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t. In previous papers we proposed methodsand software for the restoration of images provided byFizeau interferometers su
h as LINC-NIRVANA (LN),the German-Italian beam 
ombiner for the Large Bino
-ular Teles
ope (LBT). It will provide multiple imagesof the same target 
orresponding to di�erent orienta-tions of the baseline. Therefore LN will require routinelythe use of multiple-images de
onvolution methods in or-der to produ
e a unique high-resolution image. As a
onsequen
e of the 
omplexity of astronomi
al images,two kinds of methods will be required: �rst a qui
k-lookmethod, namely a method 
omputationally eÆ
ient, allow-ing a rapid overview and identi�
ation of the obje
t beingobserved; se
ond an ad-ho
 method designed for that par-ti
ular obje
t and as a

urate as possible. In this paperwe investigate the possibility of using Ri
hardson-Lu
y-like (RL-like) methods, namely methods designed for themaximization of the likelihood fun
tion in the 
ase of Pois-son noise, as possible qui
k-look methods. To this purposewe propose new te
hniques for a

elerating the OrderedSubsets - Expe
tation Maximization (OS-EM) method,investigated in our previous papers; moreover we analyzeapproa
hes based on the fusion of the multiple images intoa single one, so that one 
an use single-image de
onvo-lution methods whi
h are presumably more eÆ
ient thanthe multiple-images ones. The results are en
ouraging andall the methods proposed in this paper have been imple-mented in our software pa
kage AIRY.Key words: image restoration { interferometri
 images {Ri
hardson-Lu
y method1. Introdu
tionIn previous papers (Bertero & Bo

a

i 2000a, 2000b,Correia et al. 2002, Carbillet et al. 2002) we de-veloped methods and software for the de
onvolutionof multiple interferometri
 images of the same astro-nomi
al target. Moreover our group has produ
ed theSend o�print requests to: M. Bertero

software pa
kage AIRY (Astronomi
al Image Re
on-stru
tion in interferometrY) whi
h is now available inthe version 2.0 (see http://dira
.disi.unige.it andhttp://www.ar
etri.astro.it/
aos). This tool 
an beapplied to Fizeau interferometers su
h as the beam 
om-biner for LBT, denoted as LINC-NIRVANA (Lbt INterfer-ometri
 Camera and Near-InfraRed/Visible Adaptive iN-terferometer for Astronomy). LBT will 
onsist of two 8:4mmirrors on a 
ommon mount, with a spa
ing of 14:4m be-tween their 
entres, so that a maximum baseline of 22:8mwill be available. The very �rst light of the teles
ope iss
heduled for September 2004, the se
ond light for Novem-ber 2005 while the �rst interferometri
 light is foreseen formid 2006.The interferometri
 te
hnique used in LN will providedire
t imaging with the resolution of a 22:8m teles
ope inthe dire
tion of the baseline and of a 8:4m teles
ope inthe orthogonal dire
tion. Sin
e resolution is not uniformover the �eld, several images of the same s
ienti�
 obje
tmust be a
quired with di�erent orientations of the baselineand they must be routinely pro
essed (de
onvolved) inorder to get a unique image with the resolution of a 22:8mteles
ope.Two di�erent kinds of de
onvolution methods may beneeded:- qui
k-look methods, 
omputationally eÆ
ient even if notalways very a

urate, to be routinely used for a prelimi-nary view of the target just after data a
quisition;- ad ho
 methods, designed for spe
i�
 
lasses of astro-nomi
al obje
ts, whi
h 
an be 
omputationally expensivebut must be a

urate as far as possible for all the obje
tsin a given 
lass.Therefore the pro
essing of LN images will require, ingeneral, two steps: the �rst one, based on a qui
k-lookmethod, is intended to identify the spe
i�
 features of theparti
ular obje
t the astronomer is observing; the se
ondone 
onsists in the use of the ad ho
 method whi
h hasbeen designed for the obje
ts with those spe
i�
 features.An example of qui
k-look method is provided by the so-
alled Tikhonov regularization (Bertero & Bo

a

i 1998,
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 images. III.2000a), whi
h is basi
ally a Wiener �lter. More a

urate,even if less eÆ
ient, is the OS-EM method, proposed byHudson & Larkin (1994) for emission tomography and ex-tended to LBT-imaging in Bertero & Bo

a

i (2000b),whi
h provides the same a

ura
y as the RL method(Ri
hardson 1972, Lu
y 1974), but with a 
onsiderablegain in the 
omputational 
ost. On the other hand adho
 methods 
ould be designed for spe
i�
 obje
ts su
has obje
ts with a very high dynami
 range (an exampleis the model of young binary proposed by Carbillet et al.(2002)), or unresolved 
ompa
t obje
ts (an example is themethod, proposed by Correia et al. (2002) and validatedby An
onelli et al. (2004), for super-resolving binary sys-tems) or others.In any 
ase 
omputational eÆ
ien
y is an importantissue for the pro
essing of LN images. The �rst dete
torwill 
over a �eld of about 10ar
se
 in K band, with a pixelsize of about 5mas, so that it will produ
e images of about2000�2000 pixels. The pro
essing of these images is not aterrible task. But, sin
e the AO-system of LN provides auniform 
orre
tion over a �eld of 2ar
min, it is reasonableto 
on
eive that even broader images will be available inthe future. For this reason we are interested to in
reasethe eÆ
ien
y of RL-like algorithms.We 
onsider two approa
hes: the �rst 
onsists in im-proving the eÆ
ien
y of the OS-EM algorithm by means ofa te
hnique whi
h allows a redu
tion of the number of iter-ations, without a signi�
ant in
rease of the 
omputational
ost of a single iteration; the se
ond 
onsists in the 
om-bination of the multi-images provided by LN into a singleone. One of these approa
hes has been re
ently proposedby Vio et al. (2004). It is obvious that, in su
h a 
ase,the 
omputational 
ost of one iteration is that of a single-image. However this is true also for the OS-EM methodso that the 
omparison of the eÆ
ien
y of all these meth-ods is uniquely based on the 
omparison of the number ofiterations required for getting the optimal restoration.In Se
tion 2 we propose our method for OS-EM a

el-eration while in Se
tion 3 we analyze a number of single-image approa
hes. In Se
tion 4 we present numeri
al ex-periments intended to both evaluate the possible a

eler-ation fa
tors and to 
ompare the eÆ
ien
y and a

ura
yof multi-images and single-image methods. The results areen
ouraging, as we dis
uss in Se
tion 5.2. The a

elerated version of the OS-EMalgorithmIn this paper N�N arrays are denote by bold letters. Letus assume that we have p images a
quired with LN, 
or-responding to p di�erent orientations of the baseline anddenoted by g1; g2; :::; gp. Then, if gj(m;n); (j = 1; ::; p) isthe value of one of these images at pixel m;n, a

ordingto the model proposed by Snyder et al. (1993) for imagesa
quired with a CCD 
amera, we 
an write:gj(m;n) = gobj;j(m;n) + gba
k;j(m;n) + rj(m;n) ; (1)

where: gobj;j(m;n) is the number of photoele
trons dueto obje
t radiation; gba
k;j(m;n) is the number of photo-ele
trons due to external and internal ba
kground, dark
urrent, bias and fat zeros; rj(m;n) is the read-out noisedue to the ampli�er. The �rst two terms are realizationsof independent Poisson pro
esses (photon noise), so thattheir sum is also a Poisson pro
ess and its expe
ted valueis given by:Efgobj;j(m;n) + gba
k;j(m;n)g = (2)= (Kj � f)(m;n) + bj(m;n);where:Kj is the point spread fun
tion (PSF), 
orrespond-ing to the j-th orientation of the baseline (we assume, forsimpli
ity, spa
e-invarian
e); f is the obje
t array, formedby the average numbers of photons emitted at the pixels ofthe obje
t domain and 
olle
ted by the teles
ope; bj(m;n)is the expe
ted value of the ba
kground. In the followingwe will denote by Aj the blo
k-
ir
ulant matrix whi
h isde�ned by the 
onvolution produ
t with the PSF Kj :Ajf =Kj � f; (3)and by ATj the transposed matrix. Moreover we will as-sume that the PSFs are normalized in su
h a way that thesum of their pixel values is one.Finally the last term in Eq. 1 is the realization of anindependent Gaussian pro
ess with expe
ted value r andvarian
e �2 (white noise). In the software pa
kage AIRY,whi
h is des
ribed by Correia et al. (2002) and is used forour numeri
al simulations, images are generated a

ordingto this model.In the 
ase of images dominated by photon noise, theread-out noise 
an be negle
ted and the likelihood fun
-tion is given by a produ
t of Poisson distributions, one forea
h pixel of the image domain. The maximization of thisfun
tion is equivalent to the minimization of the Csisz�ardire
ted divergen
e (Csisz�ar 1991) given by:J(f ) = pXj=1 N�1Xm;n=0fgj(m;n)ln gj(m;n)(Ajf)(m;n) + bj(m;n) ++ [(Ajf )(m;n) + bj � gj(m;n)℄g: (4)The new version of OS-EM 
an be introdu
ed and jus-ti�ed in the framework of a general approa
h, proposedby Lanteri et al. (2001), whi
h allows to design des
entmethods for the minimization of a 
onvex fun
tional J(f )su
h as that of Eq. 4. The basi
 idea relies on the followingde
omposition of the gradient of the fun
tional:�rJ(f ) = U(f )� V (f ); (5)where U (f ) and V (f ) are positive arrays. Su
h a de
om-position always exists and is not unique; the appli
abilityof the method requires an expli
it expression for the de-penden
e of these arrays on f . Then the general stru
tureof the proposed iterative algorithms is as follows:f (k+1) = f (k) + �f (k)U (f (k))! � V (f (k))!V (f (k))! ; (6)where the quotient of two arrays is de�ned pixel by pixelas we will do also in the next equations. � and ! are relax-ation parameters. � is the step-size in the des
ent dire
tion
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 images. III. 3(modi�ed by ! if ! > 1) and it 
an be 
hosen to guaranteeboth the non-negativity of the iterates and their 
onver-gen
e. On the other hand ! is a parameter whi
h 
an allowa redu
tion of the number of iterations, as we dis
uss in amoment. We will 
all it the a

eleration exponent .Indeed, as dis
ussed by Lanteri et al. (2001), an integervalue of ! > 1 
an speed-up the 
onvergen
e of the iter-ations. As already remarked, at the very �rst iterations! modi�es the des
ent dire
tion; but, when the iterationsare 
lose to 
onvergen
e, the algorithm with ! > 1 is ap-proximately equivalent to the algorithm with ! = 1 andstep-size �!. For the 
onvenien
e of the reader we give theargument in the simple 
ase ! = 2. In su
h a 
ase, if wewrite Eq. 6 in the following form:f (k+1) = f (k) + �f (k)U (f (k)) + V (f (k))V (f (k))2 � (7)� hU (f (k))� V (f (k))i ;and if we observe that rJ(f ) ' 0 when we are 
lose to
onvergen
e, so that U (f (k)) ' V (f (k)), we get:f (k+1) ' f (k) + 2�f (k)U (f (k))� V (f (k))V (f (k)) ; (8)i. e. the algorithm of Eq. 6 with ! = 1 and step-size 2�.In the 
ase of the fun
tional of Eq. 4 we get:U (f) = pXj=1ATj gjAjf + bj ; (9)V (f ) = pXj=1ATj 1 = p1;where 1 is the array whose entries are all equal to 1. Ifwe insert these equations in Eq. 6 we re-obtain a numberof known algorithms. For instan
e, if ! = 1 and � = 1,we obtain just the RL method for multiple-images de
on-volution, as given in Bertero & Bo

a

i (2000b). On theother hand, if ! = 1 and � 6= 1, we obtain the extension tothe multiple-images 
ase of the relaxed RL-method inves-tigated by several authors (Kosarev et al. 1983, Holmes &Liu 1991, Adorf et al. 1993). As it is known, this methodprovides a 
onsiderable redu
tion of the number of iter-ations but with an in
rease of the 
omputational 
ost ofea
h iteration, due to the sear
h for the value of �. Forexample, if the step-size � is 
omputed by means of anapproximate sear
h method, su
h as the Armijo rule, in-stead of the exa
t one (this is possible in our 
ase), theaverage redu
tion of the overall 
omputation time is ofabout 20 % (Lanteri et al 2001), depending on the images
onsidered and on the noise level.Finally, in the 
ase � = 1 and ! > 1, we obtain theextension to the multiple-images 
ase of an algorithm pro-posed by Lla
er & Nu~nez (1990):f (k+1) = f (k)0�1p pXj=1ATj gjAjf (k) + bj1A! : (10)The 
onvergen
e of this algorithm is not proved and there-fore it must be investigated theoreti
ally and/or experi-

mentally. As shown by Natterer & W�ubbeling (2001) 
on-vergen
e presumably holds true when ! is not too large.It is obvious that the most interesting feature of the algo-rithm is that, as in the 
ase of RL, non-negativity of theiterates is automati
ally assured, as one 
an easily verify.Moreover, in the 
ase of tomography, it is quite natural toextend the tri
k to OS-EM itself (see Tanaka 1987, Nat-terer & W�ubbeling 2001), and what we propose in thispaper is just the extension of this algorithm to multiple-images de
onvolution.However there is an important point whi
h must betaken into a

ount. In the 
ase of zero ba
kground, asshown by Bertero & Bo

a

i (2000a), the total 
ux ofea
h iterate of the multi-images RL method 
oin
ides withthe arithmeti
 mean of the total 
uxes of the images gj .As a 
onsequen
e of the introdu
tion of the ba
kgroundterms, the iterates of the RL and OS-EM methods do nothave this property. Therefore, it is 
onvenient to requirethat the total 
ux of the solution 
oin
ide with the arith-meti
 mean of the total 
uxes of the images gj , after sub-tra
tion of the ba
kground terms (whi
h are not due tothe s
ienti�
 obje
t):N�1Xm;n=0f(m;n) = 
 = (11)= 1p pXj=1 N�1Xm;n=0�gj(m;n)� bj(m;n)	 : (12)As shown by Lanteri et al. (2002), to minimize the fun
-tional of Eq. 4 with this 
onstraint is equivalent to nor-malize, at ea
h step, the iterates in su
h a way that theysatisfy this 
ondition. We have veri�ed that this normal-ization is ne
essary in the 
ase of the a

elerated algorithmin order to assure 
onvergen
e.In 
on
lusion, the algorithm we have implemented inAIRY and we have tested is as follows:{ 
ompute the 
onstant 
, as de�ned in Eq. 11;{ 
hoose an initial f (0) � 0 su
h that its total 
ux
oin
ides with 
;{ given f (k), set j = (k + 1) mod p and 
ompute:~f (k+1) = f (k) ATj gjAjf (k) + bj!! ; (13)~
(k+1) = N�1Xm;n=0 ~f (k+1)(m;n);{ set:f (k+1) = 
~
(k+1) ~f (k+1): (14)In the 
ase ! = 1 we re-obtain the standard OS-EMmethod. However we point out that the OS-EM itera-tions are de�ned in a di�erent way in Bertero & Bo

a

i(2000a): in that paper one iteration 
onsists of a 
y
leover the p images, so that one of those iterations 
on-sists of p iterations of the algorithm de�ned above. The
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 images. III.new version makes easy the 
omparison with the single-image approa
hes dis
ussed in the next Se
tion. Indeed,it is evident that the 
omputational 
ost of one iterationis just that of one iteration in the 
ase of a single image;the unique di�eren
e 
onsists in the fa
t that the image
hanges at ea
h step.We re
all that, as proved in our previous papers, the
omputational gain of OS-EM with respe
t to standardmulti-images RL is of the order of 4=(3p+1). In the prob-ably frequent 
ase of 3 images, the 
omputation time ofOS-EM is about 40 % of that of RL, while, in the 
ase of 4images, is about 30 %. A further redu
tion is provided bythe algorithm of Eq. 13. Indeed, as a result of many nu-meri
al experiments we 
an state that, in the 
ase ! = 2,the method is 
onvergent and always provides a redu
tionof the number of iterations by a fa
tor of 2, hen
e a re-du
tion by a fa
tor 2 of the 
omputational 
ost, whi
h,in su
h a way is of the order of 20 % of that of standardRL. Moreover, numeri
al experiments des
ribed in Se
tion4 indi
ate that it is possible to in
rease the a

elerationexponent in a way whi
h depends on the signal-to-noise ra-tio (SNR): smaller SNR may be 
ompatible with a highera

eleration exponent. As we will show an exponent 8 ispossible in some 
ases.We 
on
lude by remarking that ! does not need to beinteger, as pointed out by Tanaka (1987), so that one 
analso investigate non-stationary methods, namely methodswhere ! is 
hanging at ea
h iteration.3. Single-image approa
hesIn a re
ent paper Vio et al. (2004) propose to solve themulti-image de
onvolution problem by 
ombining the dif-ferent images in a unique one 
ontaining all relevant in-formation. At �rst glan
e su
h an approa
h looks appeal-ing: �rst be
ause it be
omes possible to use existing soft-ware for image de
onvolution and se
ondly be
ause the
omputational 
ost seems to be redu
ed. However, we re-
all that, for an algorithm su
h as OS-EM, the 
ost ofone iteration is just that of one single-image RL-iteration.Moreover two other points should not be forgotten: �rst,in the 
ase of imaging systems su
h as the LBT inter-ferometer where the AO 
orre
tion, the angular smearing(see next Se
tion), and also the time exposure (and hen
ethe noise 
ontributions and the resulting ba
kground) 
anbe di�erent for ea
h di�erent baseline exposure, the linkbetween the (very) di�erent PSFs and the 
orrespondingimages may be lost when the multi-images are 
ombinedin a single one and this may be a loss of relevant informa-tion; se
ondly, the statisti
al properties of the noise maybe modi�ed by the fusion pro
ess. In 
on
lusion the eÆ-
ien
y and a

ura
y of the single-image approa
hes mustbe tested numeri
ally.There are many ways for 
ombining the multi-imagesin a unique one. In this Se
tion we 
onsider two of them.In all 
ases we assume that, if di�erent images 
orrespond

to di�erent integration times, �1; �2; :::; �p then all imageshave been normalized, for instan
e, to the largest inte-gration time �max, i. e. gj has been multiplied by �max=�j .Method 1The �rst approa
h is the most natural one and 
onsistsin a simple addition of the di�erent images. In order topreserve normalization of the PSF it is 
onvenient to takethe arithmeti
 mean. Therefore the PSF will be given by:KAV (m;n) = 1p pXj=1Kj(m;n); (15)with the 
orresponding imagegAV (m;n) = 1p pXj=1 gj(m;n) : (16)The main features of this approa
h are the following:{ Both the PSF and the image are non-negative; more-over the PSF is 
orre
tly normalized to 1 and the ba
k-ground of the image gAV is the arithmeti
 mean of theba
kgrounds of the images gj .{ If the images gj are 
orrupted by Poisson (photon)noise, then their sum is also 
orrupted by Poisson noisesin
e the sum of independent Poisson pro
esses is alsoa Poisson pro
ess with expe
ted value given by thesum of the expe
ted values.{ The addition of the images implies that in the domainsof the u,v plane where only one image 
ontains infor-mation, the e�e
t of the others is just to add noise,hen
e to redu
e the SNR.Figure 1 
an help to 
larify the last statement. Weassume three ideal PSFs 
orresponding to three di�erentparalla
ti
 angles: 0Æ, 60Æ, and 120Æ respe
tively, andwe plot the MTFs (Modulation Transfer Fun
tions) ofthese PSFs. It is obvious that all the Fourier transformsof the 
orresponding images will take approximately thesame values in the 
entral dis
; these values are addedtogether so that the signal will be the arithmeti
 mean ofthe signals 
oming from the three images. On the otherhand, in the side-dis
s only one image will 
ontributewith signi�
ant values, while the two others will addnoise, produ
ing a degradation of the signal. The �rstpi
ture to the left in Fig. 2 is the MTF of the averagePSF, KAV , in the 
ase of the ideal PSFs of Fig. 1Method 2In a re
ent paper Vio et al. (2004) propose a new method,derived from the least-squares approa
h, for the fusion ofthe multiple images into a single one. However, the rela-tionship with the least-squares approa
h is not relevantand, in our paper, we 
onsider a di�erent kind of fusionwhi
h does not 
oin
ide exa
tly with that proposed by Vioet al. (2004) and has simpler properties.The basi
 idea of the approa
h of Vio et al. is to de�nea transfer fun
tion whi
h is obtained by taking, in a pixel
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Fig. 1. Examples of MTFs 
orresponding to three orientationsof the LBT baseline (ideal 
ase): 0Æ in the left panel, 60Æ inthe 
entral panel and 120Æ in the right panel.

,Fig. 2. MTFs of the single-image approa
hes, 
orrespondingto the ideal MTFs of Fig. 1: Method 1 in the left panel andMethod 2 in the right panel.m;n of the u; v plane, the value of the transfer fun
tionwhi
h has the maximum modulus, i. e.K̂MM (m;n) = K̂J(m;n); if (17)jK̂J (m;n)j � jK̂j(m;n)j ; for j = 1; ::::; p:The MTF of this method is given in the right panel ofFig. 2, also in the 
ase of the ideal MTFs of Fig. 1. Asit is obvious this pro
edure provides the 
orre
t 
ontrastbetween the 
entral dis
 and the side-dis
s, sin
e thesereprodu
e 
orre
tly those of the original MTFs.Then we introdu
e the image whi
h is quite naturallyrelated to the transfer fun
tion de�ned in Eq. 17: it isde�ned by taking, in a pixel m;n of the u; v plane, justthe value of the Fourier transform of the image with indexJ , i. e. that 
orresponding to the transfer fun
tion withthe maximum modulus. We have:ĝMM (m;n) = ĝJ(m;n) : (18)The main features of this approa
h are the following:{ Both the PSF and the image, de�ned as the inverseFourier transforms of Eqs. 17 and 18 respe
tively, maytake negative values. These must be zeroed if the RLmethod is used. Therefore the PSF must be renormal-ized to guarantee that the sum of the pixel values is1 and the total 
ux of the nonnegative image must be
omputed. For simpli
ity we do not 
hange the nota-tions of the PSF and of the image obtained with theseoperations from the original ones.{ The ba
kground of the image gMM will 
oin
ide withthe largest ba
kground in the dete
ted images, a dif-�
ulty in the 
ase of very di�erent observation times,

,

,

,Fig. 3. The AO-
orre
ted PSFs used in our simulations (log-arithmi
 s
ale): in the left 
olumn the PSFs without angularsmearing e�e
t and in the right 
olumn those with angularsmearing e�e
t; from top to bottom 0Æ, 60Æ and 120Æ as orien-tations of the baseline.so that the renormalization of the images mentionedat the beginning of this se
tion is required.{ In the 
ase of white noise a�e
ting the images gj , thenoise a�e
ting the image gMM of Eq. 18 has a 
onstantpower spe
trum.If we apply the RL-algorithm to the images of the twomethods des
ribed above, it is obvious that the 
omputa-tional 
ost of one iteration is pre
isely that of one OS-EMiteration. Moreover it is obvious that the same a

elera-tion exponent 
an be applied in all 
ases. Therefore the
omparison between the eÆ
ien
ies of the three methodssimply 
onsists in the 
omparison between the numbers ofiterations required for rea
hing the optimal restorations.Sin
e the optimal restorations provided by the three meth-ods, in general, do not 
oin
ide, their 
omparison providesinsight into their a

ura
y.
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 images. III.4. Numeri
al experimentsThe purpose of our numeri
al experiments is twofold:{ investigate possible 
riteria for de
iding the maximumvalue of the a

eleration exponent !, still 
ompatiblewith the 
onvergen
e of the iterative algorithm;{ 
ompare the a

ura
y and eÆ
ien
y of the a

eleratedmulti-image algorithm of Eq. 13 with ! = 2, and thatof the a

elerated single-image RL algorithm (sameequations with p = 1) applied to the images providedby Method 1 and Method 2 of the previous Se
tion.We will denote the three approa
hes respe
tively as OS-EM, RL-AV and RL-MM.We �rst des
ribe the PSFs and the obje
ts used in ourexperiments. We have 
onsidered three sets of PSFs anda series of obje
ts. All the PSFs 
orrespond to orienta-tions of the baseline with respe
t to the observed obje
t(relative paralla
ti
 angles) of 0Æ; 60Æ and 120Æ. The �rstset 
onsists of ideal PSFs, the se
ond one of AO-
orre
tedPSFs with di�erent Strehl ratios for the three di�erent ori-entations, and the third one of AO-
orre
ted PSFs withthe same Strehl ratios as before but with the addition ofthe angular smearing e�e
t due to earth rotation duringthe observation time (whi
h depends also on the obje
tde
lination { see Carbillet et al. 2002).The AO-
orre
tion e�e
ts are obtained, as already de-s
ribed in Carbillet et al. (2002), by an a

urate model andsimulation of the a
tual AO system aboard LBT by meansof the software pa
kage CAOS (Carbillet et al. 2004). Theatmospheri
 
onditions assumed result in a multi-layerturbulent atmosphere whose main physi
al parametersare: a mean velo
ity of 15m/s, a wave-front outer-s
aleof 20m, and values of the total Fried parameter of 12, 18,and 15 
m (at 500nm), respe
tively for the PSF at 0Æ, 60Æ,and 120Æ; these 
learly 
orrespond to three di�erent mo-ments of observation during the night. As 
on
erns the AOsystem itself, whi
h is pyramid-based, the physi
al param-eters are those foreseen for the system of LBT. We assumea 
on�guration of 15�15 equivalent sub-apertures, a 13thmagnitude guide star with optimized exposure time anda number of LBT672 mirror modes for ea
h of the threedi�erent atmospheri
 
onditions. The resulting Strehl ra-tios are 52% for the PSF at 0Æ, 87% for the PSF at 60Æ,and 79% for the PSF at 120Æ.In the third set the �rst and the third PSFs are inte-grated over an angle of about 5Æ, while the se
ond is inte-grated over an angle of about 45Æ; in pra
ti
e this angularsmearing e�e
t is obtained by adding snapshot PSFs fordi�erent orientations. The two sets of AO-
orre
ted PSFsare shown in Fig. 3.For the obje
ts, we have 
onsidered a series of dif-fuse obje
ts and a pointwise one. These obje
ts are rel-atively simple, but are suitable if our purpose is mainlyto 
ompare eÆ
ien
y and a

ura
y of the di�erent meth-ods. In parti
ular we have 
onsidered di�erent nebulae ob-

served with the Hubble Spa
e Teles
ope and pushed far-away in order to mat
h an angular resolution relevant forthe 22:8m equivalent aperture of LBT. For example theyoung stellar obje
t (YSO) IRAS 04302+2247 is pushedat 1.4Kp
 instead of its a
tual 140p
. We 
onsider ob-je
ts whi
h are 128� 128 pixels wide and 
orresponds toan extension of � 0:0085 (the pixel size is 6.67mas). More-over, the pointwise obje
t is a binary system 
onsisting oftwo stars with the same magnitude (10) and an angularseparation whi
h 
an be just resolved by LBT in K-band(�25mas). The whole series of obje
ts is shown in Fig. 4.In order to investigate the e�e
t of the a

eleration ex-ponent, we assume ideal PSFs and an integration time of20min, a sky ba
kground value of 12.5mag/002 (K-band),a read-out noise (RON) of 2 e� rms, and a total transmis-sion of 30%. Moreover, for ea
h one of the di�use obje
tswe use three di�erent magnitudes, arbitrarily �xed to 14,15 and 16. An in
rease in magnitude is equivalent to a de-
rease of the SNR on the observed images. Therefore we
onsider 33 di�use obje
ts. The results of our experiments
an be summarized as follows: for all the di�use obje
tswe 
an use ! = 3 if m = 14, ! = 5 if m = 15 and ! = 8if m = 16. As a rule, the a

eleration exponent is in
reas-ing for de
reasing SNR, so that when the SNR is low thealgorithm 
an be very fast. Indeed, the redu
tion in thenumber of iterations with respe
t to OS-EM is just givenby the a

eleration exponent without modi�
ation of therestoration error. This is de�ned as the minimum value ofthe quantity de�ned by:�(k)rel = jjf (k) � f jjjjf jj ; (19)where f is the original obje
t and f (k) is the k-th iter-ation. We have obtained an average restoration error of9% for m = 14, 10% for m = 15 and 13% for m = 16,with 
orresponding average numbers of iterations of 350,125 and 50. Without a

eleration, the average numbers ofiterations are, respe
tively, 1050, 625 and 400. However itmust be observed that the optimal number of iterationsstrongly depends on the spe
i�
 obje
t to be restored.Similar results have been obtained in the 
ase of the bi-nary: we 
an 
hoose in
reasing values of the a

elerationfa
tor exponent for in
reasing values of magnitude.For a �rst 
omparison of the three methods OS-EM,RL-AV and RL-MM, we have �xed the a

eleration ex-ponent to ! = 2 and we have 
onsidered only one di�useobje
t, namely the YSO obje
t IRAS 04302+2247 shownin Fig. 4. For ea
h image we generate, by means of thesoftware pa
kage AIRY, 50 noisy versions obtained with50 di�erent noise realizations (of Poisson type for the pho-ton noise and of Gauss type for the RON). For ea
h oneof these realizations we push the iterations of the threemethods up to rea
h the minimum of the restoration er-ror (semi
onvergen
e of the methods, see Bertero & Bo
-
a

i 2000a), as de�ned in Eq. 19. Then, for ea
h method,we 
ompute the mean value (MV) and the standard de-
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Eskimo Nebula Cat's Eye Nebula Stringray Nebula Hourglass Nebula(NGC 2392) (NGC 6543) (IRAS 17119-5926) (NGC 6523)

Glowing Eye Nebula Spirograph Nebula Hubble's Variable Nebula Southern Crab Nebula(NGC 6751) (IRAS F05251-1244) (NGC 2261)
Saturn Nebula Butter
y Star Ring Nebula binary star(NGC 7009) (IRAS 04302+2247) (NGC 6720)Fig. 4. The obje
ts used in our numeri
al experiments. OS-EM RL-AV RL-MMMV SD MV SD MV SDMinimum of the Restoration Error (RE) 4.8% � 0.1% 6.6% � 0.1% 6.2% � 0.1%Optimal Number of Iterations 1536 � 141 705 � 40 366 � 13Number of iterations providing RE ' 7% 168 � 6 385 � 56 149 � 6Table 1. Comparison between the a

ura
y and eÆ
ien
y of the three methods. We have used a 128x128 image of the di�useobje
t IRAS 04302+2247 with magnitude = 14, 
onvolved with ideal PSFs and 
orrupted with 50 di�erent realizations of noise;the reported mean values (MV) and standard deviations (SD) refer to these 50 realizations.viation (SD) of the 50 values of the minimum restorationerror and of the 
orresponding number of iterations. Theresults are reported in the �rst two rows of Table 1.As it follows from the �rst row, the most a

uraterestoration is provided by OS-EM while the two single-image methods are approximately equivalent. In all 
asesthe standard deviation is quite small and that means thatthe minimum restoration error does not strongly depend

on the noise realization. On the other hand the se
ond rowshows that RL-MM is the most eÆ
ient method, with alsoa good stability of the number of iterations with respe
tto variations of the noise realization. OS-EM is the lesseÆ
ient one with also a rather broad dispersion of theoptimal number of iterations.However, sin
e the minimum of the restoration erroris, in general, rather 
at, we have 
onsidered the num-
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hing the same a

ura
ywith the three methods. We have 
hosen a threshold of7% sin
e this a

ura
y 
an be rea
hed by all the methods.The results are reported in the third row and we 
an 
on-
lude that, from this point of view, OS-EM and RL-MMare essentially equivalent.Magnitude OS-EM RL-AV RL-MM% error % error % error14 6. 7.3 7.215 7.9 10 9.316 9.8 11.4 12.6Table 2. Comparison between the a

ura
ies of the threemethods in the 
ase of the di�use obje
t with di�erent magni-tudes; images 256�256 
onvolved with ideal PSFs.Magnitude OS-EM RL-AV RL-MM% error % error % error14 7.2 9.6 9.115 8.6 11.1 10.216 10 11.8 12.7Table 3. Comparison between the a

ura
ies of the threemethods in the 
ase of the di�use obje
t with di�erent magni-tudes; images 256�256 
onvolved with AO-
orre
ted PSFs.Magnitude OS-EM RL-AV RL-MM% error % error % error14 7.4 10. 8.715 8.6 11.2 9.616 10.2 12.8 11.6Table 4. Comparison between the a

ura
ies of the threemethods in the 
ase of the di�use obje
t with di�erent magni-tudes; images 256�256 
onvolved with AO-
orre
ted PSF withangular smearing e�e
t.In a se
ond set of experiments we use three 256� 256versions of the same YSO obje
t with di�erent magnitudes(m =14, 15 and 16). For ea
h value of the magnitude threesets of images are generated by 
onvolving the obje
t withthe three sets of PSFs des
ribed above and adding thenoise 
ontributions (sky ba
kground, photon noise, RON,and no dark 
urrent). In these experiments we 
onsideronly one noise realization, one for ea
h set of PSFs. Thepurpose of these experiments is to 
ompare the a

ura
yof the three methods and investigate its dependen
e onthe magnitude of the obje
t (hen
e on the SNR ratio)as well as on the AO-
orre
tion of the PSFs. The resultsare reported in Table 2 for the ideal PSFs, in Table 3for the AO-
orre
ted PSFs, and in Table 4 for the AO-
orre
ted PSFs with the addition of the angular smearing

,

,Fig. 5. Example of re
onstru
tion of the binary system withmagnitudes 10. The images have been obtained by 
onvolvingwith the AO-
orre
ted PSFs with angular smearing e�e
t. Inthe upper panels, one of the three images and the re
onstru
-tion provided by OS-EM; in the lower panels, the re
onstru
-tions provided by RL-AV and RL-MM.e�e
t. It follows that OS-EM always provides the bestresults even if the improvement of a

ura
y, with respe
tto the two other methods, does not strongly depend onthe magnitude of the obje
t and on the PSFs.In a third set of experiments we 
onsider the re
on-stru
tion of the binary system of Fig. 4. We have mainlyinvestigated the 
ase of two stars with the same magni-tude (m = 10), by looking at the behaviour of the threemethods for the three sets of PSFs. In Fig. 5 we give anexample of the re
onstru
tions we have obtained.In the 
ase of point obje
ts the RL-like methods ex-hibit a 
onvergent behaviour (instead of the semi
onver-gent one, whi
h applies to the 
ase of di�use obje
ts). Thise�e
t is shown in Fig. 6 where we plot the re
onstru
tedvalue of the 
ux of the binary as a fun
tion of the numberof iterations for the three sets of PSFs we have 
onsidered.The 
omparison between OS-EM and RL-MM needs somedis
ussion.As shown by the plots in the three panels, the OS-EM method always tends to underestimate the value ofthe 
ux while, in the �rst two 
ases, RL-MM providesa small over-estimate. This e�e
t is due to the need ofzeroing the negative values of the MM-image, given byEq. 26, as we dis
ussed in Se
tion 3. As a 
onsequen
ethe total 
ux of the image is in
reased and this e�e
t is atthe origin of the over-estimation of the 
ux of the restoredbinary. In the third 
ase (AO-
orre
ted PSFs with angularsmearing e�e
t) OS-EM is de�nitely better than the twoother methods.
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Fig. 6. Behaviour of the 
ux of the binary obje
t, with mag-nitude 10, as a fun
tion of the number of iterations: idealPSFs (upper panel); AO-
orre
ted PSFs (middle panel): AO-
orre
ted PSFs with angular smearing (lower panel).5. Con
luding remarksIn this paper we have investigated three di�erent RL-likemethods for eÆ
iently re
onstru
t interferometri
 imagesprovided by the LN beam 
ombiner of LBT. In our opin-ion the a

elerated version of the OS-EM method we pro-

pose in this paper is, at the moment, the best approa
h toa qui
k-look re
onstru
tion of LN images with the samequality of the re
onstru
tion provided by the RL method.The a

elerated version of OS-EMmay provide a speed-upof a fa
tor 10 with respe
t to RL in the 
ase of moderateSNR. However it is obvious that further numeri
al exper-iments are required if one intends to provide to the userstables 
ontaining the a

eleration fa
tors as fun
tions ofthe SNR.We point out that an eÆ
ient and a

urate qui
k-lookmethod, providing nearly-real-time images when observ-ing with LN will be of fundamental importan
e. Indeedthe images obtained will have the unpre
edented angu-lar resolution of a nearly-23m teles
ope, hen
e showingpreviously unknown spatial features within the observedastrophysi
al obje
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