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G. Bellè and E. Moggi

{gbelle,moggi}@disi.unige.it

DISI, Univ. di Genova, v. Dodecaneso 35, 16146 Genova, Italy

phone: +39-10-3536629, fax: +39-10-3536699

Abstract

We introduce S2, a typed intermediate language for vectors, based on a 2-
level type-theory, which distinguishes between compile-time and run-time. The
paper shows how S2 can be used to extract useful information from programs
written in the Nested Sequence Calculus NSC, an idealized high-level parallel
calculus for nested sequences. We study two translations from NSC to S2.
The most interesting shows that shape analysis (in the sense of Jay) can be
handled at compile-time.
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Good intermediate languages are an important prerequisite for program analysis and
optimization, the main purpose of such languages is to make as explicit as possible
the information that is only implicit in source programs (see [18]). A common
features of such intermediate languages is an aggressive use of types to incorporate
additional information, e.g.: binding times (see [18]), boxed/unboxed values (see
[20]), effects (see [23]). In particular, among the ML community the use of types in
intermediate languages has been advocated for the TIL compiler (see [9]) and for
region inference (see [24, 1]).

In areas like parallel programming, where efficiency is a paramount issue, good
intermediate languages are even more critical to bridge the gap between high-level
languages (e.g. NESL) and efficient implementations on a variety of architectures
(see [2, 3, 22]). However, in this area of computing intermediate languages (e.g.
VCODE) have not made significant use of types, yet.

This paper proposes a typed intermediate language S2 for vector languages, and
shows how it may be used to extract useful information from programs written in
the Nested Sequence Calculus NSC (see [22]), an idealized vector language very
closed to NESL. For an efficient compilation of NSC (and similar languages) on
parallel machines it is very important to know in advance the size of vectors (more
generally the shape of data structures). We study two translations from the NSC
to S2. The most interesting one separates what can be computed at compile-time
from what must be computed at run-time, in particular array bound-checking can
be done at compile-time (provided the while-loop of NSC is replaced by a for-loop).

Section 1 introduces the two-level calculus S2 and outlines its categorical semantics.
Section 2 summarizes the high-level language NSC, outlines two translations from
NSC in S2 and the main results about them. Sections 3 and 4 give the syntactic
details of the translations. Appendix A gives a formal description of S2 and defines
auxiliary notation and notational conventions used in the paper.
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Related work. The language S2 borrows the idea of built-in phase distinction
from HML (see [17]), and few inductive types at compile-time from type theory
(e.g. see [19, 5]). There are also analogies with work on partial evaluation, in
particular 2-level lambda calculi for binding time analysis (see [18, 6]). None of
these calculi make use of dependent types. Also [16] deals with shape checking of
array programs, but without going through an intermediate language.

The translation of NSC into S2 has several analogies with that considered in [8]
to give a type-theoretic account of higher-order modules, and has been strongly
influenced by ideas from shape theory and shape analysis (see [14, 15]). There are
also analogies with techniques for constant propagation, but these technique tend
to cope with languages (e.g. Pascal) where constant expressions are much simpler
than compile-time expressions in S2.

This paper uses categorical semantics as a high-level language for describing what
is happening at the syntactic level. A systematic link between type theories and
categorical structures is given in [12].
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This section gives a compact description of S2 as a Type System a la Jacobs (see
[12]), and summarizes its type-constructors. For a more detailed description of S2
we refer to appendix A.

• Sorts: c and r, c classifies compile-time types and r run-time types.

• Setting: c < c and c < r, i.e. c- and r-types may depend on c-values, but they
may not depend on r-values.

• Closure properties of c-types: dependent products Πx: A.B, unit 1, sums A+B,
dependent sums Σx: A.B, NNO N , finite cardinals n: N .

• Closure properties of r-types: exponentials A → B, universal types ∀x: A.B,
unit 1, sums A + B, products A × B, weak existential types ∃x: A.B.

The setting of S2 is very close to that of HML (see [12, 17, 11]).

Proposition 1.1 S2 satisfies the following properties:

• Context separation: Γ ` J implies Γc, Γr ` J , where Γα is the sequence of
declarations x: A: α of sort α in Γ

• Phase distinction: Γ ` Jc implies Γc ` Jc, where Jc is an assertion of sort c
(i.e. nothing, A: c or M : A: c)

• No run-time dependent types: Γ ` A: r implies Γc ` A: r.

Proof They follow immediately from the restrictions imposed by the setting.

In this section we briefly outline a semantics of S2. This is important not only as a
complement to the formal description, but also to suggest possible improvements to
S2 and discuss semantic properties of translations (which rely on features of models
not captured by S2 without extensionality). In general, a categorical model for S2
is given by a fibration π: C → B with the following additional properties:

• the base category B is locally cartesian closed and extensive (see [4]), i.e.
has sums and the functors +:B/I × B/J → B/(I + J) are equivalences, and
has a natural number object (NNO);
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• the fibration π: C → B is bicartesian closed and has ∀- and ∃-quantification
along maps in the base (see [12, 21]), i.e. for any f : J → I in B the substitution
functor f∗: CI → CJ has left and right adjoints ∃f ` f∗ ` ∀f and they commute
with substitution;

• all functors 〈in∗
0, in

∗
1〉: CI+J → CI × CJ (and !: C0 → 1) are equivalences.

Remark 1.2 Extensivity of sums and the last property are essential to validate
the elimination rules for + over sorts (+-E-α). In a locally cartesian closed base
category it is possible to interpret also identity types (of sort c), and validate the rules
for extensional equality. Finite cardinals and vectors are definable from the natural
numbers, using the other properties of the base category. One could have derived that
the fibration π has sums from the other properties. In fact, A0+A1 = ∃[id,id]:I+I→IA,
where A ∈ CI+I is such that in∗

i (A) = Ai.

There is a simple way to construct a model π:Fam(C) → Set of S2 starting from
any cartesian closed category C with small products and small sums (e.g. Set and
Cpo) using the Fam-construction, where

• Fam(C) is the category whose objects are pairs 〈I ∈ Set, a ∈ CI〉 and morph-
isms from 〈I, a〉 to 〈J, b〉 are pairs 〈f : I → J, g ∈ CI(a, f∗b)〉, where f∗b is
the I-indexed family of objects s.t. (f∗b)i = bfi for any i ∈ I . Identity and
composition are defined in the obvious way;

• π:Fam(C) → Set is the functor 〈I, a〉 7→ I forgetting the second component
(this is the standard way of turning a category C into a fibration over Set).
In particular, the fiber Fam(C)I over I is (up to isomorphism) CI , i.e. the
product of I copies of C.

Remark 1.3 The first property for a categorical model is clearly satisfied, since
the base category is Set . The second follows from the assumptions about C, since
in CI products, sums and exponentials are computed pointwise. The third is also
immediate since CI+J and CI × CJ are isomorphic (and therefore equivalent).

The interpretation of judgements in π:Fam(C) → Set is fairly simple to describe:

• Γ ` is interpreted by an object 〈I, a〉 in Fam(C), namely
I ∈ Set corresponds to Γc and a = 〈ai|i ∈ I〉 ∈ CI corresponds to Γr;

• Γ ` A: c is interpreted by a family 〈Xi|i ∈ I〉 of sets;

• Γ ` M : A: c is interpreted by a family 〈xi ∈ Xi|i ∈ I〉 of elements;

• Γ ` B: r is interpreted by a family b = 〈bi|i ∈ I〉 of objects of C;

• Γ ` N : B: r is interpreted by a family 〈fi: ai → bi|i ∈ I〉 of morphisms in C.

We summarize some properties valid in these models, which are particularly relevant
in relation to the translations defined subsequently.

Proposition 1.4 (∀∃-exchange)
Given n: N : c i: n: c ` A(i): c i: n: c, x: A(i): c ` B(i, x): r

n: N : c ` ∃f : (Πi: n.A(i)).∀i: n.B(i, fi) ∼= ∀i: n.∃x: A(i).B(i, x)

namely the canonical map 〈f, g〉 7→ Λi: n.〈fi, gi〉 is an isomorphism.
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Remark 1.5 This property can be proved formally in extensional S2 by induction
on the NNO N . The key lemma is Πi: sn.A(i) ∼= A(0) × (Πi: n.A(si)) and similarly
for ∀i: sn: A(i). The property is the internal version of the following property (which
can be proved in system F with surjective pairing):

∃〈x〉: (A1 × . . . × An).(B1 × . . . × Bn) ∼= (∃x1: A1.B1) × . . . × (∃xn: An.Bn)

where Γ ` Ai: c and Γ, xi: Ai: c ` Bi(xi): r for i = 1, . . . , n.

Proposition 1.6 (Extensivity) Given f : A → 2: c, then A ∼= A0 + A1, where
2 = 1 + 1 Ai = Σa: A.eq2(i, fa) x, y: 2: c ` eq2(x, y): c is equality on 2, i.e.

eq2(0, 0) = 1 | eq2(0, 1) = 0 | eq2(1, 0) = 0 | eq2(1, 1) = 1

Remark 1.7 Also this property can be proved formally in extensional S2. The key
lemma is x: 2: c ` eq2(0, i) + eq2(1, i) ∼= 1.
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The Nested Sequence Calculus NSC (see [22]) is an idealized vector language. Un-
like NESL, it has a small set of primitive operations and no polymorphism, therefore
is simpler to analyze. For the purposes of this paper we introduce the abstract syn-
tax of NSC and refer the interested reader to [22] for the operational semantics.
The syntax of NSC is parameterized w.r.t. a signature Σ of atomic types D and
operations op: τ → τ

• Types τ : : = 1 | N | D | τ1 × τ2 | τ1 + τ2 | [τ ]. Arities for operations are of the
form σ: : = τ → τ , and those for term-constructors are σ, τ → τ .

• Raw terms e: : = x | op(e) | c(f, e), where c ranges over term-constructors (see
Figure 1) and f over abstractions f : : = λx: τ .e.

Remark 2.1 NSC has a term-constructor while: (τ → τ), (τ → 1 + 1), τ → τ
instead of for. We have decided to ignore the issue of non-termination, to avoid
additional complications in S2 and translations. One must be rather careful when
translating a source language which exhibits non-termination or other computational
effects. In fact, in S2 such effects should be confined to the run-time part, since we
want to keep type-checking and shape-analysis decidable.

The following sections describe in details two translations of NSC in S2. In this
section we only outline the translations and give a concise account of them and their
properties in terms of categorical models.

2.1 The simple translation

The simple translation ∗:NSC → S2 has the following pattern

• types `NSC τ are translated to r-types `S2 τ∗: r

• terms x: τ `NSC e: τ are translated to terms x: τ ∗: r `S2 e∗: Tτ∗: r

where T is the error monad on r-types.
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Term-constructors marked with ∗ can raise an error
c arity informal meaning
err∗ τ error
0 N zero
s N → N successor
eq N, N → 1 + 1 equality of natural numbers
for∗ (N, τ → τ), τ, N → τ iteration
∗ 1 empty tuple
pair τ1, τ2 → τ1 × τ2 pairing
πi τ1 × τ2 → τi projection
ini τi → τ1 + τ2 injection
case∗ (τ1 → τ), (τ2 → τ), τ1 + τ2 → τ case analysis
nil [τ ] empty sequence
sgl τ → [τ ] singleton sequence
at [τ ], [τ ] → [τ ] concatenation
flat [[τ ]] → [τ ] flattening
map∗ (τ1 → τ2), [τ1] → [τ2] mapping
length [τ ] → N length of sequence
get∗ [τ ] → τ get unique element of sequence
zip∗ [τ1], [τ2] → [τ1 × τ2] zipping
enum [τ ] → [N ] enumerate elements of sequence
split∗ [τ ], [N ] → [[τ ]] splitting of sequence

Figure 1: Term-constructors of NSC

Definition 2.2 (Error monad) Given A: r the type TA: r is given by TA = A+1.
The corresponding monad structure is defined by

val A → TA
val(x) = in0(x)

let (A → TB), TA → TB
let(f, in0(x)) = f(x)
let(f, in1(∗)) = in1(∗)

We write [M ] for val(M) and (let x⇐M in N) for let([x: A]N, M).

2.2 The mixed translation

The mixed translation consists of a pair of translations ( c, r):NSC → S2 s.t.

• types `NSC τ are translated to families of r-types x: τ c: c `S2 τr(x): r

• terms x: τ `NSC e: τ are translated to pairs of compatible terms
x: τ c: c `S2 ec: Tτ c: c and
x: τ c: c, x′: τr: r `S2 er: T ′([x: τ c]τr, ec): r

where (T, T ′) is the error monad on families of r-types.

Definition 2.3 (Error monad on families of types) Given x: A: c ` A′: r the
family x: TA: c ` T ′([x: A]A′, x): r is given by TA = A + 1 and
T ′([x: A]A′, in0(x)) = A′(x)
T ′([x: A]A′, in0(∗)) = 1

We write T ′(A, A′, M) for T ′([x: A]A′, M).
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The corresponding monad structure is defined by pair of compatible terms

val A → TA
val′ ∀x: A.A′ → T ′(A, A′, val(x))

val(x) = in0(x)
val′(x, x′) = x′

let (A → TB), TA → TB
let′ ∀f, x: (A → TB), TA,

(∀x: A.A′ → T ′(B, B′, fx)), T ′(A, A′, x) → T ′(B, B′, let(f, x))
let(f, in0(x)) = f(x)
let′(f, in0(x), f ′, x′) = f ′(x, x′)
let(f, in1(∗)) = in1(∗)
let′(f, in1(∗), f ′, ∗) = ∗

We write [M ] for val(M), (let x⇐M in N) for let([x: A]N, M), M ′ for val′(M, M ′)
and (let′ x, x′⇐M, M ′ in N ′) for let′([x: A]N, M, [x: A, x′: A′]N ′, M ′).

In defining the mixed translation of collection types [τ ] we use the list type-constructor
(L, L′) acting on families of r-types.

Definition 2.4 (List objects for families of types) Given x: A: c ` A′: r the
family x: LA: c ` L′([x: A]A′, x): r is given by LA = Σn: N.V (n, A) and
L′([x: A]A′, 〈n, v〉) = ∀i: n.A′(vi). We write L′(A, A′, M) for L′([x: A]A′, M).

2.3 Semantic view and main results

Given a model π:Fam(C) → Set of S2 (see Section 1), one may compose the two
translations of NSC in S2 with the interpretation of S2 in the model, and thus
investigate the properties of the resulting interpretations. In fact, it is often easier
to start from a direct interpretation of NSC, and then work out the corresponding
translation (with its low level details). In what follows we assume that C is a cartesian
closed category with small products and small sums (as done in Section 1 to ensure
that π:Fam(C) → Set is a model of S2).

• The simple translation corresponds to an interpretation of NSC in the Kleisli
category CT for the monad T ( ) = + 1.

• The mixed translation corresponds to an interpretation of NSC in the Kleisli
category Fam(C)T for the monad T ( ) = +1, namely T (〈I, c〉) = 〈I+1, [c, 1]〉,
where [c, 1] ∈ CI+1 is the family s.t. [c, 1]in0(i) = ci and [c, 1]in1(∗) = 1.

Remark 2.5 These interpretations could be parameterized w.r.t. a (strong) monad
S on C, i.e.: TA = S(A + 1) in C; T (〈I, c〉) = 〈I + 1, [c′, 1]〉 with c′i = S(ci) in
Fam(C). This generalization is interesting because it suggests a way for dealing
with non-termination and other computational effects. Unfortunately, in intensional
S2 it is not possible to mimic the definition of T in Fam(C) from S (the difficulty
is in the definition let). The reason is lack of extensivity (see Proposition 1.6).

In order to interpret NSC in the Kleisli category AT for a strong monad T over A,
the category A must have finite products, binary sums and list objects ( satisfying
certain additional properties). Moreover, one can always take T ( ) = +1. When A
is cartesian closed and has countable sums, the necessary structure and properties
are automatically available.
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Lemma 2.6 The categories Set, C and Fam(C) are cartesian closed and have small
sums. The following are full reflections

Set
� π

⊥
⊂

∆
- Fam(C)

∃ -
⊥� ⊃

C

Moreover, the functors ∆:Set → Fam(C), π:Fam(C) → Set and ∃:Fam(C) → C
preserve finite products and small sums (∆ and π preserve also exponentials).

Proof The relevant categorical structure in Fam(C) is defined as follows: 1 = 〈1, 1〉,
〈I, a〉× 〈J, b〉 = 〈I ×J, c〉 with ci,j = ai × bj , 〈J, b〉〈I,a〉 = 〈JI , c〉 with cf =

∏

i∈I bai

fi,
∐

i∈I 〈Ji, bi〉 = 〈
∐

i∈I Ji, c〉 with ci,j = (bi)j . The adjoint functors are given by

I � π
〈I, a〉 〈I, a〉

∃-
∐

i∈I

ai

J
∆

- 〈J, 1〉 〈1, b〉 � b

A simple check shows that all functors preserve finite products and exponentials,
and all functors except C ↪→ Fam(C) preserve small sums.

This lemma says that we can interpret NSC in any of the three categories by taking
T ( ) = + 1 (and fixing an interpretation for the signature Σ).

Theorem 2.7 The following diagrams commute (up to a natural isomorphism)

NSC

	�
�

�
�

�
compile

@
@

@
@

@

simple

R
SetT

�
π

Fam(C)T

mixed

?

∃
- CT

Remark 2.8 There is a proviso to the above theorem: the simple and mixed in-
terpretation of NSC are related (as stated), if and only if the simple and mixed
interpretation of Σ are. The syntactic counterpart of this theorem says that the
following assertions are provable (in extensional S2):

• τ∗ ∼= ∃x: τ c.τr and Tτ∗ ∼= ∃x: Tτ c.T ′(τ c, τr , x);

• x: τ c, x′: τ r ` [〈xi, x′
i〉/xi]e

∗ = 〈ec, er〉: Tτ∗ (up to isomorphism).

The delicate step in the proof of the syntactic result is the case [τ ], where one
should use Proposition 1.4. Informally speaking, the theorem says that the mixed
translation extracts more information than the simple translation.

Lemma 2.9 If C is extensive and non-trivial (i.e. 0 6∼= 1), then ∃:Fam(C)(1, x) →
C(1, ∃x) is injective for any x.

Thus one can conclude (when the hypothesis of the lemma are satisfied) that the
interpretation of a closed expression of NSC is equal to of error in the simple
semantics if and only if it is in the mixed semantics.

The mixed interpretation of NSC is rather boring when the interpretation of atomic
types in Σ are trivial, i.e. isomorphic to the terminal object.
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Theorem 2.10 If the mixed interpretation of base types are trivial, then the fol-
lowing diagram commutes (up to a natural isomorphism)

NSC

	�
�

�
�

�
compile

SetT
⊂ - Fam(C)T

mixed

?

Remark 2.11 The syntactic counterpart of this theorem says that x: τ c ` τr ∼= 1 is
provable (in extensional S2). Therefore, the run-time part of S2 is not really used.

Theorem 2.12 The compile-time part compile:NSC → SetT of the mixed inter-
pretation factors through the full sub-category of countable sets.

Remark 2.13 The syntactic counterpart of this result is much stronger, namely (in
extensional S2) τ c is provable isomorphic either to a finite cardinal or to the NNO.
This means that the compile-time part of the translation uses very simple types
(though the provable isomorphisms may get rather complex).
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The simple translation ∗ corresponds to translate NSC in a simply typed lambda
calculus with unit, sums, products, NNO and list objects (extended with the ana-
logue Σ∗ of the NSC-signature Σ).

• types `NSC τ are translated to r-types `S2 τ∗: r

τ of NSC τ∗: r of S2
1 1
N ∃n: N.1
D D
τ1 × τ2 τ∗

1 × τ∗
2

τ1 + τ2 τ∗
1 + τ∗

2

[τ ] ∃n: N.n⇒τ∗

arities of NSC
τ → τ τ ∗ → Tτ∗

σ, τ → τ σ∗, τ∗ → Tτ∗

• terms x: τ `NSC e: τ are translated to terms x: τ ∗: r `S2 e∗: Tτ∗: r

e: τ of NSC e∗: Tτ∗: r of S2
x [x]
op(e) let x⇐e∗ in op∗(x)

c(f, e) let x⇐e∗ in c∗(f
∗
, x)

λx: τ .e λx: τ∗.e∗

when a term-constructor c cannot raise an error (i.e. is not marked by ∗ in

Figure 1), we translate c(f, e) to let x⇐e∗ in [c∗(f
∗
, x)].

• term-constructors c: σ, τ → τ are translated to terms `S2 c∗: σ∗, τ∗ → Tτ∗: r,
or to `S2 c∗: σ∗, τ∗ → τ∗: r when c cannot raise an error.

Figure 2 gives c∗ for the term-constructors c of NSC which can raise an error (and
for length and enum), the reader could figure out for himself the definition of c∗

for the other term-constructors. In Figure 2 we use ML-style notation for function
definitions and other auxiliary notation for S2, which is defined in Appendix A.
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Remark 3.1 Given a NSC-signature Σ, its analogue Σ∗ in S2 is defined as follows:

• a constant type D: r for each atomic type D in Σ;

• a constant term x: τ ∗: r ` op∗(x): Tτ∗: r for each operation op: τ → τ in Σ.
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The mixed translation highlights phase distinction between compile-time and run-
time, and exploits fully the features of S2 (extended with the analogue of the NSC-
signature Σ). Theorem 2.7 (and Lemma 2.9) says that shape errors are detected at
compile-time. Theorem 2.10 says that the run-time translation of types is trivial,
when it is trivial for all base types. Theorem 2.12 says that the compile-time trans-
lation of types is very simple, i.e. (up to isomorphism) it is either a finite cardinal
or the NNO.

• types `NSC τ are translated to families of r-types x: τ c: c `S2 τr(x): r

τ of NSC x: τ c: c and τr(x): r of S2
1 : 1 1
N : N 1
D : 1 D
τ1 × τ2 〈x1, x2〉: τ

c
1 × τ c

2 τr
1 (x1) × τr

2 (x2)
τ1 + τ2 ini(xi): τ

c
1 + τ c

2 τr
i (xi)

[τ ] 〈n, v〉: Σn: N.V (n, τ c) ∀i: n.τr(vi)
arities of NSC
τ → τ f : τ c → Tτ c ∀x: τ c.τ r → T ′(τ c, τr , f(x))

σ, τ → τ F : σc, τ c → Tτ c ∀f, x: σc, τ c.σr, τ r → T ′(τ c, τr, F (f, x))

• terms x: τ `NSC e: τ are translated to pairs of compatible terms
x: τ c: c `S2 ec: Tτ c: c and
x: τ c: c, x′: τr: r `S2 er: T ′(τ c, τr , ec): r

e: τ of NSC ec: Tτ c: c and er: T ′(τ c, τr , ec): r of S2
x [x] x′

op(e) let x⇐ec in opc(x) let′ x, x′⇐ec, er in opr(x, x′)

c(f, e) let x⇐ec in cc(f
c
, x) let′ x, x′⇐ec, er in cr(f

c
, f

r
, x, x′)

λx: τ .e λx: τ c.ec Λx: τ c.λx′: τr.er

when a term-constructor c cannot raise an error, we translate c(f, e) to
let x⇐ec in [cc(f

c
, x)] and let′ x, x′⇐ec, er in cr(f

c
, f

r
, x, x′).

• term-constructors c: σ, τ → τ are translated to pairs of compatible terms
`S2 cc: σc, τ c → Tτ c: c and
`S2 cr: ∀f, x: σc, τ c.σr, τ r → T ′(τ c, τr, cc(f, x)): r, or to
`S2 cc: σc, τ c → τ c: c and
`S2 cr: ∀f, x: σc, τ c.σr, τ r → τr(cc(f, x)): r when c cannot raise an error.

Figure 3 and 4 gives cc and cr for the term-constructors c of NSC which can raise
an error (and for length and enum). The tables are organized as follows:

• For each term-constructor c of NSC we write

cc f, x: σ, τ → T (τ)

cr σ′, τ ′ → T ′(τ, τ ′, cc(f, x))

to mean that cc: σ, τ → T (τ) and cr: ∀f, x: σ, τ .σ′, τ ′ → T ′(τ, τ ′, cc(f, x)) .
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c∗ arity and ML-like definition of c∗(f, x)

err∗ Tτ
err∗ = in1(∗)

for∗ (N, τ → Tτ), τ, N → Tτ
for∗(f, x, 0) = [x]
for∗(f, x, sn) = let y⇐for∗(f, x, n) in f(n, y)

case∗ (τ1 → Tτ), (τ2 → Tτ), τ1 + τ2 → Tτ
case∗(f0, f1, ini(x)) = fi(x) (i = 0, 1)

map∗ (τ1 → Tτ2), Lτ1 → T (Lτ2)
map∗(f, nil) = [nil]
map∗(f, h: : t) = let x⇐f(h) in let l⇐map∗(f, t) in [x: : l]

length∗ Lτ → N
length∗(nil) = 0
length∗(h: : t) = s(length∗(t))

get∗ Lτ → Tτ
get∗(nil) = err∗

get∗(h: : t) = case∗([h], err∗, eq∗(0, length∗(t)))
where eq∗: N, N → 1 + 1 is equality for the NNO

zip∗ Lτ1, Lτ2 → T (L(τ1 × τ2))
zip∗(nil, nil) = [nil]
zip∗(nil, h2: : t2) = err∗

zip∗(h1: : t1, nil) = err∗

zip∗(h1: : t1, h2: : t2) = let l⇐zip∗(t1, t2) in [〈h1, h2〉: : l]

enum∗ Lτ → LN
enum∗(nil) = nil
enum∗(h: : t) = snoc(enum∗(t), length∗(t))

where snoc(nil, x) = x: : nil | snoc(h: : t, x) = h: : snoc(t, x)

split∗ Lτ, LN → T (L(Lτ))
split∗(nil, nil) = [nil]
split∗(h: : t, nil) = err∗

split∗(x, 0: : p) = let l⇐split∗(x, p) in [nil: : l]
split∗(nil, sn: : p) = err∗

split∗(h: : t, sn: : p) = let l⇐split∗(t, n: : p) in cons′(x, l)
where cons′(x, nil) = err∗ | cons′(x, h: : t) = [(x: : h): : t]

Figure 2: Simple translation of NSC term-constructors
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• Each case of the ML-like definition of cc is immediately followed by the cor-
responding case for cr.

• Arguments of trivial run-time type (i.e. isomorphic to 1) are omitted. This
happens in the definition of for and split.

• The definition of cr is omitted when the type of the result is trivial. This
happens in the definition of length and enum.

Remark 4.1 Given a NSC-signature Σ, its analogue Σc,r in S2 is defined as follows:

• a constant type D: r for each atomic type D in Σ;

• a pair of compatible constant terms x: τ c: c ` opc(x): Tτ c: c and
x: τ c: c, x′: τr: r ` opr(x, x′): T ′(τ, τ ′, opc(x)): r for each op: τ → τ in Σ.

At the semantic level this translation of Σ imposes strong restrictions. For in-
stance, consider the translation of op: D, D → 1 + 1. This is given by opc: 1 + 1
and opr: D, D → 1 (when ignoring arguments of trivial type). Therefore, we cannot
interpret op as equality on D, because both opc and opr are constant. The mixed
translation can only cope with shapely operations (see [14]), where the shape of the
result is determined uniquely by the shape of the arguments. However, in S2 one
can give a type to non-shapely operations, for instance op: D, D → (∃x: 1 + 1.1).

: ; �$�-� � 
"!,���$�"!<���=�%0>
"�?� ��� �@� � ! � �$�,� �

[19] advocates the use of Martin-Löf Type Theory for program construction. This
paper advocates the use of Martin-Löf Type Theory as part of an intermediate
language S2. This avoids two major problems: a programmer does not have to deal
with dependent type directly, decidability of type-checking in S2 does not rely on
strong normalization of run-time expressions (since dependent types are confined to
the compile-time part of S2). [16] introduces a simply typed language for vectors
with an operator #: τ → #τ to extract shape information from terms. The type #τ
is like our τ c, while the term #e performs the translation ec lazily. Our approach
gains in clarity and generality by separating the programming language from the
intermediate language. There are many unresolved issues about S2 that should be
addressed. The following is a partial list with some hints on how one may proceed.

S2 is based on intensional type theory (to ensure decidability of type-checking),
however most of the semantic properties of translations rely on extensionality. It
would be interesting to investigate whether some of the extensional properties con-
sidered (e.g. extensivity) could be added safely to intensional type theory.

We have not given an operational semantics for S2, probably this can be done
relatively easy by borrowing ideas from [7, 6].

NSC is a simply typed language, while NESL has also ML-like polymorphism. This
is likely to require a refinement of S2 by adding a sort of shapes. Shape theory should
provide useful guidelines for such refinement. There are also obvious extensions to
the run-time part of S2, e.g. recursive types.

One must fill the gap between S2 and parallel machines (or already implemented
intermediate languages, like VCODE). Moreover, translations should be efficient in
the sense of [22, 3].

We have used a modified version of NSC with for-loops rather than while-loops.
It should be possible to incorporate run-time computational aspects in S2 using
monads. In such extension it should be possible to translate more realistic languages.

11



c arity and ML-like definition of cc(f, x) and cr(f, f
′
, x, x′)

errc Tτ
errr T ′(τ, τ ′, errc)

errc = in1(∗)
errr = ∗

forc f, x, n: (N, τ → Tτ), τ, N → Tτ
forr (∀n, x: N, τ.τ ′ → T ′(τ, τ ′, f(n, x))), τ ′(x) → T ′(τ, τ ′, forc(f, x, n))

forc(f, x, 0) = [x]
forr(f, x, 0, f ′, x′) = x′

forc(f, x, sn) = let y⇐forc(f, x, n) in f(n, y)
forr(f, x, sn, f ′, x′) = let′ y, y′⇐forc(f, x, n), forr(f, x, n, f ′, x′) in f ′(n, y, y′)

casec f1, f2, ini(x): (τ1 → Tτ), (τ2 → Tτ), τ1 + τ2 → Tτ
caser (∀y: τ1.τ

′
1 → T ′(τ, τ ′, f1y)), (∀y: τ2.τ

′
2 → T ′(τ, τ ′, f2y)), τ ′

i (x) → T ′(τ, τ ′, casec(f1, f2, x))
casec(f0, f1, ini(x)) = fi(x) (i = 0, 1)
caser(f0, f1, ini(x), f ′

1, f
′
2, x

′) = f ′
i(x, x′) (i = 0, 1)

mapc f, l: (τ1 → Tτ2), Lτ1 → T (Lτ2)
mapr ∀x: τ1.τ

′
1 → T ′(τ2, τ

′
2, fx), L′(τ1, τ

′
1, l) → T ′([x: Lτ2]L

′(τ2, τ
′
2, x), mapc(f, l))

mapc(f, nil) = [nil]
mapr(f, nil, f ′, []) = []
mapc(f, h: : t) = let y⇐f(h) in let z⇐mapc(f, t) in [y: : z]
mapr(f, h: : t, f ′, [h′, t′]) = let′ y, y′⇐f(h), f ′(h, h′) in

let′ z, z′⇐mapc(f, t), mapr(f, t, f ′, t′) in [y′, z′]

lengthc l: Lτ → N
lengthr L′(τ, τ ′, l) → 1

lengthc(nil) = 0
lengthc(h: : t) = s(lengthc(t))

getc l: Lτ → Tτ
getr L′(τ, τ ′, l) → T ′(τ, τ ′, getc(l))

getc(nil) = errc

getr(nil, []) = errr

getc(h: : t) = casec([h], errc, eqc(0, lengthc(t)))
getr(h: : t, [h′, t′]) = caser([h]), errc, eqc(0, lengthc(t)), h′, errr , ∗)

where eqc: N, N → 1 + 1 is equality for the NNO

zipc l1, l2: Lτ1, Lτ2 → T (L(τ1 × τ2))
zipr L′(τ1, τ

′
1, l1), L

′(τ2, τ
′
2, l2) → T ′([x: L(τ1 × τ2)]L

′(τ1 × τ2, τ
′
1 × τ ′

2, x), zipc(l1, l2))
zipc(nil, nil) = [nil]
zipr(nil, nil, [], []) = []
zipc(nil, h2: : t2) = errc

zipr(nil, h2: : t2, , ) = errr

zipc(h1: : t1, nil) = errc

zipr(h1: : t1, nil, , ) = errr

zipc(h1: : t1, h2: : t2) = let y⇐zipc(t1, t2) in [〈h1, h2〉: : y]
zipr(h1: : t1, h2: : t2, [h

′
1, t

′
1], [h

′
2, t

′
2]) = let′ y, y′⇐zipc(t1, t2), zipr(t1, t2, t

′
1, t

′
2) in

[〈h′
1, h

′
2〉, y

′]

enumc l: Lτ → LN
enumr L′(τ, τ ′, l) → 1

enumc(nil) = nil
enumc(h: : t) = snocc(enumc(t), lengthc(t))

where snocc(nil, x) = x: : nil | snocc(h: : t, x) = h: : snocc(t, x)

Figure 3: Mixed translation of NSC term-constructors
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splitc l, k: Lτ, LN → T (L(Lτ))
splitr L′(τ, τ ′, l) → T ′([x: L(Lτ)]L′([y: Lτ ]L′(τ, τ ′, y), x), splitc(l, k))

splitc(nil, nil) = [nil]
splitr(nil, nil, []) = []
splitc(h: : t, nil) = errc

splitr(h: : t, nil, [h′, t′]) = errr

splitc(x, 0: : p) = let y⇐splitc(x, p) in [nil: : y]
splitr(x, 0: : p, x′) = let′ y, y′⇐splitc(x, p), splitr(x, p, x′) in [[], y′]
splitc(nil, sn: : p) = errc

splitr(nil, sn: : p, []) = errr

splitc(h: : t, sn: : p) = let y⇐splitc(t, n: : p) in cons′(h, y)
splitr(h: : t, sn: : p, [h′, t′]) = let′ y, y′⇐splitc(t, n: : p), splitr(t, n: : p, t′) in

cons′r(h, y, h′, y′)
where cons′c(x, nil) = errc | cons′c(x, h: : t) = [(x: : h): : t]
where cons′r(x, nil, x′, []) = errr | cons′r(x, h: : t, x′, [h′, t′]) = [[x′, h′], t′]

Figure 4: Mixed translation of NSC term-constructors (cont.)

One cannot expect that array bound-checking can all be done at compile-time. In-
deed shape analysis proposes a more pragmatic approach, where execution and ana-
lysis alternate (see [15]). Existential types should provide a clean way of expressing
when shape information is available only at run-time.

In shape theory one can distinguish between arrays and lists (see [13]): the elements
of an array have the same shape, those of a list may have different shapes. This
suggests a different translation of NSC into S2 worth studying, namely: [τ ]c =
N × τ c and [τ ]r(〈n, x〉) = n⇒τ r(x).
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In presenting the rules we follow [19, 10]. The elimination rules for inductive types
are over sorts (since S2 has no universes).

A.1 Rules for c-types

A.1.1 Π-types

(Π)
Γ, x: A: c ` B: c

Γ ` (Πx: A.B): c
(Π-I)

Γ, x: A: c ` M : B: c

Γ ` (λx: A.M): (Πx: A.B): c

(Π-E)
Γ ` M : (Πx: A.B): c Γ ` N : A: c

Γ ` MN : [N/x]B: c

A.1.2 Σ-types

(Σ)
Γ, x: A: c ` B: c

Γ ` (Σx: A.B): c
(Σ-I)

Γ, x: A: c ` B(x): c
Γ ` M : A: c Γ ` N : B(M): c

Γ ` 〈M, N〉: (Σx: A.B): c

(Σ-E)

Γ, z: (Σx: A.B): c ` C(z): α
Γ, x: A: c, y: B: c ` M : C(〈x, y〉): α
Γ ` N : (Σx: A.B): c

Γ ` RΣ([x: A, y: B]M, N): C(N): α
(Σ-E-α)

Γ, x: A: c, y: B: c ` C: α
Γ ` N : (Σx: A.B): c

Γ ` RΣ([x: A, y: B]C, N): α

A.1.3 Sums

(+)
Γ ` Ai: c (i = 0, 1)

Γ ` A0 + A1: c
(+-I)

Γ ` Ai: c (i = 0, 1)
Γ ` M : Ai: c

Γ ` ini(M): A0 + A1: c

(+-E)

Γ, z: A0 + A1: c ` C(z): α
Γ, x: Ai: c ` Mi: C(ini(x)): α (i = 0, 1)
Γ ` N : A0 + A1: c

Γ ` R+([x: A0]M0, [x: A1]M1, N): C(N): α

(+-E-α)

Γ, x: Ai: c ` Ci: α (i = 0, 1)
Γ ` N : A0 + A1: c

Γ ` R+([x: A0]C0, [x: A1]C1, N): α

A.1.4 Unit

(1)
Γ `

Γ ` 1: c
(1-I)

Γ `

Γ ` ∗: 1: c
(1-E)

Γ, z: 1: c ` C(z): α
Γ ` M : C(∗): α
Γ ` N : 1: c

Γ ` R1(M, N): C(N): α

A.1.5 Natural number object

(N)
Γ `

Γ ` N : c
(N -0)

Γ `

Γ ` 0: N : c
(N -s)

Γ ` M : N : c

Γ ` s(M): N : c
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(N -E)

Γ, n: N : c ` A(n): α
Γ ` M0: A(0): α
Γ, n: N : c, x: A(n): α ` Ms: A(sn): α
Γ ` m: N : c

Γ ` RN(M0, [n: N, x: A(n)]Ms, m): A(m): α

A.1.6 Finite cardinals

(n)
Γ ` n: N : c

Γ ` n: c
(s-0)

Γ ` n: N : c

Γ ` 0: sn: c
(s-s)

Γ ` n: N : c
Γ ` M : n: c

Γ ` sM : sn: c

(0-E)

Γ, i: 0: c ` C(i): α
Γ ` M : 0: c

Γ ` R0(M): C(M): α
(s-E)

Γ ` n: N : c
Γ, i: sn: c ` C(i): α
Γ ` M0: C(0): α
Γ, i: n: c ` Ms: C(si): α
Γ ` P : sn: c

Γ ` Rs(M0, [i: n]Ms, P ): C(P ): α

A.1.7 Arrays

(V )

Γ ` n: N : c
Γ ` A: c

Γ ` V (n, A): c
(V0-I)

Γ ` A: c

Γ ` []: V (0, A): c

(Vs-I)

Γ ` n: N : c
Γ ` M : A: c
Γ ` N : V (n, A): c

Γ ` [M, N ]: V (sn, A): c
(V0-E)

Γ, z: V (0, A): c ` C(z): α
Γ ` M : C([]): α
Γ ` N : V (0, A): c

Γ ` RV0(M, N): C(N): α

(Vs-E)

Γ ` n: N : c
Γ, z: V (sn, A): c ` C(z): α
Γ, x: A: c, y: V (n, A): c ` M : C([x, y]): α
Γ ` N : V (sn, A): c

Γ ` RVs([x: A, y: V (n, A)]M, N): C(N): α

Remark A.1 In a stronger version of intensional S2, where sort c and r are uni-
verses (i.e. types of some bigger sort), one could have defined finite cardinals and
arrays by induction on the natural numbers

F (0) = 0 | F (sn) = 1 + F (n) V (0, A) = 1 | V (sn, A) = A × V (n, A)

and derived the corresponding introduction and elimination rules. We have not
used the stronger version of intensional S2, because its categorical semantics is
more involved. On the other hand, the categorical models of S2 are extensional (see
Section 1), and the interpretation of finite cardinals and arrays is defined in terms
of the NNO by exploiting extensionality.

A.2 Rules for r-types

A.2.1 ∀-types

(∀)
Γ, x: A: c ` B: r

Γ ` (∀x: A.B)
(∀-I)

Γ, x: A: c ` M : B: r

Γ ` (Λx: A.M): (∀x: A.B): r

(∀-E)
Γ ` M : (∀x: A.B): r Γ ` N : A: c

Γ ` MN : [N/x]B: r
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A.2.2 ∃-types

(∃)
Γ, x: A: c ` B: r

Γ ` (∃x: A.B): r
(∃-I)

Γ, x: A: c ` B(x): r
Γ ` M : A: c
Γ ` N : B(M): r

Γ ` (〈M, N〉): (∃x: A.B): r

(∃-E)

Γ ` C: r
Γ, x: A: c, y: B: r ` N : C: r
Γ ` M : (∃x: A.B): r

Γ ` R∃([x: A, y: B]M, N): C: r

A.2.3 ×-types

(×)
Γ ` Ai: r (i = 0, 1)

Γ ` (A × B): r
(×-I)

Γ ` Mi: Ai: r (i = 0, 1)

Γ ` 〈M0, M1〉: A0 × A1: r

(×-E)
Γ ` M : A0 × A1: r

Γ ` πi(M): Ai: r

A.2.4 Sums

(+)
Γ ` Ai: r (i = 0, 1)

Γ ` A0 + A1: r
(+-I)

Γ ` Ai: r (i = 0, 1)
Γ ` M : Ai: r

Γ ` ini(M): A0 + A1: r

(+-E)

Γ, x: Ai: c ` Mi: C: r (i = 0, 1)
Γ ` N : A0 + A1: r

Γ ` R+([x: A0]M0, [x: A1]M1, N): C: r

A.2.5 →-types

(→)
Γ ` A, B: r

Γ ` (A → B): r
(→-I)

Γ, x: A: r ` M : B: r

Γ ` (λx: A.M): (A → B): r

(→-E)
Γ ` M : (A → B): r Γ ` N : A: r

Γ ` MN : B: r

A.2.6 Unit

(1)
Γ `

Γ ` 1: r
(1-I)

Γ `

Γ ` ∗: 1: r

Remark A.2 Sums, products and unit types of sort r could have been defined in
terms of finite cardinals, universal and existential types.

A.3 Computational rules

This section summarizes the computational rules on raw terms:

• (λx: A.M)N = [N/x]M

• RΣ([x: A, y: B]M, 〈P, Q〉) = [P, Q/x, y]M

• R+([x: A0]M0, [x: A1]M1, ini(N)) = [N/x]Mi

• R1(M, ∗) = M
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• RN(M0, [n: N, x: A(n)]Ms, 0) = M0

RN(M0, [n: N, x: A(n)]Ms, s(N)) = [N, RN (M0, [n: N, x: A(n)]Ms, N)/n, x]Ms

• Rs(M0, [x: n]Ms, 0) = M0

Rs(M0, [x: n]Ms, s(P )) = [P/x]Ms

• RV0(M, []) = M
RVs([x: A, y: V (n, A)]M, [P, Q]) = [P, Q/x, y]M

• (Λx: A.M)N = [N/x]M

• R∃([x: A, y: B]M, 〈P, Q〉) = [P, Q/x, y]M

• πi(〈M0, M1〉) = Mi

A.4 Auxiliary notation and notational conventions

This section introduces auxiliary notations and notational conventions for S2.

A.4.1 Auxiliary notation for types

• A⇒B stands for ∀ : A.B

• A → B stands for Π : A.B when A and B have sort c

• A × B stands for Σ : A.B when A and B have sort c

• An stands for V (n, A)

• Nr stands for ∃n: N.1 (the NNO of sort r)

• L(A) stands for Σn: N.V (n, A) (the list object of sort c)

• V r(n, [i: n]A) with n: N : c and i: n: c ` A: r stands for ∀i: n.A(i), i.e. the r-type
of heterogeneous arrays of size n

• Lr(A) stands for ∃n: N.n⇒A (the list object of sort r)

When there is no ambiguity with sorts the superscript r is omitted.

A.4.2 ML-style notation for function definitions

• f(〈x, y〉) = M(x, y) stands for f(z) = RΣ([x: A, y: B]M, z) or f(z) = R∃([x: A, y: B]M, z)
or f(z) = M(π0(z), π1(z)) depending on the domain of f

• f(ini(x)) = Mi(x) (i = 0, 1) stands for f(z) = R+([x: A0]M0, [x: A1]M1, z)

• f(∗) = M stands for f(z) = R1(M, z)

•

{

f(0) = M0

f(sn) = Ms(n, f(n))
stands for f(z) = RN (M0, [n: N, x: A(n)]Ms, z)

• (M0, [x: n]Ms) stands for f(z: sn) = Rs(M0, [x: n]Ms, z) and () stands for R0

• f([]) = M stands for f(z) = RV0(M, z)

f([x, v]) = M stands for f(z) = RVs([x: A, v: V (n, A)]M, z) when n is clear
from the context.

• array selection select: Πn: N.V (n, A) → n → A is given by

select(0, []) = ()
select(sn, [a, v]) = (a, select(n, v))

and we write MN for select(n, M, N) when M : V (n, A): c and N : n: c.
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A.4.3 Auxiliary notation for derived universal objects

• NNO Nr of sort r

0r Nr

0r = 〈0, ∗〉

sr Nr → Nr

sr(〈n, ∗〉) = 〈sn, ∗〉

RNr

A, (Nr, A → A), Nr → A
RNr

(x, f, 〈0, ∗〉) = x
RNr

(x, f, 〈sn, ∗〉) = f(n, RNr

(x, f, 〈n, ∗〉))

• r-type of heterogeneous arrays V r(n, [i: n]A) with n: N : c and i: n: c ` A: r

[]r V r(0, [i: 0]A)
[]r = ()

[ , ]r A(0), V r(n, [i: n]A(si)) → V r(sn, [i: sn]A)
[a, v]) = (a, v)

RV r

0 B, V r(0, [i: 0]A) → B
RV r

0 (b, ) = b

RV r

s (A(0), V r(n, i: nA(si)) → B), V r(sn, [i: sn]A) → B
RV r

s (f, v) = f(v0, vs)
where v0 = v(0) and vs = Λi: n.v(si)

• list object L(A) of sort c

nil L(A)
0 = 〈0, []〉

cons A, L(A) → L(A)
cons(a, 〈n, v〉) = 〈sn, [a, v]〉

RL B([]), (l: L(A), a: A, B(l) → B([a, l])), l: L(A) → B(l)
RL(b, f, 〈0, []〉) = b
RL(b, f, 〈sn, [a, v]〉) = f(〈n, v〉, a, RL(b, f, 〈n, v〉))

we may write M : : N for cons(M, N)

• list object Lr(A) of sort r

nilr Lr(A)
0r = 〈0, ()〉

consr A, Lr(A) → Lr(A)
consr(a, 〈n, l〉) = 〈sn, (a, l)〉

RLr

B, (Lr(A), A, B → B), Lr(A) → B
RLr

(b, f, 〈0, 〉) = b
RLr

(b, f, 〈sn, l〉) = f(〈n, ls〉, l0, RLr

(b, f, 〈n, ls〉))
where l0 = l(0) and ls = Λi: n.l(si)

we may write M : : N for consr(M, N)

ML-style notation for function definitions will be used also for these derived types.
When there is no ambuguity, we may drop the superscript r.
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