
A state abstraction for coordination

in Java-like languages⋆

Ferruccio Damiani1, Elena Giachino1, Paola Giannini2, Nick Cameron3, and
Sophia Drossopoulou3

1 Dipartimento di Informatica, Università di Torino
({damiani,giachino}@di.unito.it)

2 Dipartimento di Informatica, Università del Piemonte Orientale
(giannini@mfn.unipm.it)

3 Department of Computing, Imperial College
({N.Cameron,S.Drossopoulou}@imperial.ac.uk)

Abstract. Objects’ state, intended as some abstraction over the value
of fields, is always in the mind of a COOL (Concurrent Object-Oriented
Language) programmer. In fact, as the state of an object changes so does
its coordination behaviour.

We introduce a language feature for expressing the notion of state in
Java-like languages. The proposed feature takes the form of state class,
a new kind of class, equipped with a static type and effect system guar-
anteeing that during the execution of a method on a receiver o: (1) Even
though the state of o may vary through states with different parameters,
no attempt will be made to access non-existing parameters, and (2) No
method invoked on a receiver different from this may cause (through
method calls on o) a change in the state of o.

1 Introduction

The aim of this paper is to provide a simple, safe, and usable construct to make
explicit the object’s state abstraction that is always in the mind of a COOL
(Concurrent Object-Oriented Language) programmer. The proposed construct
takes the form of a new kind of class, that we call state class. State classes express
methods’ availability and behaviour in the form of a finite state automaton.

The state class construct is a boundary coordination mechanism, since it
achieves encapsulation by callee-side coordination by design. “The idea of encap-
sulation by callee-side coordination is to implement concurrency coordination
at the side of the callee, i.e., in the class that is accessed concurrently” [14]
(Sect. 2.2). We refer to [14] (Sect. 4.2) for a survey of several COOLs with
boundary coordination. In particular, the state class construct is related to the

⋆ Work partially supported by MIUR PRIN’04 EOS project, and the Information
Society Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project. The funding bodies are
not responsible for any use that might be made of the results presented here.

actor model [1] and to the behaviour abstraction and enable (a.k.a. behaviour)
sets proposals [10, 16]. These pioneering proposals have demonstrated the prac-
tical relevance of mechanisms to express object’s state abstractions. However,
they have not addressed the crucial issue of safety and the related issue of de-
signing suitable type systems to provide compile time guarantees on the code.
For instance, in the programming language ACT++ [10], enable sets are pro-
vided as a class library for concurrent programming in C++, so, the enable
set mechanism is not part of the language. However, including features directly
in the language (rather than indirectly as a library), has the advantage that it
allows the programmer to write and think directly in terms of these features,
thus writing better programs, and, as pointed out in [2], allows the compiler to
produce better code and warn programmers of potential and actual problems.

Type systems for concurrent objects providing non-uniform services (that
is, services that may vary according to the internal state of the objects) have
been investigated both from a foundational perspective and from a programming
perspective. From a foundational perspective, regular object types are a tool for
describing objects interfaces that change along state transition [13] and the con-
current object calculus TyCO provides a formalization for the notion of “non-
uniform” service availability [15]. From a programming perspective, Fickle’s dy-
namic object re-classification [6] (that is, changing the class membership of an
object at run-time while retaining its identity) provides a state abstraction for
Java-like languages by identifying (abstract) states with classes. Fickle focuses
on a single-threaded setting, providing a type and effect system that is able to
ensure (at compile-time) that no attempt is made to access non-existing mem-
bers of an object, even though objects may be re-classified across classes with
different members. FickleMT [5] adapts Fickle’s ideas to a multi-threaded setting,
by proposing a compile-time type and effect analysis that introduces run-time
checks. These checks delay the execution of threads that might cause access of
non-existing members of shared objects. A major limitation of the FickleMT pro-
posal [5] is that it is concentrated on the interaction between concurrency and
dynamic object re-classification, while ignoring the general issue of synchroniza-
tion control (which is supposed to be handled by means of other features of the
language).

In this paper we take a programming perspective and propose a coordination
mechanism for Java-like languages by relying on the notion of abstract state of
an object. At the best of our knowledge, this is the first proposal of a construct
for modelling a notion of object abstract state for expressing coordination in
Java-like languages. Its main novelties are the ability of states to carry values
(thanks to the presence of parameters) and the presence of a static type and effect
system that, at compile time, is able to prevent state parameter not found errors
and to enforce a stronger notion of encapsulation by callee-side coordination (see
the discussion in Sect. 2).

This paper is organized as follows: Section 2 introduces and motivates the
state class construct using an example. Section 3 gives syntax and typing rules,
sketches operational semantics, and states type soundness of the FSJ calculus (a

public state class ReaderWriter {

state FREE {

public void shared() { this!!SHARED(1); }

public void exclusive() { this!!EXCLUSIVE; }

}

state SHARED(int n) {

public void shared() { n++; }

public void releaseShared() { n--; if (n==0) this!!FREE; }

}

state EXCLUSIVE {

public void releaseExclusive() { this!!FREE; }

}

}
Fig. 1. A multiple-reader, single-writer lock

minimal core calculus modelling the state class construct). Section 4 discusses
some subtleties, limitations, and potentialities in the type and effect system.
Section 5 briefly illustrates related work and Section 6 concludes by outlining
some further work.

2 Overview and motivating example

In this section we introduce and motivate our proposal through an example
written in a version of Java extended with state classes. The state class con-
struct is designed to program objects that can be safely concurrently accessed.
Therefore, in a state class, all the fields are private and all the methods are
synchronized (that is, they are executed in mutual exclusion on the receiver
object). A state class is allowed to extend an ordinary (i.e., non-state) class, but
only state classes are allowed to extend state classes. Each state class specifies a
collection of states. Each state has some parameters and declares some methods.
The state of an object o can be changed only inside methods of o, by means of
a state transition statement, this!!S(e1, . . . , en), where “S” is the name of the
target state and “e1, . . . , en” (n ≥ 0) supply the values for all the parameters of
S. An object belonging to a state class is always in one of the states specified in
its class. Each state class constructor must set the state of the created object.
The default constructor of the root of a hierarchy of state classes sets the state
to the first state declared in the class.

The class ReaderWriter (in Fig. 1) implements a multiple reader, single-
writer lock — see [3], for an implementation using traditional concurrency prim-
itives in a dialect of Modula 2, and [2], for an implementation using chords in
Polyphonic C♯.

When a thread e invokes a method m on an object o belonging to a state
class (e.g., to the class ReaderWriter in Fig. 1), if either o is in a state that
does not support the invoked method (e.g., shared invoked on an EXCLUSIVE

ReaderWriter) or some other thread is executing a method on o, then the exe-
cution of e is blocked until o reaches (because of the action of some other thread)

public state class ReaderWriterFair extends ReaderWriter {

state SHARED(int n) {

public void exclusive()

{ this!!PENDING_WRITER(n); pre_exclusive(); this!!EXCLUSIVE; }

}

state PENDING_WRITER(int n) {

public void releaseShared() { n--; if (n==0) this!!PRE_EXCLUSIVE; }

}

state PRE_EXCLUSIVE {

private void pre_exclusive() { }

}

}
Fig. 2. A fair multiple-reader, single-writer lock

a state where the invoked method is available and no other thread is executing
a method on o.

The policy implemented by the ReaderWriter class above is prone to writers’
starvation. The class ReaderWriterFair (in Fig. 2) extends the class ReaderWriter
to implement a writer starvation free policy.

An extending class inherits all the states of the extended class, and may
add/override methods and introduce new states. Thus, class ReaderWriterFair
has states FREE, SHARED, EXCLUSIVE, PENDING WRITER and PRE EXCLUSIVE.
When the request exclusive() is received by an object o in state SHARED(n),
then the state of o is set to PENDING WRITER(n) and the method body sus-
pends; in this state o can only execute up to n requests of releaseShared();
after the n-th such request, the state of o is set to PRE EXCLUSIVE; in state
PRE EXCLUSIVE the method body for exclusive can continue, and will set the
state of o to EXCLUSIVE.

The ReaderWriterFair class illustrates a common pattern in state class
programming: the private method pre exclusive has an empty body, and acts
as a test that the receiver has reached the state PRE EXCLUSIVE.

The state class construct is equipped with a static type and effect system
guaranteeing that, during execution of a method on a state receiver o:

(1) No attempt will be made to access parameters not available in the current
state of o, and

(2) No method invoked on a receiver (syntactically) different from this (or
super)4 may cause the invocation of a state method on o (and, therefore,
cause a change of the state of o or an access to the state parameters of o).

Property (1) is, for state parameters, the standard requirement that well typed
programs cannot cause a field not found error. To achieve this property the type
and effect system estimates the local (or intra-class) effect of each expression oc-
curring in the body of a method, that is, it traces how evaluating the expression

4 For sake of readability, the super keyword is not included in the formal presentation
of the state class construct given in Sect. 3.

may change the state of the receiver object. Typechecking of a method decla-
ration in state S involves estimating the possible states of the receiver in the
various points of the body of the method, by taking S as initial state of the re-
ceiver. Accessing an attribute is allowed only if the attribute is defined (with the
same type) in all the (estimated) possible states of the receiver. For instance, in
the body of method releaseShared in state SHARED of class ReaderWriter (see
Fig. 1), both accesses to n are correct since the initial state in which the body is
evaluated is SHARED. The local effect of the body is to possibly change the state
of the receiver from SHARED to FREE. Note that, modifying class ReaderWriter

by replacing method releasedShared in state SHARED with

public void releaseShared() { if (n==0) this!!FREE; n--; }

would cause a compile time type error since, the evaluation of the expression
“if (n==0) this!!FREE;”, may change the state of the receiver from SHARED

to FREE. So availability of the parameter n for the expression “n--” is not guar-
anteed.

Property (2) strengthens the “standard” encapsulation by callee-side coordi-
nation. It prevents a family of programming errors that would not be prevented
by the “standard” notion of encapsulation by callee-side coordination (given at
the beginning of Sect. 1). For instance, modifying class ReaderWriter by replac-
ing method releaseShared in state SHARED with

public void releaseShared(ReaderWriter x)

{ x.shared(); n--; if (n==0) this!!FREE; }

(note that x might be an alias of the current this) or with

public void releaseShared(C y) { y.m(); n--; if (n==0) this!!FREE; }

(taking a class C and a method m() such that the call y.m() may cause the
invocation of a state method on the current this and, therefore, change its state
or the value of the parameter n), may result (at run-time) in violations of the
multiple-reader/single-writer protocol, deadlocks, or field not understood errors.

Neither example breaks the “standard” encapsulation by callee-side coordi-
nation, but both are rejected by our type and effect system. To achieve this
behaviour, the type and effect system considers in addition to an expression’s
local effect, also its global effect, i.e., the potential changes of state of any objects
in the heap (through method calls on the parameters).

The global (or inter-class) effect of an expression e is the set of the (state)
classes of the objects that may be receiver of a state method invocation caused
by the evaluation of e. We represent global effects as sets of (state or non-state)
class names. Thus {A1, . . . , An} denotes the set of all state classes B such that B
is subclass of some Ai (1 ≤ i ≤ n). For instance, {Object} represents the set of
all the possible state classes.

3 FSJ: a core calculus for state classes

This section gives syntax, typing rules, operational semantics, and type sound-
ness of FSJ, a minimal imperative core calculus for state classes. FSJ models
the innovative features of the state class construct (namely state classes, state
parameters and methods, state transitions, and the static type and effect sys-
tem mentioned in Sect. 2) and multi-threaded computations. As we will briefly
discuss in Sect. 4, the type and effect system could be straightforwardly extended
to deal with standard language features, like fields, ordinary (that is, non-state)
classes, interfaces, conditionals, and loops.

A FSJ program consists of a set of state class definitions plus an expression
to be evaluated, that we will call the main expression of the program.

3.1 Syntax

The abstract syntax of FSJ class declarations (L), class constructor declarations
(K), state declarations (N), method declarations (M), and expressions (e) is given
in Fig. 3. The metavariables A, B, C, and D range over class names; S ranges
over state names; p ranges over state parameter names; m ranges over method
names; x ranges over method parameter names; and a, b, c, d, and e range over
expressions.

We write “ē” as a shorthand for a possibly empty sequence “e1, · · · , en”
(and similarly for C, p, S, x) and write “N̄” as a shorthand for “N1 · · · Nn” with
no commas (and similarly for M̄). We write the empty sequence as “•” and
denote the concatenation of sequences using either comma or juxtaposition, as
appropriate. We abbreviate operations on pair of sequences by writing “C̄ p̄” for
“C1 p1, . . . , Cn pn”, where n is the length of C̄ and p̄. We assume that sequences
of state (parameter, or method) declarations do not contain duplicate names.

The class declaration state class C extends D {K N̄} defines a state class
of name C with superclass D. The new class has a single constructor K and a
set of states N̄. The state declarations N̄ may either refine (by adding/overriding
methods) states that are already present in D or add new states.

The constructor declaration C(C̄ p̄) {this!!S(p̄)} specifies how to initialize
the state and the state parameters of an instance of C. It takes exactly as many
parameters as there are parameters of the state S and its body consists of a state
transition statement.

The state declaration state S(C̄ p̄) {M̄} introduces a state with name S and
parameters of names p̄ and types C̄. The declaration provides a suite of methods
M̄ that are available in the state S of the class C containing the state declaration.
A state S declared in a class C inherits all the (not overridden) methods that are
defined in the (possible) declarations of S contained in the superclasses of C.

The method declaration C m (C̄ x̄) D1, . . . , Dn {e}, where n ≥ 0, introduces
a method named m with result type C, parameters x̄ of types C̄, global effect
{D1, . . . , Dn}, and body e. The variables x̄ and the pseudo-variable this are
bound in e.

Syntax:

L ::= state class C extends C {K N̄}
K ::= C(C̄ p̄){this!!S(p̄)}
N ::= state S (C̄ p̄){M̄}
M ::= C m (C̄ x̄) C̄ {e}
e ::= x | this | this.p | e; e | new C(ē) | this!!S(ē) | spawn(e) | e.m(ē)

Subtyping:

C <: C
C1 <: C2 C2 <: C3

C1 <: C3

state class C1 extends C2 · · · {· · ·}

C1 <: C2

State name lookup:

states(Object) = ∅
state class C extends D {K state S1(· · ·){· · ·} · · · state Sn(· · ·){· · ·}}

states(C) = {S1, . . . , Sn} ∪ states(D)

State parameters lookup:

state class C · · · {· · · state S(C̄ p̄){· · ·} · · ·}

parameters(C, S) = C̄ p̄

state class C extends D {K N̄} S 6∈ N̄

parameters(C, S) = parameters(D, S)

Method definition, method definition type, and method definition global
effect lookup:

state class C · · · {K N̄} state S{M̄} ∈ N̄ A m(Ā x̄) C1, . . . , Cn {e} ∈ M̄

mDef (m, C, S) = A m(Ā x̄) C1, . . . , Cn {e}
mDefT (m, C, S) = Ā → A

mDefGE(m, C, S) = {C1, . . . , Cn}

state class C extends D {K N̄} (S 6∈ N̄ or (state S{M̄} ∈ N̄ and m 6∈ M̄))

mDef (m, C, S) = mDef (m, D, S)
mDefT (m, C, S) = mDefT (m, D, S)
mDefGE(m, C, S) = mDefGE(m, D, S)

Method type lookup and method global effect lookup:

{S1, . . . , Sn} = {S | mDef (m, C, S) defined} n ≥ 1 Ā → A = mDefT (m, C, S1) = · · · = mDefT (m, C, Sn)

mT (m, C) = Ā → A

{S1, . . . , Sn} = {S | mDef (m, C, S) defined} n ≥ 1 γ = mDefGE(m, C, S1) ∪ · · · ∪ mDefGE(m, C, Sn)

mGE(m, C) = γ

Fig. 3. FSJ syntax, subtyping rules, and lookup functions

The class declarations in a program must satisfy the following conditions: (1)
Object is a distinguished class name whose declaration does not appear in the
program; (2) For every class name C (except Object) appearing anywhere in the
program, one and only one class with name C is declared in the program; and (3)
The subtype relation induced by the class declarations in the program (denoted
by <: and formally defined in Fig. 3) is acyclic. To simplify the notation in what
follows (as in [8]), we always assume a fixed program.

The lookup functions are given in Fig. 3. We write S 6∈ N̄ to mean that no
declaration of the state S is included in N̄, and m 6∈ M̄ to mean that no declaration
of the method m is included in M̄.

Lookup of the state names of a class C, written states(C), returns the set of
the names of all the states declared in C or in its superclasses. Object, which is
the unique non-state class of the language,5 has the empty set of states.

Lookup of the parameters of a state S of a class C, written parameters(C, S),
returns a sequence C̄ p̄ pairing the type of each parameter of the state with its
name.

Lookup of the definition of the method m in the state S of a state class C is
denoted by mDef (m, C, S).6 The type of a method is denoted by a pair, written
B̄ → B, of a sequence of argument types B̄ and a result type B.

Lookup of the type and lookup of the global effect specified in the definition
of the method m in the state S of a state class C are denoted by mDefT (m, C, S)
and mDefGE (m, C, S), respectively. Lookup of the type of the method m in class
C, written mT (m, C), returns the unique type specified in the definitions of m in
all the states of C (the function is undefined if either there is no definition for m
in all the state of C or the various definitions of m do no specify the same type).

Lookup of the global effect of the method m in class C, written mGE (m, C),
returns the union of all the global effects specified in the various definitions of m
in the states of C (the function is undefined if no definition for m is available).

Note that parameters(C, S), mDef (m, C, S), mDefT (m, C, S), mDefGE (m, C, S),
mGE (m, C), and mT (m, C) are undefined when C = Object.7

3.2 Typing

3.2.1 Global Effects, Global Effect Entailment, Local Effects, and
Local Effect Tables

A global (or inter-class) effect is a set of classes. The metavariables α, β, γ, δ,
and η range over global effects. We say that “the expression e has global effect
γ” to mean that “the evaluation of e may invoke a state method of an object
belonging to a class C such that C <: D for some D ∈ γ”.

The global effect entailment relation (denoted by ≺: and formally defined in
Fig. 4) is such that “α ≺: β” implies “{C | C is a state class and C <: A for some
A ∈ α} ⊆ {D | D is a state class and D <: B for some B ∈ β}”.

A local (or intra-class) effect is a triple σ1 ⇒C σ2 where C is a class name
and σ1 and σ2 (called the source and the target of the effect, respectively) are
non-empty sets of state names included in states(C). We say that “the expression
e has local effect σ1 ⇒C σ2” to mean that “if this is bound to an object o of
class C that is in one of the states in σ1, then the evaluation of e leaves o in one
of the states in σ2”.

5 In a real language other non-state classes may be declared.
6 In a real language, the lookup functions should be suitably modified to take into

account method overloading, that (for simplicity) is not included in FSJ.
7 In a real language the class Object would have several methods.

Global efffect entailment:

for all C1 ∈ γ1, for some C2 ∈ γ2, C1 <: C2

γ1 ≺: γ2

Fig. 4. FSJ global effects entaiment

A local effect table for a class C is a mapping Θ from method-state pairs to
sets of states σ, such that:

– Dom(Θ) = {(m, S) | mDef (m, C, S) defined}, and
– for all (m, S) ∈ Dom(Θ), ∅ 6= Θ(m, S) ⊆ states(C).

It can be seen as the assertion that, for all m and S such that method m is defined
in state S of class C, the body of mDef (m, C, S) has local effect {S} ⇒C Θ(m, S).
We will write “Θ FOR C” to mean that “Θ is a local effect table for C”.

3.2.2 Typing expressions, method declarations, and class declarations

The typing rules for expressions, method declarations, and class declarations
are given in Fig. 5. An environment Π is a mapping from method parame-
ters to types, written x̄ : C̄. The typing judgment of expressions has the form
D | Θ | Π ⊢exp e : E | γ | σ1 ⇒D σ2, where D is the class of this, Θ is a local
effect table for D, and Π contains the type assumptions for the method param-
eters occurring in e. The judgement must be read “with this of class D, local
effect table Θ, and environment Π, the expression e has type E, global effect γ,
and local effect σ1 ⇒D σ2”. We will write C̄ <: D̄ as shorthand for C1 <: D1, . . .,
Cn <: Dn.

The rules for expressions are syntax directed. Evaluating a variable (i.e., a
state or method parameter) or the pseudo-variable this cannot invoke a state
method on any object and cannot change the state of the current object, so the
corresponding rules assign to these expressions the empty global effect and a
local effect of the shape σ ⇒D σ, where D is the class of this. Note that the rule
for state parameter selection checks that the selected parameter is defined, with
the same type, in all the states in σ.

The rule for sequential composition assigns to “e1; e2” the type of “e2” and
propagates the global and the local effects of “e1” and “e2”. Global effects are
propagated by taking the set-theoretic union of the global effects of “e1” and
“e2”, while local effects are propagated by ensuring that the source of the effect
of “e2” and the target of the effect of “e1” are equal and taking, as source,
the source of the effect of “e1” and, as target, the target of the effect “e2”,
respectively.

The rules for object creation, state transition, and thread spawning are quite
intuitive: they just perform fairly standard checks on types and propagate the
effects of their subexpressions — the target of the effect assigned by the rule for
state transition is the singleton set containing the target state of the transition.

Expression typing:

D | Θ | Π, x : E ⊢exp x : E | ∅ | σ ⇒D σ (T-Var1)

for all S ∈ σ, E p ∈ parameters(D, S)

D | Θ | Π ⊢exp this.p : E | ∅ | σ ⇒D σ
(T-Var2)

D | Θ | Π ⊢exp this : D | ∅ | σ ⇒D σ (T-This)

D | Θ | Π ⊢exp e1 : E1 | γ1 | σ0 ⇒D σ1 D | Θ | Π ⊢exp e2 : E2 | γ2 | σ1 ⇒D σ2

D | Θ | Π ⊢exp e1; e2 : E2 | γ1 ∪ γ2 | σ0 ⇒D σ2

(T-Seq)

D | Θ | Π ⊢exp e1 : A1 | γ1 | σ0 ⇒D σ1 · · · D | Θ | Π ⊢exp en : An | γn | σn−1 ⇒D σn

state class C · · · {C(C̄ p̄){· · ·} · · ·} A1, . . . , An <: C̄

D | Θ | Π ⊢exp new C(e1, . . . , en) : C | γ1 ∪ · · · ∪ γn | σ0 ⇒D σn

(T-New)

D | Θ | Π ⊢exp e1 : A1 | γ1 | σ0 ⇒D σ1 · · · D | Θ | Π ⊢exp en : An | γn | σn−1 ⇒D σn

parameters(D, S) = C̄ p̄ A1, . . . , An <: C̄

D | Θ | Π ⊢exp this!!S(e1, . . . , en) : Object | γ1 ∪ · · · ∪ γn | σ0 ⇒D {S}
(T-Trans)

D | Θ | Π ⊢exp e : C | γ | σ0 ⇒D σ1 mT (run, C) = • → Object

D | Θ | Π ⊢exp spawn(e) : Object | γ | σ0 ⇒D σ1

(T-Spawn)

e 6= this D | Θ | Π ⊢exp e : A | γ0 | σ ⇒D σ0

D | Θ | Π ⊢exp e1 : A1 | γ1 | σ0 ⇒D σ1 · · · D | Θ | Π ⊢exp en : An | γn | σn−1 ⇒D σn

mT (m, A) = Ē → E A1, . . . , An <: Ē mGE(m, A) = γ {D} 6≺: γ

D | Θ | Π ⊢exp e.m(e1, . . . , en) : E | γ ∪ γ0 ∪ · · · ∪ γn | σ ⇒D σn

(T-NonThisInvk)

D | Θ | Π ⊢exp e1 : A1 | γ1 | σ0 ⇒D σ1 · · · D | Θ | Π ⊢exp en : An | γn | σn−1 ⇒D σn

mT (m, D) = Ē → E A1, . . . , An <: Ē mGE(m, D) = γ

σ′ =

{

σn if σn ⊆ {S | mDef (m, D, S) defined}
{S | mDef (m, D, S)defined} otherwise

σ′′ = ∪S∈σ
′Θ(m, S)

D | Θ | Π ⊢exp this.m(e1, . . . , en) : E | γ ∪ γ1 ∪ · · · ∪ γn | σ0 ⇒D σ′′
(T-ThisInvk)

Method typing:

C | Θ | x̄ : Ā ⊢exp e : B | γ | {S} ⇒C σ B <: A γ ≺: {Ē} Θ(m, S) = σ

A m (Ā x̄) Ē {e} OK IN S OF C WRT Θ
(T-Method)

Well formed class:

K = C(C̄ p̄){this!!S0(p̄)} parameters(C, S0) = C̄ p̄

for all state S(D̄ q̄){M̄} ∈ N̄,

if parameters(D, S) defined then parameters(D, S) = D̄ q̄

for all A m (Ā x̄) B̄ {e} ∈ M̄,

{C} ≺: {B̄}, mT (m, C) = Ā → A, and
if mT (m, D) defined, then mT (m, D) = Ā → A and {B̄} ≺: mGE(m, D)

Θ FOR C for all (m, S) ∈ Dom(Θ), mDef (m, C, S) OK IN S OF C WRT Θ

state class C extends D {K N̄} OK
(T-Class-Ok)

Fig. 5. FSJ typing rules

Note that thread spawning and state transition have type Object; this ensures
that convoluted expressions, like this!!S1(p1).p and spawn(e).p, are ill typed.8

For method call there are two rules: one applies if the receiver is this, and the
other applies if the receiver is not this. Both the rules require that the method
called is defined in some state of the class of the receiver, and that the type
of each actual parameter is a subtype of the type of the corresponding formal
parameter. For calls e.m(e1, . . . , en) with e 6= this, it is also required that the
evaluation of the body of m may not invoke a state method of an object of the
type D of the current this ({D} 6≺: γ, where γ = mGE (m, A) and A is the type of
e). The local effect of the call has, as source, the source of the local effect of e
(the first subexpression that is evaluated) and, as target, the target of the local
effect of en (the last subexpression that is evaluated before the call). The global
effect is the union of the global effects of e, of the formal parameters ei, and
of the method m in the class A of e (γ = mGE (m, A), which is the union of the
global effects specified in each method declaration that might be bound to m in
the method invocation).

For calls this.m(e1, . . . , en), the method body bound to m may change the
state of this. The set of states this may be in after the call is estimated by using
the local effect table associated with the class of this. There are two cases. First,
the invoked method is present in any (estimated) possible state of the target of
the local effect of en (the last subexpression that is evaluated before the call).
Second, it is not. In the first case, after the call this can be in any state that
can be reached by any state of σn through execution of the method m. In the
second case, we have to consider the fact that, when evaluating the call, if this
is in a state in which m is not defined, the computation is suspended waiting for
a another thread to cause a change to a state in which m is defined. Therefore,
after the evaluation of the call this could be in any state that can be reached
by a state in which m is defined through execution of the method m. The global
effect of the call is as for the previous case considering that the evaluation of the
expression this has empty global effects.

For a method declaration M, the judgement M OK IN S OF C WRT Θ is to
be read as “method declaration M is ok in state S of class C with respect to the
local effect table Θ”. The associated rule ensures that the body of M:

– typechecks with this of type C, local effect table Θ, and environment map-
ping each parameter of the method to its declared type;

– has a type which is a subtype of the return type declared in M;
– has a global effect which entails the one declared in M; and
– has a local effect with source {S} and target equal to the entry in the local

effect table Θ for method m in state S.

The typing judgement for class declarations has the form L OK, read “class
declaration L is ok”. Let C be the name of the class declared by L. The associated
rule ensures that:

8 In a real language convoluted expressions would be ruled out by distinguishing be-
tween expressions and statements (having type void).

– the class constructor initializes the state to one of the states of the class C

(i.e., declared in C or in one of its superclasses) by supplying appropriate
values for the parameters;

– for each state S declared in C, if the state S is defined in the superclass D of
C then it must have the same parameters and, for each method m declared
in S,
• C belongs to the global effect {B̄} indicated in the declaration of m,9

• if a declaration of a method of name m occurs in another state declared
in C, then it must have the same type, and

• if the method m is defined in the superclass D of C, then it must have
the same type and its global effect must be entailed by the global effect
specified in the declaration of m in the state S of C (this guarantees that
the global effect of m in C entails the global effect of m in D); and

– there exists a local effect table Θ such that, for each method declaration M

declared or inherited in any state of C, M OK IN S OF C WRT Θ holds.

Remark 1 (Algorithms for typechecking and local effect tables). The set of pos-
sible local effect tables for a state class C is finite. Therefore, the existence of a
local effect table for which C is type correct, as well as well-formedness of pro-
grams, is decidable. Note that if C does not contain (possibly mutually) recursive
methods, then there is at most one local effect table for which C is type correct.

A straightforward and efficient algorithm computes a local effect table for C
by inspecting the body of all the methods defined (that is, declared or inherited)
in C, and is complete if C does not contain recursive methods.

Although we believe that restricting, or even forbidding, recursion in the
methods defined in state classes would not compromise the usefulness of the state
class construct (see the discussion in Sect. 4.2), we are currently investigating
more powerful and still efficient algorithms for dealing with state classes with
(possibly mutually) recursive methods.

3.2.3 Typing main expressions

The typing rules for expressions (in Fig. 5) are designed to type the body of a
method inside a class. In order to (re)use them to type the main expression of a
program, that does not occur inside a class, we extend the syntax of effects by
adding the dummy local effect ∅ ⇒Main ∅, where the distinguished name Main is
different from all the class names. We will write ⊢main e : E | γ, to be read “main
expression e has type E and global effect γ”, to mean that “e does not contain
occurrences of this and Main | ∅ | ∅ ⊢exp e : E | γ | ∅ ⇒Main ∅ holds”.

9 In a real language, the name of the state class where the method declaration occurs,
C, would be automatically included in global effect indicated in the method decla-
ration, thus saving the programmer from listing it in the global effect declaration.
For instance, we have adopted this convention in the examples in Sect. 2. So, all the
method declarations in Fig. 1 implicitly indicate global effect {ReaderWriter} and
those in Fig. 2 indicate global effect {ReaderWriterFair}. Note that, without this
convention the classes ReaderWriter and ReaderWriterFair would not typecheck.

3.3 Reduction and Type Soundness

To model multi-threaded computations we consider pairs “ē,H”, called config-
urations, where ē is a sequence of n ≥ 1 runtime expressions and H is a heap
mapping addresses to objects. We call ē a “sequence of threads”, since each ele-
ment ei of the sequence ē represents a thread of computation. Addresses, ranged
over by the metavariable ι, are the elements of the denumerable set I. Objects are
finite mappings associating: (1) the distinguished name “class” to a class name
indicating the class of the object; (2) the distinguished name “state” to a state
name indicating the state of the object; and (3) a mapping associating a finite
number (possibly zero) of state parameter names to addresses. Objects will be
denoted by [[class : C, state : S, p̄ : ῑ]]. Heaps, ranged over by the metavariable
H, are finite mappings from addresses to objects. The metavariables a, b, c, d,
and e range over runtime expressions. We write ā as a shorthand for a possibly
empty sequence a1 · · · an and ȧ as a shorthand for a possibly empty sequence of
length almost one.

The reduction relation has the form “ā b1 c̄,H1 −→ ā b2 c̄ ḋ,H2”, read “config-
uration ā b1 c̄,H1 reduces to configuration ā b2 c̄ ḋ,H2 in one step”. The (empty
or singleton) sequence ḋ indicates that a new thread might have been spawned
because of the reduction of a spawn expression. We write −→⋆ for the reflexive
and transitive closure of −→. The reduction rules ensure, by using the standard
notions of evaluation context and redex, that inside each thread the computation
follows a call-by-value reduction strategy.

We say that, in a configuration “e1, · · · , en,H” (n ≥ 1), the thread ei (1 ≤
i ≤ n) is: completed, if ei = ι for some address ι; suspended, if ei is such that its
current redex is the invocation a method m on an object ι, where the method m is
defined in some state of the class of ι, and either m is not available in the current
state of ι, or the lock on ι is held by some other thread of the configuration.

A normal form containing only completed threads and some suspended thread
models a deadlocked computation. We can now state the soundness result.

Theorem 2 (FSJ Type Soundness). Let ⊢main e : E | η and e, ∅ −→⋆

e0e1 · · · en,H (n ≥ 0), with e0e1 · · · en,H a normal form. Then: (1) the heap H
is well formed; (2) the thread sequence e0e1 · · · en is typable; (3) the type of e0

is a subtype of the type of e and the global effect of e0 entails the global effect of
e; and (4) each ei is either completed or suspended.

4 Discussion

This section briefly discusses some subtleties, limitations, and potentialities in
the type and effect system.

4.1 Subtleties

The typechecking of state classes involves some subtle points.

(S1) According to rule (T-Class-Ok), typechecking a state class requires re-
newed typechecking of all inherited methods.

(S2) According to rule(T-Class-Ok), the global effect of method declarations
occurring in a state class C includes the class C itself.

(S3) According to rule (T-NonThisInvk), the body of a method declared or in-
herited in a state class D cannot invoke, on expressions syntactically different
from this, a method containing (a superclass of) D in its global effect.

(S4) As pointed out in Remark 1 at the end of Sect. 3.2.2, we don’t know whether
there exists an efficient complete algorithm for computing local effect tables
in the presence of recursive methods. The lack of such an algorithm would
restrict the use of recursive methods in state classes in any feasible imple-
mentation.

Note that the above points are confined to the typechecking of state classes.
Namely, if we extend the language with ordinary (that is, non-state) classes,
then, for any such ordinary class C: (1) Typecheking C would not require renewed
typechecking of inherited methods; (2) The global effect of a method declaration
occurring in C need not include the class C; (3) The body of a method declared
in C can invoke methods on expressions different from this, regardless of the
relation between the global effect {C} and the global effect of the invoked method;
and (4) Typechecking C would not require the computation of a local effect table;
therefore there would be no restrictions on recursive methods in ordinary classes.

4.2 Limitations

Indeed, subtleties (S3) and (S4) in Sect. 4.1 point out limitations of the type
and effect system.

(L1) It would be safe to relax rule (T-NonThisInvk) and subtlety (S3) so as to
allow the body of a method declared or inherited in a state class D to invoke
a method containing D in its global effect, provided that the receiver of that
method call was guaranteed not to be an alias of this.

This relaxation would require some refinements of the type system which we
plan to do in further work.

(L2) According to subtlety (S4), a feasible implementation may restrict the use
of recursive methods in state classes.

However, we do not consider these limitations to be severe: Firstly, we are con-
fident that these limitations do not affect the applicability of state classes in
practical situations. Namely, we considered a sequence of case studies solving
classical concurrent programming problem examples, including the “Santa Claus
Problem” [4], and found that these limitations did not restrict the state class pro-
gramming style. Secondly, we are confident that the limitations can be relaxed,
and plan to study such relaxations in our further work.

4.3 Potentialities

The extension of the type and effect system to deal with

(P1) standard features, like fields, ordinary classes (remember the discussion in
Sect. 4.1), interfaces (just denote global effects by sets of classes and inter-
faces, and let each method signature specified in an interface I to include I

in its global effect declaration), conditionals, and loops, and
(P2) features useful for writing more compact code, like, for instance, the con-

struct this!!previous that expresses the transition to previous state, or
the construct as that specifies that the declaration of a method in a state is
“as” in other state, (thus saving the programmer from duplicating the same
method body in different states), and top level (that is, outside of any state)
method declarations in state classes

seems quite straightforward.

5 Related Work

The literature related to the present paper was partially quoted in the introduc-
tion. Here we briefly discuss the relations with other recently proposed coordi-
nation mechanisms for Java-like languages. None of these proposals provides a
construct for directly supporting the notion of abstract state of an object.

The languages Join Java [9] and Polyphonic C♯ [2] are based on an adapta-
tion of the Join Calculus [7]. The synchronization mechanism of these languages
relies on the join pattern, called chord in Polyphonic C♯, construct. Chords
can be used to codify the state of an object through the pattern (illustrated,
for instance, in [2]) of using private asynchronous method to carry object state.
However, as pointed out by an anonymous referee of an earlier version of the
present paper, this pattern “is potentially error prone, since one may fail to pre-
serve the linearity appropriately, either by forgetting to call methods (leading
to deadlock) or by calling too many (leading to multiple overlapping states)”.
With the state class construct the notion of object state becomes part of the
language definition, thus eliminating the possibility of such errors.

In the Jeeg programming language [12] synchronization conditions on an
object o are expressed with linear temporal logic constraints involving the value
of fields and the method invocation history of o. These constraints can be used
to codify the state of an object o. However, state attributes have to be mapped
on object fields and there is no way to express the fact that some fields should
be accessible only in some states.

The JR programming language [11] extends Java providing a rich concur-
rency model with a variety of mechanisms for writing parallel and distributed
programs. Besides the fact that none of these mechanisms directly support the
notion of object state, it is worth noticing that the JR approach is quite different
from the approach (followed in the present paper) of focusing on a single mech-
anism (namely the state class construct). Therefore, comparing state classes (as

well as Jeeg temporal logic constraints or Polyphonic C♯ chords) with the JR

proposal would indeed require investigating how state classes (resp. temporal
logic constraints or chords) mix with the various features provided by JR.

6 Conclusions and Further Work

An extension of Java 1.4 with state classes with parameter-free states and with-
out effects,10 implemented through a preprocessor that produces plain Java

code, is available at http://www.di.unito.it/˜giannini/stateJimpl/.
Future work includes the integration of state parameters and effects, the ex-

ploration of alternative translation mechanisms, the development of benchmarks,
and further investigations of the expressivity of the state class construct and on
its integration in a full language.

Acknowledgements We thank Viviana Bono, Mario Coppo, Mariangiola Dezani-
Ciancaglini, Jeremy Sproston, the referees of earlier versions of this paper, and
the anonymous FTfJP’06 referees, for insightful comments and pointers to re-
lated work.

References

1. G. A. Agha. ACTORS: A Model of Concurrency Computation in Distribuited
Systems. MIT Press, 1986.

2. N. Benton, L. Cardelli, and C. Fournet. Modern Concurrency Abstractions for C♯.
ACM TOPLAS, 26(5):769–804, 2004.

3. A. D. Birrel. An introduction to programming with threads. Technical Report 35,
DEC SRC, January 1989.

4. N. Cameron, F. Damiani, S. Drossopoulou, E. Giachino, and P. Giannini. Solving
the Santa Claus problem using state classes. Technical report, Dip. di inf., Univ. di
Torino, March 2006. Availble at http://www.di.unito.it/˜damiani/papers/scp.pdf.

5. F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. On re-classification and
multithreading. JOT (www.jot.fm), 3(11):5–30, 2004. Special issue: OOPS track
at SAC 2004.

6. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dy-
namic object re-classification: Fickleii. TOPLAS, 24(2):153–191, 2002.

7. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join
calculus. In POPL’96, pages 372–385. ACM, 1996.

8. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

9. G. S. Itzstein and D. Kearney. Join Java: an alternative concurrency semantics for
Java. Technical Report ACRC-01-001, Univ. of South Australia, 2001.

10 This unsafe variant of the state class construct does not affect the expressive power
of the language, since state parameters can be straightforwardly codified by class
fields.

10. D. G. Kafura and R. G. Lavender. Concurrent object-oriented languages and the
inheritance anomaly. In T. Casavant, P Tvrdil, and F. Plásil, editors, Parallel
Computers: Theory and Practice, pages 221–264. IEEE Press, 1996.

11. A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson. JR: Flexible distributed
programming in an extended java. TOPLAS, 26(3):578–608, 2004.

12. G. Milicia and V. Sassone. Jeeg: Temporal Constraints for the Synchronization
of Concurrent Objects. Concurrency Computat.: Pract. Exper., 17(5-6):539–572,
2005.

13. O. Nierstrasz. Regular Types for Active Objects. In OOPSLA’93, volume 28 of
ACM SIGPLAN Notices, pages 1–15, 1993.

14. M. Philippsen. A Survey of Concurrent Object-Oriented Languages. Concurrency
Computat.: Pract. Exper., 12(10):917–980, 2000.

15. A. Ravara and V. T. Vasconcelos. Typing Non-uniform Concurrent Objects. In
CONCUR’00, volume 1877 of LNCS, pages 474–488, Berlin, 2000. Springer.

16. C. Tomlinson and V. Singh. Inheritance and synchronization with enabled-sets. In
OOPSLA’89, pages 103–112. ACM, 1989.

