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High-dimensional and complex data

• How to extract meaningful information (infer models) from
a data-rich environment? e.g. in

• Physics and Engineering: inverse imaging, computer vision,
etc.

• Bioinformatics: genomics and proteomics
• Economics

• Different frameworks:
• compressed sensing/sampling
• regression/learning
• inverse problems



Sampling or sensing problems

• Take discrete samples from a signal f and design a
recovery scheme from the samples

• Classical example: Shannon’s sampling theorem
a bandlimited signal f (x) (with cutoff frequency νmax ) can
be uniquely recovered from equidistant samples at the
Nyquist rate:

f (x) =
∑
k∈Z

sin[πδ (x − kδ)]
π
δ (x − kδ)

f (kδ) (δ = 1/2νmax )

• Generalization: design a measurement (encoding) scheme
(matrix or linear operator) Φ to “sense” an unknown signal
f through Φf and devise an associated recovery (decoding)
scheme allowing to compute f from Φf .



Linear regression problem

• “Input” (data) matrix: X = {xi j} for i = 1, . . . ,n and
j = 1, . . . ,p

• “Output” (response): yi for each i (“supervised” setting)
• Assume linear dependence:

yi =
∑

j

xi jβj or y = Xβ

• Two distinct problems:
Prediction (“generalization”): predict (forecast) the
response y
Identification (Variable Selection): find the regression
coefficient vector β = (β1, β2, . . . , βp)T

and/or identify the relevant predictors (essential for
interpretation!)



Inverse problems

• Recover target (“object”) f from indirect measurements, i.e.
from an “image” g = Af where A is a linear operator
modelling the action of an instrument or imaging device
(microscope, telescope, scanner, scattering medium, etc.)

• In continuous models, f is a function and A is an integral
operator (acting in some Hilbert space of functions)

(Af )(x) =

∫
K (x , x ′) f (x ′) dx ′

where the kernel K (x , x ′) is a (known) response function
(deconvolution (deblurring) problems: K (x , x ′) = K (x − x ′))

• In discrete models, A is a matrix, typically ill-conditioned
(e.g. when arising from discretization of the previous
continuous model).



Compressed sensing or Compressive sampling

• To determine a signal f in a p-dimensional space, one
needs to take in principle at least p linear measurements.

• Can we take profit of the sparsity of the signal (i.e. the fact
that f has only k non-zero components, with k << p) to
decrease the number of measurements?
NB. The location of these components is unknown!

• This is the question addressed by the emerging field of
compressed sensing, compressive sampling or else
compressive sensing
(Candès and Tao 2006; Candès Romberg and Tao 2006;
Donoho 2006; etc. - see http://dsp.rice.edu/cs)



Compressed sensing or Compressive sampling

• The answer is yes, provided the measurement matrix Φ is
close to an isometry on the class (not linear subspace!) of
all k -sparse signals. This ensures that the recovery of f
from g = Φf will be possible (well conditioned)

• The price to pay for lowering the number of measurement
values needed is the randomization of Φ

• Typical kind of result: take the matrix elements of Φ be i.i.d.
random variables taken from a Gaussian distribution with
mean zero and variance 1/p; then k -sparse signals of
length p can be recovered from only m = ck log(p/k) << p
of these random measurements (“with overwhelming
probability”!)

• Decoder (recovery scheme): minimize the L1-norm of f :
‖f‖1 =

∑p
j=1 |fj | under the constraint g = Φf



Hardware prototype: the one-pixel camera
(R. Baraniuk et al. @ Rice)

(from R. Baraniuk, IEEE Signal Proc. Mag., July 2007)



Recent extensions

• Robustness in the presence of noise
• Object to sense f has a – or is well approximated by a –

sparse expansion in a given basis or even on a coherent
and redundant (overcomplete) dictionary
(Candès et al., 2010)

• Decomposition of a large data matrix as M = L0 + S0 as a
sum of a low-rank matrix L0 and of a sparse matrix S0:
“Robust Principal Component Analysis”
(Candès et al., 2009)

• Extension to the noisy case: “Stable Principal Component
Pursuit” (Zhou et al., 2010)



Ordinary Least-Squares (OLS) Regression

• Noisy data: y = Xβ + z (z = zero-mean Gaussian noise)
• Reformulate problem as a classical multivariate linear

regression: minimize quadratic loss function

Λ(β) = ‖y − Xβ‖22 (‖y‖2 =

√∑
i

|yi |2 = L2-norm)

• Equivalently, solve variational (Euler) equation

X T Xβ = X T y

• If X T X is full-rank, minimizer is OLS solution

βols = (X T X )−1X T y



Problems with OLS

• Not feasible if X T X is not full-rank i.e. has eigenvalue zero
(in particular, whenever p > n)

In many practical problems p >> n
(large p, small n paradigm)

• Then the minimizer is not unique (system largely
underdetermined), but you can restore uniqueness by
selecting the “minimum-norm least-squares solution”,
orthogonal to the null-space of X
(OK for prediction but not necessarily for identification!)

• Also X T X may have eigenvalues close to zero
(happens when both p and n get large)
−→ X T X has a large “condition number”
(= ratio between largest and smallest e.v.)
This is ill-conditioning, also referred to as the
“curse of dimensionality”



A cure for the illness: Penalized regression

• To stabilize the solution (estimator), use extra constraints
on the solution or, alternatively, add a penalty term to the
least-squares loss
→ penalized least-squares

• This is a kind of “regularization”
( < inverse problem theory)

• Provides the necessary dimension reduction

• We will consider three examples: ridge, lasso and
elastic-net regression



Ridge regression

(Hoerl and Kennard 1970 or Tikhonov’s regularization)
• Penalize with L2-norm of β:

βridge = argminβ
[
‖y − Xβ‖22 + λ‖β‖22

]
= (X T X + λ Id)−1X T y

(λ > 0 = “regularization parameter”)
• Special case: orthonormal regressors (X T X = Id)

βridge =
1

1 + λ
X T y

(all coefficients are shrunk uniformly towards zero)
• Quadratic penalties provide solutions (estimators) which

depend linearly on the response y but do not allow for
variable selection (typically all coefficients are different
from zero)



Lasso regression

name coined by Tibshirani 1996
but the idea is much older: Santosa and Symes 1986; Logan;
Donoho, etc.

• Penalize with L1-norm of β:

βlasso = argminβ
[
‖y − Xβ‖22 + τ‖β‖1

]
where ‖β‖1 =

∑p
j=1 |βj |

• Special case: orthonormal regressors (X T X = Id)

[βlasso]j = Sτ ([X T y ]j)

Sτ is the soft-thresholder defined by

Sτ (x) =


x + τ/2 if x ≤ −τ/2

0 if |x | < τ/2
x − τ/2 if x ≥ τ/2



Lasso regression: Soft-thresholding

x

S (x)τ

−τ

τ

/2

/2



Lasso regression

• Soft-thresholding is a nonlinear shrinkage: coefficients are
shrunk differently depending on their magnitude.

For orthonormal regressors, [βlasso]j = 0 if |[X T y ]j | < τ/2

• Enforces sparsity of β, i.e. the presence in this vector of
many zero coefficients −→

• Variable selection is performed!



Bayesian framework

• OLS can be viewed as maximum (log-)likelihood estimator
for gaussian “noise”
→ penalized maximum likelihood

• Bayesian interpretation: MAP estimator and penalty
interpreted as a prior distribution for the regression
coefficients

• Ridge ∼ Gaussian prior

• Lasso ∼ Laplacian prior (double exponential)



Generalization

• Weighted Lα-penalties (weighted ∼ non i.i.d. priors)
“bridge regression”

(Frank and Friedman 1993; Fu 1998)
Special cases: ridge (α = 2) and lasso (α = 1)

NB. nonconvex for α < 1

Only α = 1 allows for both sparsity and convexity



Lasso versus Model selection

• Limit case α = 0: model selection with L0-norm penalty

‖β‖0 = #{βj |βj 6= 0}

• α = 1 is a good proxy for α = 0
Advantage: convex optimization instead of combinatorial
algorithmic complexity!

• A lot of recent literature on the subject, e.g.

• "If the predictors are not highly correlated, then the lasso
performs very well in prediction almost all the time"
(probabilistic results) (Candès and Plan 2007)



Lasso regression: algorithmic aspects

• Quadratic programming (Tibshirani 1996; Chen, Donoho
and Saunders 1998; Boyd and collaborators)

• Recursive strategy: LARS/Homotopy method
(Efron, Hastie, Johnstone, Tibshirani 2004;
Osborne, Presnell, Turlach 2000)

Recursive way of solving the variational equations for
1,2, ..., k active (non-zero) variables
The regression coefficients are piecewise linear in τ
→ full path for the same computational cost
Modification to take into account linear constraints
(Brodie, Daubechies, De Mol, Giannone, Loris 2008)



Lasso regression: algorithmic aspects

• Iterative strategy: iterated soft-thresholding

β
(l+1)
lasso = Sτ/C

(
β

(l)
lasso +

1
C

[X T y − X T Xβ(l)
lasso]

)
has been proved to converge to a minimizer of the lasso
cost function with arbitrary initial guess β(0)

lasso ; provided
‖X T X‖ < C (compute norm e.g. by power method)
(Sτ/C performs soft-thresholding componentwise)
(Daubechies, Defrise, De Mol 2004)
NB. For τ = 0: Landweber scheme converging to OLS
(minimum-norm solution if β(0)

lasso = 0)
• Many variations on this iterative scheme,

and recent developments on accelerators
see e.g. (Loris, Bertero, De Mol, Zanella and Zanni 2009)



Lasso regression: some applications

• Computer vision: selection of dictionary elements
appropriate for a given classification task
(e.g. face detection or face authentication)
(Destrero, De Mol, Odone, Verri 2009)

• Assets for portfolio optimization in finance −→
“Sparse and stable Markowitz portfolios”
(Brodie, Daubechies, De Mol, Giannone, Loris 2009)

• Macroeconomic forecasting
Standard paradigm for high-dimensional time series:
Principal Component Regression
Alternative: ridge or lasso regression
(De Mol, Giannone, Reichlin 2008)



Nonparametric regression

• Nonlinear regression model : y = f (X )
where the regression function f is assumed to have a
sparse expansion on a given basis {ϕj} : f =

∑
j βj ϕj

• Solve

βlasso = argminβ

‖y −∑
j

βj ϕj‖22 + τ‖β‖1


• Vector β possibly infinite-dimensional (`1-penalty)
• cf. “basis pursuit denoising”

(Chen, Donoho and Saunders 2001)



Inverse problems

(Daubechies, Defrise, De Mol 2004)
• Linear inverse problem g = Af , knowing the object has a

sparse expansion on a given basis: f =
∑

j βj ϕj

• Recover f by minimizing
[
‖g − Af‖22 + τ‖β‖1

]
• Infinite-dimensional framework where {ϕj} = arbitrary

orthonormal basis, as Fourier, wavelets, etc.
(or even redundant “frame” or “dictionary”)

• Typically, images (e.g. natural images) are sparse in the
wavelet domain

• Proper “regularization method” for ill-posed inverse
problems (as is Tikhonov for quadratic penalties)

• Strong convergence of iterated soft-thresholding
(with soft-thresholding applied to the coefficient vector)



Extensions

• Mixed penalties/multiple components:

f = u + v + . . .

where u is sparse (`1-penalty in some basis), v is smooth
(`2 -penalty), etc.

(Defrise and De Mol 2004; Daubechies and Teschke 2004;
Anthoine 2005)

• Nonlinear inverse problems
(through iterative soft-thresholding)

(Teschke and Ramlau 2005)



Instability of Lasso for variable selection

• In learning theory (random design), the matrix X becomes
also random

• In inverse problems, the imaging operator A may be
subject to errors

• With random matrix, lasso regression does not provide a
stable selection of variables if correlated −→
possible remedy: “elastic net”



Elastic Net

• “Elastic net”: combined penalties L1 + L2 to select
sparse groups of correlated variables
(Zou and Hastie 2005, for fixed-design regression, with n
and p fixed).

βen = argminβ
[
‖y − Xβ‖22 + τ‖β‖1 + λ‖β‖22

]
While the L1-penalty enforces sparsity, the additional
L2-penalty takes care of possible correlations between the
coefficients (enforces democracy in each group)

• NB. The groups are not known in advance
(6= joint sparsity measures - mixed norms - group Lasso)

• Extension to learning (random design) and consistency
results (De Mol, De Vito and Rosasco 2009)



Application to gene selection from microarray data

(De Mol, Mosci, Traskine and Verri 2009)

• Expression data for many genes and few examples
(patients)

• Aim: prediction AND identification of the guilty genes

• Heavy correlations (small networks)
→ L1 + L2 strategy

• Algorithm: damped iterated soft-thresholding

β
(l+1)
en =

1
1 + λ

C

Sτ/C

(
β

(l)
en +

1
C

[X T y − X T Xβ(l)
en ]

)
(contraction for λ > 0)


