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Abstract. In previous papers we proposed methods
and software for the restoration of images provided by
Fizeau interferometers such as LINC-NIRVANA (LN),
the German-Italian beam combiner for the Large Binoc-
ular Telescope (LBT). It will provide multiple images
of the same target corresponding to different orienta-
tions of the baseline. Therefore LN will require routinely
the use of multiple-images deconvolution methods in or-
der to produce a unique high-resolution image. As a
consequence of the complexity of astronomical images,
two kinds of methods will be required: first a quick-look
method, namely a method computationally efficient, allow-
ing a rapid overview and identification of the object being
observed; second an ad-hoc method designed for that par-
ticular object and as accurate as possible. In this paper
we investigate the possibility of using Richardson-Lucy-
like (RL-like) methods, namely methods designed for the
maximization of the likelihood function in the case of Pois-
son noise, as possible quick-look methods. To this purpose
we propose new techniques for accelerating the Ordered
Subsets - Expectation Maximization (OS-EM) method,
investigated in our previous papers; moreover we analyze
approaches based on the fusion of the multiple images into
a single one, so that one can use single-image deconvo-
lution methods which are presumably more efficient than
the multiple-images ones. The results are encouraging and
all the methods proposed in this paper have been imple-
mented in our software package AIRY.

Key words: image restoration — interferometric images —
Richardson-Lucy method

1. Introduction

In previous papers (Bertero & Boccacci 2000a, 2000b,
Correia et al. 2002, Carbillet et al. 2002) we de-
veloped methods and software for the deconvolution
of multiple interferometric images of the same astro-
nomical target. Moreover our group has produced the
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software package AIRY (Astronomical Image Recon-
struction in interferometrY) which is now available in
the version 2.0 (see http://dirac.disi.unige.it and
http://wuw.arcetri.astro.it/caos). This tool can be
applied to Fizeau interferometers such as the beam com-
biner for LBT, denoted as LINC-NIRVANA (Lbt INterfer-
ometric Camera and Near-InfraRed/Visible Adaptive iN-
terferometer for Astronomy). LBT will consist of two 8.4m
mirrors on a common mount, with a spacing of 14.4m be-
tween their centres, so that a maximum baseline of 22.8m
will be available. The very first light of the telescope is
scheduled for September 2004, the second light for Novem-
ber 2005 while the first interferometric light is foreseen for
mid 2006.

The interferometric technique used in LN will provide
direct imaging with the resolution of a 22.8m telescope in
the direction of the baseline and of a 8.4m telescope in
the orthogonal direction. Since resolution is not uniform
over the field, several images of the same scientific object
must be acquired with different orientations of the baseline
and they must be routinely processed (deconvolved) in
order to get a unique image with the resolution of a 22.8m
telescope.

Two different kinds of deconvolution methods may be
needed:

- quick-look methods, computationally efficient even if not
always very accurate, to be routinely used for a prelimi-
nary view of the target just after data acquisition;

- ad hoc methods, designed for specific classes of astro-
nomical objects, which can be computationally expensive
but must be accurate as far as possible for all the objects
in a given class.

Therefore the processing of LN images will require, in
general, two steps: the first one, based on a quick-look
method, is intended to identify the specific features of the
particular object the astronomer is observing; the second
one consists in the use of the ad hoc method which has
been designed for the objects with those specific features.

An example of quick-look method is provided by the so-
called Tikhonov regularization (Bertero & Boccacci 1998,
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2000a), which is basically a Wiener filter. More accurate,
even if less efficient, is the OS-EM method, proposed by
Hudson & Larkin (1994) for emission tomography and ex-
tended to LBT-imaging in Bertero & Boccacci (2000D),
which provides the same accuracy as the RL method
(Richardson 1972, Lucy 1974), but with a considerable
gain in the computational cost. On the other hand ad
hoc methods could be designed for specific objects such
as objects with a very high dynamic range (an example
is the model of young binary proposed by Carbillet et al.
(2002)), or unresolved compact objects (an example is the
method, proposed by Correia et al. (2002) and validated
by Anconelli et al. (2004), for super-resolving binary sys-
tems) or others.

In any case computational efficiency is an important
issue for the processing of LN images. The first detector
will cover a field of about 10arcsec in K band, with a pixel
size of about 5mas, so that it will produce images of about
2000 x 2000 pixels. The processing of these images is not a
terrible task. But, since the AO-system of LN provides a
uniform correction over a field of 2arcmin, it is reasonable
to conceive that even broader images will be available in
the future. For this reason we are interested to increase
the efficiency of RL-like algorithms.

We consider two approaches: the first consists in im-
proving the efficiency of the OS-EM algorithm by means of
a technique which allows a reduction of the number of iter-
ations, without a significant increase of the computational
cost of a single iteration; the second consists in the com-
bination of the multi-images provided by LN into a single
one. One of these approaches has been recently proposed
by Vio et al. (2004). It is obvious that, in such a case,
the computational cost of one iteration is that of a single-
image. However this is true also for the OS-EM method
so that the comparison of the efficiency of all these meth-
ods is uniquely based on the comparison of the number of
iterations required for getting the optimal restoration.

In Section 2 we propose our method for OS-EM accel-
eration while in Section 3 we analyze a number of single-
image approaches. In Section 4 we present numerical ex-
periments intended to both evaluate the possible acceler-
ation factors and to compare the efficiency and accuracy
of multi-images and single-image methods. The results are
encouraging, as we discuss in Section 5.

2. The accelerated version of the OS-EM
algorithm

In this paper N x N arrays are denote by bold letters. Let
us assume that we have p images acquired with LN, cor-
responding to p different orientations of the baseline and
denoted by g;,95,...,g,- Then, if g;(m,n), (j = 1,..,p) is
the value of one of these images at pixel m,n, according
to the model proposed by Snyder et al. (1993) for images
acquired with a CCD camera, we can write:

gj(mvn) = gobj7j(man) + gbackJ(man) + Tj(man) 3 (1)

where: g,;,; ;(m,n) is the number of photoelectrons due
to object radiation; gy, ;(m,n) is the number of photo-
electrons due to external and internal background, dark
current, bias and fat zeros; r;(m,n) is the read-out noise
due to the amplifier. The first two terms are realizations
of independent Poisson processes (photon noise), so that
their sum is also a Poisson process and its expected value
is given by:
E{gopj,j(m,n) + Gpaer,j(m,n)} = (2)
= (K * f)(m,n) + bj(m,n),
where: K ; is the point spread function (PSF), correspond-
ing to the j-th orientation of the baseline (we assume, for
simplicity, space-invariance); f is the object array, formed
by the average numbers of photons emitted at the pixels of
the object domain and collected by the telescope; b;(m,n)
is the expected value of the background. In the following
we will denote by A; the block-circulant matrix which is
defined by the convolution product with the PSF K:
Ajf = Kj * f, (3)
and by AjT the transposed matrix. Moreover we will as-
sume that the PSFs are normalized in such a way that the
sum of their pixel values is one.

Finally the last term in Eq. 1 is the realization of an
independent Gaussian process with expected value r and
variance o (white noise). In the software package AIRY,
which is described by Correia et al. (2002) and is used for
our numerical simulations, images are generated according
to this model.

In the case of images dominated by photon noise, the
read-out noise can be neglected and the likelihood func-
tion is given by a product of Poisson distributions, one for
each pixel of the image domain. The maximization of this
function is equivalent to the minimization of the Csiszar
directed divergence (Csiszar 1991) given by:

p N-1 j(m’n)
=2 Z_o{gj(m’"”WAjf)(ngw,n) by myn) T
+ [(4;£)(m,n) + b; — g, (m,m)]}. (4)

The new version of OS-EM can be introduced and jus-
tified in the framework of a general approach, proposed
by Lanteri et al. (2001), which allows to design descent
methods for the minimization of a convex functional J(f)
such as that of Eq. 4. The basic idea relies on the following
decomposition of the gradient of the functional:
=VJ(f) =U) - V() (5)
where U(f) and V (f) are positive arrays. Such a decom-
position always exists and is not unique; the applicability
of the method requires an explicit expression for the de-
pendence of these arrays on f. Then the general structure
of the proposed iterative algorithms is as follows:

k1) _ ph WU —v(FM)e
A T (6)
where the quotient of two arrays is defined pixel by pixel
as we will do also in the next equations. o and w are relax-
ation parameters. « is the step-size in the descent direction
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(modified by w if w > 1) and it can be chosen to guarantee
both the non-negativity of the iterates and their conver-
gence. On the other hand w is a parameter which can allow
a reduction of the number of iterations, as we discuss in a
moment. We will call it the acceleration exponent.

Indeed, as discussed by Lanteri et al. (2001), an integer
value of w > 1 can speed-up the convergence of the iter-
ations. As already remarked, at the very first iterations
w modifies the descent direction; but, when the iterations
are close to convergence, the algorithm with w > 1 is ap-
proximately equivalent to the algorithm with w = 1 and
step-size aw. For the convenience of the reader we give the
argument in the simple case w = 2. In such a case, if we
write Eq. 6 in the following form:

f(k+1) _ f(k) n af(k) U(f(k)) + V(f(k)) y

(7)

V(f(k))2
U™ -vir®)
and if we observe that VJ(f) 0w en we are close to
convergence, so that U(f*) ~ Vv (# ) we get:
FUHD o p ) |9 £ U™ - vE®) (8)
V(f(k)) ’

i. e. the algorithm of Eq. 6 with w = 1 and step-size 2a.
In the case of the functional of Eq. 4 we get:

ZAJMH, ©)

= ZAjTl =pl,

where 1 is the array whose entries are all equal to 1. If
we insert these equations in Eq. 6 we re-obtain a number
of known algorithms. For instance, if w = 1 and a = 1,
we obtain just the RL method for multiple-images decon-
volution, as given in Bertero & Boccacci (2000b). On the
other hand, if w = 1 and a # 1, we obtain the extension to
the multiple-images case of the relaxed RL-method inves-
tigated by several authors (Kosarev et al. 1983, Holmes &
Liu 1991, Adorf et al. 1993). As it is known, this method
provides a considerable reduction of the number of iter-
ations but with an increase of the computational cost of
each iteration, due to the search for the value of a. For
example, if the step-size a is computed by means of an
approximate search method, such as the Armijo rule, in-
stead of the exact one (this is possible in our case), the
average reduction of the overall computation time is of
about 20 % (Lanteri et al 2001), depending on the images
considered and on the noise level.

Finally, in the case @ = 1 and w > 1, we obtain the
extension to the multiple-images case of an algorithm pro-
posed by Llacer & Nuiiez (1990):

I
] 1

The convergence of this algorlthm is not proved and there-
fore it must be investigated theoretically and/or experi-

w

FD = (10)
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mentally. As shown by Natterer & Wiibbeling (2001) con-
vergence presumably holds true when w is not too large.
It is obvious that the most interesting feature of the algo-
rithm is that, as in the case of RL, non-negativity of the
iterates is automatically assured, as one can easily verify.
Moreover, in the case of tomography, it is quite natural to
extend the trick to OS-EM itself (see Tanaka 1987, Nat-
terer & Wiibbeling 2001), and what we propose in this
paper is just the extension of this algorithm to multiple-
images deconvolution.

However there is an important point which must be
taken into account. In the case of zero background, as
shown by Bertero & Boccacci (2000a), the total flux of
each iterate of the multi-images RL method coincides with
the arithmetic mean of the total fluxes of the images g
As a consequence of the introduction of the background
terms, the iterates of the RL and OS-EM methods do not
have this property. Therefore, it is convenient to require
that the total flux of the solution coincide with the arith-
metic mean of the total fluxes of the images g;, after sub-
traction of the background terms (which are not due to
the scientific object):

N-1

S flmm) =c= (11)
m,n=0
- _Z Z {g;(m,n) —bj(m,n)}. (12)

As shown by Lanteri et al. (2002), to minimize the func-
tional of Eq. 4 with this constraint is equivalent to nor-
malize, at each step, the iterates in such a way that they
satisfy this condition. We have verified that this normal-
ization is necessary in the case of the accelerated algorithm
in order to assure convergence.

In conclusion, the algorithm we have implemented in
AIRY and we have tested is as follows:

— compute the constant ¢, as defined in Eq. 11;
— choose an initial f(o) > 0 such that its total flux
coincides with c¢;

— given f*) set j = (k+1) mod p and compute:
(k+1) (k) AT 9; 13
N—
ak41) — Z FEED (m, );
— set:
k+1) € p(k+1D)
P = oo F (14)

In the case w = 1 we re-obtain the standard OS-EM
method. However we point out that the OS-EM itera-
tions are defined in a different way in Bertero & Boccacci
(2000a): in that paper one iteration consists of a cycle
over the p images, so that one of those iterations con-
sists of p iterations of the algorithm defined above. The
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new version makes easy the comparison with the single-
image approaches discussed in the next Section. Indeed,
it is evident that the computational cost of one iteration
is just that of one iteration in the case of a single image;
the unique difference consists in the fact that the image
changes at each step.

We recall that, as proved in our previous papers, the
computational gain of OS-EM with respect to standard
multi-images RL is of the order of 4/(3p+1). In the prob-
ably frequent case of 3 images, the computation time of
OS-EM is about 40 % of that of RL, while, in the case of 4
images, is about 30 %. A further reduction is provided by
the algorithm of Eq. 13. Indeed, as a result of many nu-
merical experiments we can state that, in the case w = 2,
the method is convergent and always provides a reduction
of the number of iterations by a factor of 2, hence a re-
duction by a factor 2 of the computational cost, which,
in such a way is of the order of 20 % of that of standard
RL. Moreover, numerical experiments described in Section
4 indicate that it is possible to increase the acceleration
exponent in a way which depends on the signal-to-noise ra-
tio (SNR): smaller SNR may be compatible with a higher
acceleration exponent. As we will show an exponent 8 is
possible in some cases.

We conclude by remarking that w does not need to be
integer, as pointed out by Tanaka (1987), so that one can
also investigate non-stationary methods, namely methods
where w is changing at each iteration.

3. Single-image approaches

In a recent paper Vio et al. (2004) propose to solve the
multi-image deconvolution problem by combining the dif-
ferent images in a unique one containing all relevant in-
formation. At first glance such an approach looks appeal-
ing: first because it becomes possible to use existing soft-
ware for image deconvolution and secondly because the
computational cost seems to be reduced. However, we re-
call that, for an algorithm such as OS-EM, the cost of
one iteration is just that of one single-image RL-iteration.
Moreover two other points should not be forgotten: first,
in the case of imaging systems such as the LBT inter-
ferometer where the AO correction, the angular smearing
(see next Section), and also the time exposure (and hence
the noise contributions and the resulting background) can
be different for each different baseline exposure, the link
between the (very) different PSFs and the corresponding
images may be lost when the multi-images are combined
in a single one and this may be a loss of relevant informa-
tion; secondly, the statistical properties of the noise may
be modified by the fusion process. In conclusion the effi-
ciency and accuracy of the single-image approaches must
be tested numerically.

There are many ways for combining the multi-images
in a unique one. In this Section we consider two of them.
In all cases we assume that, if different images correspond
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to different integration times, 71, 72, ..., 7p then all images
have been normalized, for instance, to the largest inte-
gration time 7,44, i. €. g; has been multiplied by Tpqa /7.

Method 1
The first approach is the most natural one and consists
in a simple addition of the different images. In order to
preserve normalization of the PSF it is convenient to take
the arithmetic mean Therefore the PSF will be given by:

K 4y (m,n) ZK (m,n) (15)
with the correspondlng image
gay(m,n) Zgjmn (16)

The main features of this approach are the following;:

— Both the PSF and the image are non-negative; more-
over the PSF is correctly normalized to 1 and the back-
ground of the image g 4y is the arithmetic mean of the
backgrounds of the images g ;.

— If the images g, are corrupted by Poisson (photon)
noise, then their sum is also corrupted by Poisson noise
since the sum of independent Poisson processes is also
a Poisson process with expected value given by the
sum of the expected values.

— The addition of the images implies that in the domains
of the u,v plane where only one image contains infor-
mation, the effect of the others is just to add noise,
hence to reduce the SNR.

Figure 1 can help to clarify the last statement. We
assume three ideal PSFs corresponding to three different
parallactic angles: 0°, 60°, and 120° respectively, and
we plot the MTFs (Modulation Transfer Functions) of
these PSFs. It is obvious that all the Fourier transforms
of the corresponding images will take approximately the
same values in the central disc; these values are added
together so that the signal will be the arithmetic mean of
the signals coming from the three images. On the other
hand, in the side-discs only one image will contribute
with significant values, while the two others will add
noise, producing a degradation of the signal. The first
picture to the left in Fig.2 is the MTF of the average
PSF, K 4v, in the case of the ideal PSFs of Fig.1

Method 2
In a recent paper Vio et al. (2004) propose a new method,
derived from the least-squares approach, for the fusion of
the multiple images into a single one. However, the rela-
tionship with the least-squares approach is not relevant
and, in our paper, we consider a different kind of fusion
which does not coincide exactly with that proposed by Vio
et al. (2004) and has simpler properties.

The basic idea of the approach of Vio et al. is to define
a transfer function which is obtained by taking, in a pixel
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Fig. 1. Examples of MTF's corresponding to three orientations
of the LBT baseline (ideal case): 0° in the left panel, 60° in
the central panel and 120° in the right panel.

..

Fig. 2. MTFs of the single-image approaches, corresponding
to the ideal MTFs of Fig.1: Method 1 in the left panel and
Method 2 in the right panel.

m,n of the u,v plane, the value of the transfer function
which has the maximum modulus, i. e.

Kyy(myn) =K (m,n), if

‘KJ(man)‘ > ‘Kj(man)‘ , for j=1,...p.
The MTF of this method is given in the right panel of
Fig.2, also in the case of the ideal MTFs of Fig.1. As
it is obvious this procedure provides the correct contrast
between the central disc and the side-discs, since these
reproduce correctly those of the original MTFs.

Then we introduce the image which is quite naturally
related to the transfer function defined in Eq. 17: it is
defined by taking, in a pixel m,n of the u,v plane, just
the value of the Fourier transform of the image with index
J, i. e. that corresponding to the transfer function with
the maximum modulus. We have:
gun(m,n) =g;(m,n)

The main features of this approach are the following;:

(17)

(18)

— Both the PSF and the image, defined as the inverse
Fourier transforms of Eqs. 17 and 18 respectively, may
take negative values. These must be zeroed if the RL
method is used. Therefore the PSF must be renormal-
ized to guarantee that the sum of the pixel values is
1 and the total flux of the nonnegative image must be
computed. For simplicity we do not change the nota-
tions of the PSF and of the image obtained with these
operations from the original ones.

— The background of the image g,,5, will coincide with
the largest background in the detected images, a dif-
ficulty in the case of very different observation times,

Fig. 3. The AO-corrected PSFs used in our simulations (log-
arithmic scale): in the left column the PSFs without angular
smearing effect and in the right column those with angular
smearing effect; from top to bottom 0°, 60° and 120° as orien-
tations of the baseline.

so that the renormalization of the images mentioned
at the beginning of this section is required.

— In the case of white noise affecting the images g;, the
noise affecting the image g,,,, of Eq. 18 has a constant
power spectrum.

If we apply the RL-algorithm to the images of the two
methods described above, it is obvious that the computa-
tional cost of one iteration is precisely that of one OS-EM
iteration. Moreover it is obvious that the same accelera-
tion exponent can be applied in all cases. Therefore the
comparison between the efficiencies of the three methods
simply consists in the comparison between the numbers of
iterations required for reaching the optimal restorations.
Since the optimal restorations provided by the three meth-
ods, in general, do not coincide, their comparison provides
insight into their accuracy.
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4. Numerical experiments

The purpose of our numerical experiments is twofold:

— investigate possible criteria for deciding the maximum
value of the acceleration exponent w, still compatible
with the convergence of the iterative algorithm;

— compare the accuracy and efficiency of the accelerated
multi-image algorithm of Eq. 13 with w = 2, and that
of the accelerated single-image RL algorithm (same
equations with p = 1) applied to the images provided
by Method 1 and Method 2 of the previous Section.

We will denote the three approaches respectively as OS-
EM, RL-AV and RL-MM.

We first describe the PSFs and the objects used in our
experiments. We have considered three sets of PSFs and
a series of objects. All the PSFs correspond to orienta-
tions of the baseline with respect to the observed object
(relative parallactic angles) of 0°,60° and 120°. The first
set consists of ideal PSFs, the second one of AO-corrected
PSFs with different Strehl ratios for the three different ori-
entations, and the third one of AO-corrected PSFs with
the same Strehl ratios as before but with the addition of
the angular smearing effect due to earth rotation during
the observation time (which depends also on the object
declination — see Carbillet et al. 2002).

The AO-correction effects are obtained, as already de-
scribed in Carbillet et al. (2002), by an accurate model and
simulation of the actual AO system aboard LBT by means
of the software package CAOS (Carbillet et al. 2004). The
atmospheric conditions assumed result in a multi-layer
turbulent atmosphere whose main physical parameters
are: a mean velocity of 15m/s, a wave-front outer-scale
of 20m, and values of the total Fried parameter of 12, 18,
and 15 cm (at 500 nm), respectively for the PSF at 0°, 60°,
and 120°; these clearly correspond to three different mo-
ments of observation during the night. As concerns the AO
system itself, which is pyramid-based, the physical param-
eters are those foreseen for the system of LBT. We assume
a configuration of 15x15 equivalent sub-apertures, a 13th
magnitude guide star with optimized exposure time and
a number of LBT 672 mirror modes for each of the three
different atmospheric conditions. The resulting Strehl ra-
tios are 52% for the PSF at 0°, 87% for the PSF at 60°,
and 79% for the PSF at 120°.

In the third set the first and the third PSFs are inte-
grated over an angle of about 5°, while the second is inte-
grated over an angle of about 45°; in practice this angular
smearing effect is obtained by adding snapshot PSFs for
different orientations. The two sets of AO-corrected PSFs
are shown in Fig. 3.

For the objects, we have considered a series of dif-
fuse objects and a pointwise one. These objects are rel-
atively simple, but are suitable if our purpose is mainly
to compare efficiency and accuracy of the different meth-
ods. In particular we have considered different nebulae ob-

served with the Hubble Space Telescope and pushed far-
away in order to match an angular resolution relevant for
the 22.8 m equivalent aperture of LBT. For example the
young stellar object (YSO) IRAS 04302+2247 is pushed
at 1.4 Kpc instead of its actual 140pc. We consider ob-
jects which are 128 x 128 pixels wide and corresponds to
an extension of ~ 0”85 (the pixel size is 6.67 mas). More-
over, the pointwise object is a binary system consisting of
two stars with the same magnitude (10) and an angular
separation which can be just resolved by LBT in K-band
(~25mas). The whole series of objects is shown in Fig. 4.

In order to investigate the effect of the acceleration ex-
ponent, we assume ideal PSFs and an integration time of
20 min, a sky background value of 12.5 mag/"> (K-band),
a read-out noise (RON) of 2e~ rms, and a total transmis-
sion of 30%. Moreover, for each one of the diffuse objects
we use three different magnitudes, arbitrarily fixed to 14,
15 and 16. An increase in magnitude is equivalent to a de-
crease of the SNR on the observed images. Therefore we
consider 33 diffuse objects. The results of our experiments
can be summarized as follows: for all the diffuse objects
wecanuse w =3ifm=14,w=5ifm=15and w =8
if m = 16. As a rule, the acceleration exponent is increas-
ing for decreasing SNR, so that when the SNR is low the
algorithm can be very fast. Indeed, the reduction in the
number of iterations with respect to OS-EM is just given
by the acceleration exponent without modification of the
restoration error. This is defined as the minimum value of
the quantity defined by:

o — 1FY - fll
rel I1£]] ’

where f is the original object and f(k) is the k-th iter-
ation. We have obtained an average restoration error of
9% for m = 14, 10% for m = 15 and 13% for m = 16,
with corresponding average numbers of iterations of 350,
125 and 50. Without acceleration, the average numbers of
iterations are, respectively, 1050, 625 and 400. However it
must be observed that the optimal number of iterations
strongly depends on the specific object to be restored.
Similar results have been obtained in the case of the bi-
nary: we can choose increasing values of the acceleration
factor exponent for increasing values of magnitude.

For a first comparison of the three methods OS-EM,
RL-AV and RL-MM, we have fixed the acceleration ex-
ponent to w = 2 and we have considered only one diffuse
object, namely the YSO object IRAS 0430242247 shown
in Fig.4. For each image we generate, by means of the
software package AIRY, 50 noisy versions obtained with
50 different noise realizations (of Poisson type for the pho-
ton noise and of Gauss type for the RON). For each one
of these realizations we push the iterations of the three
methods up to reach the minimum of the restoration er-
ror (semiconvergence of the methods, see Bertero & Boc-
cacci 2000a), as defined in Eq. 19. Then, for each method,
we compute the mean value (MV) and the standard de-

(19)
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Eskimo Nebula
(NGC 2392)

Cat’s Eye Nebula
(NGC 6543)

Stringray Nebula
(IRAS 17119-5926)

Hourglass Nebula
(NGC 6523)

Glowing Eye Nebula
(NGC 6751)

Spirograph Nebula
(IRAS F05251-1244)

Saturn Nebula Butterfly Star

Hubble’s Variable Nebula Southern Crab Nebula

(NGC 2261)

Ring Nebula

binary star

(NGC 7009) (IRAS 04302+2247) (NGC 6720)
Fig. 4. The objects used in our numerical experiments.
OS-EM RL-AV RL-MM
MV | SD MV | SD MV | SD
Minimum of the Restoration Error (RE) | 4.8% | £ 0.1% | 6.6% | £ 0.1% | 6.2% | £ 0.1%
Optimal Number of Iterations 1536 | + 141 705 + 40 366 + 13
Number of iterations providing RE ~ 7% | 168 + 6 385 + 56 149 + 6

Table 1. Comparison between the accuracy and efficiency of the three methods. We have used a 128x128 image of the diffuse
object IRAS 04302+2247 with magnitude = 14, convolved with ideal PSFs and corrupted with 50 different realizations of noise;
the reported mean values (MV) and standard deviations (SD) refer to these 50 realizations.

viation (SD) of the 50 values of the minimum restoration
error and of the corresponding number of iterations. The
results are reported in the first two rows of Table 1.

As it follows from the first row, the most accurate
restoration is provided by OS-EM while the two single-
image methods are approximately equivalent. In all cases
the standard deviation is quite small and that means that
the minimum restoration error does not strongly depend

on the noise realization. On the other hand the second row
shows that RL-MM is the most efficient method, with also
a good stability of the number of iterations with respect
to variations of the noise realization. OS-EM is the less
efficient one with also a rather broad dispersion of the
optimal number of iterations.

However, since the minimum of the restoration error
is, in general, rather flat, we have considered the num-
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ber of iterations required for reaching the same accuracy
with the three methods. We have chosen a threshold of
7% since this accuracy can be reached by all the methods.
The results are reported in the third row and we can con-
clude that, from this point of view, OS-EM and RL-MM
are essentially equivalent.

Magnitude | OS-EM | RL-AV RL-MM
% error | % error | % error

14 6. 7.3 7.2

15 7.9 10 9.3

16 9.8 11.4 12.6

Table 2. Comparison between the accuracies of the three
methods in the case of the diffuse object with different magni-
tudes; images 256 x256 convolved with ideal PSFs.

Magnitude | OS-EM | RL-AV | RL-MM
% error | % error | % error

14 7.2 9.6 9.1

15 8.6 11.1 10.2

16 10 11.8 12.7

Table 3. Comparison between the accuracies of the three
methods in the case of the diffuse object with different magni-
tudes; images 256%x256 convolved with AO-corrected PSFs.

Magnitude | OS-EM | RL-AV | RL-MM
% error | % error | % error

14 7.4 10. 8.7

15 8.6 11.2 9.6

16 10.2 12.8 11.6

Table 4. Comparison between the accuracies of the three
methods in the case of the diffuse object with different magni-
tudes; images 256 x 256 convolved with AO-corrected PSF with
angular smearing effect.

In a second set of experiments we use three 256 x 256
versions of the same YSO object with different magnitudes
(m =14, 15 and 16). For each value of the magnitude three
sets of images are generated by convolving the object with
the three sets of PSFs described above and adding the
noise contributions (sky background, photon noise, RON,
and no dark current). In these experiments we consider
only one noise realization, one for each set of PSFs. The
purpose of these experiments is to compare the accuracy
of the three methods and investigate its dependence on
the magnitude of the object (hence on the SNR ratio)
as well as on the AO-correction of the PSFs. The results
are reported in Table 2 for the ideal PSFs, in Table 3
for the AO-corrected PSFs, and in Table 4 for the AO-
corrected PSFs with the addition of the angular smearing

Fig. 5. Example of reconstruction of the binary system with
magnitudes 10. The images have been obtained by convolving
with the AO-corrected PSFs with angular smearing effect. In
the upper panels, one of the three images and the reconstruc-
tion provided by OS-EM; in the lower panels, the reconstruc-
tions provided by RL-AV and RL-MM.

effect. It follows that OS-EM always provides the best
results even if the improvement of accuracy, with respect
to the two other methods, does not strongly depend on
the magnitude of the object and on the PSFs.

In a third set of experiments we consider the recon-
struction of the binary system of Fig.4. We have mainly
investigated the case of two stars with the same magni-
tude (m = 10), by looking at the behaviour of the three
methods for the three sets of PSFs. In Fig.5 we give an
example of the reconstructions we have obtained.

In the case of point objects the RL-like methods ex-
hibit a convergent behaviour (instead of the semiconver-
gent one, which applies to the case of diffuse objects). This
effect is shown in Fig.6 where we plot the reconstructed
value of the flux of the binary as a function of the number
of iterations for the three sets of PSFs we have considered.
The comparison between OS-EM and RL-MM needs some
discussion.

As shown by the plots in the three panels, the OS-
EM method always tends to underestimate the value of
the flux while, in the first two cases, RL-MM provides
a small over-estimate. This effect is due to the need of
zeroing the negative values of the MM-image, given by
Eq. 26, as we discussed in Section 3. As a consequence
the total flux of the image is increased and this effect is at
the origin of the over-estimation of the flux of the restored
binary. In the third case (AO-corrected PSFs with angular
smearing effect) OS-EM is definitely better than the two
other methods.
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Fig. 6. Behaviour of the flux of the binary object, with mag-
nitude 10, as a function of the number of iterations: ideal
PSFs (upper panel); AO-corrected PSFs (middle panel): AO-
corrected PSFs with angular smearing (lower panel).

5. Concluding remarks

In this paper we have investigated three different RL-like
methods for efficiently reconstruct interferometric images
provided by the LN beam combiner of LBT. In our opin-
ion the accelerated version of the OS-EM method we pro-

pose in this paper is, at the moment, the best approach to
a quick-look reconstruction of LN images with the same
quality of the reconstruction provided by the RL method.
The accelerated version of OS-EM may provide a speed-up
of a factor 10 with respect to RL in the case of moderate
SNR. However it is obvious that further numerical exper-
iments are required if one intends to provide to the users
tables containing the acceleration factors as functions of
the SNR.

We point out that an efficient and accurate quick-look
method, providing nearly-real-time images when observ-
ing with LN will be of fundamental importance. Indeed
the images obtained will have the unprecedented angu-
lar resolution of a nearly-23m telescope, hence showing
previously unknown spatial features within the observed
astrophysical objects.
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