(MN) is proved similarly.
We prove that ¢,(Ay.My[{My}) = ¢(M). Since y € FV(M), we can
assume that M = (\y.N[E).

e by assumption
(Ay-MyH{My}) = (hy. Ay NTE)y [{(Ay.NTE)y})
e by definition of ¢,,(-)

m(Ay My {My}) = (Ay-¢m(N)[y: = y|[m(E)[y: = y]) = ¢m(M)

Lemma 8.3.7 First Main Lemma for Soan
If MIDg,, NIE, then ¢m(MfD)S1dn¢m(NfE)-

~1dn

Proof We prove that qu(MfD)gldnqu(NfE) by induction on the number of
inference rules used in the proof of M nglan I E, using the pure inference rules
for Sidn (see Definition 8.3.2).

The basic case 0 is vacuously true, because a proof of M [Dg ., N|FE contains

1dn

at least one inference rule (as no assumptions are allowed).
Suppose that there is a proof of MnglanfE using n + 1 inference rules

and that the claim of the lemma holds for all pA-inequations provable using at

most n inference rules. There are six cases, depending on the last rule in the

proof of M|Dg,, NTFE.

~1dn

e () = immediate.

311

— since D is a dA-term, by Lemma 8.2.16
ém(D) is a dA-term, therefore by (z)
2 om(D)Sa 10

e (z.app) =
Let t1[D1gt2[Dy and t3] D3 tal Da be the premisses of the last rule (i.e.
(z.app)) in the proof of M DN IE.

There are four subcases: (£), (), (n°?) and otherwise. Depending on the
last rule in the proof of t; [Dy <ty [Dy:

— (¢) = by IH and (*subst).
Let t{ D] U D1 gty Dy U Dy and Dy Dy be the premisses of the last
rule (i.e. (£)) in the proof of t; [D1<ta [Ds.
First we prove that ¢,,(D) = (¢ (D] U Dq))*[z: = ¢n(tsfDs)] (and
similarly $(E) = (6(D§ U D))o = (141 D))

* by the inference rules
D ={(Ax.t{[D})ts} U Dy U Ds

* by definition of ¢,,(-)

Om(D) = ¢m(D)[2: = ¢m(t3)] U ¢m(D1) U 6 (Ds)

* & & FV(¢n(D1)), because ¢,,(-) does not introduce new free vari-
ables and @ ¢ FV(Dy) (by the side condition of ({)), therefore
¢m(D) = (¢m(Dy U Dr))*[z: = ¢m(tal Ds)]

Then we show that ¢,,(D)<¢m(F):

* by IH applied to the first premiss of (§)
Gm (L1 DT U D)L bm (51 D5 U Dy)

* by the admissible rule (0-*subst)
G (D] U D1)< b (D) U Dy)

* by IH applied to the second premiss of (x.app)
Gm(t3] D3) < hm(tal Dy)

* by the admissible rule (*subst)
G (D) = (¢ (DL U D))k [z = ¢(tsf D3)]<
(¢m (D3 U D2))*[x:= ¢n(tal Da)] = ¢m(E)

312

- (n) = by IH .
Let t{ 1 D1<ta [Dy be the premiss of the last rule (i.e. (n)) in the proof
of t1[D1ty Ds.
First we prove that ¢,,(D) = ¢, ({tits} U D1 U D3)
* by the inference rules
D = {(Ay-tiy {1y })is} U D1 U Ds
* y & FV(t)), by the side condition of (1). Therefore, by Lemma 8.3.6
Om(D) = ¢m({tits} U D1 U Ds)
Then we show that ¢,,(D)<¢m(F):

* by applying (z.app) to the premiss of () and the second premiss
of (z.app)
{thts} U D1 U D3g{tats} U Dy U Dy can be proved by using n
inference rules

x by IH
ém(D) = ¢m({tits} U D1 U D3)g
Sm({tata} U Dy U Dy) = ¢ (F)

— (n°?) = is dual to the subcase (7).
— otherwise => by IH and (x.app)
G (D) = {Gm(t1) S (t3) JUSm (D1) U (D3) (and ¢ E) = {Gpm(t2) b (ta) JU

ém(D3) U ¢ (Dy)), because t1 (t3) is not a A-abstraction.

« by IH applied to the premisses of (z.app)
Gm(t1 1 D1)<Gm(t2 D2) and ¢ (ta31 D3) < brm(taf Da)
* by the inference rule (z.app)
G (D) = {G(t1)$m(ts)} U b D1) U 6 (Ds) <
{dm(t2)0m(t4)} U ¢ (D2) U ¢(Da) = ¢ E)

e (app) = similar to the case (x.app).

e ({) = by IH and (¢).
Let ¢ D] U DLt D, U E and DK FE be the premisses of the last rule (i.e.
(£)) in the proof of MIDLNIE.

— by IH applied to the premisses of (£)
Sm(ti 1Dy U D) ([DY U E) and ¢, (D)< (F)

313

— since ¢,,(-) does not introduce new free variables and @ ¢ FV(D U E)
(by the side condition of (¢)), then & &€ FV(¢,,(D U E)). Therefore,
by the inference rule (¢)

Pm(MID) = (Ax.¢m (1) [¢m(D1)) [¢m (D)<
(Az. G (13) [G (D5)) [om (E) = dm(NTE)
o (1) =
Let t4] DK NTE be the premiss of the last rule (i.e. (n)) in the proof of
MID<NIE.

There are two subcases: (A) and otherwise. Depending on the structure of

the raw A-term #;:

— (A) => t; is a A-abstraction, by IH .
First we prove that ¢, (M D) = ¢,.(t1]D).
+ by the inference rules
MID = Ayt l{tiy})ID
+ y & FV(ty), by the side condition of (n). Therefore, by Lemma 8.3.6
MID = ¢, (t:11D)
Then we show that ¢,,(D)<ém(E):
+ by TH applied to the premiss of (1)
Gn(MID) = ¢ (t11 D)< (N TE)
— otherwise => by IH and (7).
On(MID) = (Ay-dm(t1)y H{om(t)y}) [dm(D), because ¢; is not a A-

abstraction.

* by IH applied to the premiss of (1)
G (ti D)< dm(NTE)

* since ¢, (-) does not introduce new free variables and y ¢ FV(D)
(by the side condition of (7)), then y & FV(¢,.(D)). Therefore,
by the inference rule (n)

¢m(M TD) = ()‘y-ﬁbm(tl)yr{¢m(tl)y}) M’m(D)Sﬁbm(N TE)

e (7°?) = dual to the case (n).

314

Corollary 8.3.8 Strong diamond property up to Sidy

—1 has the strong diamond property up to Sidyr 1€

f 11l D1, g ta [D2, 01Dy =1 B3 D3 and 15[Dy —1 14[Dy, then
t31 D3 —1 ¢ (tai1 D), talDs —1 n(t21D2) and ¢, (t rDl)gldn¢m(t2 [Ds)

Proof Immediate by Corollary 8.2.18 and Lemma 8.3.7. 1

Example 8.3.9 We give a counterexample to show that n-reduction, i.e. replacing
an n-redex (Ax. Mz [{Mz}) with its n-contractum M, does not have the diamond
property up to <, (or ~g).

Consider the following pA-terms:

[J tl rDl é

(Az.yzM{yz,yz}) Hyz}
(Az.yzH{yz}) Hyz}

o i3/ D3 = yH{yz}

>

o 1D

It is immediate to see that ¢, [Dy ~y 12{ Dy —, t3[Ds, {1 Dy and 5[D5 are

n-normal forms, but t; Dy ~ t3[D3 is not derivable in Amon-equational logic.

Theorem 8.3.10 Characterization of
tl rDl gtg rDQ ZTL)\ﬁT]H’lOHpEQL Zﬁ tl rDl(_ﬁ Sldn)*(—nopsldn)*tz rDQ

Proof By Proposition 8.1.4 and Corollary 8.3.8 it is enough to prove that g for
ABnmonp-equational logic is (—1 U—1°? U gldn)*.
(—1 U—=1?U g, ,)" is included in g, because g is reflexive, transitive and

~

ldn)
e by Lemma 8.2.19

—1 and —1°? are included <

e by definition
S1dn is included in <
For the other inclusion it is enough to show that the inference rules for
ABnmonp-equational logic (that generate) are admissible in (—; U—;" U
<)T

~1dn

e (trans) is immediate

315

e since Sidn is s-compatible and —; (and therefore —1°") is w-compatible,

by Lemma 8.1.9

(—1 U—=1? U gldn)* is s-compatible. Therefore, (*subst) and (¢) are ad-

missible.

e by Lemma 8.3.4 g, satisfies (incl) and (), therefore

1dn

(=1 U—=1P U g,,,)" satisfies (incl), (7).

~1dn

3), therefore

i

e by Lemma 8.2.20 — satisfies (

(—1 U—=1P U gldn)* satisfies (/).
|

Example 8.3.11 In general £, , cannot be postponed after —;, and the same
holds for the relations <,
to all of them.

Let T2 (Az.z @) and N 2 (Az.I0)I. Consider the following pA-terms:

1dn
, ~gq and ~g4,. We give a counterexample that applies

A

o t11D; = (Az.(Ay. NI {N}

e

o 121D, 2 Oa.(y.N1O) NP HN)

(Az.(Ay.NTO)H{N}) 10

® t3 ng é

It is immediate to see that t;[D; ~y t3[Dy; —1 t3[D3 and for all D s.t.
t1/ Dy =5t D, i.e.

o (Az.(Ay.NTOIO)IH{N}
o (M. Ay IMD) D) H{N}
o (Az.(Ay.It0)10)r0

11D ~ t31 D3 is not derivable in monA,n + [. If we allow arbitrary rewriting of
B-redexes, then there is a fourth possibility for ¢ | D, namely (Az.(Ay.N[0))0,
but also in this case ¢ [D ~ t3] D3 is not derivable in monAyn + .

316
8.4 (-normal forms

In this section we improve the characterization of ¢1 | D1 <t2 [Dy (see Theorem 8.3.10)
under the assumption that both pA-terms are 3-NFs (see Theorem 8.4.4), namely

< and <on coincide on 3-NF. In particular, decidability of San implies decidabil-
ity of < on the pA-terms with a 3-NF.

Lemma 8.4.1 If MIDg,, NVE, M is a 3-NF and N is an application (vari-

~1dn

able), then ¢,,(N) is an application (variable).

Probably, this lemma holds under more general circumstances, e.g. when all 3-
redexes in M contract to themselves, like (Az.zxlzx)(Az.zxfzx). This would

yield a similar improvement in Theorem 8.4.4.

Proof If N is a variable, then ¢,,(N) = N. If N is an application, then we
prove that ¢,,(/N) is an application by induction on the number of inference rules
used in the proof of M nglan I E, using the pure inference rules for g
Definition 8.3.2).

The basic case 0 is vacuously true, because a proof of M | D

1dn (see

1an I E contains
at least one inference rule (as no assumptions are allowed).

Suppose that there is a proof of MnglanfE using n + 1 inference rules
and that the claim holds for all pA-inequations provable using at most n in-

ference rules. There are six cases, depending on the last rule in the proof of
MIDg,, NIE.

~1dn

e () = impossible, because N is an application.
e (z.app) = impossible, because N is an application.

e (app) =

Let t1[D1gt2[Dy and t3] D3gta] Dy be the premisses of the last rule (i.e.
(app)) in the proof of M DN IE.

There are two subcases: (A) and otherwise. Depending on the structure of

the raw A-term #s:

— (A\) = 13 is a A-abstraction.

317

t; cannot be a A-abstraction, otherwise M = t,t5 would be a F-redex,
contradicting the assumption that M is a 3-NF. Therefore, the last
rule in the proof of t; [D1 <ts [Dy must be ().

Let t;[D1gt5[D2 be the premiss of the last rule (i.e. (7)) in the
proof of t1 D1ty [Ds.

First we prove that ¢,,(N) = ¢,,.(tht4)
* by the inference rules
N = (Ay-tyy Mty H)ts
* y & FV(t}), by the side condition of (7°?). Therefore, by Lemma 8.3.6
Om(N) = bm(t5la)
Then we show that ¢,,(/N) is an application:
* by applying (app) to the premiss of (7°?) and the second premiss

of (app)
M rD = t1t3 r{tltg} UD1 UDSSt%t4 r{tlzt4} UD2 UD4 can be proved

by using n inference rules
*x by IH
ém(N) = ¢p(thts) is an application

— otherwise = immediate.
Sm(N) = ¢m(ta)dm(ts), because ty is not a A-abstraction.

e ({) = impossible, because N is an application.

e () = by IH.
Let t4] DK NTE be the premiss of the last rule (i.e. (n)) in the proof of
MID<NIE.
— since M = (Ay.tiy [{t1y}) is a S-NF, then
t; is a B-NF
— by IH applied to the premiss of (1)
ém(N) is an application

e (1°?) = impossible, because N is an application.

318

Lemma 8.4.2 Second Main Lemma for <

Ndn
IfMID is a B-normal form and MTDS,, NTE, then ém(NTE) is a B-normal
form.

Proof We prove that ¢,,(N[FE) is a -NF by induction on the number of inference
rules used in the proof of M nglan I E. using the pure inference rules for S1dn
(see Definition 8.3.2).

The basic case 0 is vacuously true, because a proof of M ngldn

NTE contains
at least one inference rule (as no assumptions are allowed).

Suppose that there is a proof of MnglanfE using n + 1 inference rules
and that the claim of the lemma holds for all pA-inequations provable using at

most n inference rules. There are six cases, depending on the last rule in the

proof of M| DL, , NIFE.

~1dn

e (z) = trivial, because NE = z [0 is already a 3-NF.

e (z.app) =
Let t1[D1gt2[D2 and t3] D3ta] Dy be the premisses of the last rule (i.e.
(z.app)) in the proof of M DN E.
By IH for the premisses of (z.app), both ¢,,(D2) and ¢,,(D4) are 3-NFs.
Therefore, to show that ¢,,(E) = ¢nal(tats) U ¢p(D2) U ¢y (Dy) is a 3-NF,
it is enough to prove that ¢,,4(tat4) is a 3-NF.
There are two subcases: (A) and otherwise. Depending on the structure of

the raw A-term #s:

— (A\) = 13 is a A-abstraction.

t; cannot be a A-abstraction, otherwise t1t3 € D would be a F-redex,
contradicting the assumption that M D is a -NF. Therefore, the last
rule in the proof of t; [D1 <ts [Dy must be ().

Let t;[D1gt,[Dy be the premiss of the last rule (i.e. (7°?)) in the
proof of t; [D1 Lta [Ds.

First we prove that ¢,.q(tats) = Gmalthts)

* by the inference rules

toly = ()\y.tgy f{téy})t;

319

* y & FV(t}), by the side condition of (7°?). Therefore, by Lemma 8.3.6
¢>md(t2t4) = ¢’md(t/2t4)
Then we show that ¢,,4(¢2t4) is a S-NF:

* by applying (x.app) to the premiss of (7°?) and the second premiss

of (z.app)
Dt = {tit3} U D1 U D3 {thts} U Dy U Dy can be proved by using

n inference rules
« by IH | ¢, ({thta} U Dy U Dy) is a B-NF. Therefore
Gmd(tats) = dma(thts) is a B-NF
— otherwise = by IH and Lemma 8.4.1.

Gmd(tats) = {dm(t2)dm(ts)}, because ty is not a A-abstraction. By
IH for the premisses of (z.app), both ¢,,(t2) and ¢,,(t4) are 3-NFs.
Therefore, we have only to show that ¢,,(t2)¢,(t4) is not a S-redex:

* by the first premiss of (z.app) and the assumptions
t1 DKty Dy, ty 1s a B-NF and ¢, is not a A-abstraction

* by Lemma 8.4.1 ¢,,(2) is not a A-abstraction, therefore
Gm(t2)Pm(ta) is not a [-redex

(app) = similar to the case (z.app).

() = by IH .

Let t41D1 U Dt Dy U E and DK FE be the premisses of the last rule (i.e.
(£)) in the proof of MIDLNIE.

By IH for the premisses of (£), ¢m(t2), ¢m(D2) and ¢, (F) are 3-NFs.
Therefore, ¢, (NTE) = (Ax.¢m(t2) 1 ¢ (D2)) [dm(E) is a 5-NF.
(n) =

Let t4] DK NTE be the premiss of the last rule (i.e. (n)) in the proof of
MID<NIE.

By IH for the premiss of (), ¢(NTE) is a 5-NF.
(%) =

Let MDgt:[E be the premiss of the last rule (i.e. (7°?)) in the proof of
MID<NIE.

320

By IH for the premiss of (n), ¢,n(E) is a 8-NF. Therefore, to show that
Om(NTE) = ¢n((Ay.tay{t2y})) 1om(E) is a B-NF, it is enough to prove
that ¢, ((Ay.t2y [{t2y})) is.

There are two subcases: (A) and otherwise. Depending on the structure of

the raw A-term #s:

— (A\) = 13 is a A-abstraction, by IH .
First we prove that ¢,,(NE) = ¢,(t2] F).

+ by the inference rules
NTE = (Aytoy I {tay P E
+ y & FV(1), by the side condition of (y°7). Therefore, by Lemma 8.3.6
NIE = ¢n(t2] E)
by TH applied to the premiss of (57) ¢ (N) = d(ts) is a B-NF.
— otherwise = by IH and Lemma 8.4.1.
Om((Ay-t2y [{t2y})) = (Ay-dm(t2)y 1{dm(t2)y}), because t, is not a A-
abstraction. By TH for the premisses of (7%), ¢, () is 3-NFs. There-

fore, we have only to show that ¢,,(¢2)y is not a G-redex:

* by the premiss of (7°?) and the assumptions
M[IDgt[E, M is a B-NF and 5 is not a A-abstraction

* by Lemma 8.4.1 ¢,,(2) is not a A-abstraction, therefore
ém(t2)y is not a B-redex

Example 8.4.3 Lemma 8.4.2 does not hold for gldnop (and .

cisely, there are pA-terms ¢; [Dy and 5[Dy s.t. 8o Dy isa 3-NF and ¢, [D1 g ta [Dy,
but ¢; [Dy has no 3-NF, for instance

°7). More pre-

e

o 111D = x[{Q}, where Q = (Az.zz[{zz}) Az.zz|{zz})

[

[} tg rDQ CUr@

Theorem 8.4.4 Characterization of < for 8-NFs
tl rDl gtg rDQ m)\/BnmoanQL Zﬁ tl rDl Sdntg ng, when tl rDl and tg rDQ
are 3-NFs.

321

Proof Since £ = (—1 U—? U gldn)* (see Theorem 8.3.10) and Sy = g;dn (by
Lemma 8.3.5), it is enough to show that the conditions in Proposition 8.1.6 hold,
NF is the set of 3-NFs and f is ¢, (-).

when R is —, T is Sidyy

1. t1D —1 ¢n(t]D), by the strong diamond property (see Corollary 8.2.18)

and reflexivity of —; (see Lemma 8.2.20).

If tl rDl e NF and tl rDl —1 tg rD27 then tg rDQ = tg rDQ In fact, for
any pAl-term ¢1D if |t!D| = t,]Dy, then t}D = t;[D; and therefore

2. If ¢, 1Dy Sianl? I Dy, then ¢, (1 fDl)gldn@n(tg [Dy) is the First Main Lemma

for S (see Lemma 8.3.7).

If t41D; € NF and 4 fDlgldntg [Dy, then ¢,,(t21D2) € NF is the Second

Main Lemma for San (see Lemma 8.4.2).

3. I 11Dy —1 t21 Dy, then ¢, (t2f D2) —1 ¢(t1] D1), by the strong diamond
property. In fact, 31Dy —1 ¢ (t1[D1) and ¢ (21 Dy) =1 dm(te [D1).

If tl rDl —1 tg rDQ and tg rDQ S 1\IF7 then ¢m(t1 rDl) = tg rD2, by the
strong diamond property. In fact, 31Dy —1 ¢, (t11D1) and therefore
ém(t11D1) = taf Dy (by the first property above).

Remark 8.4.5 Since (we claim that) gy 15 decidable (see Section 7.1.2), The-
orem 8.4.4 and the remarks after Proposition 8.1.6 imply that ¢, [D;<to[Dy is
decidable, when both pA-terms have 3-NF (in particular when they are typable).

8.5 Discussion on alternatives to pA-terms

At this point we want to discuss the other alternatives to pA-terms. We have
already said why we need [, so the alternatives at hand are: A[-terms and raw
pA-terms. Both of them are easier to handle than pA-terms, since they are defined
by formation rules. For each alternative we consider the problems that arise in
ABnp-equational logic and B-reduction. In summary, f-reduction for A[- and raw
pA-terms is not Church-Rosser; however we conjecture that it is Church-Rosser

up to d-conversion.

322

Af-terms. Afnp-equational logic has to be modified:

e the inference rule (*-subst) is not sound. This can be fixed by changing the

definition of *-substitution

but *-substitution is no longer associative, which is really annoying

e some axioms (for) need to be added for retaining completeness (see

[CO87))

For -normal forms there are complications, if they ought to be invariant w.r.t.

d-conversion.

Example 8.5.1 ((Ae.M)N)IP ~, ((Ax.M)[P)N, the Lh.s. contains a clear (-
redex (Ax.M)N, which contracts to (M)#[z:= N], while it is arguable whether
r.h.s. has a redex. We can elaborate this example and separate (Az.M) and N

as much as we like.

Any kind of Church-Rosser property is problematic to prove, because *-substitution

1s not associative.

raw pA-terms. Afnp-equational logic has to be modified:

e the inference rule (*-subst) is not sound. This can be fixed by changing the

definition of *-substitution

(MD)*[z:= NIE] = M[z:= N]ID[z:= NJU{N}UFE

e some axioms (for I) need to be added for retaining completeness

The definition of 3-redex (and f-normal form) is straightforward: (Az.M I D)N.
The problem is what to do with its contractum P[E = (M | D)«[x: = N, which is
araw pA-term. We cannot simply replace the redex with the contractum, because
the first is, unlike the second, a raw A-term. However, we can replace the redex
with P and add FE to the right of the innermost [containing the redex, since £
may contain information about divergence not available anywhere else. This

B-reduction is not Church-Rosser:

323

Example 8.5.2 K(Iz) has two #-normal forms:
o (Ay.z)lz (if we reduce Iz first)

o (A\y.zlz)lz (otherwise)

Conclusion and further research

In this thesis we have introduced many formal systems for reasoning about partial
functions. All of them have a model-theoretic justification, i.e. they are sound and
complete w.r.t. a natural class of models. We felt that an operational justification,
i.e. correctness w.r.t. some operational equivalence (see [Plo75]), is too weak. In
fact, the operational criterion applies only to equational theories (rather than
formal systems) and it does not identify a unique formal system.

Most of the time we have used first order rather than equational languages,
because they are more expressive and allow a natural formalization. Moreover,
the equational formal systems considered in this thesis (the A, 3-calculus, ABnp-
and p-equational logic) have been shown to be the restriction of a first order
formal to a suitable equational fragment.

We have reject the view of the (partial) lambda calculus as a logic free cal-
culus, instead we have produced four partial lambda calculi correct w.r.t. the
call-by-value operational equivalence, but with different pure equational theories.
We have considered both classical and intuitionistic logic, because of the remarks
in [Sco79] and the categorical approach followed by Rosolini (see [Ros86]), and
we have paid more attention to monotonic partial functions (as done in [Plo85]),
because they are more appropriate for applications to computer science.

After studying conservative extension results among the formal systems ax-
iomatized in first order logic, we have investigated equational presentation and re-
duction for the intuitionistic partial lambda calculi, in particular the JmonA,37-
calculus.

There are various areas for further research that we briefly review.

Powerdomains and partial functions. Gordon Plotkin has reformulated
most of domain theory in terms of continuous partial functions and formalized it

in the JmonA,37n-calculus (see [Plo85]): what remains to be done is to reformu-

324

325

late powerdomains and formalize them in intuitionistic logic. Carl Gunter has
already done some work in this direction by extending the relation between oper-
ational termination and denotational existence (see [Plo85] and Theorem 5.4.8)
to the Smith’s powerdomain.

A promising approach would be to give a categorical characterization of pow-

erdomains in p-categories (see [Ros86]).

Nondeterministic lambda calculus. The definition of nondeterministic lambda
calculus in [Sha84] is inspired by operational considerations and it may have
weaknesses, in proving equivalences of terms, similar to those pointed out for the
call-by-value lambda calculus (see Theorem 6.4.5).

We suggest adding nondeterminism to the partial lambda calculus and consid-
ering the syntactic aspects of such a calculus, in particular reusing the techniques
developed in the last chapter for proving the Church-Rosser property of a suitable
B-reduction for nondeterministic partial functions (up to a suitable preorder).

It would be desirable to justify such a calculus model-theoretically, as done
for ABnp-equational logic, and a formalization of powerdomains in intuitionistic

logic would be of great help in this.

Conjectures. There are various conjecture that we were unable to solve, we

give a list of them together with references for more details:

1. we have been unable to prove completeness of the classical monotonic par-
tial lambda calculus w.r.t. the continuous partial type hierarchy and we
have made a precise conjecture about the intuitionistic monotonic partial

lambda calculus (see Theorem 5.2.28 and following remark)
2. XK, 80 Corp xEKA Y (see Theorem 6.3.4)
3. FreeK\,0n Cig Inhabited KA,Y Bn (see Theorem 6.4.1)

4. Ymond, 31 Chr g Y AprY By and

JApBn + tot Corg KApY Bn + tot (see remark after Theorem 6.4.1)

5. S(Jmon,Bn) € S(KA,31) (see remark after Theorem 6.4.5)

326

6. we conjecture that there is no equational presentation for the classical

partial lambda calculi and extensional partial combinatory logic (see Re-

mark 7.4.3 and Theorem 7.4.9)

7. we conjecture that Ap- and App-equational logic are decidable (see The-
orem 7.3.18 and the introduction of Chapter 8). Ramos Pino Perez has

recently proved this conjecture (see [Per88])

Other open problems are: an equational, rather than inequational, presentation
of monotonic Ap-algebras and finite axiomatizability results, e.g. a finite set of

equational axioms for A,-algebras.

Revisited formal systems. In Section 3.2 we have given a cut free formal
system for first order theories (either classical or intuitionistic) axiomatized by
negative formulas. Related work on cut free formal systems has been carried out
by David Pym for the Edinburgh Logical Framework (see [HHP87, Plo87]). It
would be interesting to extend these results beyond the negative fragment (see

discussion at the end of Section 3.2).

General concepts and notations

The purpose of this section is to serve as a concise reference for basic concepts
and notations widely used in this thesis. The reader is supposed to be familiar

with elementary concepts in Set Theory (see [Mon69]).

0 is the empty set

n is the set {0,...,n — 1}

Ng is the smallest infinite cardinal

w is the ordinal {0,...,n,...}

N is the set of natural numbers {0,...,n,...}

P(X) is the powerset of X, i.e. the set of subsets of X

X Cqn Y means that X is a finite subset of Y

Prin(X) is the set of finite subsets of X

| X is the cardinality of X. When X is finite, |X| is a
natural number

A-B is the set {z € A|z & B}

Relations A binary relation R on X is a subset of X x X. We write “z Ry”
for (x,y) € R. Moreover, when X; and X, are subsets of X, then “X; R X,”
means that z; Rz, for all z; € X; and z; € X,.

Ax is the diagonal relation on X, i.e. {{z,2)|z € X}

RP is the opposite of R, i.e. the relation {(y,z)|z Ry}

RS is the composition of R and S, i.e. the relation
{z,2)|Fy.e Ry Ay S =z}

R is the nth iterate of R

R* is the reflexive and transitive closure of R

dom(R) is the domain of R, i.e. the set {z|Jy.z Ry}

cod(R) is the codomain of R, i.e. the set {y|Jz.x Ry}

327

328

Functions A function is a relation f s.t. if (z,y) € f and (z,z) € f, then
y = z. We write “f(z)” or “fa” for the unique y (if it exists) s.t. {(z,y) € f.
Moreover, when X is a subset of dom(f), then “f(X)” stands for the image of
X, i.e. the set {y|dz € X.(z,y) € f}.

YX or is the set of (total) functions from X to Y

X =Y

X—-Y is the set of partial functions from X to Y

Ti=1y is the function {(x,y)}

fly is the overwriting of f by g, i.e. the function s.t. (f|g¢)x
is gz when z € dom(g) and fz otherwise

idx is the identity on X, i.e. the diagonal relation on X

gof is the composition of f and ¢, i.e. the function s.t.

(go flz=g(fz)

Families An /-indexed family is a function with domain the index set I. The
codomain of a family is called its set of elements. The cardinality of a family is the
cardinality of its index set. An [-indexed family x is also written as “(x;|¢ € I)”

where “x;” stands for x(z).

If X is an [-indexed family of sets, then
[TX =Tlier Xi | is the set {{z;]¢ € [)|Vi € [.z; € X;}
UX = Uier X; is the set {z|3e € .z € X;}

moreover, if f is a function with codomain I, then

Xy is the set [[(X o f)

If X and Y are [-indexed families of sets, then

XCY means that X; C Y, foralle e [

F: X =Y means that ' = (F;|i € I) is an [-indexed family of
functions s.t. £;: X; — Y, forallz € [

F: X —-Y means that F'is an [-indexed family s.t. F;: X; — Y;
forallz e 1

329

If F'is an I-indexed family of functions from X to Y, then

[TF =1L F is the function from [T X to [TY s.t. ([T F){z;]z €) =
(Fi(z:)]i € I)

moreover, if f is a function with codomain I, then

Fy is the function [J(# o f) from Xy to Y;

If Jis aset, R C[licr Xiand F:([T;e; Xi) — Y, then

R’ is the subset {(fil: € I)|Vj € J.(fi(y)|: € I) € R} of
[ics X7

F7 is the function from [[;c; X/ to Y s.t. F/((fi]i € I)) =
(F({fih)li e 1)ls € J)

When J is clear from the context, e.g. when R or [F' are applied to an [-indexed
family of J-indexed families, then the superscript .J is dropped.

Conventions for expressions that may or may not denote The notation
“fa” for function application denotes a element only when x is in the domain of f.
The same problem occurs in other circumstances, e.g. when defining an element
as the unique element satisfying a certain property, i.e. by description (see
[Sco79]). The conventions adopted here for partial functions and non denoting
expressions are take from [Kle52] and Chapter VI of [Bee85]. Formulae, unlike
expressions for denoting elements, do always denote truth values, even when they

contain expressions that may not denote.

el means that e denotes (is defined)

e=c¢ means that both e and ¢’ denote the same element

e€e means that e denotes z, ¢’ denotes X and z € X

e~e means that if e | or ¢/ | then e = ¢’

e(e’) denotes y iff e denotes a function f, e’ denotes an ele-
ment z in the domain of f and f(z) =y

(e;]s € I) denotes the I-indexed family z iff e; denotes x; for all
rel

if ¢[z] is an expression with a variable x, then

(A € X.e[z]) denotes the function f s.t. (z,y) € fiff # € X and e[z]
denotes y

330

Sequences A sequence is a family whose index set is a natural number. The

length of a sequence is the cardinality of its index set. a sequence T of length n

is also written as “(7q,..

T

X~ is the set U,c, X" of sequences of elements of X
Ty is the concatenation of 7 and 7
(1,0, 25) is the sequence (x;41]t € n)
Xy x...xX, is the product J[(Xq,...,X,)
XjuU...UuX, is the union U(Xq,..., X,,)
For n-ary relation we write R (x1,...,2,)” for (z1,...,2,) € R and similarly
for n-ary (partial) functions we write “f(x1,...,2,)” for f({x1,...,2,)).

Metavariables The following conventions for metavariables are widely used in

this thesis, although sometimes we may adopt different symbols. An assignment

is a function whose domain is a finite set of variables?.

‘ sequence ‘ (finite) set ‘ assignment ‘

sort T T n
variable x T

constant sym. | ¢ [4 C 5y
term t t D o
formula A r

individual a a p
struct. A

Kripke struct. || B

Zthe set N of natural numbers or any other infinite (countable) set can be taken as the set
of variables, as far as it is disjoint from the other sets of symbols in a signature

Indexes

The index of mathematical symbols is hierarchically structured. At the
top level there are very generic entries, e.g. “greek symbols”. At the next level
entries with syntactically similar form are gathered together, and they are ordered
alphabetically, when it is sensible to do so. The place holder “_” may be used to
indicate a missing argument or parameter.

The index of rules and axioms, as well as that of formal systems, is not
hierarchical and similar symbols are gathered together.

The index of notions is alphabetically ordered and hierarchically structured.

The place holder “_” stands for the entry immediately above in the hierarchy.

331

Index

miscelaneous
1 141, 186
T 46
- 46
!
199
_ 180
|| 299
() 35
/- 176
4+ TF_29
¥ _44, 60
arrows
= 199; .. = _43; {_{} = {_}
49; {} = _19
— 155; —repo 1985 —po 157; —Kepo
159; —Kkpo 157 —Kser 156;
—rser 154;
—1 306; —, 151, 187
— 155; — o 1585 — 10 1575 —Kepo
159; —kpo 158; —Kser 156;
— et 104
unary relations
Al _b51; A,p = _51, 87
B|-53; B, a, p|- 53, 87
binary relations
= 147, =_44
= 102; =_30

332

~ 46; D ~ D' 119; ~y 246, 308;
~ g 246; ~g, 308

<_ 125, 189; <, 154

< 1255 <, 308; Sy 308; Sidn
308

C_189; C 267

C_30; C+_31

C® 30; c 31; c?/ 33

C 44; C_30

F 28; 3. 57; F§% 545 B3 905 3
90

= 40; =5 54

unary operations

A 49

552

167

~° 109

CL 132, 283

2132

200, 202

P 105

P 108

1102

[136, 137, 50

[]5= 136, 137, 52

[] 1765 [], 122, 257; [], 65

abstraction

[]- 132; [z],- 145

substitution B 52; B 68; B(LXT) 76; Br
[]47; +[] 118 121, 257, 266

restriction M 153
_[¥ 50, 52 bold symbols
_1f 52 CPO 158; CPO, 158; KCPO

' 116; I 116, 118, 225; ¢} D 225
1, 189

greek symbols

a H2

B-NF 297

Y 208

e 135; €, 135

Axy, ..., x,.t 128

AY(A) 197

px:T.t 141

¢ 50, 299; ¢4 299; ¢, 300; @
300

Y 208

A 137

> 102, 186, 206, 44;
Y167, X7 44; Y4 18T7;
Yeor 130, 135;
Yy 128, 200, 202, 206; X,y
140, 207; X1y 186; Xnry(a)
187;
Yipo 1745 Xy, 167;
Yt 198;
Ymon 125, 206; Xnony 138, 207;
Ymonry 140, 207; YXoncr 139;
e 1025 Xy, 1545 X, 102;
2, 116;
Yser 1545 Yy 102

calligraphic symbols

A 137, 49; As m) 65

159; KCPO, 159

PO 157; PO, 157; KPO 15T7;
KPO, 158

SET 154; SET, 154; KSET 156;
KSET, 156

italics symbols

cs 130
E 114
ECFE 114; ECFEwn 125; ECS
114; ECSin 125; ECTE 114
Fin 125
ES 148
ETFE 148
F52: fi 144
H 177, H_169
In 177
Out 184
pS 118; pS(ABnpEQL) 251
pSin 126; pSin(ASnmonpEQL)
262
S 114; S())
217; S(J A1) 220; S(JCLy+
ext. ~) 275; S(Jmon),3n)

220; S(K Apfn) 220; S(Kmon),5n)

220; S(ABn) 220; S(AyBn) 220
Sin 125
Sin(JCL, + mon, + ext.g)
275
T,e 89; 1, 1065 13 103

TE 114; TE(.) 222

roman symbols

1198
AForm 86
app 128
B 135
CL, 130
Const, () 44
d 232
deg 93
elim 198
E(.) 102; E(n) 106
EEqSeq 109; EqSeq 109; ESeq
109
eval 156;
Eval 188, 199; Eval; 188
Form 45
Frag(_) 48
F'S 208
Functz) (X)) 44
FV 47
intro 198
[131; I 86
JSeq 48
K 130, 52
least 201, 203
LPO 174
LR 172; LRy 169
MLR 172; MLRy 169
mony, 125
O 198
PHom 172; PHomg 169
plTerm 298
Pred=(X) 44

334

Prog 187, 199; ProgValue 187,
199
pTerm 225, 230, 234; D € pTerm
226
r 300; 4 300
rTerm 226; rlTerm 298
R 192; R_ 167, 174; n R n’ 168;
R_168; R 168
RCBxB'168; RCBxB 174
S 130
s 120, 256; sd 120; st 120
Seq 45
SForm 86
size 231
Sort(X) 44
SSeq 86
Struct(X) 49
subd(M) 227; subt(M) 227
sup; 180
Term 45
V 202
Value 187
VALUE(A) 191
Y 139, 140; Y, 186; Y 141

Index

(*incl) 263, 269
(+subst) 119, 126, 249, 254, 260, 265
() 229, 231

(B.v) 188

(B) 129, 144, 148, 249, 250, 260, 262
(6°7) 262

(By) 147

(L) 45, 189

(L =) 56

(eext.~) 135
(e) 135

(ecy) 136, 136
(eK) 136

(¢S) 136

(n) 129, 144, 249, 250, 261, 262
(n°r) 262
(m.) 151

335

3 =) 56

V) 46

=) 56

—) 45, 86

) 56, 90, 95, 103, 106, 148
V) 45

V=) 56

A) 45

(
(
(¥
(
(o=
(
(
(
(A

=) 56
(A =) 199

(X') 235

(A) 128, 128, 225, 226, 231, 298, 299
(X) 298, 298

() 10
(=) 58
(1) 116

£) 267
£) 147, 249, 250, 260, 261
z) 144, 148

A

(
(
(€.
(€.
(€.

| 2

) 129

(¢s) 130, 130
(c) 45, 189

(fx) 144
(f.v) 188

(f) 45
(p) 45, 86
(surj) 169

(z7) 234, 267

(z) 37, 45, 189, 225, 226, 231, 250,

261, 298, 298
z.3) 250, 262
z.3°7) 262

X 298

Z.

(
(
(
(

(CL,.3) 133
(CL,.E.\) 133
(K) 130, 144

(LR.c) 169
(LR.f) 169
(LR.p) 169

(MLR.c) 169, 175
(MLR.f) 169, 175

(S) 130, 144

(Y =) 199
(Y.ind) 141
(Y.v) 188
(Y) 140
(Y.n) 189
(Y,.v) 188
(Y,.) 189

(app =) 199
(app’) 235, 267

x.app) 225, 243, 250, 261, 273, 298

336

(app) 225, 226, 231, 244, 250, 261,

274, 298, 298
(elim =) 199

(ext.ﬁ) 172
(ext.R) 172, 175

(inhab) 58
(intro =) 199

(tot) 58
(tot.u) 139
(tot.Y) 139

(triv. <) 210

(0-ksubst) 252, 269
(0-+) 228, 241

E.-.1) 148
E.-.2) 148
E.c.1) 136
E.\) 129, 144, 148
E.c;) 130
)55 89, 105, 106
£i) 55, 89, 107
f) 105
p.i) 55, 89, 107
E.p) 105
E.z) 55, 89, 94
E.S) 130, 144

337

(asymm) 125 (strong) 145

(cong.-) 147, 148 (sub.CL,) 133

(cong.\) 137, 189 (subst) 55, 93

(cong.f) 55, 189

() 55 (symm) 55, 147, 148, 249, 250
cong.p

(cong.E) 148 (thinning) 55, 93

(cons.R) 175 (tot.fx) 144

(tot.f) 108

(convex) 31

(trans.R) 175

(cut) 55, 93
(trans) 31, 55, 125, 147, 148, 249,
(empty) 200 250, 260, 262, 271
(excl) 58 (w-xsubst) 253, 264, 269
w-k) 228, 242
(ext.=) 74, 131 E >) 996
w-A
(ext.=) 144 (w-£) 293
w-
(ext.<) 139 (w.p) 141
w.
t.~) 74, 130
(ext.=) T4, (w.Y) 141
(i.v) 188

(incl) 126, 260
(in) 105, 108
(log) 55, 93
(mon.f) 125
(out) 108

(rec.1) 200
(rec.2) 200

(refl. R) 175
(reﬂ) 55, 125, 147, 148, 249

(restr) 31

Index

logic of partial terms ApY B 139, 208
InhabitedLLPT 57 monA, 5y 138, 208
JLPT 57, 89 lambda calculus of partial elements
KLPT 54, 57, 89 Aipe3 148
LPT 208 Aipe 31 143
LPT + [116 ApeBn 143
LPT + tot b7 total lambda calculus
monLPT 125, 208 AefSn 129
monLPT + | 126 ApBn + tot 129
logic of total terms call-by-value lambda calculus
LTT 102, 103 AvB 147
LPT + tot 57 partial combinatory logic
logic of partial elements CL, 130
iLPE 105, 106 CLp + eext. ~ 135
LPE + 1105 CLp + ext. ~ 130
LPE 105, 106 combinatory logic of partial elements
p-equational logic CLipe + ext. = 144
ABnmonpEQL 260, 261, 267 CLpe + ext. = 144
ABnpEQL 248, 250 strong partial combinatory logic
monpEQL 126 sCLijpe + ext. = 144
pEQL 118 sCLpe + ext. = 144
partial lambda calculus
Ap 129
A3 129

Apfn 128, 208
ApBn + tot 129
Apn 129

ApptY B 140, 208

338

Index

abstraction 128, 132
acceptable 65
admissible 38, 40
after 52
antecedent 43
application 128, 128
applicative structure, partial
typed _ 128
untyped _ 128
extensional _
approximation
_order 189
n-_ 189
atomic formula 46
axiomatization 29
axiomatized 29, 29
base sort 128
canonical representative 130
classical 57
closed 87, 88
_w.r.t. substitution 48
coherent 73
combinator 130
combinatory logic, partial
extensional _ 130
_with choice operator 135
extensional monotonic _ 138

commutativity 288

339

compatible
s-_ 293
w-_ 293

complete 40, 61

s-_ 96

componentwise 157

consequence relation

logical 40

conservative 30

_ extension 31

_ interpretation 32

consistent 175

_ family of functions 155
_ family of partial functions 155

conversion

d-_ 246
md-_ 246

correspondence 169

semi_ 169

corresponding 167
counterexample 41

cpo 158

deductive power 30
definitional extension 33
degree 93

derivable 28, 38
derivation 35

description 105

deterministic 35
diamond property 288
dual 260
embedding 41
environment 50
equality 109, 44
_ test 161
equation 114
equational logic
p-_ 118
ABnp-_ 248
ABnmonp-_ 260
monp-_ 126
equivalence 102, 33
equivalent 28, 33
erasing 299
evaluation
one-step _ 188
program _ 188

existence statment 102, 44

_statment 114

existentially conditioned 114, 125

expressive power 30

extension 30
conservative _ 31
definitional _ 33

extensional

_order 154

_partial applicative structure 131

_ partial combinatory logic 130

fixed-point
_induction 141
_ operator 140
least _ 140

least weak _ 141
_ approximation 186
formal system 28
formation rule 38
formula 45

atomic _ 46

Harrop _ 75

negative _ 101

s-_ 86
fragment

_of the formulae 48

_ of the sequents 48
free variable 47
function

continuous _ 158

continuous partial _ 158

everywhere undefined _ 186

monotonic _ 157

monotonic partial _ 157

_ space 128
generated 35
global element 155
Harrop 75

homomorphism, partial 172

_ of partial algebras 169

included 44
induction
_on the size 36
_on the structure 36
inductively defined 35
inequation 125
inference rule 38
alternative _ 234, 267
pure _ 250, 261

340

341

structural _ 225, 298 _of total terms 102
substitutive _ 230 _revisited 103
inhabited 58 logical
interpretation 136, 50, 52 _relation 172
conservative _ 32 m-_ relation 172
relative _ 32 _ preorder 174
_ revisited 87 model 40
Kripke structure 52 morphism 50
lambda calculus evaluation _ 156
call-by-value _ 147 partial evaluation _ 156
partial _ 128 natural transformation 155
fixed-point _ 139 negative formulas 101
least fixed-point _ 140 new constant symbol 59
monotonic _ 138 normal form
_of partial elements 143 B-_297
revisited 148 Y- 297
Ap-algebra 275 operational semantics, call-by-value
monotonic _ 275 188, 199
A-structure 137 partial order 125
language of p-equation 118
LPT 45 p-inequation 126
_ revisited 85 pointwise 157
_ the typed A-calculus 128 postponement 288
_ the untyped A-calculus 128 preorder
logic 40 dn-_ 308
_of partial elements 105 one-step _ 308
_revisited 106 program 187, 199
_of partial terms _value 187, 199
classical _ 54 projection morphism 176
intuitionistic _ 57 pullback 32, 41
monotonic _ 125 quasi-equations 78
_ revisited 89 quasi-natural transformation 155
variants of the _ 57 quotient 176

_ with restriction operator 116 recursive types 198

redex

B-_ 297

Y-_ 297
reduct functor 50, 52
reduction

maximum _ 300

head _

one-step _ 151, 187
parallel _ 299
one-step _ 306

residual _ 300
redundancies

has no _ 227
relation

Y-_ 167, 174
restricted 153, 30, 44
restriction operator 116
retraction, partial 177
rule 35
satisfaction relation 40
satisfies 51, 53
saturation 120, 256
sequents 45

Harrop _ 75

s-_ 86
signature 44
single sorted

- inhabited logic 102
size 231
sort

base _ 128
sound 40
stage of knowledge 52
statment 114

342

structure
¥-_49
Kripke _ 52
substitution 46, 47
x-substitution 118
subterm 227
d-_ 227
succedent 43
term 45
d-_ 118
dX-_ 225
raw _ 226
p-_ 118
pA-_ 225
raw _ 226
pAl-_ 298
raw _ 299
raw A-_ 226
raw Al-_ 298
raw dAl-_ 299
term model
free classical _ 79
classical _ 65
initial classical _ 78
initial Kripke _ 76
Kripke _ 68
ABnmonpEQL _ 266
ABnpEQL _ 257
_ of program values 191
pEQL _ 121
theory
F-_ 28
pure _ 29
pure lambda-_ 217

343

ABnmonp-_ 260
ABnp-theory 249
p-- 119
monotonic _ 126
total 58
translation 32
identity _ 32
type environment 45
type hierarchy
classical full continuous partial 165
classical full continuous _ 165
classical full monotonic partial _
163
classical full monotonic _ 162
classical full partial _ 160
classical full _ 159
Kripke full continuous partial _
166
Kripke full continuous _ 166
Kripke full monotonic partial _
163
Kripke full monotonic _ 163
Kripke full partial _ 160
Kripke full _ 160
union 44
valid 40, 51, 53
value 147, 227, 187
has a _ 149, 199
variable

free _ 47

Bibliography

[Abr87]

[Acz68]

[AczTT]

[ALS5]

[Bar74]

[Bar81]

[Bar82]

[Bar84]

[BBTWS]

S. Abramsky. Domain Theory and the Logic of Observable Properties.
PhD thesis, University of London, 1987.

P. Aczel. Saturated intuitionistic theories. In H.A. Schmidt,
K. Schitte, and H.J. Thiele, editors, Contributions to Mathemati-
cal Logic. North Holland, 1968.

P. Aczel. An introduction to inductive definitions. In J. Barwise,

editor, Handbook of Mathematical Logic. North Holland, 1977.

A. Asperti and G. Longo. Categories of partial morphisms and the
relation between type-structures. Technical Report S-7-85, Dip. di
Informatica, Univ. di Pisa, 1985.

J. Barwise. Axioms for abstract model theory. Annals of Mathemat-

tcal Logie, T, 1974.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North Holland, 1981.

H.P. Barendregt. The lambda calculus and its models. In G. Lolli,
G. Longo, and A. Marcja, editors, Logic Colloguium. North Holland,
1982.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North Holland, 1984. revised edition.

J.A. Bergstra, M. Broy, J.V. Tucker, and M. Wirsing. On the power
of algebraic specification. In Math. Found. of Comp. Seci., volume
118 of Lecture Notes in Computer Science. Springer Verlag, 1981.

344

[Bee85]

[BTCST]

[BTMST]

[Bur82]

[CO8T]

[dPHS6]

[Flo67]

[Fou77]

[Fri75]

[Gen69)]

[GMWT9)

[Hen49]

345

M.J. Beeson. Foundations of Constructive Mathematics. Springer
Verlag, 1985.

V. Breazu-Tannen and T. Coquand. Extensional models for poly-
morphism. In H. Ehrig and al., editors, TAPSOFT "87, volume 250
of Lecture Notes in Computer Science. Springer Verlag, 1987.

V. Breazu-Tannen and A. Meyer. Computable values can be classical.

In 74th Symp. on Principles of Prog. Lang. ACM, 1987.

P. Burmeister. Partial algebras - survey of an unifying approach
towards a two-valued model theory for partial algebras. Algebra

Universalis, 15, 1982.

P-L. Curien and A. Obtulowicz. Partiality, cartesian closedness and

toposes. Ecole Normale Sup., preprint, 1987.

R. di Paola and A. Heller. Dominical categories. Journal of Symbolic
Logic, 1986.

R. Floyd. Assigning meaning to programs. In Schwartz, editor, Proc.

Symp. in Applied Math., 1967.

M.P. Fourman. The logic of topoi. In J. Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic. North Holland,
1977.

H. Friedman. FEquality between functionals. In R. Parikh, edi-
tor, Logic Colloquium, volume 453 of Lecture Notes in Mathematics.

Springer Verlag, 1975.

G. Gentzen. The Collected Papers of Gerhard Gentzen. North Hol-
land, 1969.

M.J.C. Gordon, R. Milner, and C.P. Wadsworth. FEdinburgh LCF:
A Mechanized Logic of Computation, volume 78 of Lecture Notes in
Computer Science. Springer Verlag, 1979.

L. Henkin. The completeness of first-order functional calculus. Jour-

nal of Symbolic Logic, 14, 1949.

[HHPS7]

[HNSS]

[Hoa69]

[Hyl82]

[JacT5]

[Kle52]

[K1080]

[KR77]

[Lam80]

[Lan64]

[LM84]

346

R. Harper, F. Honsell, and G. Plotkin. A framework for defining
logics. In 2nd Conf. on Logic in Computer Science. IEEE, 1987.

S. Hayashi and H. Nakano. PX: A Computational Logic. MIT press,
1988.

C.A.R. Hoare. An axiomatic basis for computer programming. C.

ACM, 12, 1969.

J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. van
Dalen, editors, The L.E.J. Brouwer Centenary Sympostum. North
Holland, 1982.

G. Jacopini. A condition for identifying two elements of whatever
model of combinatory logic. In C. Bohm, editor, Proceedings of the
Symposium on A-calculus and Computer Science Theory, Rome 1975,

volume 37 of Lecture Notes in Computer Science. Springer Verlag,

1975.
S.C. Kleene. Introduction to Methamathematics. van Nostrand, 1952.

J.W. Klop. Combinatory Reduction Systems. PhD thesis, Mathe-
matical Center Amsterdam, 1980. Tracts 129.

A. Kock and G.E. Reyes. Doctrines in categorical logic. In J. Barwise,
editor, Handbook of Mathematical Logic, volume 90 of Studies in
Logic. North Holland, 1977.

J. Lambek. From A-calculus to cartesian closed categories. In
R. Hindley and J. Seldin, editors, To H.B. Curry: essays in Com-
binarory Logic, lambda calculus and Formalisms. Academic Press,

1980.

P.J. Landin. The mechanical evaluation of expressions. Computer

Journal, 6(4), 1964.

G. Longo and E. Moggi. Cartesian closed categories of enumerations
for effective type-structures. In G. Kahn, D. MacQueen, and G.D.
Plotkin, editors, Symp. on Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science. Springer Verlag, 1984.

[LS86]

[MacT1]

[McC62]

[Mey82]

[Mil77]

[ML83]

[MMS7]

[MMMS87]

[MNS87]

[Mog86]

[Mon69]

[MR77]

347

J. Lambek and P.J. Scott. Introduction to Higher-Order Categori-
cal Logic, volume 7 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1986.

S. MacLane. Categories for the Working Mathematician. Springer
Verlag, 1971.

J. McCarthy. The LISP 1.5 Programmers’ Manual, 1962.

A. Meyer. What is a model of the lambda calculus? [Information
and Computation, 52, 1982.

R. Milner. Fully abstract models of typed lambda calculus. Theo-
retical Computer Science, 4, 1977.

P. Martin-Lof. The domain interpretation of type theory. In P. Dy-
bjer, B. Nordstrom, K. Petersson, and J. Smith, editors, Workshop
on the Semantics of Programming Languages. Chalmers University

of Technology, Goteborg, Sweden, 1983.

J. Mitchell and E. Moggi. Kripke-style models for typed lambda
calculus. In 2nd Conf. on Logic in Computer Science. IEEE, 1987.

A. Meyer, J. Mitchell, E. Moggi, and R. Statman. Empty types in
polymorphic lambda calculus. In 14th Symp. on Principles of Prog.
Lang. ACM, 1987.

D. Miller, G. Nadathur, and A. Scedrov. Hereditary harrop formulas
and uniform proof systems. In 2nd Conf. on Logic in Computer

Science. IEEE, 1987.

E. Moggi. Categories of partial morphisms and the partial lambda-
calculus. In Proceedings Workshop on Category Theory and Com-
puter Programmaing, Guildford 1985, volume 240 of Lecture Notes in
Computer Science. Springer Verlag, 1986.

J.D. Monk. Introduction to Set Theory. Mc Graw-Hill, 1969.

M. Makkai and G. Reyes. First Order Categorical Logic. Springer
Verlag, 1977.

[Obt36]

[Ong88]

[Pau85]

[Per88]

[Plo75]

[Plo77]

[P1o80]

[Plo81]

[Plo82]

[Plo85]

[Plo87]

348

A. Obtulowicz. The logic of categories of partial functions and its

applications, 1982 thesis. Dissertationes Mathematicae, 241, 1986.

C.-H.L. Ong. Lazy Lambda Calculus: An Investigation into the Foun-
dations of Functional Programming. PhD thesis, University of Lon-
don, 1988. Draft March 5, 1988.

L.C. Paulson. Interactive theorem proving with cambridge Icf: a
user’s manual. Technical Report 80, Univ. of Cambridge, Computer

Laboratory, 1985.

R.P. Perez. Decidability of the restriction equational theory in the
partial lambda calculus. presented at the workshop on the typed
lambda calculus, Turin, Italy, 15-20 May 1988, 1988.

G.D. Plotkin. Call-by-name, call-by-value and the A-calculus. The-
oretical Computer Science, 1, 1975.

G.D. Plotkin. LCF as a programming language. Theoretical Com-
puter Science, 5, 1977.

G.D. Plotkin. Lambda definability in the full type hierarchy. In
R. Hindley and J. Seldin, editors, To H.B. Curry: essays in Com-

binarory Logic, lambda calculus and Formalisms. Academic Press,

1980.

G.D. Plotkin. Postgraduate lecture notes in domain theory (incor-
porating the “pisa notes”). Edinburgh Univ., Dept. of Comp. Sci.,
1981.

G.D. Plotkin. Notes on completeness of the full continuous type
hierarchy. Manuscript, Lab. of Comp. Sci., M.I.T., 1982.

G.D. Plotkin. Denotational semantics with partial functions. Lecture

at C.S.L.I. Summer School, 1985.

G.D. Plotkin. Towards search spaces for the edinburgh logical frame-
work. Presented at the workshop on general logic, Edinburgh, UK ,
23-27 Feb. 1987, 1987.

[Pra65]

[Rei87]

[Ros86]

[RRS6]

[Sch85]

[Sch87]

[Scob67]

[Scob69]

[ScoT0]

[ScoT6]

[ScoT9]

[Sco80]

349

D. Prawitz. Natural Deduction. Almquist and Wiksell, Stockholm,
1965.

H. Reichel. Initial Computability, Algebraic Specifications, and Par-
tial Algebras. Oxford University Press, 1987.

G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis,
University of Oxford, 1986.

E. Robinson and G. Rosolini. Categories of partial maps.

Quaderno 18, Dip. di Matematica, Universita’ di Parma, 1986.

0. Schoett. Behavioural correctness of data representation. Technical

Report CSR-85-185, Edinburgh Univ., Dept. of Comp. Sci., 1985.

O. Schoett. Data Abstraction and the Correctness of Modular Pro-
gramming. PhD thesis, University of Edinburgh, 1987.

D.S. Scott. Existence and description in formal logic. In Schoen-
mann, editor, Bertrand Russell: Philosopher of the Century. Allen
and Unwin, 1967.

D.S. Scott. A type-theoretic alternative to CUCH, ISWIM, OWHY.
Oxford notes, 1969.

D.S. Scott. Outline of a mathematical theory of computation. Tech-
nical Report PRG-2, Oxford Univ. Computing Lab., 1970.

D.S. Scott. Data types as lattices. SIAM Journal of Computing, 5,
1976.

D.S. Scott. Identity and existence in intuitionistic logic. In M.P.
Fourman, C.J. Mulvey, and D.S. Scott, editors, Applications of
Sheaves, volume 753 of Lecture Notes in Mathematics. Springer Ver-
lag, 1979.

D.S. Scott. Relating theories of the A-calculus. In R. Hindley and
J. Seldin, editors, To H.B. Curry: essays in Combinarory Logic,

lambda calculus and Formalisms. Academic Press, 1980.

[Sco82]

[SH84]

[Sha84]

SS71]

[Sta83]

[Sta85al

[Sta85b]

[Sta86]

[Sto86]

[Sto88]

[TenT8]

350

D.S. Scott. Domains for denotational sementics. In M. Nielsen
and E.M. Schimdt, editors, Automata, Languages and Programming,
Ninth Colloguium, volume 140 of Lecture Notes in Computer Science.

Springer Verlag, 1982.

P Schroder-Heister. A natual extension of natural deduction. Journal

of Symbolic Logic, 49, 1984.

K. Sharma. Syntactic aspects of the non-deterministic lambda calcu-
lus. Master’s thesis, Washington State University, September 1984.
available as internal report CS-84-127 of the comp. sci. dept.

D.S. Scott and C. Strachey. Toward a mathematical semantics for
computer languages. Technical Report PRG-6, Oxford Univ. Com-
puting Lab., 1971.

R. Statman. Equality between funcionals revisited, 1983.

R. Statman. Lecture notes on the simple typed A-calculus. CMU,
1985.

R. Statman. Logical relations and the typed lambda calculus. Infor-
mation and Computation, 65, 1985.

R. Statman. Horizontal and vertical polymorphic equations. Private
communication whose main result was announced in TYPES mailing
list on Jan the 19th 1987 “Maximal theories in polymorphic lambda
calculus”, 1986.

A. Stoughton. Fully Abstract Models of Programming Languages.
PhD thesis, University of Edinburgh, 1986.

A. Stoughton. Fully Abstract Models of Programming Languages.
Research Notes in Theoretical Computer Science. Pitman, London,

1988.

N.W. Tennent. Natural Logic. Edinburgh University Press, 1978.

[Tro73]

[vDS6]

[Wad76]

[WL84]

351

A.S. Troelstra, editor. Metamathematical Investigations of Intuition-
istic Arithmetic and Analysis, volume 344 of Lecture Notes in Com-

puter Science. Springer Verlag, 1973.

D. van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, volume III. D. Reidel,
Dordrecht, 1986.

C. Wadsworth. The relation between computational and denota-
tional properties for scott’s D, ,-models of the lambda calculus. STAM
Journal of Computing, 5, 1976.

G. Winskel and K. Larsen. Using information systems to solve re-
cursive domain equations effectively. In G. Kahn, D. MacQueen, and
G.D. Plotkin, editors, Symp. on Semantics of Data Types, volume
173 of Lecture Notes in Computer Science. Springer Verlag, 1984.

