Spectral methods for learning a set

L. Rosasco^{1,4} A. Toigo² E. De Vito^{3,4}

¹CBCL, M.I.T., Boston, USA ²Dip. Matematica, Politecnico di Milano, Italy

³DIMA, Università di Genova, Italy ⁴Slipguru, DISI, Genova, Italy

Workshop in honour of Mario Bertero

DISI, Genova 2th February 2011

Plan of the talk

1 [The problem: learning a set from random data](#page-2-0)

- The ingredients: a **completely regular** [reproducing kernel Hilbert](#page-6-0) [space and a low-pass filter](#page-6-0)
- [The results: a kernel estimator and its consistency](#page-10-0)
- 4 [\(Preliminary\) experiments](#page-17-0)

The problem

- we have a sample of *n*-examples x_1, \ldots, x_n
	- we fix a (possibly high dimensional) representation

$$
x_i = (x_i^1, \dots, x_i^d) \in \mathbb{R}^d \quad \text{with } d \gg n
$$

- \bullet we believe that the points similar to the examples do not live in a fat region of \mathbb{R}^d , but they belong to a thin subset
- \bullet we aim to learn some properties of this thin subset from the examples

The mathematical setting

- we assume that the examples are sampled independently according to an unknown probability measure ρ defined on a compact subset X of \mathbb{R}^d
- \bullet we model the thin subset as the **smallest closed** subset C_{ρ} such that $\rho(C_{\rho}) = 1$, *i.e.* C_{ρ} is the support of the measure ρ
- the goal is to define a set C_n , depending on the examples, such that C_n is *close* to C_p with respect some distance among sets for example the Hausdorff distance

$$
d_H(C_n, C_\rho) = \max\{\sup_{x \in C_n} d(x, C_\rho), \sup_{x \in C_\rho} d(x, C_n)\}\
$$

Note that $d_H (C_n, C_\rho)$ is a random variable

State of the art

Many different frameworks

- \bullet support density estimation
- ² level set density estimation
- ³ novelty/anomaly detection
- ⁴ one-class classifier
- ⁵ spectral manifold learning
- ⁶ dimensionality reduction

Our approach is based on the idea of "spectral regularization" and

- i) ρ is not assumed to have a density with respect to the Lebesgue measure
- ii) C_{ρ} is not assumed to be a Riemannian submanifold
- iii) Our algorithm is easy to implement (at the cost of an SVD)

Our results

Three steps

 \bullet we define a continuous function $F: X \to [0, 1]$ such that

$$
C_{\rho} = \{ x \in X \mid F(x) = 1 \}
$$

which explicitly depends on ρ

• we define a continuous estimator $F_n: X \to [0,1]$ of F such that

- a) F_n only depends on the examples through a matrix \mathbf{K}_n
- b) F_n converges uniformly to F

• The plug-in estimator is given by

$$
C_n = \{ x \in X \mid F_n(x) \ge 1 - \tau_n \}
$$

where τ_n is a tuning parameter.

Ingredients

We need

- A completely regular reproducing kernel Hilbert space
	- \blacktriangleright Example: the Abel kernel

 $K(x, \tilde{x}) = e^{-\gamma ||x - \tilde{x}||} \propto \text{Fourier transform of the Poisson kernel}$

where $\gamma > 0$ is a fixed parameter

- A low-pass filter r_{λ} in the frequency domain, where λ is a regularization parameter
	- \blacktriangleright Example: the Tikhonov filter

$$
r_{\lambda}(\sigma) = \frac{\sigma}{\sigma + \lambda}
$$

Reproducing Kernel Hilbert space (RKHS)

- A Hilbert space H is a RKHS if
	- the elements of H are functions $f : X \to \mathbb{R}$ with the pointwise operations
	- for any $x \in X$ there is a unique $K_x \in \mathcal{H}$ such that

reproducing formula $f(x) = \langle f, K_x \rangle$ f $\in \mathcal{H}$

• the reproducing kernel $K: X \times X \to \mathbb{R}$

$$
K(x,\tilde{x})=K_x(\tilde{x})=\langle K_{\tilde{x}},K_x\rangle
$$

is continuous (so that the elements of $\mathcal H$ are continuous functions)

• $K_x \neq K_{\tilde{x}}$ for all $x \neq \tilde{x}$ and $K(x, x) = 1$ for all x The feature map Φ

$$
X \ni x \mapsto K_x \in \mathcal{H}
$$

is a continuous embedding of X into the linear space \mathcal{H} (dim $\mathcal{H} \gg d$)

Mercer theorem (revisited)

The integral operator on $L^2(X, \rho)$

$$
(Lf)(x) = \int\limits_X K(x, \tilde{x}) f(\tilde{x}) \ d\rho(\tilde{x})
$$

is a positive Hilbert-Schmidt operator with range into $\mathcal H$ • There is a base $(\varphi_k)_{k\in\mathbb{N}}$ of eigenfunctions of L with the corresponding sequence of eigenvalues $(\sigma_k)_{k\in\mathbb{N}}$: $L\varphi_k = \sigma_k\varphi_k$ Mercer theorem

$$
\sum_{k} \sigma_{k} |\varphi_{k}(x)|^{2} = K(x, x) = 1 \qquad x \in C_{\rho}
$$

$$
\sum_{k} \sigma_{k} |\varphi_{k}(x)|^{2} \neq K(x, x) \qquad x \notin C_{\rho} \qquad ?
$$

YES, provided that $\mathcal H$ separes C_o :

for any $x \notin C_\rho$ there exists $f \in \mathcal{H}$

$$
f(x) \neq 0
$$
 and $f(\tilde{x}) = 0 \quad \forall \tilde{x} \in C_{\rho}$

Separating property and universal kernels

 \bullet C_o is separated by H if there exists a closed subspace K such that

$$
\Phi(C_\rho) = \mathcal{K} \cap \Phi(X)
$$

a completely regular RKHS is able to separate any closed subset

Examples

Sobolev spaces with smoothness $s > \frac{d}{2}$

$$
\mathcal{H}^s=\{f\in L^2\mid \int\limits_{\mathbb{R}^d}\lvert \widehat{f}(p)\rvert^2\lvert p\rvert^{2s}\, dp<+\infty\}
$$

are completely regular

- The Abel kernel $K(x, \tilde{x}) = e^{-\gamma ||x \tilde{x}||} \left(\mathcal{H} \simeq \mathcal{H}^{\frac{d+1}{2}} \right)$ is completely regular
- the linear kernel is able to separate only linear subspaces!

The function F

Let $\mathcal H$ be a completely regular RKHS $\mathcal H$ with normalized kernel K.

The continuous function

$$
F: X \to \mathbb{R} \qquad F(x) = \sum_{k} \sigma_k |\varphi_k(x)|^2
$$

is such that

$$
C_{\rho} = \{ x \in X \mid F(x) = 1 \}
$$

A little bit of algebra

$$
F(x) = \sum_{\sigma_k > 0} |\sqrt{\sigma_k} \varphi_k(x)|^2 = \sum_{\sigma_k > 0} |\langle \sqrt{\sigma_k} \varphi_k, K_x \rangle|^2 = \langle T^{\dagger} T K_x, K_x \rangle
$$

where $T = L_{|\mathcal{H}} \in \mathcal{L}(\mathcal{H})$ and T^{\dagger} is the generalized inverse Note that $T^{\dagger}T$ is the spectral projection associated with the strictly positive eigenvalues of T

A good empirical estimator of T

• define the finite rank positive operator on $T_n : \mathcal{H} \to \mathcal{H}$

$$
(T_n f)(x) = \frac{1}{n} \sum_{i=1}^{n} K(x, x_i) f(x_i),
$$

depending on the examples x_1, \ldots, x_n

• Hoeffeding inequality for Hilbert space valued random variables gives

$$
\lim_{n \to \infty} \frac{\sqrt{n}}{\log n} \|T_n - T\|_{\text{HS}} = 0 \quad \text{with probability 1}
$$

Naive idea: $F_n(x) = \left\langle T_n^{\dagger} T_n K_x, K_x \right\rangle$

 \bullet Since T is compact, then 0 is an accumulation point for the spectrum and

$$
\left\langle T_n^{\dagger} T_n K_x, K_x \right\rangle
$$
 does not converge to $\left\langle T^{\dagger} T K_x, K_x \right\rangle$

The instability is due to the fact that T^{\dagger} is unbounded

A filter function: (Groetsch, C.W. Boll.Un.Mat.Ital. B ¹⁷ (1980) 1411–1419)

Take a filter function $r_{\lambda} : [0, 1] \rightarrow [0, 1]$ depending on a regularization parameter $\lambda > 0$ satisfying

•
$$
r_{\lambda}(0) = 0
$$
 so that $r_{\lambda}(\sigma) = \sigma g_{\lambda}(\sigma)$

$$
\bullet \lim_{\lambda \to 0} r_{\lambda}(\sigma) = 1 \text{ for all } \sigma > 0
$$

$$
\bullet \ |r_{\lambda}(\sigma) - r_{\lambda}(\tilde{\sigma})| \leq C_{\lambda} |\sigma - \tilde{\sigma}| \text{ for all } \lambda > 0
$$

then

i)
$$
\lim_{\lambda \to 0} \sup_{x \in X} |\langle r_{\lambda}(T)K_x, K_x \rangle - \langle T^{\dagger}TK_x, K_x \rangle| = 0
$$

ii) $||r_\lambda(T) - r_\lambda(T_n)||_{\text{HS}} \leq C_\lambda ||T - T_n||_{\text{HS}}$ (simple proof due to A. Maurer)

where $||T - T_n||_{HS}$ is the Hilbert-Schmidt (Frobenius) norm.

Item [ii\)](#page-12-0) is also consequence of the theory of double operator integrals due to Birman and Solomyak

Examples

$$
r_{\lambda}(\sigma) = \frac{\sigma}{\sigma + \lambda} \qquad C_{\lambda} = \frac{1}{\lambda}
$$

² Spectral Cut-Off

$$
r_{\lambda}(\sigma) = \begin{cases} 1 = \frac{\sigma}{\sigma} & \sigma \ge \lambda \\ \frac{\sigma}{\lambda} & \sigma \le \lambda \end{cases} \qquad C_{\lambda} = \frac{1}{\lambda}
$$

³ Landweber

$$
r_m(\sigma) = \sigma \sum_{k=0}^m (1 - \sigma)^m \qquad C_m = m + 1
$$

⁴ Truncated SVD (kernel PCA)

$$
r_{\lambda}(\sigma) = \begin{cases} 1 & \sigma \ge \lambda \\ 0 & \sigma < \lambda \end{cases}
$$
 it is not a Lipschitz function

A regularized empirical estimator as kernel method Define

$$
F_{n,\lambda}(x) = \langle r_{\lambda}(T_n)K_x, K_x \rangle = \underbrace{\langle (T_n + \lambda I)^{-1}T_nK_x, K_x \rangle}_{\text{Tikhonov}}
$$

• \mathbf{k}_x is the *n*-dimensional column vector

$$
\mathbf{k}_x^t = (K(x, x_1), \dots, K(x, x_n))
$$

 \mathbf{K}_n the $n \times n$ -matrix $(\mathbf{K}_n)_{ij} = K(x_i, x_j)$ $\mathbf{K}_n \hat{v}_k = \hat{\sigma}_k \hat{v}_k$

$$
F_n^{\lambda}(x) = \frac{1}{n} \mathbf{k}_x^t g_{\lambda} \left(\frac{\mathbf{K}_n}{n}\right) \mathbf{k}_x
$$

= $\frac{1}{n} \sum_{k=1}^n g_{\lambda}(\hat{\sigma}_k) |\mathbf{k}_x^t \hat{v}_k|^2 = \sum_{i=1}^n y_i(x) e^{-\gamma ||x - x_i||}$
= $\underbrace{\mathbf{k}_x^t (\mathbf{K}_n + n\lambda I)^{-1} \mathbf{k}_x}_{\text{Tikhonov}}$

A kernel method point of view

- **1** given *n*-examples $x_1, \ldots, x_n \in C_\rho$ and a new point $x \in X$
- label the examples according to the similarity function K

$$
y_i = K(x_i, x) = e^{-\gamma ||x - x_i||}
$$

$$
\begin{cases} y_i \sim 1 & x_i \sim x \\ y_i \sim 0 & x_i \not\sim x \end{cases}
$$

• consider the linear inverse problem

find $f \in \mathcal{H}$ such that $f(x_i) = y_i \iff S_n \quad f = y$ sampling operator

 \bullet find the regularized solution according to the filter function g_{λ}

$$
f_n^{\lambda} = g_{\lambda}(S_n^* S_n) S^* y \implies f_n^{\lambda}(x) = F_n^{\lambda}(x)
$$

5 x is estimated to be in C_ρ if and only if $y = f_n^{\lambda}(x) \ge 1 - \tau_n$

Consistency

If we choose the regularization parameter λ_n so that

\n- \n
$$
\lim_{n \to \infty} \lambda_n = 0
$$
\n
\n- \n
$$
\limsup_{n \to \infty} C_{\lambda_n} \frac{\log n}{\sqrt{n}} < +\infty \quad \text{Tikhonov filter: } \lambda_n = \frac{\log n}{\sqrt{n}}
$$
\n
\n- \n
$$
\lim_{n \to \infty} \sup_{x \in X} |F_n^{\lambda_n}(x) - F(x)| = 0 \quad \text{with probability 1}
$$
\n
\n- \n Define $C_n = \{x \in X \mid F_n^{\lambda_n}(x) \ge 1 - \tau_n\}$ \n
\n- \n
$$
\lim_{n \to \infty} \tau_n = 0 \quad \limsup_{n \to \infty} \frac{\|F_n - F\|_{\infty}}{\tau_n} \le 1
$$
\n
\n

 $\lim_{n\to\infty} \frac{\mathrm{d}_{H}(C_n, C_\rho)}{\text{Hausdorff distance}}$ $= 0$ with probability 1

With the Abel kernel the above results also hold for non-compact X

Some numerical experiments

• The final algorithm has 3 tuning parameters

- ► kernel width $(K(x, \tilde{x}) = e^{-\gamma ||x \tilde{x}||}) \rightarrow$ the median 10-NN distance
- regularization parameter $(r_{\lambda}(\sigma) = \frac{\sigma}{\sigma + \lambda}) \rightarrow$ eigenvalues decay of \mathbf{K}_n
- \triangleright threshold parameter $(C_{\tau} = \{x \in X \mid F_n(x) \geq 1 - \tau\}) \rightarrow \text{ROC curve}$
- The database is MNIST (hand-written digits)
	- \triangleright training set with 500 images of the same digit
	- \triangleright test set of 200 images of two different digits
	- \triangleright Each experiment consists of training on one class and testing on two different classes and was repeated for 20 trials over different training set choices.

EIGENVALUES DECAY

Figure: ROC curves for the estimator in two different tasks. Left: digit 9 vs 1 igure. Roo cui ves for the estimator in two different tasks. Een: digit 5 vs
4, Center: digit 1 vs 7, Right : Eigenvalues decay Figure: ROC curves for the estimator in two different tasks. Left: digit 9 vs regularization defines an estimator Fn(x)= k^x

Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7 Center, Table: Average and standard deviation of the AUC for the different estimators on the considered tasks. t_{obs} for the digits. choose 3 parameters: the regularization parameter λ the kernel width of and the threshold threshold

 \mathbf{MMECD} and use the same width use the same width use the same width use the same width used in our estimator. Given a kernel and used in our estimator. Given a kernel and used in our estimator. Given a kernel and used

Real Data

!!

Thank you and we are ready for the cake