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software pakage AIRY (Astronomial Image Reon-strution in interferometrY) whih is now available inthe version 2.0 (see http://dira.disi.unige.it andhttp://www.aretri.astro.it/aos). This tool an beapplied to Fizeau interferometers suh as the beam om-biner for LBT, denoted as LINC-NIRVANA (Lbt INterfer-ometri Camera and Near-InfraRed/Visible Adaptive iN-terferometer for Astronomy). LBT will onsist of two 8:4mmirrors on a ommon mount, with a spaing of 14:4m be-tween their entres, so that a maximum baseline of 22:8mwill be available. The very �rst light of the telesope issheduled for September 2004, the seond light for Novem-ber 2005 while the �rst interferometri light is foreseen formid 2006.The interferometri tehnique used in LN will providediret imaging with the resolution of a 22:8m telesope inthe diretion of the baseline and of a 8:4m telesope inthe orthogonal diretion. Sine resolution is not uniformover the �eld, several images of the same sienti� objetmust be aquired with di�erent orientations of the baselineand they must be routinely proessed (deonvolved) inorder to get a unique image with the resolution of a 22:8mtelesope.Two di�erent kinds of deonvolution methods may beneeded:- quik-look methods, omputationally eÆient even if notalways very aurate, to be routinely used for a prelimi-nary view of the target just after data aquisition;- ad ho methods, designed for spei� lasses of astro-nomial objets, whih an be omputationally expensivebut must be aurate as far as possible for all the objetsin a given lass.Therefore the proessing of LN images will require, ingeneral, two steps: the �rst one, based on a quik-lookmethod, is intended to identify the spei� features of thepartiular objet the astronomer is observing; the seondone onsists in the use of the ad ho method whih hasbeen designed for the objets with those spei� features.An example of quik-look method is provided by the so-alled Tikhonov regularization (Bertero & Boai 1998,



2 Anonelli et al.: Restoration of interferometri images. III.2000a), whih is basially a Wiener �lter. More aurate,even if less eÆient, is the OS-EM method, proposed byHudson & Larkin (1994) for emission tomography and ex-tended to LBT-imaging in Bertero & Boai (2000b),whih provides the same auray as the RL method(Rihardson 1972, Luy 1974), but with a onsiderablegain in the omputational ost. On the other hand adho methods ould be designed for spei� objets suhas objets with a very high dynami range (an exampleis the model of young binary proposed by Carbillet et al.(2002)), or unresolved ompat objets (an example is themethod, proposed by Correia et al. (2002) and validatedby Anonelli et al. (2004), for super-resolving binary sys-tems) or others.In any ase omputational eÆieny is an importantissue for the proessing of LN images. The �rst detetorwill over a �eld of about 10arse in K band, with a pixelsize of about 5mas, so that it will produe images of about2000�2000 pixels. The proessing of these images is not aterrible task. But, sine the AO-system of LN provides auniform orretion over a �eld of 2armin, it is reasonableto oneive that even broader images will be available inthe future. For this reason we are interested to inreasethe eÆieny of RL-like algorithms.We onsider two approahes: the �rst onsists in im-proving the eÆieny of the OS-EM algorithm by means ofa tehnique whih allows a redution of the number of iter-ations, without a signi�ant inrease of the omputationalost of a single iteration; the seond onsists in the om-bination of the multi-images provided by LN into a singleone. One of these approahes has been reently proposedby Vio et al. (2004). It is obvious that, in suh a ase,the omputational ost of one iteration is that of a single-image. However this is true also for the OS-EM methodso that the omparison of the eÆieny of all these meth-ods is uniquely based on the omparison of the number ofiterations required for getting the optimal restoration.In Setion 2 we propose our method for OS-EM ael-eration while in Setion 3 we analyze a number of single-image approahes. In Setion 4 we present numerial ex-periments intended to both evaluate the possible aeler-ation fators and to ompare the eÆieny and aurayof multi-images and single-image methods. The results areenouraging, as we disuss in Setion 5.2. The aelerated version of the OS-EMalgorithmIn this paper N�N arrays are denote by bold letters. Letus assume that we have p images aquired with LN, or-responding to p di�erent orientations of the baseline anddenoted by g1; g2; :::; gp. Then, if gj(m;n); (j = 1; ::; p) isthe value of one of these images at pixel m;n, aordingto the model proposed by Snyder et al. (1993) for imagesaquired with a CCD amera, we an write:gj(m;n) = gobj;j(m;n) + gbak;j(m;n) + rj(m;n) ; (1)

where: gobj;j(m;n) is the number of photoeletrons dueto objet radiation; gbak;j(m;n) is the number of photo-eletrons due to external and internal bakground, darkurrent, bias and fat zeros; rj(m;n) is the read-out noisedue to the ampli�er. The �rst two terms are realizationsof independent Poisson proesses (photon noise), so thattheir sum is also a Poisson proess and its expeted valueis given by:Efgobj;j(m;n) + gbak;j(m;n)g = (2)= (Kj � f)(m;n) + bj(m;n);where:Kj is the point spread funtion (PSF), orrespond-ing to the j-th orientation of the baseline (we assume, forsimpliity, spae-invariane); f is the objet array, formedby the average numbers of photons emitted at the pixels ofthe objet domain and olleted by the telesope; bj(m;n)is the expeted value of the bakground. In the followingwe will denote by Aj the blok-irulant matrix whih isde�ned by the onvolution produt with the PSF Kj :Ajf =Kj � f; (3)and by ATj the transposed matrix. Moreover we will as-sume that the PSFs are normalized in suh a way that thesum of their pixel values is one.Finally the last term in Eq. 1 is the realization of anindependent Gaussian proess with expeted value r andvariane �2 (white noise). In the software pakage AIRY,whih is desribed by Correia et al. (2002) and is used forour numerial simulations, images are generated aordingto this model.In the ase of images dominated by photon noise, theread-out noise an be negleted and the likelihood fun-tion is given by a produt of Poisson distributions, one foreah pixel of the image domain. The maximization of thisfuntion is equivalent to the minimization of the Csisz�ardireted divergene (Csisz�ar 1991) given by:J(f ) = pXj=1 N�1Xm;n=0fgj(m;n)ln gj(m;n)(Ajf)(m;n) + bj(m;n) ++ [(Ajf )(m;n) + bj � gj(m;n)℄g: (4)The new version of OS-EM an be introdued and jus-ti�ed in the framework of a general approah, proposedby Lanteri et al. (2001), whih allows to design desentmethods for the minimization of a onvex funtional J(f )suh as that of Eq. 4. The basi idea relies on the followingdeomposition of the gradient of the funtional:�rJ(f ) = U(f )� V (f ); (5)where U (f ) and V (f ) are positive arrays. Suh a deom-position always exists and is not unique; the appliabilityof the method requires an expliit expression for the de-pendene of these arrays on f . Then the general strutureof the proposed iterative algorithms is as follows:f (k+1) = f (k) + �f (k)U (f (k))! � V (f (k))!V (f (k))! ; (6)where the quotient of two arrays is de�ned pixel by pixelas we will do also in the next equations. � and ! are relax-ation parameters. � is the step-size in the desent diretion



Anonelli et al.: Restoration of interferometri images. III. 3(modi�ed by ! if ! > 1) and it an be hosen to guaranteeboth the non-negativity of the iterates and their onver-gene. On the other hand ! is a parameter whih an allowa redution of the number of iterations, as we disuss in amoment. We will all it the aeleration exponent .Indeed, as disussed by Lanteri et al. (2001), an integervalue of ! > 1 an speed-up the onvergene of the iter-ations. As already remarked, at the very �rst iterations! modi�es the desent diretion; but, when the iterationsare lose to onvergene, the algorithm with ! > 1 is ap-proximately equivalent to the algorithm with ! = 1 andstep-size �!. For the onveniene of the reader we give theargument in the simple ase ! = 2. In suh a ase, if wewrite Eq. 6 in the following form:f (k+1) = f (k) + �f (k)U (f (k)) + V (f (k))V (f (k))2 � (7)� hU (f (k))� V (f (k))i ;and if we observe that rJ(f ) ' 0 when we are lose toonvergene, so that U (f (k)) ' V (f (k)), we get:f (k+1) ' f (k) + 2�f (k)U (f (k))� V (f (k))V (f (k)) ; (8)i. e. the algorithm of Eq. 6 with ! = 1 and step-size 2�.In the ase of the funtional of Eq. 4 we get:U (f) = pXj=1ATj gjAjf + bj ; (9)V (f ) = pXj=1ATj 1 = p1;where 1 is the array whose entries are all equal to 1. Ifwe insert these equations in Eq. 6 we re-obtain a numberof known algorithms. For instane, if ! = 1 and � = 1,we obtain just the RL method for multiple-images deon-volution, as given in Bertero & Boai (2000b). On theother hand, if ! = 1 and � 6= 1, we obtain the extension tothe multiple-images ase of the relaxed RL-method inves-tigated by several authors (Kosarev et al. 1983, Holmes &Liu 1991, Adorf et al. 1993). As it is known, this methodprovides a onsiderable redution of the number of iter-ations but with an inrease of the omputational ost ofeah iteration, due to the searh for the value of �. Forexample, if the step-size � is omputed by means of anapproximate searh method, suh as the Armijo rule, in-stead of the exat one (this is possible in our ase), theaverage redution of the overall omputation time is ofabout 20 % (Lanteri et al 2001), depending on the imagesonsidered and on the noise level.Finally, in the ase � = 1 and ! > 1, we obtain theextension to the multiple-images ase of an algorithm pro-posed by Llaer & Nu~nez (1990):f (k+1) = f (k)0�1p pXj=1ATj gjAjf (k) + bj1A! : (10)The onvergene of this algorithm is not proved and there-fore it must be investigated theoretially and/or experi-

mentally. As shown by Natterer & W�ubbeling (2001) on-vergene presumably holds true when ! is not too large.It is obvious that the most interesting feature of the algo-rithm is that, as in the ase of RL, non-negativity of theiterates is automatially assured, as one an easily verify.Moreover, in the ase of tomography, it is quite natural toextend the trik to OS-EM itself (see Tanaka 1987, Nat-terer & W�ubbeling 2001), and what we propose in thispaper is just the extension of this algorithm to multiple-images deonvolution.However there is an important point whih must betaken into aount. In the ase of zero bakground, asshown by Bertero & Boai (2000a), the total ux ofeah iterate of the multi-images RL method oinides withthe arithmeti mean of the total uxes of the images gj .As a onsequene of the introdution of the bakgroundterms, the iterates of the RL and OS-EM methods do nothave this property. Therefore, it is onvenient to requirethat the total ux of the solution oinide with the arith-meti mean of the total uxes of the images gj , after sub-tration of the bakground terms (whih are not due tothe sienti� objet):N�1Xm;n=0f(m;n) =  = (11)= 1p pXj=1 N�1Xm;n=0�gj(m;n)� bj(m;n)	 : (12)As shown by Lanteri et al. (2002), to minimize the fun-tional of Eq. 4 with this onstraint is equivalent to nor-malize, at eah step, the iterates in suh a way that theysatisfy this ondition. We have veri�ed that this normal-ization is neessary in the ase of the aelerated algorithmin order to assure onvergene.In onlusion, the algorithm we have implemented inAIRY and we have tested is as follows:{ ompute the onstant , as de�ned in Eq. 11;{ hoose an initial f (0) � 0 suh that its total uxoinides with ;{ given f (k), set j = (k + 1) mod p and ompute:~f (k+1) = f (k) ATj gjAjf (k) + bj!! ; (13)~(k+1) = N�1Xm;n=0 ~f (k+1)(m;n);{ set:f (k+1) = ~(k+1) ~f (k+1): (14)In the ase ! = 1 we re-obtain the standard OS-EMmethod. However we point out that the OS-EM itera-tions are de�ned in a di�erent way in Bertero & Boai(2000a): in that paper one iteration onsists of a yleover the p images, so that one of those iterations on-sists of p iterations of the algorithm de�ned above. The



4 Anonelli et al.: Restoration of interferometri images. III.new version makes easy the omparison with the single-image approahes disussed in the next Setion. Indeed,it is evident that the omputational ost of one iterationis just that of one iteration in the ase of a single image;the unique di�erene onsists in the fat that the imagehanges at eah step.We reall that, as proved in our previous papers, theomputational gain of OS-EM with respet to standardmulti-images RL is of the order of 4=(3p+1). In the prob-ably frequent ase of 3 images, the omputation time ofOS-EM is about 40 % of that of RL, while, in the ase of 4images, is about 30 %. A further redution is provided bythe algorithm of Eq. 13. Indeed, as a result of many nu-merial experiments we an state that, in the ase ! = 2,the method is onvergent and always provides a redutionof the number of iterations by a fator of 2, hene a re-dution by a fator 2 of the omputational ost, whih,in suh a way is of the order of 20 % of that of standardRL. Moreover, numerial experiments desribed in Setion4 indiate that it is possible to inrease the aelerationexponent in a way whih depends on the signal-to-noise ra-tio (SNR): smaller SNR may be ompatible with a higheraeleration exponent. As we will show an exponent 8 ispossible in some ases.We onlude by remarking that ! does not need to beinteger, as pointed out by Tanaka (1987), so that one analso investigate non-stationary methods, namely methodswhere ! is hanging at eah iteration.3. Single-image approahesIn a reent paper Vio et al. (2004) propose to solve themulti-image deonvolution problem by ombining the dif-ferent images in a unique one ontaining all relevant in-formation. At �rst glane suh an approah looks appeal-ing: �rst beause it beomes possible to use existing soft-ware for image deonvolution and seondly beause theomputational ost seems to be redued. However, we re-all that, for an algorithm suh as OS-EM, the ost ofone iteration is just that of one single-image RL-iteration.Moreover two other points should not be forgotten: �rst,in the ase of imaging systems suh as the LBT inter-ferometer where the AO orretion, the angular smearing(see next Setion), and also the time exposure (and henethe noise ontributions and the resulting bakground) anbe di�erent for eah di�erent baseline exposure, the linkbetween the (very) di�erent PSFs and the orrespondingimages may be lost when the multi-images are ombinedin a single one and this may be a loss of relevant informa-tion; seondly, the statistial properties of the noise maybe modi�ed by the fusion proess. In onlusion the eÆ-ieny and auray of the single-image approahes mustbe tested numerially.There are many ways for ombining the multi-imagesin a unique one. In this Setion we onsider two of them.In all ases we assume that, if di�erent images orrespond

to di�erent integration times, �1; �2; :::; �p then all imageshave been normalized, for instane, to the largest inte-gration time �max, i. e. gj has been multiplied by �max=�j .Method 1The �rst approah is the most natural one and onsistsin a simple addition of the di�erent images. In order topreserve normalization of the PSF it is onvenient to takethe arithmeti mean. Therefore the PSF will be given by:KAV (m;n) = 1p pXj=1Kj(m;n); (15)with the orresponding imagegAV (m;n) = 1p pXj=1 gj(m;n) : (16)The main features of this approah are the following:{ Both the PSF and the image are non-negative; more-over the PSF is orretly normalized to 1 and the bak-ground of the image gAV is the arithmeti mean of thebakgrounds of the images gj .{ If the images gj are orrupted by Poisson (photon)noise, then their sum is also orrupted by Poisson noisesine the sum of independent Poisson proesses is alsoa Poisson proess with expeted value given by thesum of the expeted values.{ The addition of the images implies that in the domainsof the u,v plane where only one image ontains infor-mation, the e�et of the others is just to add noise,hene to redue the SNR.Figure 1 an help to larify the last statement. Weassume three ideal PSFs orresponding to three di�erentparallati angles: 0Æ, 60Æ, and 120Æ respetively, andwe plot the MTFs (Modulation Transfer Funtions) ofthese PSFs. It is obvious that all the Fourier transformsof the orresponding images will take approximately thesame values in the entral dis; these values are addedtogether so that the signal will be the arithmeti mean ofthe signals oming from the three images. On the otherhand, in the side-diss only one image will ontributewith signi�ant values, while the two others will addnoise, produing a degradation of the signal. The �rstpiture to the left in Fig. 2 is the MTF of the averagePSF, KAV , in the ase of the ideal PSFs of Fig. 1Method 2In a reent paper Vio et al. (2004) propose a new method,derived from the least-squares approah, for the fusion ofthe multiple images into a single one. However, the rela-tionship with the least-squares approah is not relevantand, in our paper, we onsider a di�erent kind of fusionwhih does not oinide exatly with that proposed by Vioet al. (2004) and has simpler properties.The basi idea of the approah of Vio et al. is to de�nea transfer funtion whih is obtained by taking, in a pixel



Anonelli et al.: Restoration of interferometri images. III. 5
Fig. 1. Examples of MTFs orresponding to three orientationsof the LBT baseline (ideal ase): 0Æ in the left panel, 60Æ inthe entral panel and 120Æ in the right panel.

,Fig. 2. MTFs of the single-image approahes, orrespondingto the ideal MTFs of Fig. 1: Method 1 in the left panel andMethod 2 in the right panel.m;n of the u; v plane, the value of the transfer funtionwhih has the maximum modulus, i. e.K̂MM (m;n) = K̂J(m;n); if (17)jK̂J (m;n)j � jK̂j(m;n)j ; for j = 1; ::::; p:The MTF of this method is given in the right panel ofFig. 2, also in the ase of the ideal MTFs of Fig. 1. Asit is obvious this proedure provides the orret ontrastbetween the entral dis and the side-diss, sine thesereprodue orretly those of the original MTFs.Then we introdue the image whih is quite naturallyrelated to the transfer funtion de�ned in Eq. 17: it isde�ned by taking, in a pixel m;n of the u; v plane, justthe value of the Fourier transform of the image with indexJ , i. e. that orresponding to the transfer funtion withthe maximum modulus. We have:ĝMM (m;n) = ĝJ(m;n) : (18)The main features of this approah are the following:{ Both the PSF and the image, de�ned as the inverseFourier transforms of Eqs. 17 and 18 respetively, maytake negative values. These must be zeroed if the RLmethod is used. Therefore the PSF must be renormal-ized to guarantee that the sum of the pixel values is1 and the total ux of the nonnegative image must beomputed. For simpliity we do not hange the nota-tions of the PSF and of the image obtained with theseoperations from the original ones.{ The bakground of the image gMM will oinide withthe largest bakground in the deteted images, a dif-�ulty in the ase of very di�erent observation times,

,

,

,Fig. 3. The AO-orreted PSFs used in our simulations (log-arithmi sale): in the left olumn the PSFs without angularsmearing e�et and in the right olumn those with angularsmearing e�et; from top to bottom 0Æ, 60Æ and 120Æ as orien-tations of the baseline.so that the renormalization of the images mentionedat the beginning of this setion is required.{ In the ase of white noise a�eting the images gj , thenoise a�eting the image gMM of Eq. 18 has a onstantpower spetrum.If we apply the RL-algorithm to the images of the twomethods desribed above, it is obvious that the omputa-tional ost of one iteration is preisely that of one OS-EMiteration. Moreover it is obvious that the same aelera-tion exponent an be applied in all ases. Therefore theomparison between the eÆienies of the three methodssimply onsists in the omparison between the numbers ofiterations required for reahing the optimal restorations.Sine the optimal restorations provided by the three meth-ods, in general, do not oinide, their omparison providesinsight into their auray.



6 Anonelli et al.: Restoration of interferometri images. III.4. Numerial experimentsThe purpose of our numerial experiments is twofold:{ investigate possible riteria for deiding the maximumvalue of the aeleration exponent !, still ompatiblewith the onvergene of the iterative algorithm;{ ompare the auray and eÆieny of the aeleratedmulti-image algorithm of Eq. 13 with ! = 2, and thatof the aelerated single-image RL algorithm (sameequations with p = 1) applied to the images providedby Method 1 and Method 2 of the previous Setion.We will denote the three approahes respetively as OS-EM, RL-AV and RL-MM.We �rst desribe the PSFs and the objets used in ourexperiments. We have onsidered three sets of PSFs anda series of objets. All the PSFs orrespond to orienta-tions of the baseline with respet to the observed objet(relative parallati angles) of 0Æ; 60Æ and 120Æ. The �rstset onsists of ideal PSFs, the seond one of AO-orretedPSFs with di�erent Strehl ratios for the three di�erent ori-entations, and the third one of AO-orreted PSFs withthe same Strehl ratios as before but with the addition ofthe angular smearing e�et due to earth rotation duringthe observation time (whih depends also on the objetdelination { see Carbillet et al. 2002).The AO-orretion e�ets are obtained, as already de-sribed in Carbillet et al. (2002), by an aurate model andsimulation of the atual AO system aboard LBT by meansof the software pakage CAOS (Carbillet et al. 2004). Theatmospheri onditions assumed result in a multi-layerturbulent atmosphere whose main physial parametersare: a mean veloity of 15m/s, a wave-front outer-saleof 20m, and values of the total Fried parameter of 12, 18,and 15 m (at 500nm), respetively for the PSF at 0Æ, 60Æ,and 120Æ; these learly orrespond to three di�erent mo-ments of observation during the night. As onerns the AOsystem itself, whih is pyramid-based, the physial param-eters are those foreseen for the system of LBT. We assumea on�guration of 15�15 equivalent sub-apertures, a 13thmagnitude guide star with optimized exposure time anda number of LBT672 mirror modes for eah of the threedi�erent atmospheri onditions. The resulting Strehl ra-tios are 52% for the PSF at 0Æ, 87% for the PSF at 60Æ,and 79% for the PSF at 120Æ.In the third set the �rst and the third PSFs are inte-grated over an angle of about 5Æ, while the seond is inte-grated over an angle of about 45Æ; in pratie this angularsmearing e�et is obtained by adding snapshot PSFs fordi�erent orientations. The two sets of AO-orreted PSFsare shown in Fig. 3.For the objets, we have onsidered a series of dif-fuse objets and a pointwise one. These objets are rel-atively simple, but are suitable if our purpose is mainlyto ompare eÆieny and auray of the di�erent meth-ods. In partiular we have onsidered di�erent nebulae ob-

served with the Hubble Spae Telesope and pushed far-away in order to math an angular resolution relevant forthe 22:8m equivalent aperture of LBT. For example theyoung stellar objet (YSO) IRAS 04302+2247 is pushedat 1.4Kp instead of its atual 140p. We onsider ob-jets whih are 128� 128 pixels wide and orresponds toan extension of � 0:0085 (the pixel size is 6.67mas). More-over, the pointwise objet is a binary system onsisting oftwo stars with the same magnitude (10) and an angularseparation whih an be just resolved by LBT in K-band(�25mas). The whole series of objets is shown in Fig. 4.In order to investigate the e�et of the aeleration ex-ponent, we assume ideal PSFs and an integration time of20min, a sky bakground value of 12.5mag/002 (K-band),a read-out noise (RON) of 2 e� rms, and a total transmis-sion of 30%. Moreover, for eah one of the di�use objetswe use three di�erent magnitudes, arbitrarily �xed to 14,15 and 16. An inrease in magnitude is equivalent to a de-rease of the SNR on the observed images. Therefore weonsider 33 di�use objets. The results of our experimentsan be summarized as follows: for all the di�use objetswe an use ! = 3 if m = 14, ! = 5 if m = 15 and ! = 8if m = 16. As a rule, the aeleration exponent is inreas-ing for dereasing SNR, so that when the SNR is low thealgorithm an be very fast. Indeed, the redution in thenumber of iterations with respet to OS-EM is just givenby the aeleration exponent without modi�ation of therestoration error. This is de�ned as the minimum value ofthe quantity de�ned by:�(k)rel = jjf (k) � f jjjjf jj ; (19)where f is the original objet and f (k) is the k-th iter-ation. We have obtained an average restoration error of9% for m = 14, 10% for m = 15 and 13% for m = 16,with orresponding average numbers of iterations of 350,125 and 50. Without aeleration, the average numbers ofiterations are, respetively, 1050, 625 and 400. However itmust be observed that the optimal number of iterationsstrongly depends on the spei� objet to be restored.Similar results have been obtained in the ase of the bi-nary: we an hoose inreasing values of the aelerationfator exponent for inreasing values of magnitude.For a �rst omparison of the three methods OS-EM,RL-AV and RL-MM, we have �xed the aeleration ex-ponent to ! = 2 and we have onsidered only one di�useobjet, namely the YSO objet IRAS 04302+2247 shownin Fig. 4. For eah image we generate, by means of thesoftware pakage AIRY, 50 noisy versions obtained with50 di�erent noise realizations (of Poisson type for the pho-ton noise and of Gauss type for the RON). For eah oneof these realizations we push the iterations of the threemethods up to reah the minimum of the restoration er-ror (semionvergene of the methods, see Bertero & Bo-ai 2000a), as de�ned in Eq. 19. Then, for eah method,we ompute the mean value (MV) and the standard de-
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Eskimo Nebula Cat's Eye Nebula Stringray Nebula Hourglass Nebula(NGC 2392) (NGC 6543) (IRAS 17119-5926) (NGC 6523)

Glowing Eye Nebula Spirograph Nebula Hubble's Variable Nebula Southern Crab Nebula(NGC 6751) (IRAS F05251-1244) (NGC 2261)
Saturn Nebula Buttery Star Ring Nebula binary star(NGC 7009) (IRAS 04302+2247) (NGC 6720)Fig. 4. The objets used in our numerial experiments. OS-EM RL-AV RL-MMMV SD MV SD MV SDMinimum of the Restoration Error (RE) 4.8% � 0.1% 6.6% � 0.1% 6.2% � 0.1%Optimal Number of Iterations 1536 � 141 705 � 40 366 � 13Number of iterations providing RE ' 7% 168 � 6 385 � 56 149 � 6Table 1. Comparison between the auray and eÆieny of the three methods. We have used a 128x128 image of the di�useobjet IRAS 04302+2247 with magnitude = 14, onvolved with ideal PSFs and orrupted with 50 di�erent realizations of noise;the reported mean values (MV) and standard deviations (SD) refer to these 50 realizations.viation (SD) of the 50 values of the minimum restorationerror and of the orresponding number of iterations. Theresults are reported in the �rst two rows of Table 1.As it follows from the �rst row, the most auraterestoration is provided by OS-EM while the two single-image methods are approximately equivalent. In all asesthe standard deviation is quite small and that means thatthe minimum restoration error does not strongly depend

on the noise realization. On the other hand the seond rowshows that RL-MM is the most eÆient method, with alsoa good stability of the number of iterations with respetto variations of the noise realization. OS-EM is the lesseÆient one with also a rather broad dispersion of theoptimal number of iterations.However, sine the minimum of the restoration erroris, in general, rather at, we have onsidered the num-



8 Anonelli et al.: Restoration of interferometri images. III.ber of iterations required for reahing the same auraywith the three methods. We have hosen a threshold of7% sine this auray an be reahed by all the methods.The results are reported in the third row and we an on-lude that, from this point of view, OS-EM and RL-MMare essentially equivalent.Magnitude OS-EM RL-AV RL-MM% error % error % error14 6. 7.3 7.215 7.9 10 9.316 9.8 11.4 12.6Table 2. Comparison between the auraies of the threemethods in the ase of the di�use objet with di�erent magni-tudes; images 256�256 onvolved with ideal PSFs.Magnitude OS-EM RL-AV RL-MM% error % error % error14 7.2 9.6 9.115 8.6 11.1 10.216 10 11.8 12.7Table 3. Comparison between the auraies of the threemethods in the ase of the di�use objet with di�erent magni-tudes; images 256�256 onvolved with AO-orreted PSFs.Magnitude OS-EM RL-AV RL-MM% error % error % error14 7.4 10. 8.715 8.6 11.2 9.616 10.2 12.8 11.6Table 4. Comparison between the auraies of the threemethods in the ase of the di�use objet with di�erent magni-tudes; images 256�256 onvolved with AO-orreted PSF withangular smearing e�et.In a seond set of experiments we use three 256� 256versions of the same YSO objet with di�erent magnitudes(m =14, 15 and 16). For eah value of the magnitude threesets of images are generated by onvolving the objet withthe three sets of PSFs desribed above and adding thenoise ontributions (sky bakground, photon noise, RON,and no dark urrent). In these experiments we onsideronly one noise realization, one for eah set of PSFs. Thepurpose of these experiments is to ompare the aurayof the three methods and investigate its dependene onthe magnitude of the objet (hene on the SNR ratio)as well as on the AO-orretion of the PSFs. The resultsare reported in Table 2 for the ideal PSFs, in Table 3for the AO-orreted PSFs, and in Table 4 for the AO-orreted PSFs with the addition of the angular smearing

,

,Fig. 5. Example of reonstrution of the binary system withmagnitudes 10. The images have been obtained by onvolvingwith the AO-orreted PSFs with angular smearing e�et. Inthe upper panels, one of the three images and the reonstru-tion provided by OS-EM; in the lower panels, the reonstru-tions provided by RL-AV and RL-MM.e�et. It follows that OS-EM always provides the bestresults even if the improvement of auray, with respetto the two other methods, does not strongly depend onthe magnitude of the objet and on the PSFs.In a third set of experiments we onsider the reon-strution of the binary system of Fig. 4. We have mainlyinvestigated the ase of two stars with the same magni-tude (m = 10), by looking at the behaviour of the threemethods for the three sets of PSFs. In Fig. 5 we give anexample of the reonstrutions we have obtained.In the ase of point objets the RL-like methods ex-hibit a onvergent behaviour (instead of the semionver-gent one, whih applies to the ase of di�use objets). Thise�et is shown in Fig. 6 where we plot the reonstrutedvalue of the ux of the binary as a funtion of the numberof iterations for the three sets of PSFs we have onsidered.The omparison between OS-EM and RL-MM needs somedisussion.As shown by the plots in the three panels, the OS-EM method always tends to underestimate the value ofthe ux while, in the �rst two ases, RL-MM providesa small over-estimate. This e�et is due to the need ofzeroing the negative values of the MM-image, given byEq. 26, as we disussed in Setion 3. As a onsequenethe total ux of the image is inreased and this e�et is atthe origin of the over-estimation of the ux of the restoredbinary. In the third ase (AO-orreted PSFs with angularsmearing e�et) OS-EM is de�nitely better than the twoother methods.
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Fig. 6. Behaviour of the ux of the binary objet, with mag-nitude 10, as a funtion of the number of iterations: idealPSFs (upper panel); AO-orreted PSFs (middle panel): AO-orreted PSFs with angular smearing (lower panel).5. Conluding remarksIn this paper we have investigated three di�erent RL-likemethods for eÆiently reonstrut interferometri imagesprovided by the LN beam ombiner of LBT. In our opin-ion the aelerated version of the OS-EM method we pro-
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