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High-dimensional and complex data

e How to extract meaningful information (infer models) from
a data-rich environment? e.g. in
¢ Physics and Engineering: inverse imaging, computer vision,
etc.
¢ Bioinformatics: genomics and proteomics
e Economics

¢ Different frameworks:
e compressed sensing/sampling
e regression/learning
e inverse problems



Sampling or sensing problems

o Take discrete samples from a signal f and design a
recovery scheme from the samples

e Classical example: Shannon’s sampling theorem
a bandlimited signal f(x) (with cutoff frequency vmax) can
be uniquely recovered from equidistant samples at the
Nyquist rate:

=3 ey (k) (6= 1/2upa)

e Generalization: design a measurement (encoding) scheme
(matrix or linear operator) ¢ to “sense” an unknown signal
f through ¢f and devise an associated recovery (decoding)
scheme allowing to compute f from ®f.



Linear regression problem

e “Input” (data) matrix: X = {x;;} for i=1,...,nand
j=1,...,p

e “Output” (response): y; for each i (“supervised” setting)

e Assume linear dependence:

Yi:ZXij/Bj or y=Xp
J

¢ Two distinct problems:
Prediction (“generalization”): predict (forecast) the

response y
Identification (Variable Selection): find the regression
coefficient vector 8 = (84, B, - -, Bp) T

and/or identify the relevant predictors (essential for
interpretation!)



Inverse problems

e Recover target (“object”) f from indirect measurements, i.e.
from an “image” g = Af where A is a linear operator
modelling the action of an instrument or imaging device
(microscope, telescope, scanner, scattering medium, etc.)

¢ In continuous models, f is a function and A is an integral
operator (acting in some Hilbert space of functions)

(Af)(x) = /K(x,x’) f(x") dx’

where the kernel K(x, x’) is a (known) response function
(deconvolution (deblurring) problems: K(x, x') = K(x — x"))

¢ In discrete models, A is a matrix, typically ill-conditioned
(e.g. when arising from discretization of the previous
continuous model).



Compressed sensing or Compressive sampling

e To determine a signal f in a p-dimensional space, one
needs to take in principle at least p linear measurements.

e Can we take profit of the sparsity of the signal (i.e. the fact
that f has only k non-zero components, with k << p) to
decrease the number of measurements?

NB. The location of these components is unknown!

e This is the question addressed by the emerging field of
compressed sensing, compressive sampling or else
compressive sensing
(Candés and Tao 2006; Candés Romberg and Tao 2006;
Donoho 2006; etc. - see http://dsp.rice.edu/cs)



Compressed sensing or Compressive sampling

e The answer is yes, provided the measurement matrix ¢ is
close to an isometry on the class (not linear subspace!) of
all k-sparse signals. This ensures that the recovery of f
from g = &f will be possible (well conditioned)

e The price to pay for lowering the number of measurement
values needed is the randomization of ®

¢ Typical kind of result: take the matrix elements of ¢ be i.i.d.
random variables taken from a Gaussian distribution with
mean zero and variance 1/p; then k-sparse signals of
length p can be recovered from only m = cklog(p/k) << p
of these random measurements (“with overwhelming
probability”!)

e Decoder (recovery scheme): minimize the L{-norm of f:
Ifl+ = 3= £ under the constraint g = f



Hardware prototype: the one-pixel camera
(R. Baraniuk et al. @ Rice)

Scane

Photodiode Bitetream

AD |——+{ Reconsruction |—Image

(&) Single-phoel, compresshee sensing carmera. (o) Corventlonal dightal camera
Imag: of asoccer ball. (c) 64 « 64 black-and-white Image ¥ of the same ball (¥ = 4,096
pleek) recovered from & = 1,600 random measuremsants taken by the camera In (al.
The Images In (k) and () are notmeant 1o be aligned

(from R. Baraniuk, IEEE Signal Proc. Mag., July 2007)



Recent extensions

¢ Robustness in the presence of noise

e Object to sense f has a — or is well approximated by a —
sparse expansion in a given basis or even on a coherent
and redundant (overcomplete) dictionary
(Candes et al., 2010)

e Decomposition of a large data matrixas M = Ly + Sy as a
sum of a low-rank matrix Ly and of a sparse matrix Sy:
“Robust Principal Component Analysis”

(Candés et al., 2009)

e Extension to the noisy case: “Stable Principal Component
Pursuit” (Zhou et al., 2010)



Ordinary Least-Squares (OLS) Regression

Noisy data: y = X3 + z (z = zero-mean Gaussian noise)

Reformulate problem as a classical multivariate linear
regression: minimize quadratic loss function

ANB)=lly = X813 (vl = /Z |yi]2 = Lp-norm)

Equivalently, solve variational (Euler) equation

X'X=X"y

If XT X is full-rank, minimizer is OLS solution

Bois = (XTX)'XTy



Problems with OLS

« Not feasible if X7 X is not full-rank i.e. has eigenvalue zero
(in particular, whenever p > n)

In many practical problems p >> n
(large p, small n paradigm)

e Then the minimizer is not unique (system largely
underdetermined), but you can restore uniqueness by
selecting the “minimum-norm least-squares solution”,
orthogonal to the null-space of X
(OK for prediction but not necessarily for identification!)

« Also X7 X may have eigenvalues close to zero
(happens when both p and n get large)
— X' X has a large “condition number”
(= ratio between largest and smallest e.v.)
This is ill-conditioning, also referred to as the
“curse of dimensionality”



A cure for the iliness: Penalized regression

¢ To stabilize the solution (estimator), use extra constraints
on the solution or, alternatively, add a penalty term to the
least-squares loss
— penalized least-squares

e This is a kind of “regularization”
( < inverse problem theory)

e Provides the necessary dimension reduction

e We will consider three examples: ridge, lasso and
elastic-net regression



Ridge regression

(Hoerl and Kennard 1970 or Tikhonov’s regularization)
¢ Penalize with Ly-norm of 5:

Bridge = argminﬁ Hy_XﬁHS‘i‘)‘”ﬁHS
= (XTX4+XId)'XTy

(A > 0 = “regularization parameter”)
« Special case: orthonormal regressors (X' X = Id)
1 T
Briage = FRY X'y
(all coefficients are shrunk uniformly towards zero)

e Quadratic penalties provide solutions (estimators) which
depend linearly on the response y but do not allow for
variable selection (typically all coefficients are different
from zero)



Lasso regression

name coined by Tibshirani 1996
but the idea is much older: Santosa and Symes 1986; Logan;
Donoho, etc.

e Penalize with Li-norm of 5:
Blasso = argming ||y — X813 + (18]

where [5ll; = X7, |5
« Special case: orthonormal regressors (X' X = Id)
[ﬁlasso]j = ST([XTy]j)
S, is the soft-thresholder defined by

x+7/2 if x<-1/2
S-(x) = 0 it |x]<7/2

x—7/2 if x>1/2



Lasso regression: Soft-thresholding

S (x)
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Lasso regression

o Soft-thresholding is a nonlinear shrinkage: coefficients are
shrunk differently depending on their magnitude.

For orthonormal regressors, [3/asso)j = O if |[XTy],-| <7/2

o Enforces sparsity of 3, i.e. the presence in this vector of
many zero coefficients —

e Variable selection is performed!



Bayesian framework

e OLS can be viewed as maximum (log-)likelihood estimator
for gaussian “noise”
— penalized maximum likelihood

e Bayesian interpretation: MAP estimator and penalty
interpreted as a prior distribution for the regression
coefficients

¢ Ridge ~ Gaussian prior

e Lasso ~ Laplacian prior (double exponential)



Generalization

e Weighted L,-penalties (weighted ~ non i.i.d. priors)
“bridge regression”

(Frank and Friedman 1993; Fu 1998)
Special cases: ridge (o« = 2) and lasso (« = 1)

NB. nonconvex for o < 1

Only o = 1 allows for both sparsity and convexity



Lasso versus Model selection

Limit case o = 0: model selection with Ly-norm penalty

I1Bllo = #{8;16; # 0}

a =1 is agood proxy for« =0

Advantage: convex optimization instead of combinatorial
algorithmic complexity!

A lot of recent literature on the subject, e.g.

"If the predictors are not highly correlated, then the lasso
performs very well in prediction almost all the time"
(probabilistic results) (Candés and Plan 2007)



Lasso regression: algorithmic aspects

¢ Quadratic programming (Tibshirani 1996; Chen, Donoho
and Saunders 1998; Boyd and collaborators)

e Recursive strategy: LARS/Homotopy method
(Efron, Hastie, Johnstone, Tibshirani 2004;
Osborne, Presnell, Turlach 2000)

Recursive way of solving the variational equations for
1,2, ..., k active (non-zero) variables

The regression coefficients are piecewise linear in 7
— full path for the same computational cost

Modification to take into account linear constraints
(Brodie, Daubechies, De Mol, Giannone, Loris 2008)



Lasso regression: algorithmic aspects

e lterative strategy: iterated soft-thresholding
(141 / 1 T T
ﬁ/asso) - T/C <ﬁ/(a?sso + E[X - X Xﬁlasso]>

has been proved to converge to a minimizer of the lasso

cost function with arbitrary initial guess ﬂl(é?s)so ; provided
|IXTX|| < C (compute norm e.g. by power method)

(S; /¢ performs soft-thresholding componentwise)
(Daubechies, Defrise, De Mol 2004)
NB. For 7 = 0: Landweber scheme converging to OLS
(minimum-norm solution if /Bl(aos)so =0)

e Many variations on this iterative scheme,

and recent developments on accelerators
see e.g. (Loris, Bertero, De Mol, Zanella and Zanni 2009)



Lasso regression: some applications

o Computer vision: selection of dictionary elements
appropriate for a given classification task
(e.g. face detection or face authentication)
(Destrero, De Mol, Odone, Verri 2009)

o Assets for portfolio optimization in finance —
“Sparse and stable Markowitz portfolios”
(Brodie, Daubechies, De Mol, Giannone, Loris 2009)

e Macroeconomic forecasting
Standard paradigm for high-dimensional time series:
Principal Component Regression
Alternative: ridge or lasso regression
(De Mol, Giannone, Reichlin 2008)



Nonparametric regression

» Nonlinear regression model : y = f(X)
where the regression function f is assumed to have a
sparse expansion on a given basis {¢;} : f = Zj Bj oj
e Solve

Blasso = argming |||y — ZB] ‘Pj”g + 78]l
J
e Vector (3 possibly infinite-dimensional (¢1-penalty)

o cf. “basis pursuit denoising”
(Chen, Donoho and Saunders 2001)



Inverse problems

(Daubechies, Defrise, De Mol 2004)

Linear inverse problem g = Af, knowing the object has a
sparse expansion on a given basis: f = E/ Bj @;
Recover f by minimizing [||g — Af||2 + 7|/ 3]1]

Infinite-dimensional framework where {y;} = arbitrary
orthonormal basis, as Fourier, wavelets, etc.
(or even redundant “frame” or “dictionary”)

Typically, images (e.g. natural images) are sparse in the
wavelet domain

Proper “regularization method” for ill-posed inverse
problems (as is Tikhonov for quadratic penalties)

Strong convergence of iterated soft-thresholding
(with soft-thresholding applied to the coefficient vector)



Extensions

e Mixed penalties/multiple components:
f=u+v+...

where u is sparse (¢1-penalty in some basis), v is smooth
(4o -penalty), etc.

(Defrise and De Mol 2004; Daubechies and Teschke 2004;
Anthoine 2005)

¢ Nonlinear inverse problems
(through iterative soft-thresholding)

(Teschke and Ramlau 2005)



Instability of Lasso for variable selection

e In learning theory (random design), the matrix X becomes
also random

¢ In inverse problems, the imaging operator A may be
subject to errors

¢ With random matrix, lasso regression does not provide a
stable selection of variables if correlated —
possible remedy: “elastic net”



Elastic Net

¢ “Elastic net”: combined penalties L{ + L, to select
sparse groups of correlated variables
(Zou and Hastie 2005, for fixed-design regression, with n
and p fixed).

Ben = argmin [y = XBII3 + 181l + A 313]

While the L{-penalty enforces sparsity, the additional
Lo-penalty takes care of possible correlations between the
coefficients (enforces democracy in each group)

e NB. The groups are not known in advance
(s joint sparsity measures - mixed norms - group Lasso)

e Extension to learning (random design) and consistency
results (De Mol, De Vito and Rosasco 2009)



Application to gene selection from microarray data

(De Mol, Mosci, Traskine and Verri 2009)

e Expression data for many genes and few examples
(patients)

e Aim: prediction AND identification of the guilty genes

e Heavy correlations (small networks)
— Ly + L, strategy

e Algorithm: damped iterated soft-thresholding

1 n, 1 I
4 = sSao (0 KTy - xTx)

(contraction for A > 0)



