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The first processing stage in computational vision, also called 
early vision, consists o f  decoding two-dimensional images in terms 
o f  properties o f  3-0 surfaces. Early vision includes problems such 
as the recovery of mot ion and  optical flow, shape from shading, 
surface interpolation, and edge detection. These are inverse prob- 
lems, which are often ill-posed or ill-conditioned. We review here 
the relevant mathematical results on  ill-posed and il l-conditioned 
problems and introduce the formal aspects of regularization the- 
ory in the linear and nonlinear case. Specific topics in early vision 
and their regularization are then analyzed rigorously, characteriz- 
ing existence, uniqueness, and stability o f  solutions. 

INTRODUCTION 

Vision systems, whether artificial or biological, are con- 
fronted with the problem of inferring geometrical and 
physical properties of surfaces around the viewer. The 
available data-the images-consist of two-dimensional 
arraysof light intensityvalues measured by an eyeor acam- 
era. For tasks such as navigation, manipulation, and visual 
recognition, vision systems have to first recover 3-D prop- 
erties of surfaces from the 2-D images. Typical 3-D prop- 
erties are the distance between the surfaces and the viewer, 
their orientation, texture, reflectance, and motion param- 
eters (from a temporal sequence of images). 

The visual skills that provide us with this kind of infor- 
mation have been explored in animals and humans with 
physiological and behavioral techniques. With the recent 
development of computer vision, these problems have been 
formulated rigorously and given, by now, familiar names 
such as, structure from stereo, structure from motion, struc- 
ture from texture, shape from shading, edge detection, 
visual interpolation, and computation of  optical flow. The 
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computational modules that solve them together consti- 
tute the core of early vision, and provide spatial and geo- 
metrical information aboutthe3-Dworld.The resultsofthis 
first stage of processing are then used for higher level tasks 
such as navigation in the environment, manipulation of 
objects and, of course, object recognition as well as rea- 
soning about objects. Unlike high level vision, early vision 
i s  mostly considered as a set of bottom-up processes that 
do not rely upon specific high-level information about the 
scene to be analyzed. It i s  commonly argued, on the basis 
of computational and psychophysical considerations, that 
these different modules of early vision can be analyzed 
independentlyof each other, to afirst approximation. Their 
most natural implementation is  in terms of distinct pieces 
of hardware, whose outputs will be integrated at a later 
stage, possibly using more “intelligent” procedures. 

Even a superficial analysis of these problems reveals their 
common inverse nature: they can be regarded as inverse 
optics since they attempt to recover physical properties of 
3-D surfaces from the 2-D images they generate. This obser- 
vation characterizes the field of early vision as the solution 
of problems of inverse optics [I], [2]. The same observation 
makes clear that the data of the problems (the 2-D images) 
contain in general limited information about the solutions 
(the 3-D properties). This lack of information implies that 
the problems of early vision are very often ill-posed in the 
original sense of Hadamard [3], [4]: the solution may not be 
unique (giving an ambiguous reconstruction) or it does not 
exist, or it does not depend continuously on the data. As 
a consequence of the ill-posedness of the problems of early 
vision, the effect of noise, which is always present in a phys- 
ical measurement, is  very important: even a small error in 
the data can produce an extremely large error in the solu- 
tion. Notice also that, since practical problems are always 
made discrete and therefore are reduced to the inversion 
of a matrix (in the linear case), non-uniqueness and numer- 
ical instability can have very similar effects. 

Inverse and ill-posed problems are very important in sev- 
eral domains of applied science such as medical diagnos- 
tics, seismic exploration, atmospheric remote sensing, 
radioastronomy, microscopy and so on. The relevance of 
these problems has stimulated, since the beginning of the 
1960s, the development of theoretical and practical meth- 
odsfor determining approximateand stable solutions. Most 
of these methods have now been unified in a theory which 
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i s  called the regularization theory of ill-posed problems [5], 
[6]. On the other hand, it has been recognized only recently 
that several problems of early vision are ill-posed and that 
methods developed independently by researchers active in 
this field are in fact specific examples of regularization the- 
ory [I], [2], [7l-[17]. Even if the theory of ill-posed problems 
has not yet significantly contributed to early vision, the 
development of this theoretical framework is important for 
at least two reasons. First, the synthesis of methods devel- 
oped independently in different scientific domains within 
a general framework always contributes to a deeper under- 
standing of the problems. Second, regularization theory 
provides several methods and algorithms that have not yet 
been applied to early vision. 

The aim of this paper i s  to give a rigorous formulation and 
development of the ideas outlined above. It i s  organized 
in two parts. In the first part, for the convenience of the 
reader, we sketch the theory of ill-posed problems. In par- 
ticular we characterize the difference between well-posed 
and ill-posed problems (Section I I )  and between well-con- 
ditioned and ill-conditioned problems (Section IV). The 
notions of generalized inverses (Section I l l )  and of regu- 
larization methods (Section V) are then introduced. Section 
VI contains some results related to inverse nonlinear prob- 
lems. Several monographs are alreadyavailable on the sub- 
ject [5], [6], [18]-[21]. They stress the mathematical aspects 
of the theory rather than its practical applications. More 
physical presentations are given in [22], [23]. 

In the second part we show that several approaches, 
recently proposed by many authors to solve problems of 
early vision, using smoothness constraints and variational 
techniques, can be obtained directly and justified in the 
general framework of regularization theory. Five problems 
in early vision are studied in detail: edge detection and 
numerical differentiation (Section VII), optical flow (Section 
VIII), surface interpolation (Section IX), shape from shading 
(Section X), and stereo matching (Section XI). The solutions 
that we will describe for edge detection and stereo using 
the regularization approach are new, though they are prac- 
tically equivalentto previous methods. In thecaseof optical 
flow, surface interpolation and shape from shading, regu- 
larization leads to the same solution already obtained by 
previous workers. We derive, however, more complete 
results about uniqueness and the properties of the solu- 
tion. 

The problems of early vision are in general mildly ill- 
posed. Roughlyspeaking, this means that a reduction of the 
errors in the data can produce a significant improvement 
of the solutions. This i s  a lucky situation because many 
inverse problems are severely ill-posed, in the sense that 
a reduction of the noise even of several orders of magnitude 
will not induce a significant improvement of the solution. 
More precise mathematical definitions of these concepts 
are given in [24], where mildly ill-posed problems are called 
well-behaved. 

The prototypical problem for early vision is  surface 
reconstruction. This is the problem of approximating a 
"surface" from noisy and possibly sparse data. As we will 
see later, even problems that do not suffer from being 
underdetermined (like the new formulation of the optical 
flow in Section VIII-E) still require regularization because 
the measurements are noisy and sparse. The main role of 
regularization in vision is therefore as an approximation 

technique that exploits apriori information to counter noise 
in the data and to fill-in wherever data are missing or not 
reliable. 

PART ONE 

I .  OUTLINE 

In this part of the paper we review some of the methods 
which have been developed for the approximate solution 
of ill-posed problems. The linear case i s  discussed in detail 
since a well-developed theory is  available. We also make 
some comments on nonlinear problems. 

In Section I I  we define the class of well-posed problems, 
stressing that a well-posed problem is  not necessarily robust 
against noise. A well-posed problem, in order to have solu- 
tions that are robust against noise, must also be well-con- 
ditioned (see Section IV). For ill-posed, linear, inverse prob- 
lems, well-posedness can be restored by generalized 
solutions if the range of the operator (which has to be 
inverted) is closed (see Section Ill). When the range of the 
operator is  not closed, or when the problem is  seriously i l l -  
conditioned, regularization techniques have to be used 
(Section V) in order to avoid the instability of the solution 
against noise. Therefore, since images are intrinsically 
noisy, these techniques represent the ideal tool for early 
vision problems. Some results on inverse nonlinear prob- 
lems are presented in Section VI. 

I I .  WELL-POSED AND ILL-POSED PROBLEMS 

well-posed when: 
Hadamard [3], [4] defined a mathematical problem to be 

a) for each datum g in a given class of functions Y there 
exists a solution U in a prescribed class X (existence); 

b) the solution U is unique in X (uniqueness); 
c) the dependence of u upong i s  continuous, i.e., when 

theerror on thedatagtends tozero, the induced error 
on the solution U tends also to zero (continuity). 

The requirement of continuity is  related to the require- 
ment of stability or robustness of the solution (see, for 
instance, [25]). Continuity, however, is  a necessary but not 
sufficient condition for stability. A well-posed problem can 
be ill-conditioned (see Section IV). 

All the classical problems of mathematical physics, such 
as the Dirichlet problem for elliptic equations, the forward 
problem for the heat equation, and the Cauchy problem for 
hyperbolic equations, are well-posed in the sense of Had- 
amard. Also, thel'direct" problem in scattering (or imaging) 
theory, namely the computation of the scattered radiation 
(image) from a known constitution of the sources and of the 
targets, i s  well-posed. 

"Inverse" problems usually are not well-posed. In most 
cases an "inverse" problem can be obtained from the 
"direct" one by exchanging the role of solution and data. 
For instance, in the case of scattering theory, the inverse 
problem consists of the computation of the characteristics 
of the targets from the knowledge of the sources and of the 
scattered radiation. 

As an example of an inverse problem in early vision, let 
us consider the problem of edge detection. One part of the 
problem is equivalent to numerical differentiation which 
is ill-posed because the solution does not depend contin- 
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uously on the data. The intuitive reason for the ill-posed 
nature can be seen by considering afunction f ( x )  perturbed 
by a very small noise term E sin Qx. The functions f (x) and 
f ( x )  + E sin Qx can be arbitrarily close for very small E ,  but 
their derivatives may be very different if Q is large enough. 
This simply means that differentiation “amplifies” high fre- 
quency noise. 

The need to investigate problems that are not well-posed, 
but are of interest in applied science, originated two inter- 
esting branches of mathematical analysis: the first is the 
theory of generalized inverses [26], [27] which i s  an exten- 
sion of the theory of the Moore-Penrose inverse of a matrix; 
the second i s  the regularization theory of ill-posed (or 
improperly posed) problems [5], [61, [18]-[21]. At present, 
the term ill-posed i s  used generally (but not only) for those 
problems that do not satisfy the requirement of continuity. 
Examples of ill-posed problems are analytic continuation, 
the Cauchy problem for elliptic equations, backsolving the 
heat equations, superresolution, computer tomography, 
Fredholm integral equationsofthefirst kind,and,aswewill 
see, many problems in early vision. 

I l l .  GENERALIZED INVERSES 

Most linear inverse problems can be formulated as fol- 
lows: assume that functional spaces X, Y (for instance, Hil- 
bert spaces)aregiven and thata linear, continuousoperator 
L from X into Y is also given; then the problem is  to find, 
for some prescribed g E Y, a function U E X such that 

g = Lu. (3.1) 

In this formulation, the direct problem i s  just the com- 
putation of g, given U .  Therefore, continuity of L i s  equiv- 
alent to well-posedness of the direct problem. 

The problem of numerical differentiation discussed in 
the previous section takes the form (3.1) if we introduce the 
integral operator 

(Lu)(x) = sx uCy) dy. (3.2) 

Thus U i s  the derivative of the data g. The operator (3.2) 
is not continuous in L2(-w, + w )  but continuity can be 
restored by an appropriate choice of the space X. 

The problem (3.1) i s  well-posed if and only if the operator 
L is  injective (i.e., the equation Lu = 0 has only the trivial 
solution U = 0 (uniqueness)), and it is onto Y (existence). 
Then general theorems of functional analysis (for instance, 
the “closed graph theorem”) ensure that the inverse map- 
ping L- ’  i s  also continuous (continuity). 

Assume now that the equation Lu = 0 has nontrivial solu- 
tions. The set of these solutions is a closed subspace of X, 
which is called the null space N(L) of L .  This i s  the subspace 
of the ”invisible objects,” since they produce a zero image 
g. Assume also that the range R(L) of 1, namely the set of 
the g which are images of some U EX, is  a closed subspace 
of Y. An example i s  provided by the integral operator cor- 
responding to the perfect low pass filter 

-m 

sin Q(x - y) +m 

U (  y) dy. (3.3) 

In such a case, if we take X = Y = L2(-w, +a), the null 
space i s  the set of all the functions U whose Fourier trans- 
form i s  zero on the band [ - Q ,  Q], while the range of L i s  the 

set of the band-limited functions with bandwidth Q ,  which 
i s  a closed subspace of L2(--00, +w). Notice that L i s  a pro- 
jection operator, the so-called band-limiting operator. 

A way of restoring existence and uniqueness of the solu- 
tion undertheconditions above i s  to redefine both the solu- 
tion space X and the data space Y. We take a new space X’ 
which is the set of all the functions orthogonal to N(L) (in 
the case of (3.2), X’ is  the space of square integrable Q- 
bandlimited functions), and we take R(L) as the new data 
space Y’ (in the case (3.2) again, the space of the square 
integrable Q-bandlimited functions). Then for any g E Y’ 
there exists a unique U EX’  such that g = Lu, (in the case 
of (3.2) the solution is  trivial: U = g) and therefore the new 
problem i s  well-posed. 

The redefinition of the space X,  Y outlined above usually 
i s  quite difficult (almost impossible) in practical problems. 
Therefore, it i s  useful to  have a method, based on the solu- 
tion of variational problems, which produces the same 
result. This i s  just the method of generalized inverses [26], 
t27l. 

A. Least Squares Solutions or Pseudosolutions 

Consider first the case in which L isinjective but not onto 
(i.e., the existence condition i s  not satisfied). The functions 
U E X  that solve the variational problem 

(3.4) 

where ((.I(, denotes the norm of Y, are called the least 
squares solutions (or pseudosolutions) of problem (3.1). 
These solutions can be easily obtained considering the first 
variation of the functional (3.4) 

(3.5) 

where Re denotes the real part, h i s  an arbitrary function 
of Xand ( - ,  .),the inner product of the Hilbert space Y. Set- 
ting (3.5) equal to  zero, we obtain the Euler equation 

L*LU = L*g (3.6) 

where L* i s  the adjoint of the operator L (L* i s  a mapping 
from Y into X). When R(L) i s  closed, (3.6) always has solu- 
tions but the solution is not unique when N(L) i s  nontrivial. 
Notice that the set of solutions of (3.6) coincides with the 
set of solutions of the equation 

IILu - g(l, = minimum 

2Re (Lu - g, Lh), 

Lu = Pg (3.7) 

where Pis the projection onto R(L). Therefore, solving (3.5) 
i s  equivalent to  assuming Y’ = R(L) or to projecting g onto 
Y‘. When the operator L i s  injective, the solution of (3.6) is 
unique and well-posedness has been restored. 

B. Normal Pseudosolutions or Generalized Solutions 

Consider now the case in which L i s  not injective (i.e., the 
uniqueness condition is  not satisfied and the problem is  
underconstrained). Then, one looks for the solution of (3.6) 
which has minimal norm 

11 uIIX = minimum. (3.8) 

This solution is unique and is denoted by U +. U + i s  usually 
called the generalizedsolution (or normal pseudosolution) 
of problem (3.1). U + i s  orthogonal to  N(L) and therefore this 
procedure i s  equivalent to  taking X‘ = N(1)’. 

Since there exists a unique U +  for anyge Y, a linear map- 
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ping L+  from Y into X i s  defined by 

U +  = L+g. (3.9) 

The operator L +  is the generalized inverse of L and it i s  
continuous. Therefore, the problem of computing the gen- 
eralized solution of (3.1) is  well-posed if and only if R(L) i s  
closed. The essential reason for this result is that in this case 
the space Y can be decomposed as 

Y = R(L) 0 R I ( L )  (3.10) 

where 0 means direct sum and R’(L) is the orthogonal 
complement of R(L). This decomposition can be made if, 
and only if, R(L) i s  closed. 

C. C-Generalized Solutions 

In several inverse problems, the generalized solution i s  
trivial or does not satisfy some physical requirements such 
as smoothness. Examples are provided in Section IX. Then 
an extension of the generalized solution proceeds as fol- 
lows: letp(u) be a norm or a seminorm on Xof the following 
style: 

where C i s  a linear operator from X into the Hilbert space 
Z(the constraint space). The operator Cmay not be defined 
everywhere on X. For instance, suppose X is  a space of 
square-integrable functions and Cis a differential operator. 
Therefore, in general, p(u) i s  defined on a subset of X, i.e., 
the domain of C, denoted as D(C). When the null space of 
Cis trivial (containing only the null element of X), then p(u) 
is a norm on D(C); otherwise, p(u) i s  a seminorm. 

imizesp(u1,wedenoteit byu; andwecall itaC-generalized 
solution. The mapping g ++ U :  defines a linear operator 
L: from Y into X, which will be called the C-generalized 
inverse of L. It i s  obvious that U: can have a nonzero com- 
ponent onto N(L) (the subspace of the “objects” that are 
“invisible” under the action of the operator L). Therefore, 
this procedure is  physically plausible only when the con- 
straint describes some physical property of the solution of 
the problem. 

Necessary and sufficient conditions for the existence of 
U ;  for anyg have been given in the case where R(L) is closed 
and Cisa bounded operatorwith R(C) alsoclosed [26]. How- 
ever, the assumption of a bounded constraint operator C 
may not cover the interesting caseof adifferential operator. 
Furthermore, when D(C) is  a subset of X, it i s  obvious that 
U :  does not exist for any g E Y. If we denote by LD(C) the 
set of all the functions g E Y such that g = Lu with U E D(C), 
then LD(C), in general, does not coincide with R(L). Under 
these circumstances, if Pg& LD(C), the intersection between 
the set of the least squares solutions and D(C) is  empty and 
U :  does not exist. In other words, the problem of deter- 
mining the C-generalized solution may be ill-posed even 
when R(L) i s  closed. 

Sufficient conditionswhich assuretheexistenceof U :  for 
any g such that Pg E LD(C) are the following [21]: 

i) The intersection of N(L) and N(C) contains only the 
null element of X, i.e., the set of equations 

If there exists a unique least-squares solution that min- . 

Lu = 0, cu = 0 (3.12) 

has only the common trivial solution U = 0 (unique- 
ness condition); 

ii) The operator C:X - Z is closed with D(C) dense in 
X and R(C) = Z; 

iii) The set of functions g such that g = Lu and Cu = 0, 
i.e., the set LN(C), is closed in Y. 

The third condition is  always satisfied in the case of 
seminorms defined in terms of differential operators 
because in that case N(C) is  a finite dimensional subspace 
of X and L is a continuous operator. 

When the constraint operator C satisfies conditions i)-iii) 
and furthermore is bounded, U :  exists for any g E Y and 
the C-generalized inverse Ld is bounded. 

D. Generalized Solutions for Problems with Discrete Data 

We conclude this section by noting that problems with 
discrete data can be formulated as (3.1), g being now an n- 
dimensional vector in a Euclidean space. In fact, ignoring 
theerrors in thedata,alinear inverse problem with discrete 
data can be formulated as follows [28]: given a set 
{ F , } : = ,  of linear functionals defined on X and a set 
{ g, 1 :=, of numbers, find a function U E X such that 

g, = F,(u), i = 1, . . * , n. (3.13) 

In particular, when the functionals F, are continuous on 
X, by Riesz Theorem [80], there exist functions $,, 
. . .  , such that 

F,(u) = (U ,  $,)x (3.14) 

where ( a ,  . ) x  i s  the inner product of X. 
This problem is a special case of the problem (3.1) if we 

consider the data g, as the components of a vector g‘ in a 
n-dimensional Euclidean space Y and if we define an oper- 

’ator L from X into Y by means of the relation 

(Lu), = (U ,  $I)x, i = 1, . . , n. (3.15) 

The operator L is  not injective: N(L) i s  the infinite dimen- 
sional closed subspace of all the functions U orthogonal to 
the subspace spanned by the functions 4,. On the other 
other hand, the range of L, R(L), is  closed: R(L) is just Ywhen 
the functions $, are linearly independent; otherwise, it i s  
a subspace with dimension n’  < n. 

Along the lines described above one can introduce gen- 
eralized solutions or C-generalized solutions for problems 
with discrete data. Their determination is always a well- 
posed problem in the strict mathematical sense. However, 
numerical stability cannot be guaranteed (see the next sec- 
tion). 

As a final remark, we paint out that the problem of inter- 
polation by means of spline functions can be formulated 
as a problem of determining ageneralized or C-generalized 
solution in a suitable reproducing kernel Hilbert spacebee, 
for instance, [28], [29]). Asa simple example we shall discuss 
the problem of linear interpolation. 

Let X be a space of differentiable functions, defined on 
the interval [0, I] and having a square integrable first deriv- 
ative. X is a Hilbert space if we define a scalar product by 
means of the formula 

(U,  v ) ~  = u(0) v(0) + u‘(x) v‘(x) dx. (3.16) 
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Let x E [0, I ]  be a fixed, arbitrary point; then, from the ele- 
mentary relation 

u(x)  = u(0) + Sx u'(x') dx' (3.17) 

it follows that 

u(x) = (U, Qx)x (3.18) 

where 

Qx(x' )  = 1 + min { x ,  x ' } .  (3.19) 

Clearly Q, E X for any x ,  and therfore all the evaluation 
functionals (i.e., the functionals which associate to a func- 
tion U its value in a given point) are continuous. 

A Hilbert space of continuous functions having the pre- 
vious property is called a reproducing kernel Hilbert space. 
The reproducing kernel Q(x, x ' )  is defined by 

Q(x, x ' )  = Q,(x') = QJx), (3.20) 

and its name is due to the relation 

(Qx, Qx,)x = Q(x, x ' ) .  (3.21) 

Assume now that a function U E X  is  specified at the points 
x , ,  x2,  . . . , xN(x, E [0, I]) and let g,, g,, . . . , g, be its values. 
The interpolation problem (i.e., find U E X such that u(x,) 
= g, for n = 1, . . . , N )  can be formulated, thanks to (3.18), 
as the problem of determining U E X such that 

( U ,  Q,J = g,, n = 1, . * . , N  (3.22) 

and therefore it takes the form (3.13), (3.14). If we recall that 
the generalized solution is orthogonal to N(L) (Section Ill) 
and that N(L) is the orthogonal complement of the subspace 
spanned by the functions 

$,(x) = Q(x,, X) (3.23) 

(L is defined as in (3.15)), we conclude that the generalized 
solution must be a linear combination of the functions $, 

u+(x )  = c c,Q(x,, x). (3.24) 

From (3.19) it follows that u+(x )  is just the linear interpo- 
lation of the data g,. 

Interpolation by means of splines of degree m = 2k - 1 
( k  2 1) can be obtained along similar lines by a suitable def- 
inition of the reproducing kernel Hilbert spaceX[28]. Inter- 
polation by means of natural splines of the same degree [29] 
can be formulated as the problem of determining, in the 
same space, a C-generalized solution that minimizes the L2 
norm of the derivative of order k. 

N 

n = l  

IV. WELL-CONDITIONED AND ILL-CONDITIONED PROBLEMS 

As already remarked in previous sections, continuous 
dependence of the solution on the data does not yet mean 
that the solution i s  robust against noise. Generalized solu- 
tions of inverse problems with discrete data can provide 
striking evidence of this fact. Therefore, it is necessary to 
investigate more carefully error propagation from the data 
to the solution when solving problem (3.1). 

We assume, as in Section Ill, that R(L) is closed, so that 
the generalized inverse L +  is continuous. We denote by Ag 
avariation of thedatagand byAu+ thecorrespondingvari- 

ation on the generalized solution U +. Then the standard 
analysis of error propagation proceeds as follows: 

From (3.8), because of the linearity of L + ,  we get Au+ = 
L'Ag, which implies 

where 1) L +  )I denotes the norm of the continuous (bounded) 
operator L+. Analogously, from (3.1), with U = U +, it follows 
that 

Combining (4.1) and (4.2) we obtain the inequality 

(4.2) 

(4.3) 

It i s  important to point out that this inequality is precise 
in a certain sense. When L is an N x M matrix or L corre- 
sponds to an inverse problem with discrete data, then 
equality can hold. If L i s  an operator on infinite dimensional 
spaces, then one can always prove that the left-hand side 
(LHS) of (4.3) can be arbitrarily close to the right-hand side 
(RHS). 

The quantity 

= IILllIIL+II 2 1 (4.4) 

is called the condition number of the problem. When a i s  
not far from 1, the problem is said to be well-conditioned, 
while when a is large the problem is  said to be ill-condi- 
tioned. 

It is obvious that these definitions are not as precise as 
that of well-posedness. However, what is  important in prac- 
tice is the estimation of the condition number since it pro- 
vides insight intothe numerical stabilityof the problem. In 
the case where L is an N x M matrix, ) I  Lll i s  the square root 
of the maximum eigenvalue of the M x M positive semi- 
definite and symmetric matrix L*L (notice that the positive 
eigenvalues of this matrix coincide with the positive eigen- 
valuesofthematrixLL*)and I( L+II istheinverseofthesquare 
root of the minimum positive eigenvalue of the same matrix, 
i.e., 

(Y = E. (4.5) 

Inverse problems with discrete data are always well-posed 
in the sense that the generalized solution depends contin- 
uously on the data. They can be, however, ill-conditioned 
and also extremely ill-conditioned. When the discrete prob- 
lem is  a discrete version of an ill-posed problem formulated 
in infinite dimensional spaces, then the ill-conditioning of 
the generalized solution depends on the number of data 
points and, in general, it increases by increasing the num- 
ber of data points. 

V. REGULARIZATION METHODS 

When the range of L, R(L),  i s  not closed, then the inverse 
L -' or the generalized inverse L+ is not defined everywhere 
on Yand it i s  not continuous. Therefore, both the require- 
ments of existence and continuity do not hold true. This is  
the most difficult case and appropriate techniques are 
required. An example of operators in this class is provided 
by compact operators (not of finite rank; see [26] for the 
definition of a compact operator). It is easy to see that an 
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ill-posed problem has a condition number cy = W. There- 
fore, extremely ill-conditioned problems behave in practice 
as ill-posed problems and have to be treated by the same 
techniques. 

A. Tik h o n o v Regularization 

The most investigated approach to ill-posed problems is  
the regularization method of Tikhonov [30]. The key idea is 
to introduce a family of continuous “approximations” of 
a noncontinuous operator. More precisely, a regularization 
algorithm for the generalized solution of (3.1) is given in 
terms of a one-parameter family of continuous operators 
RA, X > 0, from Y into X, such that for any given g E R(L) 

lim RAg = L+g. (5.1) 

Therefore, when applied to noise-free data g, RA provides 
an approximation of U + which becomes better and better 
as X + 0. However, when RA is applied to noisy data g, = 
g + n,, where n, represents experimental errors or noise, 
we have 

RAgc = RAg + (5.2) 

and the second term typically is divergent when X --t 0. It 
follows that a compromise between “approximation“ (the 
first term) and “error propagation” (the second term) is 
required. This i s  the problem of the“optima1 choice” of the 
regularization parameter A. 

One of the most studied regularization techniques con- 
sists of minimizing the functional 

(5.3) 

where Cis a constraint operator, satisfying for instance the 
conditions stated in Section I l l .  In the original paper of Tik- 
honov, it is given by 

A-0 

1) LU - gll’y + A ) \  Cu 11: = minimum, 

where the weights c,(x) are strictly positive functions and 
u“)(x) indicates the rth-order derivative of u(x). If ux i s  the 
solution of (5.3), and if we put 

u A  = RAg (5.5) 

RA = (L*L + hC*C)-’L*. (5.6) 

Notice that uA is unique when (3.11) have only the trivial 
solution U = 0 and that when X + 0, g E R(L), Rig converges 

Three methods have been proposed for the choice of h 

then 

to L,+g [21]. 

in (5.6) and in the case of noisy data g,: 

i) 

i i) 

a74 

Among all U such that (1 Cu (Iz I E find U that mini- 
mizes I (  L u  - g,Ily[31]. Using the method of Lagrange 
multipliers the solution of this problem can be 
reduced to the solution of (5.3), with h arbitrary, and 
to the search of the unique X such that 

(5.7) 

Among all U such that 11 Lu - g,(ly I E ,  with given E ,  

find U that minimizes 11 Cu [ I z  [32], [33]. Again, the 
solution of the problem i s  equivalent to finding the 

iii) 

unique A such that 

IlLUA - gellY = E .  (5.8) 

This i s  also called Morozov’s discrepancy principle. 
Among all U such that I( Lu - g,ll, 5 E ,  11 Cu I ~ z  5 E, 
find a U of the type (5.5). This is equivalent [34], 1351 
to taking 

h = (5.9) 

The first method consists of finding the function U that 
satisfies the constraint 1) Cu I l z  I E and best approximates 
the data. The second method computes the function U that 
i s  sufficiently close to the data (E depends on the estimate 
of the errors) and is  most ”regular.” In the third method, 
one looks for a compromise between the degree of regu- 
larization and the closeness of the solution to the data. 

B. Regularization and Filtering 

form in the case where L is a convolution operator 
The regularized solution (5.5), (5.6) takes a very simple 

+-m 

(Lu)(x) = s K(x - y) f ( y) dy (5.10) 

(notice thattheoperator (3.2) isanoperator in thisc1ass)and 
the constraint operator C i s  the identity operator, C = 1. 
Then, in terms of Fourier transforms we obtain 

--m 

where & E )  and g ( ( )  are the Fourier transform of the kernel 
K(x)  and of the data function g(x) respectively. It follows that 
the regularized solution i s  essentially a “filtered” version 
of the non-regularized (generalized) solution of (3.1), which 
is  given by 

(5.12) 

This remark suggests that, in this case, one can define 
regularization algorithms in terms of filter functions 
+(A; E ) :  

satisfying the conditions: a) 0 I +(A; E )  I 1; b) Q(X; 6) + 

1 for any when h + 0; c) +(A; E ) / / ? ( { )  i s  a bounded function 
of 

Such a procedure i s  often used in the problem of edge 
detection (Section VII). The proof that (5.13) defines a regu- 
larization algorithm, in the sense specified in Section V-A, 
can be found, for instance, in [NI. 

for any X > 0. 

C. Smoothing and Interpolation 

As already remarked, regularization algorithms can be 
used for ill-conditioned problems. A well-known example 
is  the smoothing of a function whose values, specified on 
a finite set of points, are affected by errors [36]. It i s  inter- 
esting to compare smoothing and interpolation by means 
of cubic splines using the framework outlined above. Inter- 
polation of a function u(x), x E [0, I], i s  the problem of 
searching for a function which takes the prescribed values 

u(xi) = g,, i = 1, . . , n (5.14) 
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and minimizes the seminorm [29] 

p(u) = i: I u”(x) I2  dx. (5.15) 

Therefore, the interpolation problem is  equivalent to the 
computation of a generalized solution. On the other hand, 
the smoothing problem is formulated again as the min- 
imization of the seminorm (5.15) [36], but condition (5.14) 
i s  replaced by 

n 

c 1 u(x,) - g,12 5 E 2  (5.16) 

(for simplicity, we have assumed that the errors on the data 
have the same variance). Therefore, the smoothing prob- 
lem corresponds to method ii) for the choice of the regu- 
larization parameter. 

, = 1  

D. Cross Validation and Generalized Cross Validation 

We conclude this section with a short description of the 
cross validation method [37]-[39]. This is a method for the 
choice of the regularization parameter and it has been 
applied to smoothing problems and also to the solution of 
Fredholm integral equations of the first kind in the frame- 
work of the method of collocation (or moment-discreti- 
zation). However, it applies to any linear inverse problem 
with discrete data, as formulated in Section I l l .  

The idea behind crossvalidation is toallowthe data points 
themselves tochoosethevalueof the regularization param- 
eter by requiring that a good value of the parameter should 
predict missing data points. In this way, no a priori knowl- 
edge about the solution andlor the noise is  required. 

Let(Lu), bedefinedasin(3.15)andletuf1betheminimizer 
of the functional 

1 ”  
n , = I  

F ~ ’ [ u ]  = - C ~ ( L U ) ,  - g, l 2  + hi( U 11;. (5.17) 
i + k  

Then the cross validation function V,(X) is defined by 

1 ”  
n k = i  

V,(X) = - c ((Lu[Xkl)k - gk(*  (5.18) 

and the cross valid3tion method consists in determining 
the value of h, say A, which minimizes (5.18). The compu- 
tation of the minimum is  based on the relation 

(5.19) 

where ux  is the minimizer of the functional 

and Akk(A) is the kkth entry of the n x n matrix 

A(X) = LL*(LL* + A / ) - ’  (5.21) 

where LL* is the Gram matrix of the functions $ (see (3.15)). 
It has been shown [39] that, from the point of view of min- 

imizing predictive mean-square error, the minimization of 
Vo(X) must be replaced by the minimization of the gener- 
alized cross-Val idation function defined by 

where )I.II denotes the Euclidean norm and Tr is the trace 
operation. An important property of V(h) i s  the invariance 
with respect to permutations of the data. 

VI. REGULARIZATION OF NONLINEAR PROBLEMS 

The case of nonlinear ill-posed problems is quite difficult 
and, for the moment, no general approach seems to exist. 

If A is a nonlinear operator from a Hilbert space X into 
a Hilbert space Y ,  we have the equation 

g = A@). (6.1) 

Obviously, a solution to this equation exists if and only if 
g is in the range of the operator A. 

A. Linearization 

The simplest way of treating (6.1) is to try to linearize the 
problem. This is the case of a differentiable operator [40]. 
The nonlinear operatorA has a first derivative at the point 
U ,  if there exists a linear operator Lo: X -+ Y such that, for 
any U E X, 

1 
lim - M u ,  + tu) - A(u,)] = L , ~ .  
t -0  t 

(6.2) 

The operator Lo i s  called the first derivative ofA at the point 
U ,  and one usually writes 

Lo = A’(uo). (6.3) 

An operator which is differentiable at the point U ,  is also 
continuous at that point. 

If an approximation U ,  of the solution of (6.1) is known 
and if the operator A is differentiable at uo, then (6.1) can 
be approximated by the linear equation 

6g, = L,6Uo (6.4) 

where 6g, = g - A(u,), 6u, = U - uo, and Lo is the derivative 
of A at U,. Obviously, the procedure is  consistent if the solu- 
tion 6u, of (6.4) is a “small” correction to the approximate 
solution U,. 

The procedure can be iterated. By means of the solution 
6u, of (6.4), one gets a new approximation, u1 = U, + 6uo, 
of the true solution U .  Then one considers the linear equa- 
tion 6gl = L16ul, where L1 = A’(ul), 6gl = g - A(ul), and Sui 
= U - ul. By solving this equation one gets a new approx- 
imation u2 = u1 + 6u, and so on. It is easily recognized, by 
writing (6.1) in the form P(u) = 0 with P(u) = A(u) - g, that 
this method is just an extension to functional equations of 
a method which, in the case of real equations, i s  known as 
Newton‘s method or the method of tangents. Such an 
extension is  also known as the Newton-Kantorovich 
method and it is one of the few practical methods for the 
actual solution of a nonlinear functional equation. 

The iterative algorithm can be put in the following form: 

(6.5) U,+? = U, + [A‘(u,)l-’[g - A(un)l, 

and a simplified algorithm is given by 

u,+1 = U,, + [A’(u,)l-’[g - Ah,)]. (6.6) 

Sufficient conditions for the convergence of both iterative 
algorithms have been given [40]. 

They include the continuity of the inverse of the deriv- 
ative of the operator A. In several problems this condition 
is  not satisfied. I t  has been suggested [41] to use, at each 
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step of the algorithm, a regularized approximation of the 
inverse of the derivative of the operator A. Convergence 
results for such a modified algorithm are not yet available. 

B. Generalized and Regularized Solutions 

Extensions of regularization theory to ill-posed nonlinear 
problems have also been proposed: the case of nonlinear 
integral equations has been investigated by Tikhonov and 
an abstract approach is given by Morozov. 

We assume that A: X -+ Y is a continuously differentiable 
operator, i.e., thatA has a derivative at each point U ~ X a n d  
that this derivative is  a linear continuous operator. How- 
ever, even in the case of such a simplifying assumption, a 
well-developed theory of generalized inverses does not 
exist. One can introduce least-squares solutions of (6.1) by 
solving the variational problem 

)IA(u) - glIy = minimum (6.7) 

analogous to the problem (3.4). When a solution of such a 
problem exists for any g E Y, one says that (6.1) i s  strictly 
normally solvable. A sufficient condition for strict normal 
solvability is that the range of A is  weakly closed in Y [43]. 
Notice that this condition may be stronger than the con- 
dition of closure of range that applies to the case of linear 
operators (Section Ill). Weakly closed sets are (strongly) 
closed, but the converse is  not always true. 

If, for a given g, the set of least squares solutions is not 
empty, one could try to select one of these solutions by 
means of another variational principle as in Section Ill-A, 
i.e., by minimizing a norm or seminorm such as (3.11). In 
contrast to the case where the operator A i s  linear, the gen- 
eralized or C-generalized solution defined in such a way 
may not exist and, even if  it does exist, i s  not necessarily 
unique. Such a lack of uniqueness applies also to the case 
of regularized solutions (in which case, however, existence 
can easily be assured). 

The basic point in the definition of regularized solutions 
i s  again the minimization of afunctional similar to (5.3); i.e., 

%[U] = IIA(u) - + XIICuII:. (6.8) 

The uniqueness of the minimum of @Ju] usually i s  not 
proven (but see [42] for a special case where uniqueness 
holds true). However, it is not difficult to prove the exis- 
tence of at least one local minimum. 

Assume that the operator A: X + Y i s  continuous every- 
where and that the constraint operator C X --, Z is linear 
and has a compact inverse C-’. (This condition is satisfied, 
for instance, by the differential operator (5.4).) Then, forany 
h > 0, the functional (6.8) has at least one minimum point 
uA. The proof of this result can easily be done just by adapt- 
ing to the general case the proof given in [42] for the case 
of nonlinear integral equations. 

As stated above, in general nothing can be said about the 
uniqueness of the minimum of the functional (6.8). How- 
ever, if we assume that: 

a) for a given g, (6.1) has a unique solution U in the 
domain of C; 

b) in a neighborhood of U, the operator A has every- 
where continuous first and second derivatives; 

c) the derivative of A at U, A’(u), is invertible; 

then, by a rather easy generalization of the theorems con- 
tained in [42], one can prove that if g, i s  a noisy data, with 

( ( g  - gel(,, 5 E ,  and if  in the functional (6.8), with g replaced 
by g,, we choose the regularization parameter X in such a 
way that X = ye2, where y is an arbitrary constant, then any 
minimum point of such a functional converges to U when 
E - O;therefore,for sufficientlysmall valuesof €,thereexists 
only one minimum point. 

PART Two 

In this part we will consider several problems in early 
vision in the light of the mathematical results outlined in 
Part One. We will discuss edge detection, computation of 
optical flow, surface reconstruction, shape from shading, 
and stereo matching. Lastly we will discuss learning. Sev- 
eral of these problems have recently been solved using 
smoothness constraints or variational techniques, without 
an explicit reference to regularization theory. We will show 
that many of these results and several new ones, in partic- 
ular existence and uniqueness of solutions, are direct con- 
sequences of the mathematical results of regularization 
theory presented in Part One. 

The different modules that are part of early vision may 
reflect separate processing stages occurring in the brain, 
where we simultaneously make use of different visual pro- 
cedures: we can extract sharp changes in image brightness 
(edge detection); we can understand the motion of objects 
from the changing images (computation of optical flow); we 
recover the 3-D structure of a scene from a pair of images 
(structure from stereo); and we can construct a dense 
description of 3-D surfaces from sparse features (visual sur- 
face interpolation). 

As we mentioned in the introduction, problems in early 
vision are ill-posed because the available information is  not 
sufficient to obtain a good solution, i.e., one which is phys- 
ically correct and robust against noise. In this context regu- 
larization theory represents the correct tool for extracting 
the available information. Caution, however, i s  necessary: 
regularization theory can provide optimal techniques to 
reduce the effects of noise but cannot produce new infor- 
mation if it i s  not originally available. As we will see, edge 
detection, or numerical differentiation, is an ill-posed prob- 
lem and there is  little doubt that regularization theory i s  
very useful in solving it. When we discuss the computation 
of optical flow, we will show that recent results [44]-[46] can 
also be seen as straightforward consequences of regular- 
ization methods, butwewill also showthat a better solution 
to the optical flow problem can be obtained by a more 
appropriate use of the available image data without relying 
exclusively on regularization theory. On the other hand 
even this solution needs to be regularized because the opti- 
cal flow that it delivers is typically noisy and occasionally 
sparse. 

Part Two is divided into five sections, each dealing with 
one module of early vision. In Section VI1 we present the 
ill-posed nature of numerical differentiation and of edge 
detection. In Section Vlll we discuss the computation of 
optical flow. In Section IX we discuss recent approaches to 
surface interpolation, illustrating how variational princi- 
ples can be viewed as regularized solutions to discrete ill- 
posed problems. In Section X we review recent variational 
approaches to shape from shading, in the framework of 
regularization theory. In Section XI we discuss stereoscopic 
vision. 
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VII. EDGE DETECTION AND NUMERICAL DIFFERENTIATION 

Edge detection [47]-[51] i s  a key first step in early vision. 
This apparently simple problem of measuring sharp bright- 
ness changes in the image has proved to  be difficult. It is 
now clear that edge detection should indicate not simply 
finding “edges” in the image, an ill-defined concept in gen- 
eral, but also measuring appropriate derivatives of the 
brightness data. This involves the task dependent use of 
different two-dimensional derivatives. In many cases, it i s  
appropriate to  mark locations corresponding to  some crit- 
ical points of the specific derivative such as i t s  maxima or 
zeros. In somecases, later algorithms based on these binary 
features-presence or absence of edges-may be equiva- 
lent or very similar to  algorithms that directly use the con- 
tinuous value of the derivatives. From this point of view the 
low level problem commonly called edge detection con- 
sists of a) choosing a differential operator appropriate for 
the later tasks (say stereo), and b) computing correct and 
stable numerical derivatives of the image data. 

Regularization theory i s  capable of indicating optimal 
ways for obtaining good numerical derivatives but cannot 
suggest the best differential operator. The choice of the dif- 
ferential operator depends on geometrical and topological 
properties of detected edges. In Part One we have already 
seen why numerical differentiation i s  ill-posed. 

A. Regularization o f  Differentiation 

Possibly the most natural use of regularization for the 
caseof numerical differentiation i s  to interpolate orapprox- 
imate the data with an analytic function and subsequently 
to compute the analytical derivative of the interpolating or 
approximating function [52]. 

Consider a one-dimensional “image” y ,  = f ( x , )  + E , ,  

where y, is the data and E ,  represent errors in the mea- 
surement. We want to estimate f so we choose a Tikhonov 
stabilizing functional I( Cf ( I 2  = 5 ( f”(x))2 d x ,  where f ”  i s  the 
second derivative of f. Physically, this choice corresponds 
to a constraint of smoothness on the intensity profile. Its 
physical justification i s  that the (noiseless) image i s  smooth 
because of the imaging process: the image is a bandlimited 
function and, therefore, has bounded derivatives. We look 
for an approximating function f minimizing 

c ( y, - f (XJ2 + x j ( f”(XN2 dx. (7.1) 

When the data are given on a regular grid and satisfy 
appropriate boundary conditions the solutions can be 
obtained by convolution with an appropriate filter R [52]. 
Differentiation can then be accomplished by convolutions 
of the data with the appropriate derivative of the filter. The 
resuItingfiIters,which arespline filter sf or discretedataand 
Butterworth-like filters for continuous data (the two become 
indistinguishable in practice) are very similar to the deriv- 
atives-of-a-gaussian extensively used in recent years [52]. 

In the 2-D case, if the regularizing functional 11 Cf (I  is 

I I (V2  grad f ) *  dx dy 

where V 2  indicates the Laplacian and grad f(x, y) the gra- 
dient o f f  (x, y), then it has been shown [52] that the solution 
f(x, y) can be obtained by convolving the data g ( x ,  y) with 

the filter 

(7.3) 

where Io is the zero order Bessel function and z = 

Differentiation can also be regularized using the filtering 
techniques described in Section V-B. Then, in the case of 
the inversion of the operator (3.2), condition c) of Section 
V-B is equivalent to requiring that the filter function 
@(A; C;) is such that iC; @(A; I )  is  a bounded function of C; for 
any X > 0. Therefore, these regularizing filters are essen- 
tially low pass filters. Three main types of filtering have been 
used in computer vision to perform edge detection. We list 
their main properties below. 

J i T j 7 .  

B. Band-Limited, Support-Limited, and Minimal 
Uncertainty Filters 

Band-limited filters are an obvious choice for regulariz- 
ing differentiation, since the simplest way to avoid harmful 
noise is  to  filter out high frequencies that are amplified by 
differentiation. Linear and circular prolate functions con- 
stitute an interesting class of band-limited filters [53], [54] 
and have already been used in edge detection [50]. These 
filters satisfy all conditions of Tikhonov needed to regu- 
larizedifferentiation ifwetakethe inverseofthe bandwidth 
as the regularization parameter. 

All real filters have afinite extent and are support-limited. 
A class of support-limited filters that has been used in edge 
detection [47l i s  the so-called difference of boxes (DOB). 
These filters are Haar functions [55] that form a basis for 
square integrable functions on a bounded interval. How- 
ever, these filters do not satisfy condition c) of Section 
V-B and therefore cannot be used to regularize differen- 
tiation. This conclusion derives from the fact that the Haar 
functions are discontinuous. As a consequence, the limit 
of their Fourier transform as C; goes to  infinity tends to  zero 
as C; - I .  It is possible, however, to  introduce smooth sup- 
port-limited filters whose Fourier transform tends to 0 as 
desired as C; + W. If the inverse Fourier transform of the 
filter @(A; x) has, for instance, continuous derivatives up to  
order p and the ( p  + 1)th derivative is integrable, then 
+(A, E )  tends to zero as l C ; l - ( p + l ) .  Furthermore, if 4(A; x) is  
C”, then +( A; I )  tends to zero more rapidly than any inverse 
power of I .  An example is provided by the function 

1 
Cxexp - 

+(A; x) = 1 - (x/x)2 ‘ 

where CA is a constant such that +(A; 0) = 1. Therefore, the 
best support-limited filter for edgedetection and numerical 
differentiation is  not the DOB but the filter (7.4), which is 
often used in digital signal processing when aliasing needs 
to be reduced. 

The Gaussian function minimizes the product of spread 
in the space and the frequency domains [56] and can be 
viewed as a filter with minimal uncertainty. Filtering with 
a Gaussian function regularizes differentiation, because the 
Gaussian function @(A; x) = exp (-x2/2h) satisfies all con- 
ditions of Section V-B. Moreover, filtering with a Gaussian 
transforms a continuous and bounded function into an 
entire function. 
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Therefore numerical differentiation can be regularized 
in a number of ways that are all consequences of the results 
presented in Part One. There are two main possibilities: fil- 
tering the data with appropriate derivatives of Tikhonov fil- 
ters; or interpolating (or approximating) the discrete data 
with splines and then performing an analytical derivation. 
These two regularizing procedures are equivalent. 

C. The Differential Operator in Edge Detection 

Edges [51] in real images can be detected either as maxima 
of a first-order derivative or as zeros of a second-order 
derivative. In a two-dimensional image edges detected as 
maxima or as zeros have different geometrical properties. 
Fig. 1 shows an image from which the edges shown in Fig. 
2 were extracted. 

Fig. 1. An image of an interior in the Department of Phys- 
ics. 

The original image was first smoothed by the convolution 
with a2-D symmetrical Gaussian function with a small value 
of X (Fig. 2(a) and (b)) and a larger value of h (Fig. 2(c) and 

(d)). Edges in (b) and (d) were extracted as zeros of the Lapla- 
cian and in (a) and (c) as maxima of the first-order derivative 
in the direction of the gradient image brightness. 

In order to have a fair comparison between different 
schemes, edges were thresholded so as to have the same 
number of edges in all panels of Fig. 2. Two main obser- 
vations argue in favor of a gradient scheme [49]: 

i) 

i i) 

VIII. 

A gradient scheme i s  generally more robust against 
noise because it uses only first-order derivatives and 
not second-order derivatives as a zero-crossing 
scheme. Since a zero of a second-order derivative 
does not necessarily coincide with an extremum of 
the first-order derivative, the null space of second- 
order derivatives i s  larger than the space of extrema 
of first-order derivatives, and therefore we expect a 
lower proportion of false edges in a gradient scheme. 
For these two reasons, edges detected as extrema of 
a first-order derivative are more reliable. 
A zero-crossing scheme, as shown in Fig. 2, cannot 
detect properly a trihedral vertex or a T-junction, 
because it introduces a spurious edge line. This 
behavior is  a consequence of topological properties 
of zero-crossing contours that are intersections of 
structurally stable intersections of smooth surfaces 
[51], [57l, [58]. Therefore we expect a better local- 
ization with a gradient scheme, which minimally dis- 
torts vertexes and junctions. 

COMPUTATION OF OPTICAL FLOW 

The recovery of the motion of visible surfaces is a major 
task of both biological and artificial vision systems. The 
recovery of motion can be used to obtain a variety of addi- 
tional information about the viewed scene, for example, 
depth, by using parallax effects, and the segmentation of 
the surrounding world into regions corresponding to dis- 
tinct rigid objects. 

Fig. 2. Edges extracted either as zero-crossings of the original image of Fig. 1 convolved 
with the Laplacian of a Gaussian filter (b) and (d), or as maxima of the directional derivative 
in the gradient direction (a) and (c). In (a) and (b) a gaussian function with X = 1 was used 
and in (c) and (d) with X = 3. The threshold on edges was set so to have the same number 
of edges in each panel. 
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The motion of visible surfaces originates a 3-D velocity 
field which is projected by the imaging device into a 2-D 
velocity field. In order to recover information about the 
3-D velocityfield from the changing images, several authors 
[44]-[46] have introduced the notion of optical flow, defined 
as the distribution of apparent velocities of movement of 
brightness patterns in an image. There is  no a priori reason 
to guarantee that the optical flow, as defined by these 
authors, and the 2-D velocity field are similar and even in 
some way related. It has been shown recently [59] that the 
various definitions of the oDtical flow and the "true" 2-D 

A. Optical Flow Along a Contour 

We first consider the problem of determining the two- 
dimensional optical flow along a contour r in the image 
assuming that local motion measurements along the con- 
tour provide only the component of the velocity in the 
direction perpendicular tothecontour. Weassumethat the 
component of velocity tangential to the contour is invisible 
to local detectors that examine a Lestricted region of the 
contour. The local velocity vector V(s) is decomposed into 
a perpendicular and a tangential component to the curve 

?(s) = vT(s) T + vl(s)n'. (8.4) 

Heres is the arclength and 1, n'are unit vectors respectively 
tangent and to the contour r 

velocity field coincide only hnder very special conditions. 
The recovery of the optical flow is usually regarded as 

plagued by the aperture problem [601: when a straight 
ing edge is  observed through a narrow aperture only the 
component of motion perpendicular to the edge can be 
measured. This view has been formalized in an extreme 
form by the elegant approaches of Horn and Schunck, and 
Hildreth. 

-sin 8 

sin 8 cos 8 
j' = (,,' ') n' = ( ) (8.5) 

Horn and Schunck [461 derived equations relating the 
change in image brightness E(x,  y,  t)  at a point { x ,  y }  and 
time t to the motion of brightness pattern. Their key def- 
inition is that the brightness of a particular point in the mov- 
ing pattern is constant, so that the total derivative of E(x,  y ,  
t)  is zero: 

where is the angle between 
x axis. They depend also on s, but we omit this dependence 
for simplicity of notation. 

The component v ' (s )  and the vectors T ,  n' are given by 
direct measurements and, therefore, are the data of the 
problem. We will denote byg(s) the measured values of v ' (s )  

and the unit vector of the 

dE 
- ( x ,  y,  t)  = 0. 
dt 

Then, from local measurements of the partial derivatives of 
E(x, y,  t) with respect to space coordinates and time, it is 
possibletoestimatethecomponent of thevelocityfield par- 
allel to the gradient of € ( x , y ,  t). In this definition, the normal 
component is never determined, even in the case of edges 
that are not straight, and it must be recovered (see [59] for 
an analysis of the validity of the underlying assumptions). 

Hildreth [44], [45] suggested computing the optical flow 
not over the entire image but only along I - D  contours. In 
real images, these I-D contours are edges corresponding 
to sharp changes in image brightness (see Section VII). Hil- 
dreth [44], [45] observed that it was possible to obtain the 
normal vectors along the contour by a simple inspection 
of the extracted edges: if E(x, y ,  t)  is again the image bright- 
ness, then the normal component v' of the local velocity 
vector ? at the points of the contour r is given by 

where V2 i s  the Laplacian. A better estimate of v', however, 
is 

(8.3) 

where a2/an2 is  the second derivative along the direction 
of the gradient [511. 

In Sections VIII-A-D we discuss these two approaches in 
the frameworkof regularization theory. In SectionVIII-Ewe 
show how a different approach better exploiting the avail- 
able information can circumvent this extreme form of the 
aperture problem and is  able to provide a 2-D vector field 
very close to the true 2-D velocity field. 

and by g'(s) the correspon-ding velocity field 

Then the problem can be formulated as the inversion of a 
projection operator in the space X = Y = L2(I') 0 L2(r ) (L2(F)  
denotes the space of square integrable functions defined 
over r). The norm of a velocity field ? E X is  defined by 

The projection operator is 

and the set of the solutions of the equation 
+ 

LV = g' (8.9) 

with g'defined by(8.6), isthe set of thevelocityfields vgiven 

by 

v(s) = $(s) T + g(s)n' (8.10) 

where g(s) is the given data function and $(s) i s  an arbitrary 
function in L2(r). The generalized solution, or solution of 
minimal norm, exists for any data function g(s) ,  but it i s  triv- 
ia l  since i t  i s  given by 

(8.11) 

In other words, the generalized solution restores well- 
posedness, but it gives a solution that does not have any 
physical relevance. Therefore, one has to look for suitable 
C-generalized solutions corresponding to physically 
acceptable velocity fields. 
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B. A C-Generalized Solution for the Optical Flow Along a 
Contour 

A seminorm introduced by Hildreth gives a very useful 
constraint for the recovery of the optical flow. Put Z = X = 
L 2 V )  0 L 2 T )  and introduce the operator 

c?= ? (8.12) 

where the dot means derivation with respect to s. Then the 
C-generalized solution i s  the velocity field of the form (8.10) 
that minimizes the functional 

It i s  easy to show that existence and uniqueness of the 
C-generalized solution can be derived from the general 
result given in Section Ill-C. 

First, consider the question of uniqueness. We know that 
the C-generalized solutions i s  unique if and only if the inter- 
section of N(C) and N(L) i s  the null element (condition i) of 
Section Ill-C). Now N(C) i s  the set of the constant velocity 
fields (or translations), say V = a'. Furthermore, N(L) i s  the 
set of the velocity fields orthogonal everywhere to i i ,  i.e., 
3 . ii = 0. This condition can be satisfied by a' # 0 only if 
ii is constant; that is, only if r i s  a straight line. Therefore 
if r is not a straight line, the intersection of N(C) and N(L) 
is  always the null element, and uniqueness is  restored by 
the use of the C-generalized solution (8.13). 

The existence of the solution follows from the fact that 
the operator (8.12) satisfies conditions ii) and iii) of Section 
Ill-C. Condition ii) isa rather general property of differential 
operators, and condition iii) is also verified because N(C) 
i s  a two-dimensional subspace of X = L2(r) 8 L2(r). There- 
fore, we can conclude that the C-generalized solution exists 
whenever g' E LD(C). 

In order to see more precisely the meaning of the last 
condition, assume that the contour r consists of a finite 
number of regular arcs, so that the tangent i s  continuous 
on r with the exception of a finite number of points, s,, s2, 
. . .  , s,, where t_he tangent has both right and left limits. 
Then a solution V(s)  of the form (8.10) is in the domain of 
the constraint operator C if $(s)? and g(s)ii are differen- 
tiable on each regular arc and furthermore they satisfy suit- 
able conditions at the di5continuity points s, in order to 
ensure the continuity of V(s).  We can derive these condi- 
tions from the equations 

P+(s,) = ?-(sf), i = 1, . . . , n  (8.14) 

where + and - denote respectively right and left limit. It 
follows that 

$+(s,) = (sin 41)-1[g+(sf) cos 4, - g-(s,)l 
$-(s,) = (sin 4f)-1[g+(sf) - g-(s,) cos 6 1  (8.15) 

where sin 4 = ?- . 6 ,  = -?+  * i i - ,  cos 4 = i i, . 6-  = 
?+ . ?- (?+ isthe rightIimitofthetangent,etc.).Therefore, 
if g(s) admits a right and left limit at the points s,, it i s  pos- 
sible to derive from (8.15) the right and left limit of $. All 
these conditions characterize the subset D(C) which con- 
tains the unique solution that minimizes the seminorm 
(8.13). Of course, if g' is not differentiable on the regular arcs 
or does not have left and right limits at the discontinuity 
points, the C-generalized solution does not exist. It follows 
that the problem is  ill-posed. 

Before discussing this point, we want to point out that 
if the data g' are not affected by noise, the C-generalized 
solution coincides with the true solution in two important 
cases [44], [45]: the first is translation of an arbitrary contour 
and the second is  arbitrary motion of a rigid polygon. These 
results can be derived from the Euler equation for the C- 
generalized solution. 

Assume that the regular arcs have a differentiable cur- 
vature. From the following relations, which are trueon each 
regular arc 

? =&, n ' =  (8.16) 

where e i s  just the curvature, one can derive from (8.10) 

?(s) = [$(s) - &) g(s)]? + [g(s) + &(s) $(s)]n' (8.17) 

and therefore, when $ satisfies the conditions (8.15) 

llC?lli = 1, {IgSl' + I&) g(s)I2} ds 

+ 1, {l$(s)12 + I&) $(S)l2 + 28(s) g(s) $(s) 

- 28(s) g(s) l)(s)} ds. (8.18) 

This isafunctional of $,which isan arbitraryfunction except 
for being differentiable and satisfying conditions (8.15). 
Then, by annihilating the first variation of this functional, 
it follows that, on each regular arc, the function $which 
minimizes the functional is  a solution of the differential 
equation 

-$(s) + I & ( s ) ~ ~ $ ( s )  + 2&) g(s) + &) g(s) = 0. (8.19) 

In the case of a closed contour, the C-generalized solu- 
tion is given by the unique solution of (8.19) satisfying the 
conditions (8.15). If the contour is regular everywhere, then 
one has to  add boundary conditions such as 

$0 = $(I), $40) = w. (8.20) 

When the contour is open, one needs boundaryconditions 
at the end points of the contour. These can be obtained 
directly, through apartial integration,from the annihilation 
of the first variation of (8.18) 

= e(o) g(O), $(I) = e(/) g(l). (8.21) 

However, these conditions are correct only in the case of 
pure translation. In the general case it is necessary to mea- 
sure the tangential velocity of the endpoints and take 

$(O) = v (O), $(I) = v (4 (8.22) 

where v (0) and v (I) are the measured values. 
If the motion of the contour is  pure translation and 

a' = {a,, a21 (8.23) 

is  the constant velocity field, the noise-free data are given 

g(s) = -al sin 8 + a2 cos 8. (8.24) by 

Then, if we put 
$(s) = a, cos 8 + a2 sin 8, (8.25) 

taking into account that 4 = eg and g = -e$, it is  easy to 
verify that $ satisfies (8.19). In the case of an open contour, 
also the boundary conditions (8.21) are satisfied (the bound- 
ary conditions (8.15) are obvious since the velocity field i s  
continuous). 
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In the case of a rigid polygon [61], since arbitrary rigid 
motion consists of translation plus rotation, on each seg- 
ment of the polygon both the normal and tangent velocity 
are linear functions of the arclength s. But, on a segment 
of a straight line, (8.19) becomes &(s) = 0 and therefore $(s) 
i s  a linear function of s .  The boundary conditions (8.20) (plus 
the boundary condition (8.22) in the case of an open 
polygon) give the correct values of the constants provided 
that also in this case the measured values are noise-free. 

As we already remarked, the difficulty of this approach 
is  that the problem of determining such a C-generalized 
solution is ill-posed. For this reason, in the case of noisy 
data, one has to look for a regularized approximation of the 
C-generalized solution, which can be obtained by mini- 
mizing the functional [44, [45] 

Cqn = llLV - gll; + Xllcvll;. (8.26) 

If we denote by 0, the minimum of the functional (8.26) 
and if  we put 

Vh = $&)i + 4h(S)n' (8.27) 

then it i s  easy to show that, on each regular arc, $h and 
must be solutions of the system of differential equations 

-&,(s) + 26(s) &(s) + J6(s)I2 $h(s) + &s) 4A(s) = 0 (8.28a) 

-X[&,(s) + 2 m  Ij/@ + I6(S)l2 M S )  + ecs, $h(S)I 

+ 4h(S) = g(s) (8.28 b) 

plus boundary conditions similar to those discussed in the 
previous case (continuity of Q, at the discontinuity points, 
etc). The determination of the parameter X can be per- 
formed using one of the methods discussed in Section V. 

In practic:, the most economical method for the com- 
putation of Vh i s  perhaps the conjugate gradient method. 
Regularizing properties of this method [62], [63] can also be 
used in order to avoid the minimization of (8.26). 

In the previous treatment we have neglected the errors 
in thedetermination ofthecontourwhich imply an approx- 
imate know_ledge of the operator L (8.8). However, i f  the 
equation LV = g' + 6g', where 6g' isfhe error on the data, 
i s  replaced.by the equation (L + 6L)V = g' + 6g', where 6L 
i s  the error on the operator, it appears that the two equa- 
tions are equivalent in the sense that only the error on g 
i s  different in the two eyes (in one case it i s  6g' and in the 
other case it i s  Sg' - (6L)V). This point of view assumes that 
the errors in the determination of the contour have been 
included in the errors on the data. 

C. Two-Dimensional Optical Flow 

As we already recalled at the beginning of this section, 
Horn and Schunck[46] attempted to recovertheoptical flow 
in the entire image and not just on a one-dimensional con- 
tour. Their basic equation is  (8.1), which, written explicitly, 
provides the relationship 

? E .  V = -a,€ (8.29) 

whereeE = {a,€, a,€} izthe gradient of the brightness dis- 
tribution in the image, V i s  the velocity field (optical flow), 
and a,€ i s  the partial time derivative of the brightness. 
Therefore, a measurement of V€ and a,€ gives the com- 
ponent of V parallel to VE. 

We assume that the brightness distribution E ( x ,  y ,  t) i s  

defined in a bounded region Q whose boundaryan i s  acon- 
tour with an everywhere continuous tang_ent. Furthermore, 
we will also assume, for simplicity, that V€ i s  never zero in 
Q and that the level lines of €(x, y, t) have everywhere dif- 
ferentiable tangents and normals. We denote by 7 and n' 
the tangent and normal to the level line at the point {x, y} 

Then the velocity field V(x, y) can be everywhere repre- 
sented as follows 

V C X ,  y) = v (x, y)i + v L ( x ,  y)n'. (8.31) 

The problem can again be formulated as the inversion of 
a projection operator: taking X = Y = L2(Q) 8 L2@) and 

( L 3 k  y) = v L ( x ,  y)n', (8.32) 

the data will be given by 

g' (x ,  y) = g(x, y)n' (8.33) 

where g(x, y) i s  the measured vake of -a,€/I?€l. Then the 
set of solutions of the equation LV = g' i s  the set of velocity 
fields 

Vex, y) = 4% y)i + g(x, y)n' (8.34) 

where $ & an arbitrary function in L2(Q). The_ generalized 
solution V +  is trivial also in this case, since V +  = g'. 

D. A C-Generalized Solution for the Two-Dimensional 
Optical Flow 

As in the case of the optical flow along a contour, it i s  
necessary to look for C-generalized solutions. The method 
suggested in [46] can be formulated in this framework. 

Introduce the constraint space Z = X 8 X and define an 
operator C: X - Z as 

CV = (;;;) (8.35) 

with the associated seminorm 

Written in terms of the Cartesian components of V this 
is just the integral of the quantity called the measure of the 
departure from smoothness in the velocity flow [46]. 

First consider thequestion of uniqueness. The nullspace 
N(C) i s  the set of the constant velocity fields, say V = a', 
whilethe null space N(L)  i s  the set of thejelocity fieldswhich 
are orthogonal everywhere to n', i.e., V n' = 0. The inter- 
section i s  the set of constant velocity fields such that 
a' ii = 0 and this condition cannot be satisfied by a' # 0 
if the level lines are not parallel straight lines everywhere. 

It i s  easy to verify that conditions i)-iii) of Section Ill-B are 
satisfied and the existence of the solution is  guaranteed. It 
may be interesting however to write the Euler equation for 
the C-generalized solution. After some lengthy but ele- 
mentary computations, using the orthogonality relations 
ii a,ii = ii . a,ii = 0, i . a,? = i a,? = 0, a,ii . a , i  = 
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0 we obtain 

+ 2[(n' . a,T)a,g + (n' . a,T)a,g]$ 

+ 2g[(T . a,?)a,$ + ( T  . a,n')a,$]} d x  dy .  

(8.37) 

In order to find the Euler equation of the functional (8.37) 
one has to consider avariation of $, $ - $ + h and put equal 
to zero the term of first order in h. Then, using the diver- 
gence theorem in order to eliminate the partial derivatives 
of h, transforming the fourth term in (8.37) by means of the 
identities 7 . a,n' = -n' . a,T, ? . a,n' = -n' . a,?, and 
using the fact that h i s  arbitrary, one finds that the unique 
function $that minimizes the functional (8.37) i s  the unique 
solution of the boundary value problem: 

v$ + (la,TI2 + (a,i12)$ + 2[(6 a,T)a,g 

+ (6 . a,T)a,g] + (n' . ~ ? ) g  = o (8.38) 

(8.39) 

where v is  the normal to an. Notice that this boundaryvalue 
problem is  just the extension in the 2-D case of the problem 
(8.19) with the boundary conditions (8.21). The boundary 
condition (8.39) can be replaced by the value of $ if the tan- 
gent velocity can be measured on an. 

It i s  also easy in the present case to verifythat if the motion 
is pure translation (i.e., a constant velocity field), and if the 
data function i s  noise-free, then the C-generalized solution 
coincides with the exact velocity field. 

It is also obvious that in this case the C-generalized solu- 
tion i s  ill-posed and one must introduce regularized 
approximations. These can be obtained by minimizing the 
analog of the functional (8.26), and this is precisely the 
method used in [46]. 

E. A Solut ion to the Aperture Problem 

In Section VIII-B we have seen that in the case of a rigid 
polygon [61] the C-generalized solution (8.13) gives the cor- 
rect solution, possibly suggesting that the minimization of 
this functional captures some basic properties of rigid 
motion. Unfortunatelythis result has not been extended to 
the two-dimensional optical flow, and the use of C-gen- 
eralized solution minimizing the functional (8.36) does not 
have obvious physical plausibility. 

Familiarity with regularization theory may suggest to 
reconsider whether the original problem is  really ill-posed. 
The available information is  the time varying image bright- 
ness E(x, y, t )  from which we want to obtain a time-varying 
2-D vector field as close as possible to the 2-D velocity field. 
The key point argued in [59] i s  that the definition of an opti- 
cal flow i s  rather arbitrary and one cannot obtain the'ltrue" 
velocity field but only an approximation to it, with the same 
qualitative properties. 

When the problem i s  stated in this way, the aperture 
problem disappears because there are many 2-D vector 
fields which can be defined in terms of E(x, y, t )  without 
using C-generalized solutions. In particular, it has been 
recently shown that the 2-D vector field obtained by solv- 
ing: 

(8.40) 
d 
- grad E(x, y, r) = 0 
d t  

provides an excellent approximation to the 2-D velocity field 
[64]. Equation (8.40) can be rewritten as 

(8.41a) a 2  E a2E a2E 
axay axat 

- ax2 v, + - vy + - = 0 

(8.41 b) 
a2E a2E 

- v, + - vy + - = 0 
a2E 

axay a$ ayat 

where v, and vy are the two components of the optical flow. 
When ldet Hess E ( x ,  y, t ) (  is different from zero, then it i s  
possible to obtain from (8.41a) and (8.41b) the two com- 
ponents of the optical flow. 

Equation (8.40) i s  a vector equation, not a scalar equation 
as (&I), and does not have the aperture problem in the same 
extreme way as (8.1). 

The use of the vector equation (8.40) can be justified in 
a number of ways: 

i) Equation (8.40) gives the exact vector field of a rigid 
black 2-D pattern moving on the image plane. 

ii) Equation (8.40) provides a vector field which is  not 
usually equal to the true 2-D velocity field but i s  sim- 
ilar in the majority of cases. 

Fig. 3 shows a sequence of four frames of a printed board 
translating towards the camera. Fig. 4 reproduces the 2-D 

Fig. 3. A sequence of four images of a printed board trans- 
lating towards the camera. 

vector field obtained from the sequence shown in Fig. 3 by 
using (8.40) and a further smoothing of the optical flow. It 
i s  evident that the obtained optical flow i s  very close to the 
true 2-D motion field. The exact definition of closeness is  
the one used in structural stability and it refers to topo- 
logical properties of solutions [58]. 

The use of (8.40) to compute the optical flow suggests that 
this problem i s  not ill-posed but may be ill-conditioned 
when ldet Hess E(x, y, t ) (  is  very small. 
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Fig. 4. Theoptical flowwasobtained by first smoothing the 
images in Fig. 3 with a 2-D symmetrical gaussian function (X 
= 1) and using (8.40) to obtain the two components of the 
optical flow (a). In (b) the optical flow shown in (a) was 
smoothed by theconvolution with a2-D symmetrical gauss- 
ian function (X = 5). Derivatives were computed by using 
a Taylor series expansion [51]. 

IX. SURFACE RECONSTRUCTION 

Most algorithms able to recover depth from pairs of ste- 
reo images [65]-[67] provide depth values only for special 
points in the viewed scene. This sparse 3-D map can be suf- 
ficient for many goals in robotics, such as navigation or rec- 
ognition, where the redundant information does not 
require a very dense 3-D map. In many other cases such as 
in aerial photogrammetry or in terrain reconstruction a 
dense map i s  required. Therefore it is useful to consider the 
problem of recoveringavisual surface f(x, y)from 3-D sparse 
data. 

A. Surface Interpolation 

The original data are a finite set of depth values z, = 
f(x,, y,), i = 1, . . , n (which are assumed to be exact; that 
is, noise-free) and the problem is  the recovery of a smooth 
function f(x, y) interpolating z, at (x,, y,) = t, contained in 
n. Grimson [66], [67l proposed to  find f such that it mini- 
mizes the seminorm 

Uniqueness of solution is guaranteed by the existence of 
at least four noncoplanar points z, = f(x,, y,) [66], [67l. 

This procedure can be seen as an application of gener- 
alized inverses in the case of discrete data (see Section 
Ill-D): in this case, uniqueness of the solution is  guaranteed 
when the intersection of the null space of C, (N(C)) and the 
null space of L(N(L)) is empty, where L is  the operator defined 
in Section Ill-D. 

The null space N(C) i s  composed of the set of functions 
f(x, y) = ax + by + c with a, b, and c constants. These func- 
tions consist of all planar surfaces defined in 0. The null 
space N(L) has been defined in Section Ill-D and consists 
of the set of functions such that f(x,, y,) = 0 for i = 1, 

. * , n. Therefore, it i s  easy to see that when i 2 4 and the 
points t, = (x,, y,) are distinct, the intersection of N(C) and 
N(L) i s  empty. In other words, uniqueness is  guaranteed if 
there are at least four noncoplanar points, as required in 
WI, [67l. 

B. Surface Approximation with Noisy Data 

It is also useful to consider the case in which the data are 
noisy, that is, when the original data are g j  = f(tj) + c l ,  i = 

1, . . . , Nand E ,  is additive noise. In this case, it i s  reasonable 
to look for a solution close to the original data g,, but 
smooth. This approach can be seen as an application of 
regularization theory. In Part One we showed that inter- 
polation is an ill-posed problem which can be solved by the 
use of a generalized inverse. We will now present an 
approach to interpolation directly originating from regu- 
larization theory [71], [72], which clarifies the relationship 
between splines, regularization theory, and gives a differ- 
ent framework to the results on visual interpolation [67]- 
vo l .  

We can consider the case in which we want to estimate 
a smooth function f(t), t E n c R2, given a finite number of 
observations of linear functionals of f. In the case of spatial 
interpolation, our functionals are 

g, = F , ( f )  + E ,  = f(tJ + E , ,  i = 1, . . . , n (9.2) 

where E ,  i s  additive noise. A regularized estimate fn,h i s  
obtained by solving the minimization problem 

n 

c (f(t,) - g,Y + A/“ (9.3) 

in which/,(-) is a seminorm in U, (U, i s  a reproducing ker- 
nel Hilbert space of functions defined in n) defined by 

,=1 

(here m indexes the highest square integrable derivative) 
and h controls the tradeoff between the degree of approx- 
imation of the solution to the data and the smoothness of 
solution. The value of X can be computed by the method 
of generalized cross-validation [37]-[39]. If m = 2 we have 
the functional (9.1). The solution of this minimization prob- 
lem is one of the “thin plate splines,” so called because/,(f) 
is the bending energy of a thin plate. 

In [71] it was shown that a unique solution exists for any 
h > 0 provided: 

1) m > 1; 
2) n 2 M = (mT1); 
3) the “design” tl, . . . , tn is  unisolvent, that is if 

{ c & } : = ~  i s  a basis for the M dimensional space of 
polynomials of total degree m - 1 or less, then 
E:=, civ&(t,) = 0 ( i  = 1, . . . , n) implies that the 
C Y ,  = 0. 

If m = 2, then we need at least three points which do not 
lie on the same straight line (to satisfy the requirement of 
a unisolvent design), which i s  the same requirement as 
found in [66]and [67l. Moreover, the solution hasan explicit 
representation [71] as: 

m n 

fn,m,A(t) = c,Em(t, t> + ~ v @ u ( ~ )  (9.5) 
/ = 1  ” = l  

where 

with 

Is - tl = 4x1 - X J 2  + (y1 - Y 2 T  
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and 

Om = 1 / 2 ~ ~ - ' ~ [ ( m  - 1)!12. (9.7) 

The coefficients c = (c,, . * . , c,) and d = (d,, . . ., d,) are 
determined by the solution of the algebraic linear system: 

(K + p)C + Td = g 

TTC = 0 (9.8) 

where K i s  the n x n matrix with Klk = E&, tk), p = nh, T 
i s  the n x m matrix with T,, = &(t,) and g = (gl, * , gJ. 

C. Surface Interpolation on a Regular Grid 

While surface interpolation from sparse data requires an 
arbitrary grid of knots, other problems of machine vision 
require the approximation of a 3-D surface through points 
given on a rectangular grid. For example, when a smooth 
function f interpolating intensityvalues on the regular grid 
of a CCD camera is regularized, it is possible to use doubly 
cubic splines or a tensor product of splines, giving an inter- 
polating function that minimizes 

j j ( a ~ a x 2 a y ~  dx dy. (9.9) 

In this case different kinds of doubly cubic splines can be 
used, according to the available data [73]. The algorithms 
are then convolution algorithms (see Section VII-D). 

X. SHAPE FROM SHADING 

It is a common experience to notice our ability to  recover 
the shape of an object from i ts shading. Convexity or con- 
cavity of viewed objects are easily understood by looking 
at the profile of radiating light. Here we have another clas- 
sical problem of early vision, "shape from shading," which 
has stimulated elegant mathematical approaches. The 
problem of shape from shading was initially formulated in 
[74], [75], and [78] as the solution of five ordinary differential 
equations called the characteristic strip equations. Of con- 
siderable use in this problem has been the reflectance map 
R(p, 9) [76], [77l which specifies the radiance of a surface 
patch asafunction of itsorientation, determined bythe pair 
(p,9). If ~(x,y)isthesurfaceoftheobject,pand qaredefined 
as 

az az 

ay' 
p=z and 9 = -  

and the unit normal n'to the surface i s  

- 1 
n =  {-P, -9 , l ) .  JI + p2 + 92 

(10.1) 

(10.2) 

The reflectance map can be computed from the bidirec- 
tional reflectance-distribution function and the light source 
arrangement [77]. 

Formally, given an image E(x, y) and a reflectance map 
R(p, 9), the shape from shading problem may be regarded 
as the recovery of a smooth surface z(x, y) satisfying the 
image irradiance equation 

over some domain Q of the image. Since there are two 
unknown functions (p and 9) and only one equation the 

solution i s  not unique and the problem i s  undercon- 
strained (and ill-posed). Uniqueness of the solution can be 
recovered by the use of photometric stereo, which takes 
multiple images of the same scene from the same position 
with different illumination [78]. In this approach, several 
equations of the type of (10.3) are available, with different 
reflectance maps since the illumination source is  different. 
Threedifferent light sourcescan be used toobtain a unique 
solution. 

If onlyone sourceof illumination is available, uniqueness 
can be restored by variational techniques similar to those 
previously seen. Assuming that the object has a Lambertian 
surface and i s  illuminated by a planar wave of light (and the 
unit vector 3 = (sl, s2, s3) points to the light source), then 
the Lambertian reflectance map becomes 

R(p, 9) = 6 . s. (10.4) 

If, instead of using the pair {p, 9}, the new variables {f, g} 
are introduced 

f =  

the reflectance map becomes 

(10.5) 2P 29 
1 + J1 + p* + 9 2  = 1 + Jl + p2 + 92' 

4f - 4g 1) * 3 
(-4 - (f2 + 2)' 4 - (f2 + g2)' 

(10.6) 

The problem of shape from shading can be formulated 
either using the unknown n'or the pair {p, 9 )  or {f, g}. 

A. The Variational Approach to Shape from Shading 

i s  to find n'(x, y) such that it minimizes 
When the unknown n' is used, the variational approach 

(10.7) 

with the constraint Iln'll = 1. In this case, the variational 
problem is quadratic in the unknown n', but the constraint 
Iln'll = I is unusual. 

When the pair {f, g} i s  used, we seek functions f and g 
minimizing: 

+ (gr + (z)2 + dx dy, (10.8) 

with R(f, g) given by (10.6). The variational problem i s  not 
quadraticin theunknown {f,g} andtheresultsof nonlinear 
inverse problems must be used. 

B. Regularization o f  Shape from Shading 

We give an application of the result stated in Section VI 
by formulating the problem in terms of the pair { p ,  9). We 
define the space X as the direct sum L2(Q) 0 L2(Q),  i.e., U is 
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a pair { p ,  9 )  of square integrable functions: 

llull~ = i, p2(x, y )  d x  d y  + i, &, y )  d x  dy.  (10.9) 

Let the space Y be also a space of square integrable func- 
tions (we now call g(x,  y )  the image E(x, y)),  and from (10.2) 
and (10.4) we define a nonlinear operator A: X -+ Y as fol- 
lows: 

(10.10) (AU)(X, y )  = s3 - psl - 4% 
JI + p 2  + q2 . 

Because n' and 3 are unit vectors, it is obvious that [ (Au)  
(x, y)l I 1 for any { x ,  y )  E Q .  It follows that the domain of 
A is X and that the range of A i s  contained in the set of g(x,  
y) such that Jg (x ,  y)l I 1 in Q .  Furthermore, it i s  not difficult 
to prove that the operatorA is continuous everywhere, i.e., 
if U is any element of Xand if { U , }  is a sequence convergent 
to U ,  then Au, converges to Au. Indeed, using the in- 
equalities 

J s ~  - - 9 ~ 2 1  5 JI + p 2  + q2, JI + p i  + q', 2 I ,  

(10.11) 
it follows that 

+ ~ J I  + p 2  + q2 - JI + p', + q',~. 

(1 0.1 2) 

Then, using the inequality (ql + * . . + 9,)' 5 n(9: + . . . 
+ qi)  (with n = 2, 3), we get 

IAu - Au,~' I ( ( p  - pnI2 + ( 4  - q,I2). (10.13) 

By integrating over Q we get the continuity of the operator 
A. 

Finally, we consider the constraint operator Cdefined by 

+ (2) + ($)I d x  dy (10.14) 

where c, could take the value c, = 0 and give the stabilizer 
used by lkeuchi and Horn. We can seek a solution to the 
problem of shape from shading by minimizing the func- 
tional 

where the first term in (10.15) is (10.10) and the constraint 
operator C is defined in (10.14). Because the operator A is 
continuous and the constraint operator has a compact 
inverse, the results presented in Section VI indicate the 
existence of at least a local minimum of the functional 
{19.15). Furthermore, ifgER(A), the uhconvergesioan exact 
solution when X - 0. Note that the problem of uniqueness 
of the regularized solution remains open. 

XI. STEREO MATCHING 

Not all inverse problems of early vision can be solved 
using the regularizing techniques introduced in Part One. 
For example, stereopsis [65]-[67], which is the process that 
computes depth from two images of the same scene 

obtained by two eyes or cameras, appears as an inverse 
problem that may be approached with standard regular- 
ization techniques. It turns out that this is, however, quite 
difficult. The critical problem in stereopsis i s  the corre- 
spondence problem, that is, the matching of correspond- 
ing features in the two images. Let us consider the I-D 
matching problem, by considering the intensity profile-or 
some corresponding feature map-on conjugated epipolar 
lines [67. In this case, the obvious way to match the right 
image R(x) with the left one L(x) is to find the disparity d ( x )  
such that the two intensity profiles L(x) and R(x + d(x ) )  are 
as close as possible. We can formalize this in the following 
way: let us define an operator PR that depends on the image 
as 

(11.1) 

The disparity function that we want could be seen as the 

PRf(X) $-+ R(x + f(x)). 

solution to the inverse problem: 

L(X) = PRd(X). (1 1.2) 

The operator in (11.2) which has to be inverted depends on 
the data and i s  not known a priori. This class of problems 
is not covered by the available mathematical results. We 
could still try to determine d ( x )  by minimizing 

IILW - R(x + d(x))II. (11.3) 

A sufficient condition for the solution of (11.3) to be unique 
is  that L(x) and R(x) are strictly monotonic functions of x. 
This is clearly a very restrictive condition, almost never sat- 
isfied by real images. In general, the problem admits many 
solutions unless constraints are imposed on d(x) .  If we use 
constraintsof theTikhonov type, wecan look for a solution 
d(x )  that minimizes 

(1 1.4) 

The second term in (11.4) i s  the disparity gradient, which 
is  thus introduced as a direct consequence of regulariza- 
tion methods. 

One important property of the disparity is that d ( x )  can 
bediscontinuous. Furthermore, there are often occlusions, 
that is regions in one image that do not correspond to any 
part in the other image. In this case, d(x )  i s  not defined. 

Because of the presence of occlusions and discontinu- 
ities in the disparity, (11.4) does not provide a physically 
plausible solution. Equation (11.4) requires d ( x )  to be con- 
tinuous and differentiable. Equation (11.4) is, however, valid 
if the disparity gradient is strictly less than 2 (Julesz' defi- 
nition): in this case there are no occlusions and (11.4) pro- 
vides a physically plausible solution. 

Another problem with (11.4) i s  that in many instances 
matching is not performed between the intensity profiles 
in the two images, but between features maps. In this case, 
L(x) and R(x) are not continuous functions of x. 

IIL(x) - R(x + d(x))II + XIId'(x)II. 

Xii .  Dtrcujstoiu 

We believe that algorithms in early vision can be 
described as solutions to problems of inverseoptics. These 
inverse problems are usually ill-posed or ill-conditioned, 
but their "degree of ill-posedness" i s  different in each dif- 
ferent instance. Classical problems in inverse optics, such 
as super-resolution, bandwidth extrapolation, and limited 
angle tomography can be seriously ill-posed. In many 
instances ill-posed problems in early vision can become 
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mildly ill-posed if appropriate devices and techniques are 
used. This is the case of edge detection. Since in the case 
of a mildly ill-posed problem, it is important to reduce the 
amount of noise present in the imaging process, if a low 
noise camera is chosen, possibly with a cooled sensor, and 
if a high quality AID system is used, one may obtain fairly 
good solutions to the problem of edge detection. 

When many views of the same scene are available the 
problem of shape from shading becomes a well-posed 
problem and possibly even over-determined. Similarly the 
best way to solve ill-posed problems in early vision is to 
obtain additional information or data, or to act on theexper- 
imental set-up (active vision) and reduce the instrumental 
noise. The techniques described in this paper are purely 
mathematical techniques, which have to be used after a 
careful evaluation of the physical nature of the problem. 

A. Physical Plausibility of the Solution 

When the origin of ill-conditioning is  the lack of contin- 
uous dependence of the solution on the data, regulariza- 
tion techniques, such as those used for edge detection or 
surface reconstruction, are likely to guarantee an optimal 
use of available data. On the contrary when a C-generalized 
solution is used because the solution is  not unique or 
because some relevant information seems missing, the 
physical plausibility of the solution must be proved. 

For instance let us consider the computation of the opti- 
cal flow, where a C-generalized solution minimizing (8.13) 
givesthecorrect solution in thecaseofarigid polygon: there 
is no reason whyasimilar solutiongivesacorrectorapprox- 
imately correct solution in a more general case. We have 
seen that a more appropriate analysis of the computation 
of the optical flow, using (8.401, reveals that the problem is  
ill-conditioned only when (det Hess E(x, y, t)( is very small. 

Physical plausibilityof the solution is the most important 
criterion to select a good solution. The decision regarding 
the choice of the appropriate stabilizing functional cannot 
be made judiciously from purely mathematical consider- 
ations. A physical analysis of the problem and of its generic 
constraints play the main role. Standard regularization the- 
ory providesaframeworkwithin which one has to seekcon- 
straints that are rooted in the physics of the visual world, 
but offers a restricted universe of possible constraints since 
only certain a priori assumptions can be translated into the 
language of Tikhonov stabilizers. 

B. Well-Posedness and Structural Stability 

Robustness against noise implied by well-posedness (or, 
more precisely, by well-conditioning) means continuity of 
the solution on the input data. This notion or definition of 
robustness against noise is not necessarily the only one or 
even the most useful in earlyvision. It may be useful to com- 
pute qualitative features of images or of processed images 
and to ask which of these features are unaltered when the 
original image is  slightly perturbed or degraded. If we con- 
sider the optical flow or the 2-D motion field, it i s  of some 
relevance to look for features of this vector field that are 
invariant under small perturbations [79]. This problem leads 
naturally to the analysis of structural stable properties of 
the vector field, that is qualitative or topological features 
that are robust against noise [57, 1581. The difference 
between well-posedness and structural stability is that the 

former notion is  essentially metric (the definition uses 
norms) while the latter is qualitative (the definition uses 
topological techniques). A description of the optical flow 
in terms of foci, spirals, nodes and limit cycles can be used 
to understand thequalitative features of the motion as limbs 
and cusps can be used to understand the shape of objects. 
In essence we may see as a complementary module of early 
vision the qualitative analysis of images and the theory of 
structural stability as the right framework for this analysis. 

C. Regularization and Learning 

The problem of learninga mapping between an input and 
an output space is essentially equivalent to the problem of 
synthesizing an associative memory that retrieves the 
appropriate output when presented with the input and gen- 
eralizes when presented with new inputs. It is also equiv- 
alent to the problem of estimating the system that trans- 
forms inputs into outputs given a set of examples of input- 
output pairs. A classical framework for this problem is 
approximation theory. 

Approximation theory deals with the problem of approx- 
imating or interpolating a continuous function f(X) by an 
approximating function f ( W ,  X )  having a fixed number of 
parameters W (X and W are real vectors X = x,, x2, * , x,  
and W = w,, w,, * * , w,,,). For a choice of a certain F,  the 
problem is then to find the set of parameters W that pro- 
vides the best possible approximation of f. This is the learn- 
ing step. Needless to say, it is very important to choose an 
approximating function f that is as compatible as possible 
with f. There would be little point in trying to learn an 
approximation if the chosen approximation function F(W, 
X )  could only give a very poor representation of f(X), even 
with optimal parameter values. 

Of course any reconstruction (or approximation) prob- 
lem of this type is ill-posed in the sense that the information 
in thedata i s  not sufficient to uniquely reconstruct the map- 
ping in regions where data are not available. In addition, 
the data are usually noisy. A priori assumptions are needed 
about the mapping. Generalization is not possible i f  the 
mapping is completely random or local. For instance, know- 
ing examples of the mapping represented by a telephone 
directory (people’s names into telephone numbers) does 
not help estimating the telephone number corresponding 
to a new name. Generalization is based on the fact that the 
world in which we live is usually-at the appropriate level 
of description-redundant. In particular, it may be smooth: 
small changes in some input parameters determine a cor- 
respondingly small change in the output (it may be nec- 
essary in some cases to accept piecewise smoothness). This 
is the most general constraint that makes approximation 
possible, and thus this very simple form of generalization. 
It establishes an interesting connection between learning 
on one hand and regularization, splines and Bayesian 
approaches on the other hand [86]. 

D. Stochastic Route to Regularization 

When a priori knowledge of statistical properties of the 
signal and of the noise is  available, a probabilistic version 
of regularization methods is  possible[22], [23], [81], [83]. Sev- 
eral authors have stressed the stochastic interpretation of 
spline approximation in which the smoothness properties 
of splines correspond to suitable prior probabilities. 
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Bertero, Poggio and Torre [84] have discussed a Bayesian 
approach which has the advantage of showing the con- 
nection between Markov Random Field models and stan- 
dard regularization as developed in this paper. In partic- 
ular, they show how standard regularization can be 
regarded as a special case of MRF models and is itself equiv- 
alent to Wiener filtering. 

These techniques, though computationally expensive, 
represent a powerful extension of the methods described 
in this paper [87, [88]. Furthermore, approximate efficient 
algorithms may be devised for each specific problem [83], 
[87l. 

E. Future 

This paper has attempted to  review the recent devel- 
opment of a regularization framework for computational 
vision. The review i s  not exhaustive, and we only men- 
tioned in a cursory way several important papers that are 
related to regularization. Since the image understanding 
field is undergoing rapid development, weexpectthat many 
more useful connections between vision problems and 
regularization methods will soon be discovered and 
exploited in algorithms. A natural area for future work is to 
apply formal regularization techniques to other problems 
of early vision such as the computation of surface color, 
shape-from-texture and spatio-temporal approximation [I]. 
A more fundamental problem that arises in almost every 
vision problem i s  the problem of scale, that is, the reso- 
lution at which to operate. Methods that have been pro- 
posed to deal with the problem include scale-space tech- 
niques that consider the behavior of the result across a 
continuum of scales. From the point of view of regulation 
theory, the concept of scale i s  related quite directly to  the 
parameter h [89]. It is tempting to conjecture that methods 
used to obtain the optimal value of X may provide, either 
directly or after suitable modification, the optimal scale 
associated with the specific instance of certain problems. 

An outstanding problem at present in the area of early 
vision is the detection and localization of discontinuities. 
Because of the equivalence between regularization and 
generalized splines, it i s  impossible to deal directly with 
discontinuities in the framework of the classical theory. Dif- 
ferent methods, such as Markov Random Fields, seem capa- 
ble of performing approximation and reconstruction while 
preserving and detecting discontinuities [80]-[83], [85]. 
There are promising approaches to  the problem of inte- 
grating different visual modules such as stereo, motion, 
color, and texture that rely on coupled Markov Random 
Field models and their capability to  detect and represent 
discontinuities. Though they use Monte Carlo methods, 
they indicate that deterministic algorithms (in some cases, 
of the relaxation type) may provide very good approxi- 
mative solutions. A significant challenge for regularization 
theory in computational vision i s  thus to extend the clas- 
sical formalism to deal with discontinuities. Lee and Pav- 
lidis’ work [Ill, [I61 is an example of this for the I-D case. 
The two-dimensional case i s  significantly more difficult. The 
approaches of [7-[10], [85] to surface reconstruction and to 
edge detection respectively, though not explicitly framed 
in the context of classical regularization, represent some 
promising initial steps in the direction of extending the 
2-D theory. 
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