
Simple Loose Ownership Domains

Jan Schäfer? and Arnd Poetzsch-Heffter??

University of Kaiserslautern, Germany
{ jschaefer | poetzsch }@informatik.uni-kl.de

Abstract. Ownership Domains generalize ownership types. They sup-
port programming patterns like iterators that are not possible with or-
dinary ownership types. However, they are still too restrictive for cases
in which an object X wants to access the public domains of an arbitrary
number of other objects, which often happens in observer scenarios. To
overcome this restriction, we developed so-called loose domains which
abstract over several precise domains. That is, similar to the relation
between supertypes and subtypes we have a relation between loose and
precise domains. In addition, we simplified ownership domains by reduc-
ing the number of domains per object to two and hard-wiring the access
permissions between domains. We formalized the resulting type system
for an OO core language and proved type soundness and a fundamental
accessibility property.

1 Introduction

Showing the correctness of object-oriented programs is a difficult task. The in-
herent problem is the combination of aliasing, subtyping, and imperative state
changes. Ownership type systems [25, 13, 23, 12, 9] support the encapsulation
of objects and guarantee that encapsulated objects can only be accessed from
the outside by going through their owner. This property is called owners-as-
dominators. Unfortunately, this property prevents important programming pat-
terns like the efficient implementation of iterators [24]. Iterators of a linked list,
for example, need access to the internal node objects, but must also be accessible
by the clients of the linked list.

Ownership domains (OD) [2] generalize ownership types. Objects are not di-
rectly owned by other objects. Instead, every object belongs to a certain domain,
and domains are owned by objects. Every object can own an arbitrary number
of domains, but an object can only belong to a single domain. The programmer
specifies with link declarations which domains can access which other domains.
This indirectly specifies which objects can access which other objects, as objects
can only access objects of domains to which its domain has access to. Beside
the link declarations, domains can be declared as public. If an object X has

? Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).
?? Partially supported by the Rheinland-Pfalz cluster of excellence “Dependable Adap-

tive Systems and Mathematical Modelling” (DASMOD).

Fig. 1: The ownership and containment relation of objects and domains form a
tree rooted by a global domain. Solid rectangles represent objects, dashed rounded
rectangles represent domains, where gray rectangles are local domains and white
ones are boundary domains. An edge from an object X to a domain d means that
X owns d.

the right to access an object Y then X has also the right to access all public
domains of Y.

In OD, variables and fields are annotated with domain types. The type rules
enforce the following restriction: If a field or variable v holds a reference to an
object X with a public domain D, and we want to store an object in D into
a variable w, then v has to be final and w is annotated by v.D . Thus, it is
impossible with the OD approach to store an arbitrary number of objects of
public domains in an object, as for every object of a public domain there must
be a corresponding final field, and the number of final fields must be known
statically.

The problem is that the OD approach requires that the precise domain of
every object is known statically. But sometimes there are situations in which a
programmer does not know the precise domain but only knows a set of possible
domains. With our type system it is possible to specify so-called loose domains
which represent a set of possible domains, allowing to abstract from the precise
domain.

The remainder of this paper is as follows. In the next section, we explain our
approach together with two examples. In Section 3, we formalize the type system
for loose ownership domains. We define the dynamic semantics in Section 4 and
state the central properties of the system in Section 5. The proofs are contained
in [28]. Section 6 discusses our approach together with related work. We conclude
and give an outlook on future work in Section 7.

2 Simple Loose Ownership Domains

The basic idea of Simple Loose Ownership Domains (SLOD) is the same as that
of OD [2]: objects are grouped into distinct domains, domains are owned by

2

objects, and every object belongs to exactly one domain. Within this paper,
we simplify the ownership domain approach of [2] in two ways: Every object
owns exactly two domains, namely a local domain and a boundary domain.
Thus, SLOD has no domain declarations. In addition, access permissions between
domains are hard-wired, so SLOD needs no link declarations.

2.1 Accessibility Properties

Objects that are in the local domain of an object X, belong to the representation
of X and are encapsulated. Objects of the boundary domain of X are objects
that are accessible from the outside of X, but at the same time are able to access
the representation objects of X. In terms of OD the boundary domain is a public
domain. The ownership relation of objects and domains forms a hierarchy, where
the root of the hierarchy is a special global domain (see Figure 1). Furthermore,
we call an object X the owner of an object Y if X owns the domain of Y.

The domain structure determines which objects can access each other. Let X
and Y be objects. We say that X can access Y if and only if one of the following
conditions is true:

– Y belongs to the global domain.
– X is the owner of Y.
– The owner of X can access Y.
– Y belongs to the boundary domain of an object Z that X can access.

More interesting, however, than the objects that can be accessed are the objects
that can not be accessed, because this complementary relation leads us to a
generalization of the owners-as-dominators property. The domain subtree of an
object X consists of X and, recursively, of all objects that are owned by an
object in the domain subtree. An object is outside of an object X if it does not
belong to the domain subtree of X. The boundary of X is the set of objects
consisting of X and, recursively, of all objects in the boundary domains owned
by an object in the boundary of X. An object is inside of X if it belongs to the
domain subtree of X, but not to its boundary. With these definitions, SLOD
guarantees the following property:

All access paths from objects outside of X to objects inside of X go
through X’s boundary.

This boundary-as-dominators property is a generalization of the owners-as-do-
minators property, as the owners-as-dominators property for an object X can be
enforced in SLOD by putting no objects into the boundary domain of X, leading
to a boundary of X that only contains X.

2.2 Domain Annotations

To statically check the boundary-as-dominators property, types in SLOD are
extended by domain annotations. Figure 2 shows the complete syntax for the

3

domain ::= global | same | D | owner .kind
owner ::= this | owner | x | domain

kind ::= local | boundary
D ∈ domain parameters
x ∈ final fields and final variables

Fig. 2: Syntax of domain annotations in SLOD.

annotations. Types together with domain annotations are called domain types.
Like ordinary types, domain types statically restrict the possible values that a
variable or field can hold. For example, a local variable of type this.local T can
only hold references to T-objects that are in the local domain of the current this-
object. This subsection introduces the use of domain types. The next subsection
will explain loose domains in more detail.

We describe domain annotations along with the linked list example in Fig. 3
that in particular illustrates how data structures with iterators can be handled.
To make objects inaccessible from the outside, like for example Node objects of
the list, they are placed into the local domain of the owner. Hence, the head field
of LinkedList is annotated with local which is an abbreviation of this.local.
As can be seen in method add, this domain type is established when Node objects
are created.

As the Iter objects of the linked list should be accessible from the outside
of the linked list and at the same time must be able to access the internal Node
objects, the Iter objects are put into the boundary domain of the linked list.
Hence, the iterator method of the LinkedList class returns a new boundary
Iter instance (again, boundary abbreviates this.boundary). Within the class
Iter, Node objects have domain type owner.local indicating that they belong
to the local domain of the list object. Thus, the current field is annotated with
owner.local. Note that our approach simplifies the use of ownership domains,
as in the approach of [2], the Iter class would need a domain parameter to
represent the domain of the Node objects.

In class Node, the next field of Node is annotated with same to indicate that
the next object is in the same domain as the current object. In case of the linked
list, this is the local domain of the list object (as the Node class is only used for
the linked list, we also could have annotated the next field with owner.local).
The data field illustrates the use of a domain type parameter.

The applications of classes LinkedList and Iter in Main demonstrate fur-
ther interesting features of SLOD. The variable it, for example, is declared with
domain annotation l.boundary. As l is a final variable, this is a precise do-
main annotation. It represents the boundary domain of the LinkedList object
referenced by variable l. Such domain annotations are also supported by OD.

Our approach additionally provides the possibility to use loose domain an-
notations. All domain annotations with domains as owner parts are loose. For

4

public class LinkedList<T> {
local Node<T> head;
void add(T o) {
head =

new local Node<T>(o,head);
}
boundary Iter<T> iter() {

return
new boundary Iter<T>(head);

}
}

public class Iter<T> {
owner.local Node<T> current;
Iter(owner.local Node<T> head) {
current = head;

}
boolean hasNext() {

return current != null;
}
T next() {
T result = current.data;
current = current.next;
return result;

}
}

public class Node<T> {
T data;
same Node<T> next;
Node(T data, same Node<T> n) {

this.data = data;
this.next = next;

}
}

public class Main {
...
final local
LinkedList<local Object> l;

l=new LinkedList<local Object>();
l.add(new local Object());
// precise domain
l.boundary Iter<local Object> it;
it = l.iterator();
// loose domain
local.boundary
Iter<local Object> it2;

it2 = it;
local Object obj = it2.next();
...

}

Fig. 3: A linked list with iterators.

example, this.local.boundary denotes a loose domain representing the set of
all boundary domains of all objects that belong to the local domain of the receiver
object. Variable it2 is declared exactly like that. As the domain l.boundary is
contained in the set of possible domains represented by this.local.boundary,
it is possible to assign it to it2. Note that this kind of annotation needs no
final variable. More details on loose domains are explained in the next subsec-
tion.

The LinkedList, Node and Iter classes are parameterized with a parameter
T that represents the domain type of the stored data. Thus, T is not only a place
holder for the ordinary type of the data, but also for its domain. In the example,
the Main class instantiates that parameter with local Object.

2.3 Loose Domains

Loose domains allow to abstract from the precise domain of an object. This is
a new feature of SLOD compared to the approach in [2], which increases the

5

interface Listener {
public void update(int data);

}
class View {

local State state;
boundary Listener listener() {

return new boundary
ViewListener(state);

}
}
class Model<L extends Listener>
{

local List<L> listeners;
void addListener(L listener) {
listeners.add(listener);

}
void notifyAll(int data) {

for (L l : listeners) {
l.update(data);

}
}

}

class ViewListener

implements Listener

{
owner.local State state;
ViewListener(owner.local State s)
{ this.state = s; }
public void update(int data)
{ /∗perform changes on state∗/ }

}

class Main {
...
local
Model<local.boundary Listener> m;

m = new local
Model<local.boundary Listener>();

local View view = new local View();
m.addListener(view.listener());
view = new local View();
m.addListener(view.listener());
...

}

Fig. 4: A model-view system with listener callbacks.

flexibility of our system, without loosing any encapsulation properties. In the
following, we describe the application and soundness aspects of this feature.

To demonstrate the enhanced expressivity of loose domains, we use a slightly
modified version of an example given in [2] (see Figure 4). It is a model-view
system. Model objects allow to register Listener objects. When an event hap-
pens at the model, the model notifies all registered listener objects by calling the
method update(int). View objects have a state that is updated whenever one
of its listeners is notified. Method listener() creates new ViewListener in-
stances as boundary objects of their view. The example is a simplified version of
the observer pattern [16] and represents a category of similar implementations.

Loose ownership domains allow to register more than one Listener object
at a Model object. In the example, the type parameter of the Model object in class
Main is instantiated with the loose domain local.boundary. The calls of
m.addListener(view.listener()) are allowed, because the result domain of
view.listener() is view.boundary, and view is in domain this.local. Thus,
view.boundary is in the loose domain this.local.boundary. In the ownership
type system in [2], this solution is not possible, because the parameter of the
Model class had to be instantiated with the precise domain view.boundary,

6

where view had to be a final variable. Hence, it would not be possible to add
a Listener object of a different View object to the Model object.

To guarantee the soundness of our system, we have to restrict the usage of
a type that is annotated with a loose domain annotation (a loose type). It is,
for example, not possible to update same annotated fields on loose types. In the
following code example, the assignment b.f = b2.f is not allowed, even though
the static types of b.f and b2.f are the same, as b is a loose type, and thus the
precise domain of b.f is not known statically.

// ...
local A a = new local A();
local.boundary A b = a.b;
local A a2 = new local A();
local.boundary A b2 = a2.b;
b.f = b2.f; // forbidden

class A {
same A f;
this.boundary A b;

}

3 Static Semantics

In this section, we present a formalization of the core of SLOD. We call the
language Simple Loose Ownership Domain Java (SLODJ). The formalization is
based on several existing formal type systems for Java, namely Featherweight
Java (FJ) [20] and ClassicJava [15], and is also inspired by several flavors of
these type systems which already incorporate ownership information [13, 12, 2,
27].

Some features of SLOD are left out in SLODJ. These are parameterization of
classes with domain annotations, the global domain and final fields as owners of
domain annotations. It is straightforward to extend our formalization with these
features, as all these concepts have already been formalized by other ownership
type systems. We plan to incorporate them in the future.

3.1 Syntax

The abstract syntax of SLODJ is shown in Figure 5. We use similar notations
as FJ [20]. A bar indicates a sequence: L = L1, L2, . . . , Ln, where the length
is defined as |L| = n. Similar, T f ; is equal to T1 f1;T2 f2; . . . ;Tn fn. If there
is some sequence x, we write xi for any element of x. The empty sequence is
denoted by •.

A SLODJ program consists of a list of class declarations, a class name, and an
expression. A class declarations consists of a class name, a super class, a sequence
of field declarations, and a sequence of method declarations. Note that classes
have no constructors; objects are created with all fields initialized to null. One
consequence is that the new expression takes a class name as argument only.
Method declarations always have a result type, and a single body expression,
which is always the result of the method. A type consists of a domain annotation

7

P ∈ Program ::= 〈L, C, e〉
L ∈ ClassDecl ::= class C extends D { T f ; M }

M ∈ MethDecl ::= T m (T x){ e }
T, U ∈ Type ::= d C

e ∈ Expression ::= new d C | x | e.f | e1.f = e2 | let x = e1 in e2 | e.m(e)
d ∈ Domain ::= a.b
a ∈ DomOwner ::= x | this | owner
b ∈ DomTail ::= c | b.c
c ∈ DomKind ::= local | boundary | same
f ∈ FieldName x, y ∈ Variable
m ∈ MethName C, D ∈ ClassName

Fig. 5: SLODJ Syntax.

and a class name. let expressions bind variables and are similar to final variable
declarations in Java. We support field updates to get a more realistic model of
Java.

Domain annotations in SLODJ are similar to those in SLOD. The only dif-
ferences are that in SLODJ fields cannot be owners of domains, and that same
is only a domain kind, instead of a full domain annotation. same in SLOD
is equal to owner.same in SLODJ. For a domain annotation d = d1.d2 . . . dn

the function front returns the domain annotation without the last element:
front(d) = d1.d2 . . . dn−1, last returns the last element: last(d) = dn, and first
returns the first element: first(d) = d1.

3.2 Auxiliary Functions

To capture information from class declarations we need some auxiliary functions.
The detailed definitions can be found in the companion report [28], but they are
essentially equal to those of FJ [20]. fields(C) returns the list of field declarations
of class C; mtype(m,C) returns the signature T → T of method m of class C;
mbody(m,C) obtains the names of the formal parameters together with the body
expression (x.e) of method m of class C; isPrecise(d) is true iff d is a precise
domain, i.e. has the form a.c.

3.3 Type System

The type rules of SLODJ are shown in Figure 7 and 8. We use the judgments
shown in Figure 6. The environment Γ is a finite mapping from variables to
types.

For any program 〈L,C, e〉, we assume an implicitly given fixed class table CT
mapping class names to their definitions. All judgements are implicitly parame-
terized with that class table. The class table is assumed to satisfy the following
conditions (taken nearly verbatim from FJ):

8

Γ ` � Γ is a well-formed environment
Γ ` T T is a well-formed type in Γ
Γ ` d d is a well-formed domain in Γ
` C C is a well-defined class name.
Γ ` T <: U T is a subtype of U in Γ
Γ ` e : T e is a well-formed expression of type T in Γ
C ` M M is a well-formed method declaration in class C
` L L is a well-formed class declaration
` P : T P is a well-formed program of type T

Fig. 6: Judgments for the type system of SLODJ.

– L = ran(CT);
– ∀C ∈ dom(CT). CT (C) = class C extends D { T f ; M}
– Object /∈ dom(CT);
– For every class name C except Object, appearing anywhere in CT , we as-

sume C ∈ dom(CT);
– There are no cycles in the subtype relation induced by CT , i.e. the relation

<:c is antisymmetric.

Environments, Types, Class Names, and Domains. Beside the standard
rules for well-formed environments, types and class names, there are three rules
for well-formed domain annotations. A domain annotation is well-formed iff it
is either a precise domain annotation, and the owner is this or owner, or the
owner is a variable x with a well-typed type T and the kind is boundary, or
its owner part is well-formed and its last element is boundary. Note that same
and local can only appear in precise domains annotation with this or owner
as owner part. The well-formedness of domain annotations is important as it
guarantees the encapsulation property of our type system.

Subclassing, Subdomaining, and Subtyping. The relation <:c is the re-
flexive, transitive closure of the direct subclass relation given by the class decla-
rations. The relation <:d is defined on domain annotations. Reflexivity is given
by (s-domain refl). The rule (s-domain var) states that a domain with a
variable as owner, x.b, is a subdomain of a domain d0.b if x is typed with a
domain dx, and that domain is a subdomain of d0. For example, the domain
annotation x.boundary is a subdomain of this.local.boundary iff x is typed
with domain annotation this.local. <:d is transitive (for the proof see cf. [28]).
The subtype relation <: is defined by the relations <:c and <:d. It is reflexive
and transitive like <:c and <:d.

Methods, Classes and Programs. A method declaration is well-formed if
its body expression is well-typed in the type environment containing this and

9

Environments, Types, Class Names, and Domains

(t-env ∅)

∅ ` �

(t-env x)

Γ ` T x /∈ dom(Γ)

Γ [x 7→ T] ` �

(t-type)

Γ ` � Γ ` d ` C

Γ ` d C

(t-class obj)

` Object

(t-class decl)

C ∈ dom(CT)

` C

(t-domain this owner)

a ∈ {this, owner}
Γ ` a.c

(t-domain var)

Γ ` x : T

Γ ` x.boundary

(t-domain boundary)

Γ ` a.b

Γ ` a.b.boundary

Subclassing, Subdomaining, and Subtyping

(s-class refl)

` C

Γ ` C <:c C

(s-class trans)

Γ ` C <:c D Γ ` D <:c E

Γ ` C <:c E

(s-class decl)

class C extends D {. . .}
Γ ` C <:c D

(s-domain refl)

Γ ` d

Γ ` d <:d d

(s-domain var)

Γ ` x.b Γ ` d0.b Γ ` x : dx C Γ ` dx <:d d0

Γ ` x.b <:d d0.b

(s-type)

Γ ` d1 C Γ ` d2 D Γ ` d1 <:d d2 Γ ` C <:c D

Γ ` d1 C <: d2 D

Methods, Classes, and Programs

(t-methoddecl)

Γ = { this 7→ owner.same C, x 7→ T }
this /∈ x Γ ` e : Te Γ ` Te <: Tr ∅ ` T ∅ ` Tr

class C extends D {. . .} if mtype(m, D) = U → Ur, then T = U and Tr = Ur

C ` Tr m(T x){ e }

(t-classdecl)

C ` M ∅ ` T

` class C extends D { T f ; M}

(t-prog)

` L ` C
{this 7→ owner.same C} ` e : T

` 〈L, C, e〉 : T

Fig. 7: Various Typing Rules

10

(t-var)

Γ ` �
Γ (x) = T

Γ ` x : T

(t-new)

Γ ` a.c C

Γ ` new a.c C : a.c C

(t-field)

Γ ` e : d C fields(C) = d C f
Tf = σ(e, d, di) Ci Γ ` Tf

Γ ` e.fi : Tf

(t-fieldup)

Γ ` e0 : d C fields(C) = d C f Tf = σ(e0, d, di) Ci

Γ ` e1 : T Γ ` T <: Tf owner = first(di) ⇒ isPrecise(d)

Γ ` e0.fi = e1 : T

(t-let)

Γ ` e0 : T0 x /∈ dom(Γ) Γ [x 7→ T0] ` e1 : T1 Γ ` T1

Γ ` let x = e0 in e1 : T1

(t-invk)

Γ ` e : d C

mtype(m, C) = d C → du Cu Γ ` e : U T ′ = σ(e, d, d) C Γ ` U <: T ′

(∃i. owner = first(di)) ⇒ isPrecise(d) Um = σ(e, d, du) Cu Γ ` Um

Γ ` e.m(e) : Um

Fig. 8: Expression typing

the formal parameters of the method. We demand ∅ ` T and ∅ ` Tr to ensure
that the domain annotations of formal parameters and the result type do not
contain local variables. Note that in principle it would be possible that domain
annotations of formal parameters contain other formal parameters as owners,
but this feature is omitted for simplicity. A class declaration is well-formed if
all its method declarations are well-formed, and the types of its fields are well-
formed in the empty type environment. Note that this ensures that the domain
annotations of fields cannot contain local variables. A program 〈L,C, e〉 is typed
by typing e in the type environment mapping this to owner.same C.

Expressions. The expression type rules are shown in Figure 8. Much is stan-
dard, so we only explain the highlights of our system.

To translate domain annotations of fields and methods to the calling context
we use the function σ.

σ(e, de, d) = [e/this, front(de)/owner, last(de)/same] d

Beside the domain d that is translated, σ takes the receiver expression e and
its domain de as parameters. The substitution replaces this by e, owner by the
front of de and same by the last part of de. The typing rules ensure that do-
main annotations substituted by σ are always well-formed, so ill-formed domain

11

o ∈ Object
v ∈ Value ::= o | null

rd ∈ RuntimeDomain ::= v.b
s ∈ ObjectState ::= 〈o.b, C, v〉
S ∈ Store ::= {o 7→ s}
F ∈ StackFrame ::= {x 7→ v}

Fig. 9: Dynamic Entities of SLODJ.

annotations with this replaced by an arbitrary expression e that is not a local
variable, are not accepted by the type system.

Both, the rules (t-fieldup) and (t-invk) have a clause

owner = first(di) ⇒ isPrecise(d)

which ensures that if the domain di begins with the owner keyword, the domain
d of the receiver expression is precise. The reason behind this is that the function
σ replaces owner with the owner part of d. If d is not precise, the owner part is
a domain again. If di, for example, is owner.boundary, and d is a loose domain,
then σ would turn di into a loose domain, too. This would allow assignments
that are not possible in the original context, in which di is precise. That is the
reason why we have to forbid these cases.

4 Dynamic Semantics

The dynamic entities of SLODJ are given in Figure 9. A value v is either an
object o or null. A runtime domain is a tuple of a value v and a domain tail b.
An object state s is a triple 〈o.b, C, v〉, consisting of a precise runtime domain
o.c with an object o as owner, a class name C, and a list of field values v. A
store S is a finite mapping from objects o to object states s. A stack frame F is
a finite mapping from variable names x to values v.

4.1 Runtime Domains

Domains at runtime are modeled as a tuple v.b consisting of the owner value v
and the domain tail b, which is a sequence of boundary and local. Like domain
annotations, runtime domains can either be precise or loose. A precise runtime
domain has the form v.c, otherwise it is loose.

In every object state the precise runtime domain of the domain that the
object belongs to is stored. This is needed to prove the correctness of our type
system. However, it is not needed by the evaluation rules, and hence a real
implementation need not store the actual domain in the object state. Note that
objects always belong to runtime domains with objects as owners. We need null
as owners for runtime domains only to give null an owning domain.

12

(r-var)

F (x) = v

S, F ` x ⇒ v, S

(r-let)

S0, F ` e0 ⇒ v0, S1 S1, F [x 7→ v0] ` e1 ⇒ v1, S2

S0, F ` let x = e0 in e1 ⇒ v1, S2

(r-field)

S0, F ` e ⇒ o, S1

S1(o) = 〈rd, C, v〉
S0, F ` e.fi ⇒ vi, S1

(r-fieldup)

S0, F ` e0 ⇒ o, S1 S1, F ` e1 ⇒ v, S2

S2(o) = 〈rd, C, v〉 S3 = S2[o 7→ 〈rd, C, [v/vi]v〉]
S0, F ` e0.fi = e1 ⇒ v, S3

(r-invk)

S0, F ` e ⇒ o, S1

S1, F ` e1 ⇒ v1, S2 · · · Sn, F ` en ⇒ vn, Sn+1 S1(o) = 〈. . . , C, . . .〉
mbody(m, C) = x.eb Sn+1, {this 7→ o, x 7→ v} ` eb ⇒ v, Sn+2

S0, F ` e.m(e) ⇒ v, Sn+2

(r-new)

rd = rtd(S0, F, F (this), d)

fields(C) = T f o /∈ dom(S0) S1 = S0[o 7→ 〈rd, C, null〉] |null| = |f |
S0, F ` new d C ⇒ o, S1

Fig. 10: SLODJ Evaluation Rules.

4.2 Evaluation Rules

The evaluation rules are shown in Figure 10. We use a big-step natural semantics.
Local variables are handled by a stack frame F , a store S models the state. The
evaluation relation has the form

S1, F ` e ⇒ v, S2

meaning that under store S1 and stack frame F expression e evaluates to value
v and new store S2.

The rules are more or less standard. The most interesting fact is that the
runtime domains play no role for the evaluation rules, which shows that they
are only needed for the soundness proof. The only rule which requires some
explanation is (r-new). It shows that an object is created by initializing all
fields with null. The runtime domain rd of the new object is determined by
applying the rtd function to the domain annotation d.

4.3 Auxiliary Functions

We need some auxiliary functions which are shown in Figure 11. The func-
tion actd(S, o) obtains the actual owning domain of object o in S, it returns
null .local for null. The function owner returns the owner part of the actual
domain of a value, and class(S, o) gives the class of o in S.

13

(actd null)

actd(S, null) = null.local

(actd object)

S(o1) = 〈o2.c, . . .〉
actd(S, o1) = o2.c

(owner)

actd(S, v1) = v2.c

owner(S, v1) = v2

(class)

S(o) = 〈. . . , C, . . .〉
class(S, o) = C

(subset null)

S ` null.c ⊆ v.b

(subset refl)

S ` o.b ⊆ o.b

(subset loose)

S ` actd(S, o1) ⊆ o2.b2

S ` o1.b1 ⊆ o2.b2.b1

(rtd thisowner)

a 6= x actd(S, v1) = v2.c

rtd(S, F, v1, a.b) = [v1/this, v2/owner, c/same] a.b

(rtd var)

F (x) = v2 actd(S, v1) = v3.c

rtd(S, F, v1, x.b) = [c/same] v2.b

Fig. 11: Auxiliary Functions.

4.4 Domain Subset Relation

Similar to the subdomain relation on domain annotation, we define an inclusion
relation on runtime domains. S ` rd1 ⊆ rd2 states that runtime domain rd1 is
equal to or included in runtime domain rd2. This follows the intuition that loose
runtime domains can be regarded as sets of precise runtime domains.

4.5 The rtd Function

To be able to compare static domain annotations with runtime domains, we use a
semantic interpretation function rtd, which translates a domain annotation into
a meaningful corresponding runtime domain. The function replaces syntactic
owners of a domain by values and same with an appropriate kind. The third
parameter v of the function is interpreted as the current receiver object. Note
that the function also handles null, which can be seen as a special kind of receiver.

5 Properties

We now present two important properties, namely the Subject Reduction The-
orem and the Accessibility Theorem that leads to the boundary-as-dominators
property.

5.1 Type Soundness

In this section we prove the soundness of the type system of SLODJ. We have to
show that during the evaluation of a SLODJ program all values can only be of

14

(t-store ∅)

` ∅

(t-store object)

` S0 ` C S1 = S0[o 7→ 〈. . . , C, v〉] fields(C) = d C f |v| = |f |
∀vi ∈ v. vi = null ∨ S1 ` actd(S1, vi) ⊆ rtd(S1, ∅, o, di) ∧ class(S1, vi) <:c Ci

` S1

(t-stack ∅)

S, ∅ ` ∅

(t-stack null)

S, Γ ` F

S, Γ [x 7→ T] ` F [x 7→ null]

(t-stack var)

S, Γ ` F class(S, o) <:c C
S ` actd(S, o) ⊆ rtd(S, F, F (this), d)

S, Γ [x 7→ d C] ` F [x 7→ o]

Fig. 12: Store and Stack Frame Well-Formedness

a type that corresponds to their declared static type. A type in SLODJ consists
of two parts: a class name and a domain annotation. So we have to show that
the class of an object is a subtype of the statically declared class, and that the
runtime domain of an object corresponds to the static domain annotation. The
first part is easy as we can directly use the subclass relation <:c. However, we
can not directly compare a runtime domain with a domain annotation. We first
have to translate the domain annotation to a meaningful corresponding runtime
domain, which is done by the rtd function. After the translation we check that
the resulting runtime domain is a superset of the runtime domain of the object.
Note that in the case where the value is null we do not have to check anything.

For precise formulation of the theorem, we need additional properties for
stores and stack frames (Fig. 12):

` S Store S is well-formed
S, Γ ` F Stack frame F is well-formed w.r.t. S and Γ

The judgment ` S means that the types of field values of all objects in S corre-
spond to the declared type of the objects’ classes, and S, Γ ` F means that the
types of values of a stack frame F correspond to the types recorded in the type
environment Γ .

The Subject Reduction Theorem states that if an expression e is typed to
d C and e evaluates to value v, then v is either null, or it is an object, and the
actual class of v is a subclass of C, and the actual domain of v is included in
the runtime representation of d. The theorem also states that the store stays
well-formed under the evaluation of e. This is needed by the proof to have a
stronger induction hypothesis.

15

Theorem 1 (Subject Reduction). If this ∈ dom(F) and Γ ` e : d C and
S0, F ` e ⇒ v, S1 and ` S0 and S0, Γ ` F then

1. v = null ∨ S1 ` actd(S1, v) ⊆ rtd(S1, F, F (this), d), ∧ class(S1, v) <:c C
and

2. ` S1

Proof. The proof is by structural induction on the reduction rules of the opera-
tional semantics. It can be found in [28].

5.2 Encapsulation Guarantees

To show the encapsulation property of our type system, we first define which
accesses are allowed at runtime and then show that our type system guarantees
that during the execution of a well-typed program only such accesses can happen.

(a-own)

S o −→ o.c

(a-boundary)

S o1 −→ actd(S, o2)

S o1 −→ o2.boundary

(a-owner)

owner(S, o1) = o2

S o1 −→ o2.c

(a-null)

S o −→ null.c

Fig. 13: Accessibility Rules.

The accessibility rules in Figure 13 define which domains are accessible by
an object at runtime. They are of the form S o −→ v.c, read “Under store S,
object o can access the runtime domain v.c”. These rules define that an object
o can access a domain d iff

– o is the owner of d (a-own)
– d is the boundary domain of an object o2, and o can access the domain that

o2 belongs to (a-boundary)
– d is a domain of the owner of o (a-owner)
– The owner of d is null (a-null)

We write S o −→ v to mean S o −→ actd(S, v). Note that these rules
guarantee that an object o1 can only access the local domain of an object o2 if
and only if o1 = o2, or o2 is the owner of o1. Thus, it is guaranteed that local
objects of an object o can only be accessed by o itself or by objects owned by o.

Similar to the Subject Reduction Theorem we need to define some properties
on stores and on stack frames. These are given in Figure 14. All objects of a store
must have access to the values of their fields (a-store ∗), and all values of a
stack frame must be accessible by the this-object (a-stackframe ∗).

The Accessibility Theorem states that if an expression e is evaluated to v,
and e is well-typed by the type system, then the current receiver object can
access v. In addition, all objects of the new store S1 can access their field values.

16

(a-store ∅)

 ∅

(a-store object)

 S0 S1 = S0[o 7→ 〈. . . , v〉] ∀vi ∈ v. S1 o −→ vi

 S1

(a-stackframe this)

S {this 7→ o}

(a-stackframe var)

S F0 F1 = F0[x 7→ v] S F1(this) −→ v

S F1

Fig. 14: Store and Stack Frame Accessibility

Theorem 2 (Accessibility). If this ∈ dom(F) and Γ ` e : T and ` S0 and
Γ, S0 ` F and S0 and S0 F and S0 ` e ⇒ v, S1 then

S1 F (this) −→ v ∧ S1

Note that this theorem enforces the boundary-as-dominator property, as objects
of the outside of an object o cannot directly access the inside of o, and so have
to use objects of the boundary of o.

6 Discussion and Related Work

Our work belongs to the category of mechanisms for alias prevention [19] in
general, and uses the ownership types idea in particular.

Ownership type systems. The first systems encapsulating objects were pro-
posed by Hogg with Islands [18] and by Almeida with Balloons [4]. The notion
of ownership types stems from Clarke [13] as a formalization the core of Flexible
Alias Protection [25]. Ever since, many researchers investigated ownership type
systems [11, 23, 9, 3]. Ownership type systems have been used to prevent data-
races [6], deadlocks [7, 5], and to allow the modular specification and verification
of object-oriented programs [22]. Lately, ownership types have been combined
with type genericity [27].

All ownership type systems have one thing in common: They cannot han-
dle the iterator problem properly. It turns out that it is an inherent property
of ownership type systems that prevents a solution: the owners-as-dominators
property. Two solutions have been proposed to solve the iterator problem: The
first is to allow the creation of dynamic aliases to owned objects [12], the second
[11, 7] is to allow Java’s inner member classes [17] to access the representation
objects of their parent objects. Both solutions are unsatisfactory and break the
owners-as-dominators property, showing that a more general solution is needed.
With the boundary-as-dominator property, we tackle exactly this problem.

17

Ownership Domains. The basic idea of ownership domains stems from Clarke
[11] with ownership contexts. Objects are not directly owned by other objects,
but instead are owned by contexts. Contexts in turn are owned by objects. While
Clarke’s formalization was based on the Object Calculus [1], Aldrich and Cham-
bers [2] applied this idea to a subset of Java and extended it by several features. A
programmer has the possibility to declare an arbitrary number of domains per
object and can define which domains can access which other domains by link
declarations. So in parts the OD approach is more flexible than our approach,
thus it is no surprise that our system can be partly encoded in OD [28].

The iterator problem is solved by OD with so-called public domains, which
can always be accessed if the owner object can be accessed. However, in OD a
public domain must always by attached to a final field or variable to unam-
biguously identify the owner object. This restricts the usage of public domains
as the owner object must always be known to the client in order to access its
public domain. Our approach solves this by introducing loose domains which
can be declared without a final field or variable.

OD have been combined with an effects system [29]. A more general version
of OD has been formalized in System F [21].

Other related work. All work that addresses aliasing in object-oriented pro-
gramming, especially which statically guarantee the absence of aliasing, is some-
how related to our work. One example, beside many others, are Confined Types
[30].

Limitations. Like all type systems, SLOD is not complete. That is, it is possible
to write programs that are correct at runtime but are refused by our type system.

As our system is purely static, the domain of an object cannot be changed
after its creation. Thus ownership transfer is not possible in SLOD. A variant of
ownership transfer, the initialization problem [14], is also not solvable in SLOD,
but could be tackled with unique variables [10], for example.

A loose domain in SLOD cannot be turned back into a precise domain. Such
a cast needs runtime information, which would introduce a not negligible space
overhead in practice, as for every object its domain has to be recorded. However,
the space overhead might be minimized by only storing runtime information that
is really needed to support such casts, similar to the approach in [8].

7 Conclusion and Future Work

Simple Loose Ownership Domains (SLOD) simplifies Ownership Domains by
omitting link and domain declarations, but keeping the idea of public and private
domains. Hence, we maintain most of the expressiveness of Ownership Domains,
while significantly reducing the syntactical overhead. Besides this, SLOD sup-
ports so-called loose domains, which allow to abstract from precise domains. This
enables, for instance, the implementation of model-view systems with an arbi-
trary number of listener callbacks, which is not possible with standard Ownership

18

Domains. Our system is sound and guarantees a property we call boundary-as-
dominator, which is a generalization of owners-as-dominators.

We plan to extend the formalization of SLOD with domain parameters, and
are investigating additional extensions like read-only and unique annotations,
as well as immutable objects. We are currently inspecting existing libraries and
programs to measure the practicability of our approach. Another interesting
aspect is to use domain information at runtime, in order to reduce the annotation
effort and to allow casts from loose domains to precise domains. In addition, we
will investigate how the encapsulation boundaries of SLOD can be used to give
thread-safeness guarantees. Finally, we plan to implement a checking tool for a
practical subset of Java.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[2] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from

mechanism. In Proc. ECOOP’04, volume 3086 of LNCS, pages 1–25. Springer-
Verlag, June 2004.

[3] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program
understanding. In OOPSLA’02 [26], pages 311–330.

[4] P. S. Almeida. Balloon Types: Controlling sharing of state in data types. In
Proc. ECOOP’97, volume 1241 of LNCS, pages 32–59. Springer-Verlag, June 1998.

[5] C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis,
Massachusetts Institute of Technology, Feb. 2004.

[6] C. Boyapati and M. Rinard. A parameterized type system for race-free java pro-
grams. pages 56–69, Oct. 2001.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In OOPSLA’02 [26], pages 211–230.

[8] C. Boyapati, R. Lee, and M. Rinard. Safe runtime downcasts with ownership
types. Technical Report TR-853, MIT Laboratory for Computer Science, June
2002.

[9] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In Proc. POPL ’03, pages 213–223. ACM Press, Jan. 2003.

[10] J. Boyland. Alias burying: Unique variables without destructive reads. Software
– Practice and Experience, 31(6):533–553, May 2001.

[11] D. Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, July 2001.

[12] D. Clarke and S. Drossopoulou. Ownership, encapsulation, and the disjointness
of type and effect. In OOPSLA’02 [26], pages 292–310.

[13] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In Proc. OOPSLA ’98, pages 48–64. ACM Press, Oct. 1998.

[14] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure.
Research Report 156, Digital Systems Research Center, July 1998. SRC-RR-156.

[15] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics
for classes and mixins. Formal Syntax and Semantics of Java, 1523:241–269, 1999.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[17] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification
– Second Edition. Addison-Wesley, June 2000.

19

[18] J. Hogg. Islands: Aliasing protection in object-oriented languages. In Proc. OOP-
SLA ’91, pages 271–285. ACM Press, Nov. 1991.

[19] J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt. The Geneva convention
on the treatment of object aliasing. SIGPLAN OOPS Messenger, 3(2):11–16, 1992.
ISSN 1055-6400.

[20] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. TOPLAS ’01, 23(3):396–450, May 2001.

[21] N. Krishnaswami and J. Aldrich. Permission-based ownership: encapsulating state
in higher-order typed languages. In Proc. PLDI’05, volume 40, pages 96–106. ACM
Press, June 2005.

[22] P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[23] P. Müller and A. Poetzsch-Heffter. Universes: A type system for controlling rep-
resentation exposure. In A. Poetzsch-Heffter and J. Meyer, editors, Programmier-
sprachen und Grundlagen der Programmierung, Kolloquiumsband ’99, Informatik
Berichte 263–1. Fernuniversität Hagen, 2000.

[24] J. Noble. Iterators and encapsulation. In Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS 33), page 431, St. Malo, France, June
2000. IEEE Computer Society. ISBN 0-7695-0731-X.

[25] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor,
Proc. ECOOP’98, volume 1445 of LNCS, pages 158–185. Springer-Verlag, July
1998.

[26] OOPSLA’02. Proc. OOPSLA’02, Nov. 2002. ACM Press.
[27] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic

java. In Proc. OOPSLA’06. ACM Press, 2006.
[28] J. Schäfer and A. Poetzsch-Heffter. Simple loose ownership domains. Technical

Report 348/06, Department of Computer Science, University of Kaiserslautern,
Germany, Mar. 2006. Available at http://softech.informatik.uni-kl.de/
∼janschaefer.

[29] M. Smith. Towards an effects system for ownership domains. In ECOOP Workshop
- FTfJP’2005, July 2005.

[30] J. Vitek and B. Bokowski. Confined types in Java. Software – Practice and
Experience, 31(6):507–532, 2001.

20

