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Abstract

Semantic subtyping is an approach for defining sound and
complete procedures to decide subtyping for expressive types,
including union and intersection types; although it has been
exploited especially in functional languages for XML based
programming, recently it has been partially investigated in
the context of object-oriented languages, and a sound and
complete subtyping algorithm has been proposed for record
types, but restricted to immutable fields, with union and
recursive types interpreted coinductively to support cyclic
objects.

In this work we address the problem of studying semantic
subtyping for imperative object-oriented languages, where
fields can be mutable; in particular, we add read/write field
annotations to record types, and, besides union, we consider
intersection types as well, while maintaining coinductive
interpretation of recursive types. In this way, we get a richer
notion of type with a flexible subtyping relation, able to
express a variety of type invariants useful for enforcing static
guarantees for mutable objects.

The addition of these features radically changes the defi-
nition of subtyping, and, hence, the corresponding decision
procedure, and surprisingly invalidates some subtyping laws
that hold in the functional setting.

We propose an intuitive model where mutable record val-
ues contain type information to specify the values that can be
correctly stored in fields. Such a model, and the correspond-
ing subtyping rules, require particular care to avoid circularity
between coinductive judgments and their negations which,
by duality, have to be interpreted inductively.

A sound and complete subtyping algorithm is provided,
together with a prototype implementation.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory—Semantics;
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1. Introduction

Subtyping and structural types are essential notions for
precise type analysis. They can be employed for typing
dynamic languages as JavaScript [[7, |19} 20, 24, 25], or to
integrate nominal type systems for more flexible and accurate
type analysis [16} 18] 23 27, 30].

In simple type systems the subtyping relation can be
defined axiomatically by a set of inference rules; however,
when more complex types are considered, the axiomatic
approach does not provide a model for formal reasoning, and,
thus, may fail to convey the right intuition behind subtyping,
and, in general, it is not simple to prove that the subtyping
rules are complete.

Semantic subtyping has been proposed as a possible solu-
tion to these problems, especially in the context of functional
languages for XML based programming, as XDuce [21], and
CDuce [17]]. Semantic subtyping has been investigated also
for the m-calculus [[11], for coinductive object types with
unions [4], and for ML-like languages with polymorphic vari-
ants [[14]. More recently, in the context of CDuce, semantic
subtyping has been extended with parametric polymorphism
[120[13]].

In semantic subtyping types are interpreted as sets of
values and the subtyping relation corresponds to set inclusion
between type interpretations. In this way, the definition
of subtyping is more intuitive, and several properties can
be easily deduced (for instance, transitivity always holds
trivially). Semantic subtyping naturally supports boolean
type constructors; for instance, the interpretation of union
and intersection types coincide with set-theoretic union and
intersection, respectively. Furthermore, semantic subtyping
helps reasoning on recursive types. Let us consider, for
instance, the following recursive record type: 7 = (next:7).
In the semantic subtyping approach, the syntactic equation
above is turned into a semantic equation, which, in general,
can be interpreted either inductively or coinductively. In
functional languages as CDuce where values are inductive,



types are interpreted inductively, therefore the least solution
of the semantic equation [7]] = [(next:7)] is considered, and
the type 7 denotes the empty set.

In object-oriented languages objects are allowed to contain
cycles, therefore recursive types are interpreted coinductively
[4]; the interpretation of 7 corresponds to the greatest solution
of [7] = [{next:T)], hence 7 denotes a non-empty set of
cyclic objects.

Recently, semantic subtyping for record and union types
has been studied with recursive types interpreted coinduc-
tively, and a practical sound and complete top-down algo-
rithm for deciding it has been provided [4,|9]. However, this
result is limited to immutable records, where record subtyp-
ing is allowed to be covariant in field types, whereas it is
well-known that record subtyping with mutable fields must
be invariant to avoid unsoundness. Although invariant sub-
typing is sound, it severely restricts the flexibility of the type
system; to avoid this problem, read/write field annotations
[1]] can be introduced, to allow subtyping to be covariant for
read-only fields, and contravariant for write-only fields.

This paper provides two main contributions.

e A coinductive semantic model is defined for record types
with read/write field annotations, supporting union, in-
tersection, and recursive types; as it is customary in the
semantic subtyping approach, such a semantic model nat-
urally induces a subtyping relation.

However, the semantic model used to interpret records
with mutable fields substantially deviates from previous
models adopted for immutable records [4} 9]], and requires
more complex definitions and challenging proofs of con-
sistency.

e A set of sound and complete rules for such a semantic
subtyping relation is defined, and a corresponding algo-
rithm is devised to decide subtyping. The algorithm has
been implemented in SWI Prolog.

The difference between the semantic model used to in-
terpret mutable records and that adopted for immutable
records is reflected in the sets of inequations that can be
derived: laws that hold for immutable records [4, (9] are no
longer valid for mutable records. Furthermore, in our work
new laws have to be introduced because a richer type lan-
guage is considered: fields are annotated, and intersection
types are introduced. Consequently, the algorithm pre-
sented here to decide subtyping significantly departs from
previously proposed algorithms for immutable records.

The proposed model is language independent, in the sense
that it supports reasoning on subtyping in the presence of
field annotations, without requiring values of the underlying
language to support read/write-only fields. In other words,
field annotation is a static notion that must not necessarily be
reflected at runtime.

In comparison with semantic subtyping for immutable
records, the main challenge consists in field annotation, and

record mutability. While the definition of a semantic model
in a purely functional setting is rather straightforward, here
particular care is required to ensure that the model is well-
defined, since fields of record values are associated with types
to specify which values can be stored in them.

As a consequence, a circularity is introduced since types
are interpreted in terms of themselves, and this needs to
be properly managed; in particular, the definitions of the
coinductive judgment for typing values, and of its negation
(which, by duality, is inductive), are mutually recursive. These
issues propagate to the definition of the subtyping rules
which involves four mutually recursive judgments: the two
coinductive judgments for subtyping, and type emptiness,
and their corresponding (inductive) negations.

To our knowledge, no standard approach can be found in
literature to properly manage coinductive definitions involv-
ing negation, or, equivalently, mutually recursive coinductive
and inductive definitions. Our simple but effective solution to
break circularity consists in equipping judgments with sets of
assumptions that have to be verified, and that, in practice, are
abducted by the subtyping algorithm we have implemented.

A previous attempt to investigate semantic subtyping for
mutable records can be found in literature [5]; however,
the considered model is different, and neither a proof of
soundness and completeness is provided, nor an algorithm to
decide subtyping is presented.

The paper is organized as follows: Section [2] introduces
and motivates semantic subtyping, read/write-only field an-
notations, and union and intersection types, in the context of
mutable records, and, hence, of object-oriented programming.
After some preliminary definitions given in Section 3] the
novel contributions of this paper span the next three sections:
Section[dtackles the problem of providing a consistent model
for types supporting mutable records; Section [5]defines a set
of subtyping rules which are sound and complete w.r.t. the
model presented in the previous section; Section [6] presents
an algorithm driven by the specification provided by the sub-
typing rules, and shows its implementation in SWI Prolog.
Conclusion and directions for future work are discussed in
Section[7l

2. Motivating examples

In this section we provide some examples introducing and
motivating the main features of the structural types that will
be used throughout the paper: record types with read/write
field annotations, union, and intersection types, recursion and
coinductive interpretation to deal with circular objects.

2.1 Why semantic subtyping for mutable records?

A sound and complete procedure to decide semantic subtyp-
ing for recursive record and union types has been recently
proposed [4} [9]; while this result has paved the way to the
investigation of semantic subtyping relations in the context
of object-oriented languages by interpreting types coinduc-



tively, its usefulness for static type analysis of object-oriented
languages is limited, since the definition of subtyping and the
corresponding soundness result strongly rely on the assump-
tion that record fields are immutable.

Such an assumption turns out to be unrealistic for main-
stream object-oriented languages where objects are allowed
to be mutable.

According to the definition provided in the above men-
tioned papers, semantic subtyping between record types is
covariant in the type of their fields; for instance, semantic
subtyping holds for the following pair of types: (f:int) <
(f:intV bool); intuitively, this means that if a record has field
f of type int, then it has also field f of type int or bool. This
is sound as long as field f cannot be modified, but if f is
in fact the field of a modifiable object, then the judgment
(frinty < (f:intVbool) is no longer sound, as shown by the
following example:

(frint) ol = ...;

(f:intVbool) 02 = ol;

o2.f = true;

mt i = ol.f;

If (f:int) < (f:intVbool) holds, then the assignment
o2=01 should be considered type safe, however if object
assignments are by reference, as usually happens in object-
oriented languages, then the line int i = o1.¢; is unsound.

A simple solution to this problem consists in restricting
subtyping between record types to make it invariant in the
type of fields: (f:7) < (f:r') iff 7 = 7/, hence (f:int) £
(f:intV bool).

Even though such a solution is technically sound, it also
severely restricts subtyping and, hence, makes static type
analysis less precise. The examples that follow in the next
subsections show how semantic subtyping allows much more
precise static typing of object-oriented languages when record
types are considered with read and write field annotations;
furthermore, together with union types [4} 9]], intersection
types are introduced as well. As union types, intersection
types naturally arise in the semantic subtyping approach,
and allow a further increase of the expressive power of the
underlying type system.

2.2 Record types with read/write annotations

We have shown that record subtyping with mutable fields
must be invariant in field types to avoid unsoundness, but this
severely restricts the flexibility of the type system; to avoid
this problem, two different directions can be followed.

e Covariant subtyping is adopted, despite its unsoundness;
this happens in the Java, and C# rule for array type subtyp-
ing: 1 (1< 11 iff 1 < Tp < object. Let us consider the
following simplified utility method for copying arrays:

static void copyarray(Object[] src, Object[] dst) {
// omitted checks
int 1 = 0;
for (Object el : src) dst[i++] = el;

Thanks to the covariant rule for array type subtyping, this
method can work with arrays of any reference type, but the
Java type system cannot preven invocation of copyarray
to throw ArraystoreException as it would happen for

copyarray (new String[]{ "one", "two"},new Integer[2]).

* A more flexible, but sound subtyping relation is intro-
duced, based on the idea that covariant/contravariant sub-
typing is sound when restricted to contexts which limit
the operations available on objects. Let us consider the
following example involving Java generic types.

class Ref<T> {
T cont;
Ref (T cont) { super(); this.cont = cont; }

}

static <T> void copyref (Ref<T> src, Ref<T> dst) {
dst.cont = src.cont;

}

Because subtyping for generic types is invariant, the
following method invocations fail to be compiled.

Ref<Double> src = new Ref<>(1.0);
Ref<Integer> dst = new Ref<>(1l);
Ref<Number> dst2 = new Ref<>(1);
copyref (src,dst); // type error
copyref (src,dst2); // type error

Unfortunately, invariant subtyping is too rigid; for in-
stance, copyref (src,dst2) does not compile, although this
case causes no harm.

To overcome this problem one can note that in the body of
copyreft, field cont of src is read, but not updated, whereas
field cont of ast is updated, but not read. Therefore,
in the context of method copyret, field cont of src can
be considered read-only, although outside it might be
updatable as well, while field cont of ast can be considered
write-only, although outside it might be readable as well.
Therefore, it is type safe to consider covariant subtyping
for src, and contravariant subtyping for ast.

In Java this can be achieved with wildcards [10, [29].

static <T>

void copyref2 (Ref<? extends T> src, Ref<? super T> dst)
{ dst.cont = src.cont; }

copyref (src,dst); // type error

copyref (src,dst2); // statically correct

In Java the wildcard ref<? extends T> Supports covariant
subtyping, whereas ref<? super T> SUppOrts contravariant
subtyping, therefore
Ref<Double><Ref<? extends Double><Ref<? extends Number>
Ref<Number><Ref<? super Number><Ref<? super Double>.
A similar example can be reproduced in C#, although more
involved, because Java generics support call site variance
annotations with wildcards, whereas C# generic interfaces
and delegates support declaration site variance annotations
(31.

With record types and read/write field annotations [1] the
example above can be recast as follows: parameter src has

! Analogous considerations apply to C#.



type (cont™:T'), that is, a record with a read-only field cont
(hence, allowed to be covariant) of type 71" field cont can be
always accessed, with a result of type 7'; parameter ast has
type (cont™:T), that is, a record with write-only field cont
(hence, allowed to be contravariant) of type 7": field cont can
be always updated with a value of type T'. We stress that the
fact that src has type (cont™:T) means that field cont of the
object denoted by src can be read, but not updated inside
the method, which is different from assuming that field cont
of the object denoted by src must be constant; it could be
updatable, but only outside the method. A dual consideration
applies to parameter dsc as well.

The subtyping rules for read-only and write-only record
types are pretty intuitive: (fT:71) < (fT:Ty) iff T} < Ty,
and <f72T1> < <f71T2> iff To < Tj.

2.3 Read-write fields and moneotonic initialization

Besides read-only and write-only annotations, read-write
annotations are usually introduced [1]] for dealing with fields
that must be both readable and writable in a certain context;
however, with intersection types this third kind of annotation
is redundant. The record type with read-write field f of
type T is represented by (fT:T)A(f:T): all record where
field f can be accessed, with a result of type 7', and can
be updated with a value of type 7. The model defined in
Section [] ensures that subtyping is invariant as expected:
<f+ZT1>/\<f_ZT1> < <f+IT2>/\<f_ZT2> iff 77 < 15 and
Ty <Tj,thatis, 71 = Ts.

Intersection types, not only make read-write annota-
tions superfluous, but also increase the expressive power
of types because the two types assigned to f* and f~
need not to be the same; in terms of Java wildcards that
would roughly correspond in allowing parameterized types
aS Ref<? super Double extends Number>, NOt supported by the
current Java type system, where both a lower and an upper
bound for a wildcard can be declared. By combining field
annotations, and intersection and union types, it is possible to
enforce monotonic initialization [[16]]: objects monotonically
evolve from an uninitialized to a full initialized state; for
object values this guarantees that a field, once initialized
with a non-null value, never becomes uninitialized again with
null.

Let null be the singleton type denoting the null value, and
T be a non-null type (for instance, any record type is non-
null); then the type (f:nullVT)A(f~:T) forces monotonic
initialization for field f: access to f may evaluate to null
or to a value of type 7, but only non-null values of type T’
can be assigned to f. A more detailed example of monotonic
initialization in presence of circular objects can be found
below.

2.4 Multiple fields and recursive types

With intersection types, record types need not contain multi-
ple fields as it is usually required for types in structural type
systems for object-oriented languages; all we need is single-

ton record types, because a type as {elem ™t :int, next™ :null)
simply reads as an abbreviation for (elem ™ int)\(next:null).

We can now consider a more complex example involving
recursive types specifying node objects in linked lists. In the
Java standard API a unique interface is used for defining three
different kinds of lists:

1. unmodifiable lists: their elements cannot be replaced nor
their size can be modified;

2. structurally unmodifiable lists: their elements can be
replaced, but their size cannot be modified;

3. structurally modifiable lists: their elements can be re-
placed, and their size can be modified.

Accordingly, the node objects composing an unmodifi-
able/structurally unmodifiable/modifiable linked list of ele-
ments of type 1" will have the following types, respectively.

1. 7 = nullV ({elem™:T)A{next*:71));
2. 79 = nullV ({elem™:T) A{elem™ :T) A (nextT:73));
3. 73 = nullV({elem™:T)A{elem™:T) A

(next™:m3) A(next™:13)).

All types are recursively defined by means of syntactic
equations, hence they correspond to regular trees (a.k.a. as
rational trees or cyclic terms, see SectionE]for further details);
there are two main advantages in managing recursion with
regular trees, instead of introducing a u recursive binder:

e subtyping rules are simpler, since they can be presented
at a more abstract level,

e cyclic terms are naturally supported by SWI Prolog,
hence, there is also a practical advantage; for instance, the
uniﬁcatiorﬁ T=rp (£:T) succeeds, and the logical variable r
is instantiated with the unique cyclic term satisfying the
equation above. As expected, the following SWI Prolog
query (where == denotes syntactic equality) succeeds:
Tl=rp(£:T1),T2=rp(f:rp(£:T2)),T1==T2.

Let us comment on type 77; if linked lists are not circular, and
no dummy node is employed, then the first node can be null
if the list is empty, or (union type) it can be an object with a
read-only field elem of type T', and (intersection type) a read-
only field next of type 71; both fields are read-only because
nodes belong to unmodifiable lists. In 75 field elem is read-
write, while next is still read-only, whereas in 73 both fields
are read-write. As expected, in our model 73 < 75 < 77, and
71 £ 7o £ 73 (and 7y £ T3 as well), capturing the intuition
that, for instance, a structurally modifiable list can be safely
considered as an unmodifiable list, but not the other way
round.

2.5 Coinductive interpretation of types

Coinduction is employed at two different levels that must not
be confused.

2rp (£:T) is the Prolog term corresponding to the type (f+:T).



At the syntactic level, types are regular trees, which in-
clude also infinite trees, hence they cannot be defined induc-
tively. Regular trees allow a convenient treatment of recursive
types, as previously motivated, and the same approach has
been taken for CDuce [17]].

At the semantic level, types are interpreted as set of values,
and when types are recursive their interpretation is recursive
as well, and admits both a least and a greatest fixed-point,
corresponding to an inductive and coinductive interpretation,
respectively.

Let us consider the recursive type specifying nodes of
circular linked lists with a dummy node: 7 = (elem™*:T) A
(next™:7). Because of circularity, and the dummy node, in
this case nodes cannot be null, as opposed to the previous
examples.

The interpretation of 7, denoted by [7], has to sat-
isfy the equation [r] = [(elem™:T)A(next™:7)] =
[(elem™:T)] N [(next*:7)]. The inductive interpretation
(least fixed-point) is the empty set, because no well-founded
object can have such a type, whereas the coinductive interpre-
tation (greatest fixed-point) is not empty; indeed, it contains
non-well-founded objects constituting circular lists.

In our model, 7 < 71 (with 7y as defined in Section[2.4)),
whereas 71 £ 7; this corresponds to the intuition that a
circular linked list can be safely considered as a linked list,
but not the other way round. To grasp better such an intuition,
let us consider the following cod snippet.

Node<T> getNode (int index) {
Node<T> res = this;
for (int 1 = 0; i < index; i++)
res = res.next;
return res;

}

If we assume that tnhis (and, hence, variable res) has type 71,
then it is not possible to deduce that the execution of getnode
cannot throw NullpointerException; indeed, res could contain
HUH, and, hence, res.next could throw NullPointerException.
However, if we assume that tnhis has the more specific type
T, then it is possible to statically guarantee that the method
never throws NullPointerException.

2.6 Empty type

With intersection it is possible to define types equivalent to
the empty (a.k.a. bottom) type 0, whose interpretation is, by
definition, the empty set (hence, such types are not inhabited);
a simple example is given by bool Aint, or {fT:bool Aint),
but arbitrary complex types which are not inhabited can be
constructed.

As it will be more evident in Section[5] type emptiness is
necessary to ensure a sound and complete subtyping decision
procedure; indeed, the judgment 07y < o9 holds whenever
it is possible to derive that o; is empty, but deciding type
emptiness is not trivial. Hence, it is not possible to devise a

3 We use Java, but any other object-oriented language would equally work
for the purpose.

sound and complete subtyping decision procedure, without
a procedure to decide whether a type is empty; as shown in
Section[5] checking type emptiness plays a fundamental role
also in defining a sound and complete decision procedure for
type emptiness, and it is quite challenging, because of the
interplay between read-only and write-only fields.

Let us consider the type (f~:boolVint) A(fT:int); this
type cannot be inhabited, because, otherwise, the following
code would typecheck.

(f~:boolVint) A (fTiint) r = ...;

r.f = true;

nt i = r.f;

The second line of the code above typechecks because,
according to type (f~:boolVint), it is allowed to assign
boolean or integer values to field r of r; the subsequent line
typechecks as well, because, according to type (fT:int), it is
allowed to access field r of - to get an integer value. Hence,
the code must not typecheck because of the declaration of r:
its type is empty.

More generally, (f 71 ) A(fT:72) # 0 only if 71 < o5
this dependency between non-empty types and subtyping
makes the problem of devising a decision procedure for
subtyping more challenging.

The interplay between read-only and write-only fields
has also some subtle effect on subtyping. In a functional
setting where fields are always immutable, the two types
(f:71 V7o) and (f:11)V(f:72) are equivalent [4]. Surprisingly,
in an imperative setting where fields are allowed to be
mutable (f*:7)V(fTim) < (fT:71V72) always holds, but
(fTmVr) < (fTim)V{f*:m) holds only if 7y < 75 or
To < 7.

For instance, {fT:boolVint) £ (fT:bool) Vv (fT:int);
indeed, (fT:boolVint) < (f*t:bool) V (fT:int) is un-
sound, because we could deduce from it the following in-
equalities, where the last one is clearly unsound because
(f*:boolVint) £ (fT:bool). Let set T = (f¥:boolVint) A
(f~:bool); then we have the following derivation:

7 < ((fT:bool) Vv (fFint)) A{f :bool)

=4
7 < ({fT:bool) A{f~:bool))V ({fTint) A(f~:bool))
4
7 < ({fT:bool) AN(f~:bool)) VO
54

7 < (f*:bool) AN{f~:bool)

Interestingly enough, while union does not distribute over
immutable records, in Section f] we show that distributivity
of intersection over immutable records is sound.

Finally, type emptiness checks can be useful also for warn-
ing users, as already happens in the CDuce implementation.
While an empty return type could be reasonable for a non
terminating function, declaring/inferring an empty type for
parameters or local variables is more questionable: param-
eters and variables that are not allowed to carry values are
symptoms of latent bugs; in particular, a function with a pa-



rameter with an empty type is unusable, because it can never
be applied to any value.

3. Technical background

In this section we overview the main technical notions
employed in our formal treatment, and motivate them.

In the rest of the paper, values are modeled by finitely
branching trees which are allowed to contain infinite paths,
where nodes correspond to value constructors, and the num-
ber of children of a node corresponds to its arity. Infinite
paths can correspond either to cyclic values (for instance, a
record containing itself as a member), or to non-well founded
values that can be obtained by a diverging computation.

Analogously, type expressions are modeled by finitely
branching trees which are allowed to contain infinite paths,
where nodes correspond to type constructors, and the number
of children of a node corresponds to its arity; paths can be
infinite because types can be recursive. However, since types
always correspond to finite sets of definitions, differently
from values, type expressions are modeled as regular trees
(see below).

Trees with infinite paths arise also when considering proof
trees of coinductive judgments (see the next subsection).

A formalization of trees with infinite paths and their main
properties has been given by Courcelle [15]].

3.1 Types and trees
Recursive types are modeled by infinite but regular trees.

Definition 1. A regular tree is a possibly infinite tree con-
taining a finite set of subtrees.

Trees representing type expressions are regular because
each (possibly recursive) type is defined by a finite set of
definitions (that is, syntactic equations).

The following proposition states a well-known property
of regular terms [15].

A system of guarded equations is a finite set of syntactic
equations of shape X = e, where X is a variable, and e may
contain variables, such that there exist no subsets of equations
having shape Xy = X4,..., X, = Xo.

A solution to a set of guarded equations is a substitution
to all variables contained in the equations that satisfies all
syntactic equations.

Propostion 1. Every regular tree t can be represented by a
system of guarded equations.

We define types as all regular trees built on top of the type
constructors whose syntax is defined as follows.

T,p = 0]1]dnt]|null]|{)]| (f"7) | V72| T1AT
v = + |-
Since trees are allowed to be infinite (although regular), this
is not the standard inductive definition that would generate
just finite trees.

The type () represents all record values. The singleton
record types (f":7) and (f :7) represent all record values
containing the read-only, and the write-only field f, respec-
tively.

Union types 71 V7o and intersection types 71 Ao [8, 22]]
correspond to logic disjunction and conjunction, respectively.
Types 0 and 1 are the empty, and the universe (a.k.a. top)
type, int represents the set Z, and null denotes the singleton
set containing the null reference; the technical treatment can
be easily extended to include other primitive types.

Example 1. Let us consider the type 11 introduced in Sec-
tion such that 7y = nullV ({elem™:TYA(next™:1,)), and
let us fix T to be int for simplicity. Then T, is infinite but
regular and has only the following six subterms (in infinite
regular types a type can be subterm of itself as it happens in
this example):

m null  {elem™int) A(next i)

(elem™:int) (next™ir) int

Let us consider the types T, such that the following equa-
tions hold for all natural numbers 1.

7} = null
T = (pred®))

The type TONTLV .. N T, T} 1 . .. is infinite, and not regular.

We now introduce the notion of contractive type, which
allows us to rule out all those types whose intended interpre-
tation is not coinductive.

Definition 2. A type is contractive if all its infinite paths
contain a record type constructor.

The definition above requires all recursive types to be
guarded by a record constructor.

Example 2. The type 7 s.t. T = TV int is not contractive,
because there exists an infinite path whose nodes are all
labeled by the union type constructor.

int int nt

V—V — V --=-->

The type T s.t. T = (fT:7Vint) is contractive because all
infinite paths have nodes that are alternatively labeled by a
record and a union type.

o mnt nt
() — v D () — v D (R -

In the non contractive type 7 s.t. 7 = 7V int the intended
interpretation is the inductive one: [7] = Z (the coinductive
interpretation is the top type 1); in each proof tree showing
that a value has type 7 the right operand of the union
constructor has to be necessarily selected to actually check



something and “consume” the value [[6]. Hence, in this case
proof trees are required to be finite.

By contrast, in the contractive type 7 s.t. 7 = (fT:7Vint)
the proof tree showing that a value has type 7 can be infinite,
because each time the rule for record is applied, a check is
performed and the value is “consumed”. In case the value is
not-well-founded (that is, it is a circular object), the rule is
applied for an infinite number of times.

Non contractive types do not increase the expressive power
of the types, since a non-contractive type can be always turned
into an equivalent contractive one [6]. For instance 7 s.t.
T = TVint is just equivalent to int. Contractive types sim-
plify the formalization, indeed, several definitions and proofs
of the claims stated in this paper exploit the assumption that
types are contractive; furthermore, contractive types allow
optimizations when collecting the set of coinductive hypothe-
ses required to support coinduction in the implementation
(Section [6)).

For this reason, in the rest of the paper all types are
restricted to be regular and contractive.

3.2 Inference systems and proof trees

In the technical sections of the paper several judgments are
defined by means of inference systems [2]], and, depending
on the specific judgment, such inference systems are inter-
preted either inductively, or coinductively. For all considered
inference systems, the associated one step inference operator
is monotone (hence, negation is not used in the inference
rules), hence the existence of both the least and the greatest
fixed point, corresponding to the inductive and coinductive
interpretation of the system, respectively, is guaranteed by
the Knaster-Tarski theorem.

While the proof trees of inductive judgments have always
a finite depth, for coinductive judgments their corresponding
proof trees are allowed to contain infinite paths [26]].

Since we consider both inductive and coinductive infer-
ence systems, we adopt a standard notation [26] for distin-
guishing inference systems whose intended interpretation is
inductive from those having a coinductive intended interpre-
tation: in the latter case, the horizontal lines of the inference
rules are thicker.

4. Semantic subtyping

In the semantic subtyping approach subtyping is not defined
in terms of axioms, usually expressed with an inference
system, but coincides with set theoretic inclusion between
type interpretations:

T1 S T2 iff [[7'1]] g [[TQH.

The interpretation [7] of a type 7 is the set of values that
have type 7, hence, the definition of [7] directly depends on
the judgment, denoted in this paper by v € T, assigning types
to values.

[r]={v|ver}

As a consequence, besides types, in the semantic subtyp-
ing approach there are other two basic notions that have to be
necessarily provided:

o the set of values, and

e the judgment v € 7 has to be defined.

Since type interpretation does not depend on the notion of
term, but uniquely relies on values, semantics subtyping al-
lows a certain degree of language independence; such an
independence is reinforced by the fact that an abstract notion
of value is employed: values in type interpretations do not
coincide with concrete values manipulated by programs. For
instance, in our model fields are annotated with type informa-
tion usually not present in the runtime model of languages.
This abstraction allows the same definition of subtyping to be
successfully adopted for a family of programming languages
sharing some features.

Except for the basic types null and int for which the in-
terpretation is straightforward, the other values are records.
In the functional setting, immutable record values are maps
from field labels to values, and in the coinductive interpre-
tation they are allowed to be non-well-founded, that is, they
can be infinite trees.

For instance, the value uniquely defined by the equation
v = (f — v) corresponds to the immutable record with one
field f associated with the value itself; that is, v corresponds
to a cyclic object.

Mutable record values are more complex, since they have
also to carry the information specifying which values can
be safely stored in the fields of the record; for instance,
the interpretation of type (f~:intVnull) must contain all
record values where updating f with either an integer or
null is type safe, while (f~:int) must contain all record
values where updating f with an integer is type safe, and,
by contravariance, the type (f~:intV null) must contain less
values than those contained in (f ~:int): a record value where
updating f with an integer is type safe cannot be contained in
type (f ~:intV null) which can be safely used also in contexts
where f is updated with null.

Therefore the information “field f can be safely updated
with values of type 77 must be contained in record values;
a simple way to do that is associating field f with type 7,
thus introducing a circularity that requires to be properly
managed as explained in the rest of this section, since types
are interpreted in terms of types.

Values are all finite and infinite trees built on top of the
type constructors whose syntax is defined as follows (where
i€ 2).

v ou= | null | {(fi = (k1,01),- s fn = (Kn, pn))

k = 0|{v}



Record values are finite domain maps from field labels to
pairs, hence field names are implicitly assumed to be distinct,
and their order is immaterial. The first component of the pair,
K, is a set of cardinality < 1; when empty, it means that
its corresponding field is not readable; when it has shape
{v}, then the field is readable, and associated with value v.
The second component of the pair is a type that specifies
the values that can be stored in the corresponding field. We
denote with Rc the set of all record values.

As an example, the record value

(f = (0,1),9 — ({42},0), h — ({null}, int))

is the record value with three fields f, g, and h; field f is
write-only: the empty set () means that read access for f is
forbidden (hence, we do not know the value associated with
), while the top type 1 specifies that f can be safely updated
with any value; field g is read-only: it is associated with 42,
and its value can be read, while the bottom type O specifies
that g can be safely updated with no values; field h is read-
write: it is associated with the value null, which is allowed to
be read, and can be safely updated with values of type int.

There are three reasons that make the definition of the
judgment v € 7 non trivial.

1. Values can be non-well-founded and types can be infinite
regular trees, therefore the judgment has to be defined
coinductively; for instance, it should be possible to derive
veTwhenv = (f— ({v},0)),and T = (fT:7), that s,
the read-only cyclic record value v has the recursive type
T=(fT7).

2.1f 7 = (f:7), or 7 = (fT:7’), then the validity of the
judgment v € 7 depends on the validity of subtyping
between 7' and the type contained in the record value.
For 7 = (f7:7') this dependency is rather intuitive;
for instance, by contravariance, (f — (k,p)) € (f:7)
only if 7/ < p. For 7 = (f*:7') the situation is more
involved: (f — (k,p)) € {fT:7') requires k = {v'},
and v € 7/, but these requirements are not suffi-
cient to guarantee that (f — (k,p)) € (fT:7’) holds;
the condition 7/ < p is needed as well, otherwise
(ft7")A{f~:p) would be always non empty, even when
7' £ p. Indeed, if v € 7/, then we would get that
both (f = ({v},p)) € (f*:7') and (f = ({v'},p)) €
(f7:p) hold, hence (f — ({v'}, p)) € (fT:7")A(f":p)
would hold, and, therefore, (f*:7') A{f™:p) would be
non-empty. But assuming that {f*:7') A{(f~:p) is non-
empty, even when 7/ £ p, leads to unsoundness. Let us
consider, for instance, the following function declaration:
int foo ((fTunt) A(f :null) x) {

x.f=null;

return x.f+1;
}
The first line of the body of the function is type safe be-
cause x has type (f1:int) A (f:null), and (f*:int) A
(f~:null) < (f:null), while the second line is type safe

because x has type (fT:int) A(f~:null), and (f*:int) A
(f7imull) < (f*t:int); but if the type (ft:int) A
(f~:null) is not empty, then it would be possible to
call function foo with a value in (fT:int) A{f~:null), but
the execution of the body of the function would lead to a
type error.

3. There exists a circularity between the definition of v € 7
and 7 < 7/ that has to be properly managed, to show that
the two judgments are well-defined.

T1 STQ@(V’U.UEI’I]:}’UGTQ)
(f={ohp)el(ftm)ewerp<T)
(f=(rp)e(fm)eT<p

Such a circularity can be removed by replacing p < 7, and
7 < p on the second and third line with the definition of
semantic subtyping given on the first line:

(f—={vhp)elffimye ver, W' ep=v er)
(f (kyp)e(ffim) e (W eT=0 €p)

In this way we obtain a recursive definition for the judgment
v € 7 which does not depend on the definition of 7 < 7/;
such a definition has to be interpreted coinductively, since
v € 7 is expected to hold when v = (f — ({v},0)) and
7 = (fT:7). Unfortunately, the occurrence of = on the
right hand side of < makes the recursive definition of v € T
problematic, because both v € p and v’ € T occur negatively:
v’ € p = v e 7is equivalent to “not v’ € porv’ e 77,
and v' € 7 = v € p is equivalent to “not v’ € T or
v’ € p”. For this reason, the existence of the greatest fixed
point is not guaranteed, because the Knaster-Tarski fixed
point theorem cannot be applied. To avoid this problem, the
negative judgment v ¢ 7 is explicitly introduced and defined;
in this way, the definitions above can be rewritten as follows:

(f—= {v},p)el(ffir) e (ver, Yo' v' ¢porv er)
(f= (k) e(fim) = (VW grorv ep)

The definitions of the two judgments v € 7, and v ¢ 7 are mu-
tually recursive; for instance, (f — (k, p)) ¢ (f~:7) holds if
and only if there exists v s.t. v € 7, and v £ p (thatis, 7 £ p).
Unfortunately, such a circularity is problematic because the
judgment v € T is interpreted coinductively, whereas, by dual-
ity, v ¢ 7 requires an inductive definition; for instance, v ¢ T
must not hold when v = (f — ({v},0)), and 7 = (f*:7).
Mutual dependencies between coinductive and inductive judg-
ments is critical [28]], since neither the least fixed point, nor
the greatest fixed point semantics works properly for mu-
tually recursive definitions involving both coinductive and
inductive judgments; to our knowledge, no solution has been
proposed in literature for dealing with mutual recursion be-
tween inductive and coinductive definitions. To break such a
circularity we propose a simple approach which consists in
transforming the judgment v ¢ 7into I' - v ¢ 7, where I" is
a set of pairs (v, 7), each one corresponding to the hypothesis



v € T; accordingly, the meaning of I' - v ¢ 7 is as follows:
value v does not have type 7, under the assumption that v’
has type 7’ for all (v, 7') € T

In this way, v € 7 is defined in terms of both itself, and the
judgment I' - v ¢ 7, whereas I' - v ¢ 7 is defined only in
terms of itself; therefore, the definition of the two judgments
can be stratified: first, the least fixed point of the recursive
definition of I" - v ¢ 7 is considered, and its existence is
guaranteed by monotonicity, and the Knaster-Tarski theorem.
Then, on top of the judgment I" - v ¢ 7, the judgment v € T
can be defined coinductively; also in this case, the existence
of the greatest fixed point is guaranteed by monotonicity, and
the Knaster-Tarski theorem.

The complete definitions for the two judgments v € 7 and
I' - v ¢ 7 is given in Figure[I]and Figure 2] respectively. We
recall that both v € 7 and I' F v ¢ 7 are semantic judgments
used to interpret types, and not intended to be computable
(indeed, they are not, because values are allowed to be non
regular).

Except for the cases on record types, all rules of FigurelT]
are straightforward. In rule (rec €) (.. .) denotes any possible
record value. The premises of rule (rec™ €) are equivalent
to the condition that for all v either v does not have type 7,
or v has type p (that is, if v has type 7, then it has also type
p, and, hence, 7 < p); the negative version of the judgment
v € T requires a set ' (which is existentially quantified)
of abducted assumptions that have to be verified (hence,
V(Ur, TF) e I'.vr € ).

Similar comments apply for rule (rec™ €), but here p is
expected to be a subtype of 7 (recall the explanations given
in item 2 on page B]); furthermore, v € 7 must hold.

Also for the rules in Figure 2| defining I' - v ¢ 7, we
comment the less trivial cases, that is, when record types are
considered.

The judgment I' F v ¢ (f:7) is derivable in two cases;

e rule (rec™ 1 ¢): v is not a record value, or is a record value
with no field f (condition v # (f — _,...));

e rule (rec”2 £): v = (f — (L, p),...) and 7 £ p, hence,
there exists v’ that has type 7 (condition (v’, 7) € I') but
does not have type p (premise I' - v’ ¢ p).

The judgment ' - v ¢ (fT:7) is derivable in three cases;

e rule (rec™1 £): v is not a record value, or is a record value
with no field f (condition v # (f — _,...));

o rule (rec™2 €):v = (f — (,,p),...) and p £ T, hence,
there exists v’ that has type p (condition (v', p) € T') but
does not have type 7 (premise I' - v ¢ 7);

e rule (rec™3 ¢): v = (f — (k,-), .. .), where either k = (),

or K = {v'}, but v does not have type 7 (premise
T'Ev ¢r1).

We have arranged the recursive definitions of v € 7 and
I' v ¢ 7 in such a way that we know that there exist the
greatest and the least fixed point for the former and the latter

judgment, respectively. However, we need to show that one is
the negation of the other. This is guaranteed by the following
two lemmas.

In the following we denote by OK ™ the set of all correct
assumptions I', that is, those containing only derivable pairs:

I € OK" iff v € 7 is derivable for all (v,7) €T.

Lemma 1. If there exists T € OK' st. T F v ¢ 7 is
derivable, then v € T is not derivable.

Proof. The proof is based on a main lemma proved by
arithmetic induction and based on the approximation of
'Fvgr,andv e . ]

Lemma 2. IfforallT' € OK" T' v ¢ 7 is not derivable,
then v € T is derivable.

Proof. The proof is based on a main lemma proved by
arithmetic induction and based on the approximation of
'Fvgr,andv e . O

4.1 Laws

We conclude this section by showing some of the main laws
satisfied by the semantic model, and exploited in the next
section for defining the subtyping rules. Most of the proofs
of these laws are tacitly based on Lemma|[I]and Lemma 2]

As discussed in Section 2] the intersection between read-
only and write-only record types, (f1:71) A {f :72), is non-
empty only when 75 is a subtype of ;.

Law 1. [(fT:m)A(f7m)] # 0 iff [2] C [71]-

Some (but not all) of the laws that hold in a functional
setting where record fields are immutable [4]] can be proved
for mutable fields as well.

A first example of law that holds also for mutable records
concerns empty read-only records.

Law 2. [{(fr)] =0if[r] =0

As opposed to records with read-only fields, records with
write-only fields can never be empty.

Law 3. [(f=m)] #0

In particular, the type (f :7), where [7] = (), represents
all records having field f.

ﬂw 4-@ [(f=m)] < [(fF=m)] and [{(f ")) S [(F )] if

Intersection and record types behave as expected.
Law 5.
L [({(frm)A{(fTm)] = [(fhmAR)]
2. [N ()] = [(Frmvm)]

Surprisingly, union types do not behave similarly, as
revealed in Section

Law 6.



L [(frr)v(ffim)] C [(ffmvm)]
2. [{(frmvn)] € [(frm) V()]
3 [ V()] € [(frmAT)]
4. [{(fmmAm)] € [(f7m)v(fTm2)]

We have already shown in Section[2.6|why (f i Vrs) <
(f*f:r) V(f*m) is unsound; an analogous example shows
why (f i ATe) < (fm) V{(f:72) is unsound. If 7y =
nullV bool and 79 = nullVint, then Ty Ao = null, and the
following inequalities can be deduced.

(f~null) AN{fT:nullVint V string) <
((f~ nallV bool) V { f ~:null Vint) ) A
(ftnullVintV string)

(f~:null) AN{fT:nullVint V string) <
(f~:nullVint) A(f T inullVint V string)

The last deduced inequality is unsound, because field f of
the rhs type can be updated with integer values, but not field
f of the lhs type.

Finally, the following law concerns the relationship be-
tween read-only and write-only records with the same field.

Eaﬁv 7.®For all 7y, 7o, [{f )] C [{f:m)] iff [11] = 0 or

5. Subtyping

In this section we show how subtyping can be defined by
a system of subtyping rules which are sound and complete
w.r.t. the semantic subtyping induced by the model defined
in the previous section. Such a system drives the Prolog
implementation detailed in Section [6]

5.1 Or- and and-sets

To simplify the subtyping rules and make the subtyping
algorithm more effective, besides considering only regular
and contractive types (we recall the comments in Section [3)),
union and intersection types are generalized to allow union
and intersection over finite non-empty sets of types.

mu= 0]1]dnt]|null]| )| (f"m)

| V{1, ..., } | AN, ..y} (0>0)
ou= V{s1,...,%u} |5 (n>0)
cu= M, ottt (n>0)

0|1]dnt]|nulll)|{(f"m)

§
|

Figure 3. Types with or- and and-sets

The type V{m1,...,m,} (called or-set) represents the
union of the types 71, .. ., 7, and A{mq, ..., 7, } (called and-
set) represents the intersection of the types my, . .., my,.

The meta-variables ¢, ¢, and o range over subsets of types
that will be used in the subtyping rules. In particular, in a
o type each type which is not guarded by a record type is
guaranteed to be in disjunctive normal form (see the next
subsection).

For the subtyping rules we assume that types adhere to
the more abstract syntax defined above, types expressed with
the syntax defined in Section [3(that is, where binary union
and intersection constructors are employed instead of or- and
and-sets) can be easily transformed to match the new syntax.

The judgment 7 ~» 7, coinductively defined in Figure 4]
is used to transform all binary boolean operators into the
corresponding and-/or-sets (where repetitions are removed).
For instance intvVnullVint ~» V{int, null}, and (intVint)A
(intVint) ~> A{V{int}}; clearly, V{m} and A{r} are both
equivalent to 7, but for keeping definitions simpler we avoid
this further simplification of singleton or-sets and and-sets.

7 € {null, int, (),0,1}

T ~> T
T (frm) ~ (frm)
TLM ML Ty My TLNS T Ty v T

T1IVTo ~ 1 Mo TI ATy ~ 1 7o

Figure 4. Definition of 7 ~» w
The definition uses two auxiliary operators: M and I, their
definitions are given in Figure []in terms of the parametric

operator lo, where o can be instantiated with either V or A.

m g = aS

SlUSQ if7T1:OzS1 andﬂgzaSg
with § = {’/Tl}USQ 1f7r17éa{} and7r2:a52
51U{7T2} if 11 = aS; andwz#a{...}
{m}U{m} ifm #af. ..} andme # o{...}
n>1

|2|7ri:7rllz|...lﬁl7rn,1lgl7rn
i=1

1
o] o=
=1

Figure 5. Definition of auxiliary operators

The operator 7 M 7o (71 W 7o respectively) returns a
flattened or-set (and-set) that represents the union (intersec-
tion) of 71 and 79, and, therefore, enjoys all the property of
set-theoretic union (intersection).

For simplicity, in the examples we keep the syntax defined
in Section

5.2 Type normalization

Besides employing or- and and-sets, we assume that types
are initially normalized (see function norm defined below),
that is, they are put in disjunctive normal form (DNF), and
simplifications are applied to record types (see function simp
defined in Figure[8).

Since type normalization does not enter record types, it
is performed lazily, therefore, while we assume that types
are initially normalized before checking subtyping (hence,
function norm is tacitly applied), function norm is also



explicitly applied to types in the subtyping rules whenever
the type of a record field is accessed.

Function dnf, defined in Figure|7|along with dstr, puts
a type in DNF; it is the identity function when restricted to
basic types ¢. Function dstr takes as input an and-set of types
that are already in DNF, and returns an equivalent type in
DNF by applying the distribution property of intersection
over union.

For instance: dstr(A{V{(fT:int), int}, null}) =
VN fFint), null}, A{int, null}}

Function simp is applied to types ¢ in DNF to simplify
record types inside or/and-sets types according to Law [j]
proved in Section[d} [(f+:m) A(fTima)] = [(fHmiAm)],
and [(f =) A(f =ma)] = [(Fm V)],

simp(V{s1, .- sn}) = Mi—; simp(<;)

simp(AN{(fTme), oo, (Fhmn), oo, }) =
(FRNy mi) W simp(A{e, s en,})
ifn > 2and ¢, # (fT:)Vi € [1,m]

simp(A{{(f 7)., (fTmn), b, ot }) =
(f=M mi) W simp(A{dh, .. e })
ifn>2and . # (f:)Vi € [1,m]

simp (o) = o otherwise

Figure 8. Simplification of types

Function norm corresponds to the composition of the two
functions simp, and dnf:

norm(m) = simp(dnf (7)).
Lemma 3. 7] = [norm(n)].

Proof. The dnf and simp functions apply the distributive law
and Law [3] respectively. O

5.3 Subtyping rules

We define a subtyping judgment with a system of subtyping
rules which are sound and complete w.r.t. the definition of
semantic subtyping.

According to Law([7] [(f*:m1)] C [(fm2)] iff [m] = 0
or [m3] = 0, therefore the definition of the subtyping judg-
ment depends on the definition of the judgment for checking
whether types are empty. These two judgments cannot be
merged because subtyping is coinductively defined, whereas
emptiness is inductive. By Law [I] [{f i) A(f im2)] = 0
iff 2] & [7r1], therefore the judgment for type emptiness is
defined in terms of the negation of the subtyping judgment,
which, in turn, is defined in terms of the judgment for non
emptiness of types, because [7] # 0 iff [x] € 0; again,
these two judgments cannot be merged, since non-emptiness
is coinductive, whereas negation of subtyping is inductive.
Finally, again by Law [I] the definition of the non-emptiness

judgment depends on the definition of the subtyping judg-
ment.

The dependency graph between these four judgments is
depicted in Figure 9]

<« -
m <M —> g~ —>m LT —> T2

Figure 9. Dependency graph between the four judgments

As happens in Section 4| for the definition of the coinduc-
tive judgment v € 7, and its negation, there is a circular defi-
nition involving coinductive and inductive judgments that has
to be broken; the dashed edge in the picture corresponds to the
dependency which is removed as similarly done in Section [4}
the judgments for emptiness, non-emptiness and negation
of subtyping use a set II of abducted pairs (71, 72) corre-
sponding to the assumptions that norm(m) < norm(ms)
holds. In this way, there is no circularity involving coinduc-
tive and inductive judgments, the coinductive judgment for
non-emptiness is defined only in terms of itself, and is used
by the judgment for negation of subtyping, which is used by
the inductive judgment for emptiness, and, finally, the coin-
ductive judgment for subtyping depends on the judgment for
emptiness. For these reasons, the definitions of the judgments
are stratified and fixed points are computed as follows: first,
the greatest fixed point of the recursive definition of non-
emptiness; then, the least fixed point of emptiness, and the
least fixed point of negation of subtyping; finally, the greatest
fixed point of the recursive definition of subtyping.

Subtyping has to be interpreted coinductively because
if 71 = (fThnull) vV {fT7), and 70 = (fTnullVTs), then
71 < 72 must hold; therefore, with a syntax directed defini-
tion of the subtyping judgment the derivation for 71 < 79
must contain 7, < 79 itself in the descendant nodes of the
derivation tree. By duality, negation of subtyping has to be
interpreted inductively.

Non emptiness has to be interpreted coinductively because
if 7 = (f™:7), then 7 must be non-empty; therefore, with a
syntax directed definition of the non emptiness judgment the
derivation for () = 7 2 () must contain () - 7 2 ( itself in the
descendant nodes of the derivation tree. By duality, emptiness
has to be interpreted inductively.

All rules in this section are deliberately non algorithmic
in order to provide a high level specification of the subtyping
algorithm: in particular, several rules overlap, and some
of them have premises with existential quantification. In
Section [6| we show how these rules can be made algorithmic
and effectively implemented.

The non emptiness judgment IT + o % () is defined in
Figure[10]

Rule (V 7 () states that a union type is not empty if at
least one of its operands is not empty.

Rules (any 2 (), (simple 2 (), and (rec 2 () state that
the types 1, int, null, () are non empty, as expected.



Rule (rec-r % () is driven by Law [2] which states that
[(ftr)] = 0iff [r] = 0; since normalization does not
propagate inside record types, the type of field f has to be
normalized with function norm.

Rule (rec-w 2 ()) is driven by Law [3| which states that
[(f=m)] # 0.

All the remaining rules deal with intersection types.

Rule (Asinglez () corresponds to the base case consisting
of singleton and-sets.

Rule (Aany# () deals with the simple case when an element
of the and-set is 1; the judgment IT = A{1} % 0 can be
correctly derived thanks to rule (Asinglez ().

Rule (Arec % ()) deals with the simple case when an
element of the and-set is (); all other elements in the and-set
must not be primitive types; the judgment IT - A{{()} 2 0
can be correctly derived thanks to rule (Asinglez ().

Rule (r A w % 0) is the only one that requires the use
of IT; if both (f*:7r) and (f :7’) are contained in the same
and-set then by Law [I] their intersection is not empty only if
7' < 7. To break circularity the rule requires the assumption
7' < m with the side condition (7’ 7) € II. Furthermore, the
intersections of the record types with the rest of the and-set
must be non empty.

Rules (rA 20) and (WA #0) deal with the simpler cases
where the and-set does not contain two record types with
the same field, and different annotations (recall that type
normalization exploits function simp which merges together
record types in and-sets with the same field and annotation);
this covers also the case where there are record types with
different fields, since they cannot interfere. Rules (rA 2 0)
requires also the premise I F norm(w) % 0 (as for rule
(rec-r #£ (), the type of the field has to be normalized with
function norm, since normalization does not propagate inside
record types) because, by Law [2] the type of the field of a
non empty covariant record type must be non empty.

The inductive rules for checking emptiness of a type are
defined in Figure[TT]

As depicted in Figure 0] the judgment IT - o ~ 0 is
defined in terms of the judgment IT - oy £ o9, which is
interpreted inductively as well.

Rule (Vv ~ () states that an or-set is empty if all of its
elements are empty.

Rule (A ~() states that an and-set is empty if at least one
of its elements is empty.

Rule (rec-r~ ) is based on Law a covariant record type
is empty if the type of its field is empty; as in other cases,
type normalization has to be propagated to the type of the
field by applying function norm.

Rule (empty ~ () is immediate.

Rule (Aprim ~ ()) states that an and-set is empty if it
contains at least two different types ¢ and .’ when one is
either null or int, and the other is not 1.

Finally, rule (r A w ~ () is the only one which requires
the use of the judgment IT - 01 £ 0; by Law/[I] an and-set

containing both (fT:7) and (f:7’) is empty if 7’ is not a
subtype of 7.

The inductive rules defining the judgment IT F o1 £ o9
are defined in Figure[12]

Rules (any %) and (simple£) deal with the cases involving
two basic types in {null, int, (), 1}.

Rules (I-or£) and (r-or¥) deal with or-sets; the former
corresponds to the set-theoretic property AUB C C = A C
C,thatis, A Z C' = AUB ¢ C, while the latter corresponds
to a property which is peculiar of this type system, and does
not hold in general for sets.

Similarly, rules (I-and¥) and (r-and¥) deal with and-
sets; the former corresponds to a property which is peculiar
of this type system, and does not hold in general for sets,
while the latter corresponds to the set-theoretic property
ACBNC=ACB,thatis, AZ B=AYZ BnC.
In particular, rule (I-and¥) requires the additional premise
IT = A{eq, ...t} % 0, otherwise it would be possible to
derive invalid judgments, as IT = A{null, int} £ ().

Rule (empty «£) uses the judgment for non emptiness,
and deals with cases when the type on the right-hand side is
empty, but the type on the left-hand side is not; in this way
it is possible to cover situations that are not considered by
other rules; for instance, rule (empty <) is required to derive
IT+ int £ V{A{0,int},0}.

Rule (r\w¥) is driven by Law 7| stating that [(f*:7;)] C
[(f~:72)] iff [71] = 0 (and hence, by Law 2} [(fT:m)] =
0) or [r2] = 0, while rule (w\r£) states that (f :oq)
can never be a subtype of {fT:05) for any o1, 02; indeed,
(f = (0,01)) € [{f:01)], but (f — (0, 01)) never belongs
to (fTio9).

Rule (rec¥) states that two record types with different
fields can never be in subtyping relation, independently of
the variance annotations.

Finally, (w\w«) and (r\r¥) are the counterparts of the
standard rules for contravariant and covariant record subtyp-
ing, respectively; as in analogous cases, type normalization
has to be propagated to the types of the fields by applying
function norm.

The coinductive rules defining the subtyping relation can
be found in Figure[I3]

Subtyping is the only judgment that does not depend on
a set of assumptions; we recall that the set II of subtyping
assumptions is required for breaking the cyclic dependency
between the non emptiness and the subtyping judgment. Of
course, such assumptions need to be verified by the subtyping
judgment. In Section [6] the existential quantification over
subtyping assumptions in the premises of the subtyping rules
will be removed, and the set of assumptions will be abducted
by the implemented algorithm. In the typing rules, which are
expressed in a purely declarative way, II can be considered
as an input to the judgments, whereas in the implementation
it is actually an output.



Rule (prim<) imposes reflexivity between the primitive
types null and int.

Rule (empty<) states that an empty type o; is always
in subtyping relation with any type; however, all subtyping
assumptions in II required to derive that o; is empty need to
be verified. Furthermore, types in I have to be normalized.

Rules (I-or<) and (r-or<) deal with or-sets, whereas (r-
and<0) and (I-and<0) deal with and-sets. While rules (1-or<)
and (r-and<) are standard and can be correctly read in
both directions (hence, set-theoretically, they are sound and
complete), in set theory rules (r-or<) and (I-and<) are sound
but not complete; nevertheless, they are also complete in this
type system.

Rule (any<) states that type 1 is a supertype of any type.

Rule (r\w<) is driven by Law [7| which states that
[(fTm)] C [{(fm)] iff [11] = 0 or [r] = 0. As for
rule (empty<), all subtyping assumptions in II required to
derive that 7 is empty need to be verified, and types in II have
to be normalized. The case when the type on the left-hand
side is empty is covered by rule (empty<).

Rules (r\r<) and (w\w<) are the standard ones for co-
variant and contravariant subtyping, respectively.

Finally, rule ({) <) states that type () is the supertype of
all record types.

Before stating and proving the main results on the defined
judgments, we provide an example of derivation tree for the
subtyping judgment 73 < 7y where 73 and 7; correspond
to the normalization of types in the example in Section
on unmodifiable/modifiable linked lists; for simplicity, we
assume that the type 7" of the elements of the lists is int.

71 = V{null, AN{S1}}

73 = V{null, AN{S2}}

Sy = {(elem™:int), (nextt:m)}

Sy = S1 U {{elem™ :int), (next™:73)}

The infinite, but regular, proof tree for 3 < 7 is the
following one

(prim<)

AN{S2} < A{S1}
(r-or<)
/\{52} S T1

null < null

(r-or<)
null < 1

(I-or<)
3<T

where the proof tree for A{S2} < A{S} is as follows

N{S2} < <.elem+:z'nt> NSz} < %n6$t+57'1>
AS2} < A{S1}

(r-and<)

and the proof trees for A{So} < (elem™:int) and
A{S2} < (nextt:ry) are
Pt < int
(elem™:int) < (elem™ :int)
AS2} < (elem™:int)

(r\r<)

(l-and<)

T3S T1
(nextt:3) < (nextt:r)
AS2} < (nextt:7)

r\r<)

(l-and<)

The vertical dots in the premises of 73 < 71 mean that the
tree is infinite (although regular) and the derivation continues
as already specified above.

5.4 Main results

We provide the main claims stating that the judgments are
well-defined and the subtyping judgment is sound and com-
plete w.r.t. semantic subtyping. All proofs can be found in
the Appendix.

Lemma 4. IfII € OK" and 1 + o % () is derivable, then
I1 + o ~ 0 is not derivable; if there exists II € OKY s.1.
I+ o1 £ o9 is derivable, then o1 < o9 is not derivable.

Lemma 5. If 11 € OK" and 1 + o % 0 is not derivable,
then II &+ o ~ O is derivable; if for all I € OK".
I+ o1 £ o9 is not derivable, then o1 < o4 is derivable.

The proofs of the two lemmas above follow the same
technique adopted for Lemma|[I]and[2]in Section

The next two theorems state soundness and completeness
of the subtyping rules. All types are assumed to be in normal
form.

Theorem 1 (Soundness). If w1 < o, then [11] C [72].

Proof. The proof exploits the approximations of the four
judgments. O

Theorem 2 (Completeness). If [11] C [2], then 71 < 7.

Proof. By Theorem [I] Lemma [] and Lemma [5 and by
contraposition. O

6. Algorithm and implementation

From the inference rules defined in Section[3]it is not possible
to directly derive an algorithm for deciding semantic sub-
typing between coinductive types. In particular, coinductive
judgments, and abduction of sets IT of subtyping assumptions
have to be implemented.

Once that Lemmad]and[5]prove that the judgment defining
«£ is actually the complement of <, negation can be exploited
in the pseudo-code defining the algorithm, hence subtyping
depends on emptiness which in turns depends on the negation



of subtyping, therefore only the two predicates subtype and
is_empty nNeed to be defined: the former is coinductive and
depends on the latter which is inductive and depends on the
negation of the former. To break circularity, the is_empty
predicate abducts sets II of pairs (7, 72) corresponding
to the assumptions norm(wy) £ mnorm(ms), as opposed
to what happens in the inference rules in Section [5] where
judgments refer to sets IT of positive hypotheses norm(m) <
norm(ms).

Pseudo-code for predicate is_empty is defined in ListingE];
to be closer to the real prototype implementation in SWI Pro-
log, pseudo-code is expressed with high-level Horn clauses
where some details have been abstracted away; furthermore,
some auxiliary predicates have been omitted, and their behav-
ior is only specified informally.

Atom is_empty (o, 1) succeeds if o (a simplified type in
DNF) is empty under the assumptions in set II; hence, o and
II are treated as input and output, respectively. The predicate
is defined in terms of another predicate with the same name,
but four arguments:

e input o: the simplified type in DNF that has to be checked;

e input U: the set of coinductive hypotheses, corresponding
to the types on which emptiness has been already checked;
this is essential to guarantee termination in presence
of recursive types (that is, cyclic Prolog terms); since
types are contractive, only non basic record types (that
is, (fT:ext) or (f:ext), but not ()) need to be added to
U, since, by contractivity, an infinite path in a recursive
type must necessarily involve a record type. The same
consideration applies for the subtype predicate defined
below.

input II': the initial set of abducted assumptions; indeed,
this argument is used to accumulate abducted assump-
tions;

e output IT: the final set of abducted assumptions, returned if
o can be empty; the invariant IT' C II always holds, that is,
the returned final set IT of abducted hypotheses is always
a super-set of the initial set II’ of abducted hypotheses.

Except for the first straightforward rule dealing with the
empty type 0, all other rules are applicable only if ¢ ¢ W, to
ensure termination if a recursive type is processed more than
once. In this case the predicate has to fail; for instance, this
happens when o = (fT:0).

The two rules dealing with union types are intuitive,
whereas the rule for intersection types is more involved. The
auxiliary predicate partition_by_field, whose definition has
been omitted, partitions the set A{¢1, ..., ¢y} in two collec-
tions, recsMap and others. The former is a map containing
all basic types of shape (f*:7), indexed by their fields; since
types are normalized, each field f can be mapped at most to
the two types (fT:_) and (f™:_). The latter is a set containing
all other basic types 0, 1, int, null, or ().

The first part of the body of the clause covers rule (A=),
instantiated with ¢ = 0, and rule (Aprim~ ().

The remaining part (get_keys (RecsMap, Fs), ...) COVers
rule (A=), instantiated with « = { f:7), and rule (rAw=()).
The auxiliary predicate get_keys, whose definition has been
omitted, returns all fields which are mapped to some record
type. Predicate is_empty_and tries to apply to some existing
field either rule (A~ (), instantiated with + = {f*:7), or rule
(rAw=2()). This latter rule is applicable only when mo £ 71,
hence the pair (mq,71) is added to the set of abducted
assumptions. The auxiliary predicate 100kup, Whose definition
has been omitted, returns the set of records associated with a
specific field in the map.

Pseudo-code for predicate subtype is defined in Listing @
the main predicate is defined in terms of an auxiliary predicate
with the same name but one more argument.

In subtype (¥, o1, o2) all arguments are considered as
input; subtype (¥, o1, o2) succeeds if oy is a subtype of o2
(where both types are simplified and in DNF), under the set ¥
of coinductive hypotheses, corresponding to the pairs of types
on which subtyping has been already checked; again, this is
essential to guarantee termination in presence of recursive
types. As opposed to what happens for the inductive predicate
is_empty, the coinductive predicate subtype succeeds if the
pair consisting of the two types o1, and o9 belongs to W.

The clauses defining subtype (¥, o1, o2) are very similar
to the rules defined in Figure [13] except for some cases. A
clause has been added to ensure termination in case of re-
cursive types, for dealing with coinduction: if (o1, 02) € ¥
holds, then the predicate succeeds by virtue of the coinduc-
tive interpretation. Iteration over the elements of or-sets and
and-sets in rules(l-or<) and (r-and<), respectively, is imple-
mented through recursion, hence, two clauses have added to
deal with the base cases. Finally, the clauses corresponding
to rules (empty<) and (r\w<) use negation, because, as al-
ready explained, this allows an implementation based on the
definition of just two predicates, instead of four.

6.1 Prototype implementation

We have developed a prototype implementation in Prolog;
besides allowing rapid prototyping and conciseness, Prolog
has the advantage of offering native support for cyclic terms,
unification, and backtracking. In particular, backtracking is
needed to properly deal with abducted assumptions. Consider
for instance the type

o = VA1), (f Ty} A{(f T enaadd), (f7:1) 3}

whose semantics is the empty set. The atom is_empty (o, )
succeeds for two different sets of abducted assumptions,
I = {(null, 1)}, or IT = {(1, null)}; in this case, only the
second set of assumptions holds (that is, 1 is not a subtype of
null).

Besides the implementation shown here, we have experi-
mented another solution based on the implementation of the



judgments IT - o ~ () and o1 £ 3. Since both judgments
are inductive, in this case stratification is not needed, and the
benchmark shows that this last solution seems to be more
efficient.

The benchmark consists of more than a hundred tests,
including all examples presented in Section Section 2] Exper-
iments have been performed with SWI Prolog 7.2.3, running
on a 17-3610QM machine with GNU/Debian.

123 tests £
Total time: 1.7e+00s
Average time: 1.4e-02s
Total number of inferences: 14 620 376
Average number of inferences: 118 865

Table 1. Benchmark results summary

The implementation based on £ performs two order of
magnitude better than the one based on <.

We conjecture that this difference is due to the fact that the
implementation based on £ employs two inductive predicates
and hence does not rely on stratification.

More details on the experimental results can be found in
the documentation of the accompanying artifact.

6.2 Termination

We provide a proof sketch for termination of predicate
is_empty.
The measure of the function isempty is defined by the
function D(¥, o).
D(¥,0) =
1+ 3", D(¥,q)ifo =V{s,....sn}
1432 ,D(P, ) ifo=A{t1,...,tn}
1+D(WU{c},norm(n))ifoc = (frm) Ao g ¥
lifo={(ftm)Aoce¥
lifo € {(f™), int, null,0,1}
For instance, let T = (f*:int) Vv (g*:T'), then we have that
norm(T) = V{{f*:int), (¢:T)}, and then:

DO, V{(fTint), (g":T)}) =

L+ DD, (ffint)) + DD, (9:T)) =

1+ (1 +D{{ftint)}, norm(mt)))+
(1+D({{g"T)}, norm(T)})) =
3+ (L+D({(g™D)}, V{(fTuant), (g"T)}})) =
{

4+ (1+D{{g™T)}, (fTrint))+

D({(g"T)}, (g":T))) =

5+ (1+D({(g:T), (fHint)}, norm(znt)))+1 =
8

The function D(V, o) is well-defined, and returns positive
numbers. The type o is regular and contractive, hence the
set of its subtrees is finite; V{s1,...,¢, } and A{eq, ..., tn}

are always bounded. The set ¥ can contain only subtrees
(eventually normalized) of o, hence is bounded.

The set IT can contain only pairs of types that are subtrees
of o, hence its size is bounded.

We now prove that the measure strictly decreases for each
recursive occurrence of the predicate.

When o = (fT:7) let D(¥, o) be the measure value, then
the value for the recursive call is D(¥ U {o}, norm(n)) and
D(Y U {c}, norm(m)) < D(¥,0).

When 0 = V{c1,...,5,} let D(¥,0) be the measure
value, then the value for the first recursive call is D(¥, 1 ) and
D(¥,¢1) < D(V, 0); the value for the second recursive call
isD(P,V{s2...cn}) and D(¥,V{sz...sn}) < D(¥,0).

When 0 = A{i1,...,tn} let D(¥,0) be the measure
value, then the value for the recursive call is D(V, ¢;) where

= (ftr) and D(¥, ;) < D(¥,0).

As done for is_empty, we provide a proof sketch for
termination of predicate subtype, based on the definition of
a similar measure. We define pj;(¥) as the set of the i-th
component of the pairs in U.

’D(\I/7 o1, U2) = 2%:1Z?:1Daux (p]z(\Ij)v Jj)
Douz(¥,0) =
1422 1 Doue (¥, ) if o = V{s1,...,%n}
14+ 37 1 Doua (U, 1) if o = A{t1,. .. tn}
14 Doz (P U {c}, norm(m)) ifo = (f'm) N\o ¢ T
lifo=(f"myANoceT
lifo € {int,null,0,1}

We now prove that the measure strictly decreases for each
recursive occurrence of the predicate.

When o1 = V{¢1,...,6,} let D(¥,01,02) be the mea-
sure value, then the value for the first recursive call is
D(\II7 S, 02) and Daua: (pjl (WL §) < Dauw (pjl (\II)’ Ul); the
value for the second recursive call is D(¥, V{2, ...,y },02)
and Daux(pjl(\l’)7 \/{§2a e 791}) < Daum(pjl(\l/)a Ul)-

When o9 = V{¢1,...,6,} let D(¥,01,02) be the mea-
sure value, then the value for the first recursive call is
D(\I/, 01, gl) and Daum(pj?(\p)a <1) < Dau:c(pj2(\11); 02);
the value for the second recursive call is D(¥, o1, V{s1,...,$n})
and Dy (ij(\I’); \/{gla sy gn}) < Daua (ij(\I/)a 0'2)-

In the case corresponding to rule (empty) let D(V, 01, 09)
be the measure value, then the value for the first recursive
call is D(V, norm(m), norm(mz)), since II contains only
subterms of o5 we have that D(U, norm(my ), norm(ms)) <
Z?:lpaux (pji(¥), 02).

When o1 = A{i1,...,t,} let D(¥,01,02) be the mea-
sure value, then the value for the first recursive call is
D(\Ija L1, 02) and Daum(pjl(qj)a Ll) < Daux(pjl(qj)u Ul);
the value for the second recursive call is D(U, A{t2, ..., tn}, 02)
and Doy (pj1(P), M2, ...y tn}) < Dauz (pj1(¥),01).

When o3 = A{t1,...,tn} let D(¥, 01, 02) be the mea-
sure value, then the value for the first recursive call is
D(\I/, 01, Ll) and Daux(pj2(\ll)a Ll) < Daum(pj2(qj)a 02);



the value for the second recursive call is D(¥, o1, A{t2, . .
and Daux(pjg(\lf), /\{LQ7 ey Ln}) < Daux(ij(\P); 0'2).

When o1 = (f*:) and 05 = (f7), let D(¥, 01, 02)
be the measure value, and ¥/ = {(01,02)} U U; then the
value for the recursive call is D(U, norm(m ), norm(ms));
note that 7 and 7o are subterms of norm(w) and that
Daue (0i2(¥), norm(m1)) + Daue(pj2(¥), norm(ms)) <
Daus (pja(P), 02).

When o = (f*imy) and 05 = (fTima), let D(¥, 01, 02)
be the measure value, and ¥/ = {(o1,02)} U U; then the
value for the recursive call is D(V’, norm(my ), norm(mwa))
and Dyye(pj1(V'), norm(m)) < Daus(pj1(¥),o1) and
Doz (pg2(V'), norm(m2)) < Daua (pj2(V), 02).

When o1 = (f ) and 0o = (f:ma) let D(V, 01, 09)
be the measure value, and ¥’ = {(01,02)} U ¥ then the
value for the recursive call is D(¥’, norm(ns), norm(my))
and Dayz (pj1(¥'), norm(m1)) < Dauz(pj1(¥),01) and
Daux(p]é(\l//), no"’m(ﬂ'Q)) < Daux(ij(\P); 0'2)-

7. Conclusion

In this paper we have investigated a coinductive semantic
model for record types with read/write field annotations,
supporting union, intersection, and recursive types.

We have provided an interpretation of types which accom-
modates read/write annotations with the semantic subtyping
approach, so that subtyping corresponds to set inclusion be-
tween type interpretations. Although intuitive, the model
poses some challenging issues, since subtyping is defined in
terms of values, but values in turn contain type annotations
to indicate what can be safely assigned to fields. This leads
to a circular definition between the coinductive judgment for
typing values, and its negation, which is inductive; to break
this circularity, the inductive judgment depends on a set of
type assumptions on values that must hold for the judgment
to be derivable.

The semantic model has allowed us to study the main laws
underlying subtyping for record types with read/write field
annotations, supporting union, intersection, and recursive
types.

Furthermore, we have tackled the challenging problem of
defining a system of subtyping rules which are sound and
complete w.r.t. the definition of semantic subtyping. Similar
issues concerning circularity between coinductive judgments
and their corresponding negations (which, by duality, are
inductive) have been faced.

In Section [l we show how such rules can be effectively
implemented.

To our knowledge, this is the first implementation of a
sound and complete procedure to decide subtyping for record
types with read/write field annotations, supporting union,
intersection, and recursive types.

There are several interesting directions for future exten-
sions to types and the corresponding subtyping relation. In
Section [2] we have shown that union and intersection types to-

Syin})

gether with read/write annotations can be used to enforce
monotonic initialization for fields; for instance, the type
(FTinullvT)YA(f~:T) allows field f to be associated with
the initial null value, but forces any assignment to f to store
a non-null value (if we assume that null £ T'). Once a value
of type T has been assigned to field x. f, a system supporting
strong updates would allow narrowing the type of = from
(FTnullvTIN(f~:T) to (fT:T)A(f~:T); in general, to be
sound, such a narrowing requires non trivial points-to anal-
ysis, because x could be aliased by a variable y having the
subtype (fT:nullVTYA{f~:nullVT), hence the null value
could be reassigned to field x. f through y. While write-only
fields allow safe contravariant subtyping, it would be also
possible to introduce record types (f©:T') with write-only
invariant fields, s.t. {f©:Ty) < (f°:T3) iff T} = Ts. Invari-
ant write-only fields support strong updates without requiring
points-to analysis: for instance, after field z. f is assigned to
a value of type T, the type of x can be safely narrowed from
(FTnullvTYN(fO:T) to (fT:T) AN(f©:T), independently
of aliasing, because x can be aliased by variables whose type
only allows assignment of values of type 7" to field f.

Another interesting extension would consist in the intro-
duction of record types with negative information to specify
the absence of fields.
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A. Correctness of the model

To prove Lemma [I] and Lemma [2] we have to introduce
the notion of approximation for the judgments v € 7 and
I' - v ¢ 7, this means that the rules are annotated with an
index that is incremented in the consequence

We define v €,, 7 as the approximation of v € 7 where the
consequence of each rule in Figure|l|have an index n > 1,
with the exception of the axioms that holds for every n. Since
v €, T is coinductive we also have to add the approximation
rule:

(apprx €)
VEYT

An example of an approximation rule for judgment v € 7:

VER-—1T1 and v €En—1 T2

(and €)
UV €p TINATY

Since in rule (rec™ €) and (rec™ ¢€) the inductive judgment
I' - v ¢, 7is called in or with v €, 7 the latter behave
like the approximation of a stratified coinductive judgment.
Instead in Section [D] we will use the Kleene theorem only
for the non-emptiness judgment, for the others (emptiness,
not subtyping and subtyping) we will give a lemma that is
slightly different because they start to behave as expected
only with an approximation n big enough.

We extend the notion of OK' with OK 5, that is, OK"
where v €,, 7 is used instead of v € 7.

We define I' - v ¢, 7 as the approximation of I' - v ¢ 7
where each consequence of rule in Figure 2] have an index
n > 1, , with the exception of the axioms that holds for
every n. Since I' = v ¢, 7 is inductive we do not add an
approximation rule and hence the judgment with index 0 will
fail (if not an axiom).

An example of an approximation rule for judgment I' -

vET:
F'Fog, snorl'Fvg, | m
F}—Uﬁ(n T1N\To

(and ¢)

Lemma 6. IfT" - v ¢ 7 is derivable, then there exists m € N
s.t.forallm < nI'F v g, 7 is not derivable, and there
exists k € Ns.t. forall k > nI' kv ¢, 7 is derivable.

Proof. Take as n the height of the proof tree of I' F v ¢
T. O

Lemma 7. For all n € N if there exists T € OK s.t.
'+ v £,, 1o is derivable, then vy €, T is not derivable.

Proof. By induction on n and case analysis on 7.
If 79 = 0 then we can apply rule (empty ¢) and no rules
vy €p Tp are applicable.



If 7o = 1thenI' - vy ¢, 7o is not derivable for alln € N,
therefore the implication vacuously holds.

If 79 = null then if vg = null then I' F vy ¢€,, 7 is not
derivable for all n € N, therefore the implication vacuously
holds; otherwise if vg # null then we can apply rule (null
¢) and no rules vy €, Ty are applicable. Analogously for
7 =nt and 7 = ().

If 79 = 7 V72 then we can apply rule (or ¢), by induction
we know that vy €,_1 71 and vy €,_1 79 are not deriv-
able, then we can conclude that vy €,, 7 is not derivable.
Symmetrically when 79 = 7 ATs.

If 9 = (f:7) then if vg # (f — (-, p),...) then we
can apply (rec™ 1 £) and no rules vy €, 7y are applicable;
otherwise if vg = (f — (-, p),...) we can apply rule (rec™2
¢), by induction we know that I' - v ¢, _, 7 is derivable
then v €,_1 p is not derivable, by hypotheses we know that
I' € OK? and that (v, 7) € I then we know that v €,, p is
derivable. By case analysis on € and induction we prove that
if v €, pisderivable then I' - v ¢, T is not derivable:

If 7 = 0 then v €, p is not derivable for all n € N,
therefore the implication vacuously holds.

If 7 = 1 then we can apply (any €) andnorulesI' - v ¢,
T are applicable.

If 7 = null then if v # null then v €,, p is not derivable,
therefore the implication vacuously holds; otherwise if v =
null then we can apply rule (null €) andnorulesI' - v £, 7
are applicable. Analogously for 7 = int and 7 = ().

If 7 = 7 V1o then we can apply rule (or €), by induction
we know that v €,_1 71 or v €,_1 To are derivable then
we know that ' H v ¢, ; mor' - v ¢, 7 are not
derivable then I' - v £, 7 is not derivable. Symmetrically
when 79 = T ATo.

If 7 = (f=7') then if v # (f—(,p),...) then
v €, T is not derivable, therefore the implication vacu-
ously holds; otherwise if v = (f — (_, p),...) then we can
apply (rec™ €), (rec”1 ¢) is not applicable, rule (rec™2
#) could match, by hypotheses we know that Vo'.(30.T"
v ¢,_1 7 andV(vp, ) € Tr €,-1 )01V €41 p
then if v' €,_1 p is derivable then by induction we know
that ' - o' ¢, p is not derivable, The condition
(3T ko g, ; TandV(vp, ) € Tor €,-1 ) i8
equivalent to 30 € OK. | .T' F o/ ¢, , 7/, that is, the
hypothesis of the Lemma we want to prove; we know that
I o' ¢, 7/, then by induction we know that v’ €, 7’
does not hold and 3" € OKE, then (v, 7) ¢ T'; then we can
conclude that I" - v ¢,, T is not derivable.

If 7 = (ft7) then if v # (f — ({v'},p),...) then
v €, T is not derivable, therefore the implication vacuously
holds; otherwise if v = (f — ({v'}, p), .. .) then we can ap-
ply (rec™ €), (rec™1 ¢) is not applicable, By hypotheses we
know that v’ €,,_1 7" and Vo".(30.T' - v" ¢,_; p and
Y(vr, ) € Twr €,-1 ) orv” €,_1 7/, then by induc-
tion we know that T - v ¢, _; 7' is not derivable, then, since
k = {v} (rect3 ¢) is not applicable; rule (rec™2 ¢) is not ap-

plicable for reasons analogously to the once used for (rec™2
£).

The proof for when 79 = (f*:7) is analogous to the
previous case. O

Lemma 8. [f there exists n € N s.t. v €, T is not derivable,
then v € T is not derivable.

Proof. This corresponds to the part of the Kleene fixed point
theorem that does not require continuity assumptions. O

We can then prove Lemma [T]using the following lemmas:
Lemma[f] Lemma[7] Lemma

Lemma9. IfT - v € 7 is not derivable, then for all n € N
't v g, 7 is not derivable.

Proof. This corresponds to the part of the Kleene fixed point
theorem that does not require continuity assumptions. O

Lemma 10. Foralln € NifforallT € OKL T F v ¢, 7
is not derivable, then v €,, T is derivable.

Proof. By induction on n and case analysis on 7.

If 79 = () then we can apply rule (empty £) for all n € N,
therefore the implication vacuously holds.

If 7o = 1thenI' - vy ¢, 7o is not derivable and we can
apply (any €).

If 79 = null then if vy # null then we can apply (null
¢) for all n € N, therefore the implications vacuously holds;
otherwise I' F vy £,, 7o is not derivable and we can apply
(null €). Analogously for 7y = int and 75 = ().

If 79 = 71 V72 then the premises of rule (or £) are not
derivable, then by induction we know that either I" - vy ¢, 7
or I' - vy £,, T2 are not derivable, hence we can apply (or €).
Symmetrically when 79 = 71 ATo.

If 7o = (f:7) then if vg # (f — (, p), . . .) then we can
apply rule (rec™ 1 ¢), therefore the implications vacuously
holds; otherwise, if vg = (f — (-, p), . ..) the the premises of
rule (rec™2 ¢) must not be derivable, then either I' - v ¢, p
is not derivable or (v, 7) € I'; if ' - v £,, p is not derivable
then by induction we know that v €, p is derivable, if
(v,7) ¢ T then since for all ' s.t. T € OK, we know that
v €, T is not derivable. By case analysis on € and induction
we prove that if v €,, 7 is not derivable then I' - v ¢, 7 is
derivable:

If 7 = () then v €, 7 is not derivable and we can apply
(empty £).

If 7 = 1 then we can apply (any €) for all n € N, therefore
the implication vacuously holds.

If 7 = null thenif v =
nullv then we can apply (null €) for all n € N, therefore the
implication vacuously holds; otherwise if v # null v €, 7
is not derivable and we can apply (null ¢). Analogously for
To = @nt and 19 = ().

If = 7 V7o then both v €, ™ and v €, 79 are not
derivable, then by induction we know thatboth I' - v ¢, _;



mmand ' - v ¢, 7 are derivable thenI' - v ¢, T is
derivable. Symmetrically when 79 = 7 ATo.

If 7 = (f7') thenif v # (f — (., p),...) thenv €, T
is not derivable and we can apply (rec'- ¢); otherwise if
v # {f— (5 p),...) the the premises of rule (rec” €) are
not derivable, then we know that: 30’ s.t. (' € OK® | and
'+ o ¢, ; 7' is not derivable) and v’ €,_1 7' is not
derivable. If v" €, _1 7' is not derivable then by induction
we know that T" - o' ¢, 7’ is derivable. The condition Jv’
st. (T € OKL_andT'F o' ¢, , 7' is not derivable), this
is the hypothesis of the Lemma we want to prove then by
induction we know that v’ €,,_; 7’ is derivable. We can that
apply rule (rec™ €).

If 7 = (fr') thenif v # (f — ({v'},p),...) thenv €,
7 is not derivable and we can apply (rec™1 £,,), otherwise
ifv=(f+— ({v'},p),...) then the premises of rule (rec*
€) must be not derivable: v’ €,_1 7' is not derivable or

" s.t. v"” e, 7' is not derivable or (YI' € OKL | s.t.

' - v” ¢,_4 pis not derivable), by induction we know
that T' - o ¢, 7/ and v" €, 7’ is derivable, moreover
the condition that VI' € OKL_, s.t. T " ¢, pis not
derivable is the hypothesis of he Lemma we want to prove,
then by induction we know that I" €, v"'n — 1.

The proof for when 7 = (fT:7) is analogous to the
previous case. O

Lemma 11. Ifforalln € N v €, T is derivable, then v € T
is derivable.

Proof. By the Kleene fixed point theorem; its hypotheses
are verified since infinite (non well-founded) values are
considered. O

We can then prove Lemma[2] using the following lemmas:
Lemmal[9] Lemma|[I0] Lemma [T}

B. Proofs of laws of Section 4|
Proof of Law/I]

vy € [<f+IT1>A<f_ZT2>ﬂ S e (fhm)A(fm) &
vo € (fhim)m and vy € (f i) &
(f = ({oh,p)s- ) € () and
(f={vhp),..) e (fm) &
ve T and (Vo'.v' € 7 or
(Ar.T o' ¢ pand V(vr, ) € T.or € 1)) and
(Vv'.v" € por
(ArT F o' ¢ and V(vp, 1) € Tor € 1)) &
v € 71 and
(Vo'.v" € 11 or ' € p) and (Vo'v" € por —v' € 1) &
v € 71 and
Vo'.(Wep=v erm)and (v e =1 ep) &
ver andVo'.(v € p= ' € m)and

(WVerm=vep)and (v e o = v €1)

Proof of Law

vo € [(ffm)] @ v e (ffir) &
(f= {v}p),..)e(fhir) &
veTand (Vo'v' €7or
(HPF F o ¢ pand V(UF7TF) elre Tp))

Since [7] = 0 then v € 7 does not hold, hence, [{fT:7)] = 0.

Proof of Law[3]

The thesis could be rewritten as:

Fvo=(f+ (k,p),...)and
(V' e por (AL.TF o' ¢ 7and V(vr, 1) € Tor € 1))

With the value (f — (k,1)) the condition v’ € p is always
true.

Proof of Law 4]
It is sufficient to prove that for all &, p, (f — (&, p),...) €

(f~:0).
From the definition of ¢ we know that I' - v ¢ 0 always
holds, then

(f = (K,p),..) e (f:0) =
Vow e por (AT F v ¢ 0 and V(vr, r) € Tor € 1)

always holds.



Proof of Law[5
1.

vy € [[<f+27'1/\7'2>ﬂ &
(o (b)) € (frmam) &
v € T ATy and Yo' 0" € T ATy or
ArT o' ¢ pandV(vp, ) € Tor € 4 &
ver A and Vo'’ e AT or v € p &
veTAmandVo' v € p= v e AT &
v €T and v € 75 and
Vo'ao' e p= (v e and v € 1) &
v e T and v € To and
V' (v ep=v er)and (v e p=>1 em) &
v e and v € 75 and
(Wa'ep=v emn)and Vo'W ep=1v en) s
(veTand Vo' v € 71 or
AT o' ¢ pand V(vr, 1) € Tor € 1) and
(veTyand Vo' .v' € 9 or
ArT o' ¢ pandV(vp, ) € Tor € 1) &
(> ({0h9),.) € (Frm) and
(s (b)) € (fFm) &
vo € (fRr)A(frim) © v € [(fTm)A(fTim)]

v € [[<f_2’7'1>/\<f_27'2>]] S e(fTm)N(fTm) &
vo € (fm1)and vg € (fim) <
(f = (k,p),...) e {f:71)and
(f=(kyp)y..) e(fTm) &
(Mv.w e por
(3r.T+ v ¢ 71 and V(vr, 1) € Tor € 1)) and
(Vv € por
(IrTFov g andV(vp, ) € Toor e ) &
(Vv.v e por—w e ) and (Vv.v € por—w € 72) &
(VW' er =v ep)and (Vo'W e =0 €p) &
V' (v e = v ep)and (v e o = v € p) &
Vo'.(v' emiord em) =0 ep s
Y ermVr =1 eps
(f = (K, p),..) e{fTVR) <
vo € (f V1) & vy € [[<f7:7'1 \/7'2>]]

Proof of Law
1.

vo € [(frm)V{(fTm)] &
(= ({ohp),. ) € () or
(o (b)) € (Frm) &
(veT and Vo' v € 11 or
ArT ' ¢ pand V(vp, ) € T.or € 1) or
(veTand Vo' W' € T or
X+ ¢ pandV(vr, ) € Dor € 1) &
(ver andVo'.v' € 7 or ' € p) or
(veTand Vo'W € por ' € p) &
(ver andVo'.v' € p=v €7)or
(vemandVo' v e p=1v' em) &
(veTorve ) and
(verorVv'.w e p=1"emn)and
(vermorYv'v' € p=1v" em)and
(VW' ep=vemn)or(Vo'v ep=1v emn)) =
vemVrandWw v €p=1v enVn &
v eT1VTeand Vo' 0" € T VT or
drT v ¢ pandV(vp, ) € Tr € 1) &
(o (0} p) ) € (fFmvm) &
vo € (fTmVT) & vy [[<f+ZT1\/T2>]]

vg € [(fm)V{(fm)] © v e (fm)V(f i) &
vo € (fim1)orvg € (fTima) &

(f = (Kyp),...) e (fm1yor
(s () € (f7m) &

(Vo'.v e por

(IX.TFv ¢ and V(vp, 1) € Tur € 1)) or

(Vo'.v e por
(IrT+ v ¢ 7 and V(vr, ) € Tor € 1)) &
(Vo'.wepor—wer)or(Vo'vepor—wem) s
(W' ermm=vep)or (W' emn=vep =
Vo'.W'em svepor(ven=vep &
Vo' (v e mpand v e ) = vep &
Vo' emAm=vep s

Vo' e por
(AT kv g A and V(vp, ) € Toor e ) &
(f = (K, p),..) e {([TmATR) &

vo € (fTAT) & v € [[(f?ﬁ /\72>]]



[[<f+:71\/72>]] - [(f+:71>v<f+272>ﬂ &
[[<f+17'1\/7'2>] A [[<f+17'>] C
[(Frm)vifTm)] A [(ffn)] <
[<f+:71VTg>ﬂ A [[(f‘:r)ﬂ C
[t ] A )] Vv [P A )]

By Law |1} and our hypotheses we know that [(f~:7)] A

[(f i) and [{f 7)]A[{f T:72)] are empty but [{f i1 V7o

[{f~:7)] is not; hence we can deduce the following false
fact: [(f T V)] A [(f7)] C 0.

4. For all 7,71, 72, such that [71] Z [7] and [7=] Z [7]
and [T AT2] C [r] let us assume [(frm V)] C
[{f*:71)V{fT:72)] by contradiction; hence, we can derive
the following facts:

[(fmmAm)] € [(frm)V{fm)] &
[(fmmam)] A [(fhm)] C
[(fmm)v{fmm)] A ()] <
[(fmmam)] A J(fRm)] S
[(5=m] A [Frn] v [ ] A [ %0)]
By Law(1] and our hypotheses we know that [{f~:m1)] A

[(f*m)] and [{f~:72)] A [(fT:7)] are empty but
[(f i AT2)] A [(fT:7)] is not; hence we can deduce the
following false fact: [{f iy Am)] A [(fT:7)] C 0.

Proof of Law[7]

Proof. For direction =, if [11] # 0, then there exists & s.t.

(f = (k,0)) € [(fT1)]; furthermore, if 2] # 0, then
(f = (5,0)) & [{f 772)]. therefore [{f*:71)] Z [(f772)]-

Direction < derives from Law [2land Law [4] O

C. Auxiliary functions and operators
D. Correctness of the subtyping judgment

We use the same technique we used for the proofs of the
membership judgment.

In particular we construct the approximation of IT - o 2 ()
and 01 < o4 like the one of v € 7; and the approximation of
II-o~@andII - oy £ o5 like the one of ' ¢ vr.

Definition 3. We define (o) as

O(o) ={}ifm €{0,1, (), int, null}
O((ftim)) = O(norm(w))
O(\/{gly e ,§n}) = U:L:1 <>(§z)
<>(/\{<f1+:7r1>, RN <fn+:7rn>7
<f1_:77/1>’ R <f7n_571';n>, Llyeeny Lk}) =
(U, 0 ) U (UL (e o))
ifm <=nand
Vi€ [k 6 # (F1) and V) € [Lnlu # (f;75)

The function (o) returns a set of pairs that must be in IT
to let IT + o 2 0 to be derivable.
Definition 4. OK™ = {(7/,7) | 7’ < 7}
Definition 5.
SOKH(O‘) = {(#",7) | norm(x’) < norm(w) V(x',7) €
O(o)}
Definition 6. #o denotes the number of terms in the type o.
For record types we consider the normalization of the type of

1] Khe field.

Lemma 12. Let I = SOKY(0); if 1 F o ~ 0 is not
derivable, then there does not exist ' € OK™ s.t. Tl b o ~
0 is derivable.

Proof. Let assume by absurd that II' + ¢ ~ 0 is deriv-
able. Note that IT’ is actually only used in rule (rAwz
0) and since II' = o ~ { is derivable that means that
IT" contains some pairs (7', 7), from a term in the form
N{(f ), (f7'), 11, ..., 1o} (that is a subterm of ), that
are not in II.

But by definition of ¢ those pairs are already in IT and
thus II - o ~ () should be also derivable but if fail; then
could not exists a IT s.t. IT' - ¢ ~ ( is derivable. O

Lemma 13. If 11 - A{e1,...,tn} =~ 0 is derivable, then
ITEA{, ottty stm )} 20 0

Proof. TIT F A{t1,. .., tm} ~n 0 is derivable then one of
rules (A~ ), (Aprim== () or (Aw== D) is applied selecting some
tisthen ITE AL, .. 0k, b1, - tm } =2y 0 is derivable by
applying the same rule and selecting the same ¢;. [

Lemma 14. [f the approximation of a coinductive judgment
is derivable with approximation n, then it is derivable with
approximation n — 1.

Lemma 15. [f the approximation of a coinductive judgment
is not derivable with approximation n, then it is not derivable
with approximation n + 1.

Te following lemmas concern the relationship between a
derivable judgment and its derivable approximation.

Lemma 16. If 11+ o £ ), then foralln € NI - o %, (.

Proof. This corresponds to the part of the Kleene fixed point
theorem that does not require continuity assumptions. O

Lemma 17. For all 01, 09, there exists k s.t. for alln > k if
oy £ ogthenllt oy £, 09.

Proof. We can take as k the length of the longest path that
use only rule of the judgment Il - o1 £ o9, in this way
we can recreate the same proof tree for the IT - 01 £ 09;
when a rule of the judgment IT I o 2 () appear we know by
Lemmal[16]that IT - o %, () is derivable for every n € N.
IfII F o1 £ o9 is derivable it is also derivable for all
n>k. O



Lemma 18. For all 0,01, 05 there exists k s.t. foralln > k
if 11 = SOKY (o) and T1 - o %, 0 is derivable, then

I+ o ~, 0 is not derivable; and, if 11 & o1 %4, 03 is
derivable, then o1 <,, 02 is not derivable.

Proof. By induction on n and case analysis on .

Note that by contrapositive: if IT - o %,, () is derivable,
then IT + o ~, () is not derivable, is equivalent to: if
II + o ~, 0 is derivable IT + ¢ %, ) is not derivable;
and if Il + o1 £, o9 is derivable, then o7 <,, 03 is not
derivable, is equivalent to: if o1 <,, o9 is derivable then
I+ o1 £, o2 is not derivable.

The base case, when n =
structure of the proof tree.

The inductive step, When n > k, is done as follow:

If o = V{c1,...,6m} then I - o %, 0 is derivable
by applying rule (V2 (), by hypothesis we know that
I+ g; %,,_1 ( is derivable for some ¢ € [1, m]; by inductive
hypotheses we know that IT - ¢; ~,,_; ) is not derivable for
some 4, then rule (V=) is not applicable and IT - o ~,, 0 is
not derivable.

If o = A{f),t1,---stm} then IT F o 2, 0 is
derivable by applying rule (Awuzt (), by hypotheses we
know that IT = A{e1, ..., tm} #n—1 0 is derivable and that
Vi € [1,m] ¢; & {null, int, (f*:_)}, by inductive hypothesis
we know that IT = A{eq, ..., tm} ~,—1 0 is not derivable.
We can conclude by noting that rule (A~ () is not applicable
because by the inductive hypothesis we know that we can
not select any ¢; and we can not select (f :_) since there is
no rule applicable for the case IT - (f™:_) ~,, (), and rules
(Aprim~ () and (r Aw= ) are not applicable because we
know that Vi € [1,m] ¢; & {null, int, (fT:_)}.

If o = A{(fTm),t1,...,tm} then I F o %, 0 is deriv-
able by applying rule (Ar£ (), by hypotheses we know that
bothIT F norm () Zp—1 @and T E A{e1, ..., tm} Rt @
are derivable and that Vi € [1,m] ¢; # {null, int, (f )}, by
inductive hypotheses we know that both II - A{¢q, ..
() and II F norm(w) ~,_1 () are not derivable. We can con-
clude by noting that rule (A prim=~ () is not applicable
because IT F A{i1,...,tm} ~n—1 O is not derivable and
since also IT - norm(m) ~,_1 0 is not derivable, we can not
apply rule (Aprim=~() on o selecting (f:7) and then use
(rec-r=2(); for the other not applicable rules the same reasons
of the previous case are used.

If o = A{(fTm), (f =m’), 01, st} then ITE o £, 0
is derivable by applying rule (r Auzz @), by hypotheses
we know that both TI + A{(fTm),t1,.. s tm} %n_1
0 and T + A{{(f7),t1,---stm} Fn_1 0 are deriv-
able. By inductive hypotheses we know that both II +

k, is done by induction on

AT eyt 1 Dand TTE A{{f72m) 01, - oy b } =

() are not derivable. We can conclude by noting that rule
(rAw= () is not applicable because from II € OK'I ,
we know that norm(n’) <,_1 norm(m) is derivable. By
inductive hypotheses and contrapositive we know that
II - norm(n’) €n—1 morm(m) is not derivable; for the

other not applicable rules the same reasons of the previous
cases are used.

For the other cases on judgment 2 ()the same or similar
reasoning is applied.

If oy = (f7w) and 03 = (f 7)) then I F o1 £, 09
is derivable by applying rule (w\w¥), by hypotheses we
know that IT + norm(n’) £,—1 morm(m) is derivable.
By inductive hypotheses we know that norm(n’) <,_1
norm(m) is not derivable then rule (w\w<) can not be
applied.

If o1 = (ftir) and oo = (f 7'y then I1 - oy &, 02 is
derivable by applying rule (r\w«), by hypotheses we know
that both IT F norm(w) 2,1 0 and IT - norm(7’) #,—1 0
are derivable. By inductive hypotheses we know that both
IT + norm(w) ~,—1 0 and IT + norm(w’) ~,_; 0 are
not derivable, by Lemma [I2] we know that can not exists
alll € OKY | st. I' F norm(n’) ~,_; 0 is derivable,
then rule (r\w<) is not applicable. Rule (empty<) is not
applicable for the same reasons.

If oy = ¢and oo = O then Il + o1 £, o5 is derivable
by applying rule (empty«£), by hypotheses we know that
IT - ¢ %,_1 0 is derivable. By inductive hypotheses we
know that IT F ¢ ~,,_; ) is not derivable, rule (empty<) is
not applicable for the same reasons of the previous case, rule
(I-and<) could be applied but then there are no rule to apply
to the case ¢« <,, 0.

Ifo1 = A{t1,...,tm}and oo = tthenII - 07 £, o9 is
derivable by applying rule (I-and£), by hypotheses we know
that I+ o; £,,—1 o9 is derivable for all ¢ € [1,m] and that
IT + o1 #,_1 0 is derivable, by inductive hypotheses we
know that ¢; <,,_1 o is not derivable for all ¢ € [1,m] and
that IT - oy ~,,_1 0 is not derivable. Rule (I-and<) can not
be applied because does not exists an ¢ s.t. ¢; <,,_1 09 and
(empty<) can not be applied for same reasons of the previous
cases.

For the other cases on judgment £the same or similar

S lm} Spo1 reasoning is applied. O

Lemma 19. For all o there exists k s.t. for all n > k if
IItFo~0thenllF o ~, 0.

Proof. Similar reasoning to the proof of Lemma O

Lemma 20. For all o there exists k s.t. for all n > k if
11+ o ~,, 0isnot derivable then I1 - o ~ () is not derivable.

Proof. By Lemma|19|and contraposition. O

Lemma 21. For all o1, oo there exists k s.t. for all n > k if
o1 < oy then 01 <,, 09.

Proof. Similar reasoning to the proof of Lemma [I6]for the
part of proof that does not involve the use of judgment II -
o =~ () and similar to the proof of Lemma[17]otherwise. [

Lemma 22. For all o1, oo there exists k s.t. for all n > k if
o1 < 03 is not derivable then o1 <,, 03 is not derivable.



Proof. By Lemma[21]and contraposition. O

We can then prove Lemma [4] by using the lemmas that
relate the judgment with its corresponding approximation:
Lemma(I6] Lemma[I7} and Lemmal[I§] and, going backward,
Lemmal20land LemmaR2]

Lemma 23. For all o there exists k s.t. for alln > k if
ko %, OthenIl - o 2 0.

Proof. For n = k: we can take as k a number that is at least
the length of the longest path where a subterm of o does not
appears more then once.

If the proof tree of II F o 25 0 does not use the
approximation then we can use the same proof tree for
o 0.

If the proof tree of I F o %24, 0k does use the approxi-
mation rule then, since the approximation rule can only be
used after & steps and we know that the approximation rules
is applied to a term that also appears in the tree where is not
possible to use the approximation rule. We can make a new
proof tree by substituting each use of the approximation rule
on type o’ with the subtree that has as root ¢, iterating this
process we obtain an infinite proof tree for IT - o 2 (.

For n > k we can simply use Lemma O

Lemma 24. For all o there exists k s.t. for all n > k if
I+ o # 0 is not derivable 1 - o %, 0 is not derivable.

Proof. By Lemma[23]and contraposition. O

Lemma 25. For all 01, 09, there exists k s.t. for alln > k if
ko £, oathenllt o1 £ os.

Proof. Forn = k: let ky be a number that is at least the length
of the longest path where a subterm of o does not appears
more then once.

Now, if k = k¢ and if the proof tree does not contains the
judgment IT - o #_ () then we can use the same proof tree
for the non approximated judgment IT - oy £ o5.

If the proof tree does contains the judgment IT - o %4 ()
then by Lemma we know that exists a &k’ s.t. if IT +
o %5 0 is derivable then the non approximated version
is derivable; We can took the maximum of these k" and take
k as k' + kg, in this way we are sure that when we reach a
judgment IT - o %, () the approximation n is big enough to
satisfy Lemmal[23]in order to use I I o 0 in the proof tree
of [T+ o1 £y 0.

IfI1 - 01 £ o9 is derivable it is also derivable for all
n > k. O

Lemma 26. For all 01, 09, there exists k s.t. foralln > k
if Il = o1 £ o9 is not derivable then 11 - o1 £,, 09 is not

derivable.

Proof. By Lemma[25]and contraposition. O

Lemma 27. For all o there exists k s.t. for all n > k if
I+ o % 0 is not derivable then 11 = o 2 () is not derivable.

Proof. By Lemma|l6|and contraposition. O

Definition 7. A failure tree is an or-and tree. The root is an
or-node where its children represent all applicable rules, and
they are and-nodes with children representing the hypotheses
of the corresponding rules, the tree is shaped in this way by
an alternation of these two layers.

Lemma 28. For all 0,01, 09 there exists k s.t. foralln > k
and all T1 € OKY | if 11 + o £, 0 is not derivable, then
I+ o ~, 0is derivable; and, if Il & o1 %, o2 is not
derivable, then o1 <,, 0 is derivable.

Proof. By induction on n and case analysis on o.

Note that: if II + o 2, 0 is not derivable, then IT
o ~, 0 is derivable, is equivalent to: if IT - o ~,, ) is not
derivable IT - o #,, 0 is derivable; and if IT F o1 £,, o3 is
not derivable, then o1 <,, 09 is derivable, is equivalent to: if
01 <, 03 is not derivable then Il F o1 £,, o5 is derivable.

The base case, when n = k, is done by induction on
structure of the failure tree.

The inductive step, When n > k, is done as follow:

Ifo=V{s,...,sn} then Il F o %, () is not derivable
and rule (V£0) is not applicable; then IT I ¢; %£,,_1 ) is not
derivable for all ¢ € [1, m]. By inductive hypotheses we know
that IT - ¢; ~,,_; () for all 4 € [1, m], we can then apply rule
(V= 0).

If o = A{(fTm), (f =m’), 01, st} then T o £, 0
is not derivable and rule (rAwz (}) can not be applicable; then

we know that either IT = A{{f ), 01, ..., tm} #n_1 D is
not derivable or TI = A{(f™:7’), t1,. .., tm} #n_1 0 is not
derivable or (7', m) € ILIEIT = A{(fTm), 01, st} Pn1

() is not derivable then either IT + norm(w) #,_2 0 or
I+ A{t1,- -y tm} #n_2 0 are not derivable or exists ¢;
with ¢ € [1,m] s.t. ¢; € {null, int, (f:_)}. We know that
t; = {f:_) can never happen because the type are simplified
and only one type in the form (f:_) can appear in an and
type. If ¢; = null or 1; = int then we can apply (Aprine~ ().
If IT - norm(m) #,_2 () is not derivable then, by inductive
hypotheses we know that IT - (f 1) ~,,_5 0 is derivable
and we can apply (A~ (), selecting (fT:w) and then (rec-
). I A{e1, .. tm} Pn_z 0 is not derivable then
we can use Lemma[27]and Lemma|[I3] The same reasoning
is applied in the case Il = A{{(f 77"}, 01, ... tm} Pn-1 0
is not derivable. If (7', ) & II then since we know that for
all IT € OK' | the pair (7/,7) do not belongs to IT we
can conclude that norm(n’) <,,_1 norm(w) is not deriv-
able. By inductive hypothesis and contrapositive we know
that IT - o7 «£,,_1 09 is derivable, then rule (r Awx~ () is
applicable.

If o = A{{(f7:2),t1,..,tm} then I F o %, 0 is not
derivable and rule (Awz () is not applicable; then either
ITE A{e1,. - ytm} #Zn_1 0 is not derivable or exists i €



[1,m] s.t. ¢; € {null, int, (f:_)}. By inductive hypotheses
we know that IT = A{er,...,t;m} ~n_1 0 is derivable,
then we can conclude using Lemma [I9] and Lemma [T3] If
t; = null or ¢; = int then we can apply rule (Aprim~ 0);
if 1; = (f*:) that means that we are in the case where
o= N0, (ff ), o tim1,y Lit1, Lm }» we refer to that
case in the proof.

For the other cases on judgment 2 (fthe same or similar
reasoning is applied.

If oy = (fw) and 0y = (f 7)) then I F 01 £, 02
is not derivable and rule (w\w¥) is not applicable. By
hypotheses we know that IT - norm(n’) £,—1 norm(mw)
is not derivable. By inductive hypotheses we know that
norm(w') <,,_1 norm(w) is derivable then we can apply
rule (w\w<).

If oy = (fTir) and 09 = (f:7’) then I1 + oy £, 09
is not derivable and rule (r\w¥) is not applicable. By
hypotheses we know that either IT + (fTim) £, 1 0
or II + norm(w’) #,_1 0 are not derivable. By induc-
tive hypotheses we know that either I + (f*r) ~,
 or T + norm(s’) =~,_1 0 are derivable. If I +
(ftimr) ~,_1 0is derivable then we can apply rule (empty<).
If II + norm(x’) ~,_1 0 is derivable then we can ap-
ply rule (r\w<). In both cases the condition V(my,ms) €
IL.norm(m1) <,—1 norm(ms) are satisfied by the fact that
Ime OKY .

If oy = ¢and 0o = O then II - o7 £, o2 is not
derivable and rule (empty <) is not applicable. By hypotheses
we know that IT F ¢ 2£,, 1 0 is not derivable. By inductive
hypotheses we know that IT - ¢ ~,, 1 ) is derivable and
we can apply rule (empty<). The condition V(m,m3) €
IL.norm(m1) <,—1 norm(ms) are satisfied by the fact that
Il < OKY .

If o1 = AM{t1,...,tm}and og = cthen II F oy £,, 02
is not derivable by applying rule (I-and¥), by hypotheses
we know that either for all ¢ € [I,m]II F ¢; £,—1 09
is not derivable, or IT F o1 %,_1 0 is not derivable. By
inductive hypotheses we know that either exists ¢ € [1,m]
s.t. t; <,_1 09 is derivable or Il - o7 ~,,_1 0 is derivable.
If exists ¢ € [1,m)] s.t. t; <,,_1 02 is derivable then we can
apply rule (I-and<). If IT + o1 ~,,_1 () is derivable then we
can apply (I-and<).

For the other cases on judgment £the same or similar
reasoning is applied. O

Lemma 29. For all o1, oo there exists k s.t. for all n > k if
o1 <, 02 then o1 < 0s.

Proof. Similar reasoning to the proof of Lemma 23] for the
part of proof that does not involve the use of judgment
II - 0 ~, 0 and similar to the proof of Lemma
otherwise. O

Lemma 30. For all o there exists k s.t. for alln > k if
o~ QthenIl - o ~ (.

Proof. Similar reasoning to the proof of Lemma [25] O

We can then prove Lemma [5] by using the lemmas that
relate the judgment with the corresponding approximation:
Lemma[24] Lemma 26|and Lemma 28} and, going backward,
Lemma[30]and Lemma[29]

E. Soundness and completeness of the

subtyping judgment
Lemma 31. If [AN{(f ), v, ..
IAN{{f~m"), 4y -
[AN(frm), (f ), i

S tm )] # 0 and
S tm}] # 0 and [7'] C [n] then
S} # 0.

Proof. By Law|l]we know that exists v s.t. v € A{(fF:), (f 727’} },

but then v must also a member of A{(f*:7),t;,..., L} and
N{f7"), tiy ..., L } that are non-empty, and the v must
also belongs to A{(f i), (f '), iy oy tin O

Lemma 32. Forall 0,01, 09 there exists k s.t. for all n > k,
ifI € OKY | then if 1 - o %, 0 then [o] # 0 and if
IMkE o ~, (0then [o] = 0 and if 11 + o1 £, o2 then
HUl]] ,@ [[02]] and l.fO'l <,, 09 then [[0'1]] - [[0'2]].

Proof. By induction on n.

The base case, when n = k, is proved by induction on the
structure of the proof tree.

The proof for the inductive step is the following:

Proof for judgment 2 ).

Rule (V2 0), by inductive hypothesis we know that exists
i € [1,m] st [¢;] #0; then [V{c1,...,sm}] # 0.

Rule (rec-r# ), by inductive hypothesis we know that
[norm(m)] # 0 then by Lemma [3] we know that [7] # 0
and by Law [2] we know that [(f*:7)] # 0.

Rule (rAw2 (0), by inductive hypotheses we know that
IN(frm) e, yem ] # Oand [A{{(f "), 01y oy tm }] #
¢ and since (n/,7) € I and I € OKI | we know
that 7 <,,_; m is derivable and then by inductive hy-
pothesis we know that [7'] C [#]; hence by Law [I| we
know that [A{(fT:m), (f=:7')}] # 0 and by Lemma
INfm), (m) e,y em ] # 0.

For the other rules a similar reasoning is applied.

Proof for judgment ~ ().

Rule (v~ (), by inductive hypotheses we know that [¢;] =
() for all ¢ € [1,m], then we know that [V{c1,...,sn}] = 0.

Rule (rec-r= (J), by inductive hypothesis we know that
[norm(m)] = 0 then by Lemma [3] we know that [7] = 0
and by Law [2] we know that [(f*:7)] = 0.

Rule (rAw=~ ), by inductive hypothesis we know that
[norm(x")] ¢ [norm(x)], then by Lemma 3| we know that
[#'] ¢ [«] and by Law [I|and we know that
A ..., {(ftm), (fn"),...}] = 0.

For the other rules a similar reasoning is applied.

Proof for judgment <.

Rule (empty<), by inductive hypothesis we know that
[o1] # 0 then we know that [oq] Z 0.



Rule (I-and¥), by inductive hypothesis we know that
[e:] € [J¥i € [1,m] and that [A{c1,...,em}] # 0.
Since [A{t1,...,tm}] # O the we know that Jv.v €
A1,y tm}, then if v = null we know that ¢; = null
and is the only type in the intersection and since we know
that [¢1] & [¢] we can conclude that [A{¢1,...,tm}] C [¢],
analogous for v = 4, if v = (f — (., -),...) then ex-
ists ¢; = (fY:7w) s.t. v € (f¥:7) and since we know that
[e:] € [¢] we know that [A{¢1, ..., tm}] C [¢].

Rule (r\w¥), by inductive hypothesis we know that
[(f*m)] # 0 and that [7'] # @ then by Law [2]and Law 4]
we can conclude that [(f )] € [(f:7")].

For the other rules a similar reasoning is applied.

Proof for judgment <.

Rule (empty<), by inductive hypothesis we know that
[o1] = 0 then @ C [o2]; The condtions on II are satisfied
because IT € OK1_,.

Rule (r\w<), by inductive hypothesis we know that [7]] =
0 then by Law[7][(f*:1)] € [(f~m)] =0

Rule (l-or), by inductive hypothesis we know that [¢;] C

[o2] Vi € [1,m] we can conclude that [V{c1,...,n}] C
[o2].
For the other rules a similar reasoning is applied. O

We can then prove Theorem|[T|using the lemmas that allow
to go from the judgment to the corresponding approximation:
Lemma [16] Lemma [T9} Lemma [T7] Lemma 21} the main
Lemma [32} and the lemmas that allow to go from the
approximation back to the judgment: Lemma[23] Lemma [30]
Lemma[23] Lemma 29

Lemma 33. Forall 0,01, 05 there exists k s.t. foralln > k
ifI1 € OKY | then if [o] # O then 11 + o %, 0 and
if[o] = 0 then Tl &+ o ~, 0 and if [o1] € [o2] then
I+ oy ﬁn 09 andif[al]] - [0'2]] then o1 <,, 09.

Proof. By Lemma|[I8] Lemma 28] Lemma [32)and contraposi-
tion. O

We can then prove Theorem 2]in the same way of Theo-
rem | but using Lemma [33]as the main lemma.
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Listing 1. Pseudo-code for is_empty

is_empty (o, II) <« is_empty (@, o, 0, II).
is_empty(_, O, I:I, 1=I) <+ true. $ rule (empty)
is_empty (¥, (ffn), I, M) « (ffm) gV, is_empty ({(fTn)} UV, norm(r), I’', ). % rule (rec-r)
is_empty (¥, V{}, T, M) <« V{} €. & rule (\/)
is_empty (¥, V{s1,...,5n}, ', M « n>0, V{s1,...ssn} &€ ¥, % rule (\/)
is_empty (¥, <1, I:[’, l:I”), is_empty (¥, \/{(2,...,9,,}, I:[”, ) .

is_empty (U, A{t1,...,tn}, I', TI) « n>0, A{t1,...,tn} €Y, 2 rule (/\)
partition_by_field(A{t1,...,tn}, RecsMap, Others), % RecsMap map from fields to a set of record types
$ Others contains all types that are not (fTim) or (f :m)
((0 €others, II'=II) or ¢ rule (and)
((int €0thers or null €O0thers), (size(Others) > 1 or not empty(RecsMap)), II'=I1) or % rule (/\prim)

(get_keys (RecsMap, Fs), is_empty_and(¥, Fs, RecsMap, I, m))).

is_empty_and (¥, [F|_], RecsMap, l:I l:I) < % F is a fieldname
lookup (F, RecsMap, Recs), <F+7r1) €ERecs,
(is_empty (P, (F+:7r1), ', ) or % rule (/\)
(Fima) €ERecs, H={(m2,m)}UIl’). 8 rule (r/\w)
is_empty_and (¥, [_|Fs], RecsMap, 1:[/, l:I) + is_empty_and (¥, Fs, RecsMap, I:I/, l:I).



Listing 2. Pseudo-code for subtype

subtype (01, 02) < subtype(f, o1, o02).

subtype(_, o, o) < is_primitive(o). % rule (prim)
subtype(_, _, any) < true. % rule (any)
subtype (_, o, {)) + (o=(f*) or o=(f":) or o=()). % rule (<>)

subtype (¥, o1, 02) < (01,02) € V. % termination condition
subtype (¥, V{}, o02) <« true. % rule (l-or)
subtype (¥, V{si,...,5n}, 02) < n >0, subtype (¥, <1, o2), subtype (¥, V{s2,...,6n}, 02). % rule (l-or)
subtype (¥, o1, V{s1,...,6n}) < n >0, subtype(¥, o1, s1)or subtype (¥, o1, V{s2,...,5n}). % rule (r-or)
subtype (¥, o1, 02) 4 is_empty (o1, l:[), % rule (empty)

¥’ = {(01,02)}UT, VY(m,m) € I not subtype (¥, norm(n1), norm(mz)) .
subtype (¥, o1, A{}) <« true. % rule (r-and)

subtype (¥, o1, A{t1,...,tn}) < n >0, subtype(¥,o1,t1), subtype(¥, A{iz,...,tn}, o1). % rule (r-and)
subtype (¥, A{t1,...,tn}, 02) + n >0, subtype (¥, t1, o2) or subtype(¥,A{i2,...,tn}, 02). % rule (l-and)

subtype (¥, (f+:771>, (fTim2)) <+ is_empty (ma, ), % rule (r\w)

U = {((fTm), (f m2))} U W, V(mi,m2) € IT not subtype (¥', norm(m1), norm(mws)) .
subtype (¥, (f+:771>, (f+:772>) < ¢ rule (r\r)

U = {((fTm), (fFm))} U, subtype (W, norm(mi), norm(ms)) .
subtype (¥, (fTim1), (fim2)) « % rule (w\w)

U = {((fTrm1), (fime))} U, subtype (¥, norm(mwa), norm(mri)) .
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