Electronic Notes in Theoretical Computer Science 62 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume62.html| 17 pages

Higher-Order Types and Meta-Programming
for Global Computing

G. Ferrari

Dipartimento di Informatica, Univ. Pisa, Italy

E. Moggi

Dipartimento di Informatica e Scienze dell’Informazione, Univ. Genova, Italy

R. Pugliese

Dipartimento di Sistemi e Informatica, Univ. Firenze, Italy

Abstract

METAKLAIM is a case study in modeling the spatial, temporal and security aspects
necessary for global computing. METAKLAIM integrates METAML (an extension
of SML for multi-stage programming) and KrLAM (a Kernel Language for Agents
Interaction and Mobility), in order to allow interleaving of meta-programming ac-
tivities (like assembly and linking of code fragments), security checks (like type-
checking at administrative boundaries) and normal computational activities. The
staging annotations of METAML provide a fine-grain control of the temporal as-
pects, KLAIM’s primitives support location awareness, while the type system sup-
ports security through the use of global types (in combination with dynamic type-
checking) and generic mobile code through the use of polymorphism (& la system F').
The paper describes syntax, type system and operational semantics of METAKLAIM,
states two type safety results, and exemplifies its use for describing mobile code ap-
plications.

1 Introduction

The distributed software architecture (model) which underpins most of the
wide area network (WAN) applications typically consists of a large number
of heterogeneous computational entities (sometimes referred to as nodes or
sites of the network) where components of applications are executed. The
various nodes are handled by different authorities having different administra-
tive policies and security requirements. Components of WAN applications are
characterized by an highly dynamic behavior. They have to deal with the
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unpredictable changes over time of the network environment (changes due to
the availability of network connectivity, lack of services, node failures, network
reconfiguration, and so on). Moreover, nomadic or mobile components may
detach from a node and re-attach later on a different node. Hence, components
must be designed to support heterogeneity and interoperability. Differently
from traditional middle-wares for distributed programming, the structure of
the underlying network is made manifest to programmers of WAN applica-
tions. We refer to [17] and [3] for a comprehensive analysis of this issue.

The problems associated with the development of WAN applications has
prompted the study of the foundations of programming languages with ad-
vanced features including mechanisms for agent mobility, for managing secu-
rity, and for coordinating and monitoring the use of resources. Several foun-
dational calculi have been proposed to tackle most of the phenomena related
to WAN programming. We mention the Distributed Join-calculus [16], Klaim
[8], the Distributed 7-calculus [21], the Ambient calculus [4], the Seal calculus
[34], and Nomadic Pict [3T]. All these foundational models encompass a no-
tion of location to reflect the idea of administrative domains: computations at
a certain location are under the control of a specific authority. In other words,
they focus on the spatial dimension (which is often referred to as network
awareness) of WAN programming.

Another crucial aspect of WAN programming concerns the temporal dimen-
sion: the run-time system may interleave computational activities with meta-
programming activities (e.g. the dynamic assembling of components). Com-
ponents of WAN applications are often developed and maintained by different
providers and may be downloaded on demand. Dynamic linking and dynamic
enforcement of security checks (e.g. authentication and access control) in-
crease the flexibility of WAN applications, since they allow to reconfigure
the application without having to restart it. Several papers have addressed
the problem of formally understanding dynamic linking (and separate com-
pilation) [22724/T0[23|30]; other approaches have tackled the problems of
security in systems of mobile agents (see e.g. [20/12T39,22]).

Hence, the spatial and the temporal dimension of WAN programming have
been studied at considerable depth but in isolation, and their interplay has not
been properly formalized and understood, yet. This paper proposes a foun-
dational model which integrates the spatial and temporal aspects of WAN
programming. We have abstracted the basic feature of the problem in a cal-
culus having primitives for programming agents which may migrate among
sites, and primitives which support fine-grain control of dynamic linking and
security checks.

Our calculus builds on Kramv [§] and MetaML [261]. Kramv (Kernel Lan-
guage for Agents Interaction and Mobility) is an experimental language, in-
spired by the Linda coordination model [I85], specifically designed to model
and to program WAN applications by exploiting mobility. METAML supports
most features of SML and meta-programming constructs. Meta-programming
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provides an ideal tool for describing customization and combination of software
components, since the meta-programming constructs have the same status of
the other programming constructs.

This paper is a follow-up of [T4/15]. In [I4] we addressed the problem of pro-
tecting hosts from attacks or misbehavior of mobile processes. We introduced
HoTKramm (for Higher-order typed KLAIM), a variant of KLAIM that allows
only mobility of process abstractions, i.e. processes parameterized with respect
to the operations having a local meaning. The type system exploits global val-
ues and types to ensure that operations having a local meaning are used only
locally. In [15] we describe a preliminary version of METAKLAIM, which has
only simple types. In this paper we push forward the integration effort, and
propose an integration of HOTKLAIM and METAML that takes into account
also the polymorphic and global types of HOTKLAIM.

The rest of the paper is organized as follows: Section [2] introduces the syn-
tax of METAKLAIM, Section |3| gives the type system, Section 4| defines the
operational semantics, Section |5 presents the type safety result (proofs are
omitted), Section [f] gives a few examples of mobile code applications, and
Section [0 draws some conclusions.

2 MetaKlaim

This section introduces METAKLAIM, a foundational calculus specifically de-
signed to model both the spatial and temporal aspects of global computing.
METAKLAIM integrates KLAIM’s primitives in METAML: the staging anno-
tations of METAML provide a fine-grain control of the temporal aspects, while
KrLAIM allows to model the spatial aspects of distributed concurrent applica-
tions, including mobility. Figure [1| summarizes the syntax of the calculus.

Definition 2.1 A net N € Net 2 (L x (Eg + {err,dead})) is a multi-set
of pairs consisting of a locality [ and either a closed term e, or the tag err
indicating that a process at [ has crashed, or the tag dead indicating a dead
computation or a placeholder for a tuple that has been removed. [ |

Remark 2.2 [Types in Terms| In a global computing scenario most SW com-
ponents available on the network are expected to be highly parameterized.
Functional abstraction is not enough for expressing the desirable forms of pa-
rameterization. Also a limited form of polymorphism, like that supported by
SML, appears inadequate (see Section@. Therefore, in METAKLAIM we have
included polymorphic types 4 la system F [19]. However, this design choice
and the need for decidable type-checking at run-time (since the input primi-
tive performs dynamic type-checking) imply that METAKLAIM programs have
to include a lot of type information (at run-time). For a description of the
O-types we refer to Remark [3.1]

An important topic for further research is to find type systems, that do not
require heavy type annotations in terms, and at the same time guarantee
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e Types t€Ti:= X | L|t1 —ta| (il em) | (t) | Ot | VX.t
Global Types g € G::= L | (g;]i € m) | Ot
e Contexts ' € Ctx:: =0 | T, X" | T, z: t": k where k = |, g
e Terms ec Ex:=x | [ | nil | (mrili €n) | e ea | fixx:t: ke | (e;]i € m)
| ope|(e)]| "e| %e| AX.e| et}

where [ ranges over localities, nil is a deadlock computation, and op ranges over

the set Op = {spawn, output, input, new, run} of local operations
Patterns p e P::= alt:k |z =e | (pi|i € m)

Match Rules mr::= p=e

Fig. 1. Syntax of types and terms
decidable type-checking (in linear time) and adequate expressiveness. |

From KvLAIM we borrow the computational paradigm, which identifies pro-
cesses as the basic units of computation, and nets, i.e. collections of nodes,
as the coordinators of process activities. Each node has an address, called
locality, and consists of a process component and a tuple space (TS), i.e.
a multi-set of tuples. Processes communicate asynchronously via TSs. The
types of METAKLAIM include the types L of localities and (¢;]i € m) of tuples.
The KLAIM primitives take the form of polymorphic local operations:

* spawn(e) activates a process in a parallel thread.
* output(l,e) adds the value of e to the TS at [ (output is non-blocking).

o input(l, (pi=-e;|i € m)) accesses the TS located at [. input checks each pat-
tern p; and looks in the TS at [ for a matching value v. If such a v exists, it
is removed from the TS, and the variables declared in the matching pattern
p; (i.e. those indicated by x!t: k) are replaced within e; by the correspond-
ing values in v. If no matching tuple is found, the operation is suspended
until one becomes available (thus input is a blocking operation). Notice
that input exploits dynamic type-checking (namely a matching v must be
consistent with the types attached to variables declared in a pattern).

» new(e) creates a new locality [, activates a process at [, and returns /.
Remark 2.3 [METAKLAIM versus KLAM| In KLAIM there is a primitive
eval(l, e) for activating a process at a remote locality [. This primitive is used

for process mobility, but it has not been included in METAKLAIM for the
following reasons:

* eval relies on dynamic scoping (a potentially dangerous mechanism), which
is not available in METAKLAIM, since in a functional setting one can use
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(the safer mechanism of) parameterization.

e with eval a node may activate a process on another node, but the target
node has no control over the incoming process. This can be a source of
security problems. In particular, Local Type Safety (see Theorem fails,
if eval is added.

In METAKLAIM process mobility occurs only by “mutual agreement”, i.e. a
(sending) node can output a process abstraction in any TS, but the abstraction
may become an active process only if (a process at) another (receiving) node
does input it. Remote communication between nodes, like that provided by
KLAIM, is essential to implement this form of process mobility. [ |

From METAML we borrow the types (t) for code with potentially unresolved
links (represented by dynamic variables), the stratification of evaluation into
levels (level 0 for normal evaluation, and level n > 0 for symbolic evaluation),
and the following staging annotations:

* Brackets (e) constructs code representing the program fragment obtained by
the symbolic evaluation of e, e.g. (2+x) is a value of type (nat) representing
the fragment 2 + =, where x is a dynamic variable.

» Escape e returns the program fragment represented by e. During sym-
bolic evaluation Escape is used for splicing program fragments into bigger
programs, e.g. (Az.1+ "(2+ z)) evaluates to (Az.1+ 2+ x).

o Cross-stage persistence %e allows to use the value of e at a higher level, e.g.
(%(141)+x) evaluates to (%2+z). Notice that %(1+1) and “(1+1) have
the same type, but their symbolic evaluation is different: the first evaluates
to %2, while the second evaluates to 1 + 1.

e run(e) executes the program represented by e, e.g. run(l + 1) evaluates to
2. To enhance security, run is considered a local operation.

Remark 2.4 [METAKLAIM versus METAML] In METAML (and more gen-
erally in multi-level languages) it is possible to evaluate under (dynamic)
lambda. This feature is essential for allowing arbitrary interleaving of code
generation and normal computation, but it may cause new forms of improper
run-time behavior, that do not arise in traditional programming languages:

e execution of program fragments with unresolved links, e.g. the evaluation
of (Az.” (run(z);...)) will attempt to evaluate run(zx), before the dynamic
variable z gets bound to a value.

e extrusion of a value with free dynamic variables from the scope of the bind-
ing lambda, e.g. the evaluation of (Az.” (output(l, (x));...)) will output (x)
in the TS located at [, thus loosing the connection with the binding lambda.

There are two ways of addressing these problems.
Solution 1 is to design a type system which guarantees that well-typed pro-
grams do not exhibit improper behaviors. [I] adopts this approach, by intro-

bt



FERRARI, MOGGI, PUGLIESE

ducing a type system with closed types (it introduces also a binder for dead
code annotations, which is instrumental to the prove of type safety, and could
be ignored when evaluating well-typed programs).

Solution 2 is to handle the problem dynamically, e.g. by stopping evaluation
(of a thread), before an improper behavior occurs. This could be implemented
by (dynamically) replacing all free variables in (z) with nil, before it is run
or output. In a language supporting exception handling a better alternative is
to replace these free variables with raise unresolved_link, instead of nil.
In a statically typed language the first solution is preferable, because it avoids
run-time overheads. However, METAKLAIM has dynamic type-checking (be-
cause of the input primitive), therefore the above argument does not hold. In
fact, a simpler dynamic type-checking algorithm may compensate the run-time
overheads. Therefore, in METAKLAIM one has the following trade-off:

e solution 1 requires a more complex type system (e.g. with closed types and
exhaustive pattern matching), but it is able to detect (at type-checking
time) the possibility of improper run-time behavior

e solution 2 adopts a simpler type system, but it involves an overhead in
implementing some operations (namely all local operations except input),
which is linear is the size of the operand, and it may introduce deadlocked
computations (as a consequence of replacing dynamic variables with nil).

We have chosen the second solution. [ |

3 Type System

Figure 2] gives the type system for deriving judgments of the following forms

e '~ ie. I'is a well-formed context
e ', t,ie. tis a well-formed type at level n

e ', e:t, ie. eis a well-formed term of type t at level n

A context I' is a sequence of declarations of the form X™ for type variables
and z:t": k for term variables. A type variable X" ranges over types t at level
n, while a term variable x:t": k ranges over values of type t at level n and of
kind k. We consider also a subset G of T, whose elements are called global
types. Semantically, a type ¢ is global iff ¢ = Ot (i.e. a term has type ¢ iff it
has type Ot). In some typing rules we use the following derived judgement:

e I' b, e:t means that I' = and I'y -, e:t and e does not contain local
operations op, where I'y is the context obtained from I' by keeping only the
declarations of the form X and x:t"™:g.

Remark 3.1 [Levels, Kinds and O-types|] Levels are typical of multi-level
languages (like A© of [6]). In a dynamically typed multi-stage language, like
METAKLAIM (see also [32]), type variables get bound at different stages of a
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'k 'k, t r+
Xfressh ——— zxzfresh — X" ecT'andm<n
I X"+ Iyz:t™ k+ ', X
I'k,t1 Tk, te 'k 'kt ie€m Pl—n_Ht 'k, t
'k, t1 — to '+, L 'k, (ti]i € m) L'k, (t) I't,, O¢
X"k, t 'k '+ ', t
_ ——x:t"mkel
', VX.t 'k, x:t ', I: L 'k, nil:t

{Ckpe(pi): L T,I"(ps) Fpoeitta | i€ m}

Vi€ m.t(p;) =t
'k, (pi=>€i‘i S m):t1 — 19

I'b,e:t1 =ty T'hH,eaity Lyx:tt:ghpg et Iz:t"™ 1, et

'k, e1 ea:to ', fixx:t:ge:t 'k, fixx:t:le:t
{Tkneit; |iem} Fhpe() —t FH,eL —t

'y, (e5]i € m): (ti]i € m) I' k-, spawn e: () 'ty new e: L
[k, e (L,0t — to) 'ty e (L,01) Fkpe(t)y 'yt

I' b, input e:to [ b, output e: () Tt, rune:t
I'kpyr et ke (t) 'k, et X"k, et

T'H, (e): (t) I'Fpp1 Tert b %ert 'k, AX.e:VX.t
I'k,eVXity T'H, 1 by get T'kLeg 'k, e:0Ot

[H, et} to[ X =t4] Ik, e Ot 'k, e:Og L'k, et

Fig. 2. Type System

computation, and thus well-formedness is level dependent not only for terms,
but also for types. In METAKLAIM we consider two kinds of terms: local
terms, classified by kind I; global terms, classified by kind g, are those terms
with no occurrences of local operations op. Type Ot is a modality (see A of
[7]) related to the classification of terms, namely O¢ classifies the global values
of type t. Therefore, the following subset relation holds Ot < ¢ (i.e. a term of
type Ot has also type t). [ |

We comment some of the typing rules:

 The rule for type variables supports a form of cross-stage persistence (as in
[32]), namely an X declared at level m can be used at higher levels. The
other rules for types are as expected.

 The rule for pattern-matching (p;=-¢;|i € m) enforces that all patterns have
the same type, but it does not require that all cases are covered by at least
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one pattern. The rule uses auxiliary notation (type ¢(p), context I'"™(p) and
the sequence e(p) of terms) defined by induction on the structure of p:

P t(p) I'"(p) e(p)

zlt: g Ot x:t": g 0

xlt:| t x| 0

r=e arL r:L:g e

(pili € m)|(t(ps)|i € m)[T™(po), ..., " (pm—1) |e(po), - - -, €(Pm—1)

* The typing rule for fix x: ¢: g.e and the introduction rules for Ot are the only
ones that use the derived judgements I' I, ; e: .

o Unlike [I5], the typing for run (and the other local operations) does not
use the closed type constructor of [I], since we have opted for a simpler
type system (see Remark , at the expense of additional overhead in the
implementation of the local operations.

» The last three rules for Ot are borrowed from [14]. They say that Ot is a
subset of t, and that the two types coincide when ¢ is a global type.

The type system enjoys the following property.

Proposition 3.2 (Substitution) The following rules are admissible

Ty bt Ty XM Tob, Ty bt Ty XM Tyb, ¢t

[, Do[X:=t] by, [ X: =] [y, D[ X:=t] b, [ X =t]: V[ X: = 1]

I'ibmget Ti,a:t™gToby et M bpet Dat™ I Toby, et
I, Ty by €fz=e]:t/ I, Ty by €fz=e]:t/

4 Operational Semantics

The dynamics of a net is given by a relation N == N’ defined in terms of
transition relations ¢ ——= ¢’ (and e —= dead | err) for terms. The tran-
sitions relations are defined in terms of evaluation contexts (see [35]) and

reductions I', 70 — = ¢’ (and I',7* —= dead | err) for actions and r! s
(and r! —= err) for symbolic evaluation. Figure [3| summarizes the syntactic
categories for the operational semantics. The net transition relation ——-
is defined (in terms of +—— ) by the rules

e —> dead e — err

N W (l:e) == N W (I: dead) NuW(l:e) == N W (l:err)

T , i(v9)Q@ly ,
e——=e e—>e¢e

NW(l:e)== NW(l:¢/) NW(l:e) (la:v") == N W (l;:€/) W (I: dead)
8
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e Values v" € V" C E at level n € N
0= 1] (vmrd)i € n) | (Wi € m) | (v!) | AX.e
o= | 1] il | (omer i € n) | ol TRt | fix ait ko™ | (0T € m)
| op v | (v™F2) | %u™ | AX 0™ | oLt}
,Un+2_|_ — ~Un+1
Evaluated Patterns vp" € VP:= zlt: k | = 0" | (vp}'|i € m)
Evaluated Match Rules  vms?:: = vpl=e
vmr" Tl = ppn iyt
¢ Redexes r’ € R at level i € {0,1}

rOii= x| nil | W00 | fix z:t: ke | op 0° | e | %oe | vO{t}

rlii= "0
 Evaluation Contexts E! € EC} at level n € N with hole at level i € {0,1}
Ep::= (omrn, Epi=e, ) | Ere | v B} | (o7, BP,e) | op Y | (E\+) | BP{t}
EM iy = (omrnt opt = B mr) | fix otk EPTY | CEP | %EP | AXCEMT

Ej+ =

Evaluation Contexts for patterns Epl'::= x = E!" | (vp", Epl,p)

e Actions a € A::= 7 | l:e | s(e) | i(v))QI | o(v?)QI with FV(e) = FV(v°) = ()

Fig. 3. Values, redexes and evaluation contexts

O’UO sle
e 0% el e1
NW(l;:e) == N (l1:¢/) W (Ia: ") Ny (l:e) == Nt (l:e1) W (l:e2)
e lzzeg e

lo Q/L(N)U{ll}
N (li:e) == NW(l1:e1) W (l2: e2)

where L(N) = {l|3e.(l:€) € N} Cyyp, L is the set of nodes in the net N.
The transition relation ——= 1is defined (in terms of ——= ) by the rules

1
FO(E(())),TO LY rl —> ¢

EQ[r°] —= EJ¢] EO[r'] > EVl¢]
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T%ED), r® —= dead | err rl —> err

EQ[r%] = dead | err EY[rl] —= err

where I'""(E?) is the typing context for the hole in the evaluation context
E" € EC?, this typing context is needed only by the reduction for run.

Figure 4| defines the reduction ——= and uses the following operations:

 Demotion v"** |, r€ E is defined by induction on v"*! € V7t

pntl ot L t tlore™T
nil if z:t"™: kel x VX.Xif X" el and m >n
) x otherwise X otherwise
(v"+2) (V"2 |i1r) (t) (t lns1,r)
AXo™ [ AXm [p VX .t VXt lnr
o) v {t Lar} vp Tl vp™tt |, re P
T 0" |poar (n>0) xlt: k zlt |prik
fix z:t: ko™ fix z:t | ko™ |, pljz = o™ z=v"" |,
0" |1 ifn >0 vmrntl vmr™t |
o™ ’ ’
o™ otherwise ||lvp"tl=yntl{ypntl b =0 |

ov™ is the substitution instance of v™ with all free term variables replaced by nil.

In all other cases _ |, r commutes with the top level type and term construct.
e The functions match(vp®,vy) and matchy(vp°,v)) either fail or return a

p: X ki VY. They are defined by induction on vp® € VP, the base cases are:

vp?  |match(vp®, v)|match: (vp®, v])

ol 2= T = v if 0o vQ:t
ol |xi= v fail otherwise
zltig |zi= 0] T = v if 0bogvd:t
wltg |x:= 0] fail otherwise

z =z = v T = v if vy =% el
xz = 0| fail fail otherwise

match; performs dynamic type-checking (and is used for input reduction),
while match ignores types (and is used for function application).

e Closure ee € Ej is the substitution instance of e with all free term variables
x replaced by nil and all free type variables X replaced by VX.X. ee is
used for preventing scope extrusion (see Remark .

10



FERRARI, MOGGI, PUGLIESE

(vpV=e;)i € n) V0 —> e;lp] if j € n and match(vp(;-,vo) =p
and Vi < j.match(vp}, %) = fail

(vpY=-e;]i € n) v0 — dead if Vi € n.match(vp?,v°) = fail

i(v0)al

input (1, (vpd=>e;|i € n)) Y ejlp] if j € n and matcht(vpg,vo) =p

and Vi < j.matchy(vp),v°) = fail
nil —> dead fix z:t: ke —> e[z: = fix z: t: k.e]
output (I,v°) M 0 spawn (v°) () () new (v°) ﬂ l
T,run (v') —/= o' |or (AX.e){t} —> e[X:=1]

Y —= err in all other cases except when r? = input (I, (vpd=>e¢;|i € n))

~ 1 .
(vl) —> vt 7! —— err in all other cases

Fig. 4. Reductions for actions and symbolic evaluation

5 Type Safety

To state the type safety property we introduce two notions of well-formed net:
one is a global property, the other is relative to a subset L of nodes.

Definition 5.1 [Well-formed Net] A net N is well-formed VEN (l:err) ¢ N
when [ € L(N), and for every (l:€) € N exists ¢ s.t. ) g e:t.

A net N is well-formed w.r.t. L C L(N) <= (l:err) ¢ N when [ € L, and for
every (l:e) € N with [ € L and e & V° exists ¢ s.t. ) b e:t. [ ]

In the definition of well-formed net w.r.t. L nothing is said about evaluated
tuples v located in L. In fact, a process external to L may insert an ill-typed
tuple in a node of L.

Theorem 5.2 (Type Safety) If N —= N’, then

* (Global) N well-formed implies N well-formed
* (Local) N well-formed w.r.t. L implies N" well-formed w.r.t. L

Remark 5.3 The local safety property is enforced by two features of
METAKLAIM: the dynamic type-checking performed by the input operation,
which prevents ill-typed terms to pollute a well-typed process (since match;
fails on ill-typed tuples); the absence of KLAIM’s eval primitive, which would
allow processes external to L to activate ill-typed processes located in L. W
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6 Examples

It has been widely acknowledged that mobility will provide the right abstrac-
tion to design and implement WAN applications. In particular, the usefulness
of mobility emerges when developing both applications for devices with in-
termittent access to the network, and network services having different access
policies. We refer to [29]17] for a detailed discussion on the mobility paradigm.
Another crucial issue of WAN applications concerns component programming.
Components available on the network are expected to be highly parameter-
ized, in order to accommodate a multiplicity of applications and to adapt to
a variety of platforms and environments. A way to reconcile genericity and
efficiency is to use generative components, which embody a method for con-
structing efficient object-code, once most of the parameters for the component
have been fixed. Kamin, Callahan and Clausen [25] give several examples of
components for generating object-code (for instance in Java). These com-
ponents are described as higher-order macros in a functional meta-language
with Bracket and Escape constructs similar to those of METAML. In this
section, we exemplify the use of METAKLAIM to program WAN applications.
In particular, we discuss two specific examples. The first example (nomadic
data collector) addresses the issues of mobility. The second example (dynamic
linker and loader) discusses generative component programming,.

In the rest of this section, we will freely use features typical of functional
languages (such as local declarations, datatypes, etc.). Moreover, for type-
setting reasons, we write []_ instead of O_, and V X._ instead of V.X._

6.1 Nomadic data collector

Consider the following scenario. A certain user requires to assemble informa-
tion on a piece of data (e.g. the price of certain devices). Part of the behavior
of the user’s application strictly depends on this information. However, there
are some activities which are independent of it. The user’s application can be
structured to exploit the mobility paradigm: a mobile component can dynam-
ically travel among hosts of the net looking for the required information. Here,
for simplicity, we assume that each node of the distributed database contain
tuples of the form (i,d), where i is the search key and d is the associated
data, or of the form (i,1), where 1 is a locality where more data associated
to i can be searched. We make use of the following types:

L (x localities *)
Key = ... (% authorization keys *)
Data = ...

(* polymorphic types of local operations input, output, spawn *)

I=VX. VY. (L,[IOX->Y) >Y
0=VX. (@I0OX >0
S=VX (O->%X->0

(* polymorphic types of meta-operations for input, output, spawn *)

12
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MI =V X. VY. (KL>,<[]1X->Y>) > <Y>
MO =V X. (KL>,<[1X>) —> <>
MS =V X. (<O -> %) -> <0O>

(* code abstractions with static security checks *)
MEnvK = (<L>,Key->MI,Key->MO,MS)
CAK = MEnvK -> <()>

Polymorphic types of meta operations exploit code types, hence meta opera-
tions are able to insert the code fragments of the operations provided locally
into larger programs. The type of code abstractions (e.g. the type of mo-
bile code) are parameterized with respect to the locality (where the code will
be executed) and the meta-operations. In other words, the type of code ab-
stractions can be intuitively interpreted as the network environment of the
code. This environment must be fed with the information about the current
locations and its local operations. We want to emphasize the fact that the
meta-operations for communication require an authorization key as parame-
ter. In such a way, depending on the value of the key k, the meta-operation
in’ k could generate an actual input with no run-time overhead, or a dead-
lock nil (when the key does not allow to read anything), or some customized
run-time checks on what is read.

We now discuss the main module of our mobile application: the nomadic data
collector. The code abstraction pca(k,i,u) is the mobile code which retrieves
the required information on the distributed database. The parameter k is an
authorization key, i is a search key, and u is the locality (the address of the
end-system) where all (the remote) data associated to i should be collected.
The behavior of the mobile code pca(k,i,u) is rather intuitive. After being
activated, pca(k,i,u) spawns a process that perform a local query (here the
query removes data which are associated in the local database to the search
key i). Then the mobile code forwards the result of the query to the tuple
space located at u, and sends copies of itself (i.e. of pca(k,i,u)) to localities
that may contain data associated to i. Notice that in the code abstraction
pca(k,i,u) the cross-stage persistence allows one to use the parameters i
and u at a higher level.

pca(k:Key:g, i:Data:g, u:L:g) :CAK:g =
fix ca:CAK:g. fn (self’, in’, out’, spawn’):MEnvK:1l =>
<“(spawn’{Q} (<O =>
fix p: O:1.
~“(in’ k {(Data,Data), ()}
(self’, <(_=%i, x!Data:g) =>
“(out’ k {Data} (<fu>,<x>)) ; p>))>)) ;
fix p: O:1.
“(in’ k {(Data,L), O}
(self’, <(_=¥%i, 1!L:g) =>
“(out’ k {CAK} (K1>,<Yca>)) ; p>»))>

The code abstraction pca(k,i,u) is instantiated and activated by process
execute. This process fetches code abstractions of type CAK from the local
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tuple space, instantiates them by providing the locality of the node and the
meta-operations, and finally activates the specialized code.

execute (self:L:g, env:MEnvK:1l) :():1 =
fix exec: ():1.
input (self, X!CAK:g => spawn (() => run(X env)) ; exec)

6.2 Dynamic Linking and Loading

In global computing programming one important issue is the ability to con-
trol the loading policy of components. For instance, the Java Virtual Machine
supports dynamic linking and loading of classes [28/11]. In some cases (lo-
calities with good connectivity or trusted localities) one wants to load com-
ponents just-when-needed, in other cases one may prefer to fetch in advance
all components requested by a certain application. The naive solution is to
parameterized applications w.r.t. a linker, and call the linker whenever a com-
ponent (or service) is needed. This does not ensure enough flexibility, a better
approach is to define a generative component parameterized w.r.t. a meta-
linker. The meta-linker can decide whether to load a requested component
at code-generation-time or to postpone the loading at run-time, namely by
generating code for a call to the linker.

In the following example we assume that an application is parameterized w.r.t.
a linker, which given a name of a service either succeeds in establishing a con-
nection between the service and the application by returning an authorization
key, or raises an exception. We are not interested in the details of the linker,
but an abstract behavior could be: check whether the service (or its proxy)
is present locally, if not search for it remotely and copy it locally (or create a
proxy). We make use of the following types:

L (x localities *)

Key = ... (* authorization keys *)
Name = ... (* service names *)
Linker=Name -> Key (* linker *)

MLinker=Name -> <Key>  (* meta-linkers x)
(* parameterized application code *)
CApp=MLinker -> <()>

The process execute fetches application code from the local tuple place, gen-
erates code by passing a meta-linker, and then spawns a process that executes
the generated code

Mexecute (self:L:g, mlinker:MLinker:1):():1 =
fix exec:():1.
input (self, x!CApp:g => spawn(() => run(x mlinker)) ; exec)

An invocation of the meta-linker will be of the form <...” (mlinker n)...>.
Using the meta programming facilities, the meta-linker can decide whether to
invoke the linker immediately, i.e. mlinker n = <Y (linker n)>, or whether
to generate code for invoking the linker, i.e. mlinker n = <)linker %n>. In
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the first case, when the linker fails to make a connection, the code will not be
executed at all.

7 Conclusions

METAKLAIM is a calculus that combines a variety of features, coming from
languages for mobility, coordination and staging. In global computing mobility
seems a fundamental aspect, coordination is important for control and security,
staging is important for assembling components and generating specialized
code prior execution. To the best of our knowledge, METAKLAIM is the first
language that integrates multi-stage programming features with formalisms
for mobile processes.
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