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Plan of the talk

@ The problem: learning a set from random data

© The ingredients: a completely regular reproducing kernel Hilbert
space and a low-pass filter

@ The results: a kernel estimator and its consistency

@ (Preliminary) experiments
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The problem

we have a sample of n-examples x1,...,x,

we fix a (possibly high dimensional) representation

z; = (z},...,z%) e R with d > n

1
we believe that the points similar to the examples do not live in
a fat region of R? but they belong to a thin subset

we aim to learn some properties of this thin subset from the
examples
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The mathematical setting

e we assume that the examples are sampled independently according
to an unknown probability measure p defined on a compact
subset X of R?

e we model the thin subset as the smallest closed subset C, such
that p(C,) =1, i.e C, is the support of the measure p

o the goal is to define a set C),, depending on the examples, such
that C,, is close to C), with respect some distance among sets
for example the Hausdorff distance

d, (Cy,Cp) = max{ sup d(z,C,), sup d(z,Cy)}
z€Ch zeC),

Note that d, (Cp,C,) is a random variable
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State of the art

Many different frameworks

@ support density estimation @ one-class classifier
@ level set density estimation @ spectral manifold learning
@ novelty/anomaly detection O dimensionality reduction

Our approach is based on the idea of “spectral regularization” and

i) p is not assumed to have a density with respect to the Lebesgue
measure

ii) C, is not assumed to be a Riemannian submanifold

iii) Our algorithm is easy to implement (at the cost of an SVD)
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Our results

Three steps

@ we define a continuous function F : X — [0, 1] such that
Co={zeX|F(zx) =1}

which explicitly depends on p
@ we define a continuous estimator F, : X — [0, 1] of F' such that

a) F,, only depends on the examples through a matrix K,
b) F, converges uniformly to F’

@ The plug-in estimator is given by

Cp={r € X | Fa(x) 21—}

where 7, is a tuning parameter.
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Ingredients

We need
e A completely regular reproducing kernel Hilbert space
» Example: the Abel kernel

K(z, &) = e /1"~ 7lx Fourier transform of the Poisson kernel

where v > 0 is a fixed parameter
o A low-pass filter ry in the frequency domain, where A is a
regularization parameter
» Example: the Tikhonov filter

ra(o) =

o+ A
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Reproducing Kernel Hilbert space (RKHS)
A Hilbert space H is a RKHS if

o the elements of H are functions f : X — R with the pointwise
operations

o for any x € X there is a unique K, € H such that
reproducing formula flz)=(f, K;) feEH
o the reproducing kernel K : X x X — R
K(z,7) = Ko (7) = (K3, Kq)

is continuous ( so that the elements of H are continuous functions )
o K, # Kj; for all z # % and K(x,z) =1 for all =
The feature map ®
Xose— K, eH

is a continuous embedding of X into the linear space H (dimH > d)
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Mercer theorem (revisited)
o The integral operator on L?(X, p)

is a positive Hilbert—Schmldt operator with range into H
o There is a base (k)kren of eigenfunctions of L with the
corresponding sequence of eigenvalues (o )ken: Lyr = 0rpk
Mercer theorem

ZJH@k(m)P:K(%fE):l reC,
P

Zak‘@k(fﬁ)‘? + K(z,z) v ¢ C, 7
i

YES, provided that H separes C):
for any x ¢ C, there exists f € H

flz)#0 and f(@)=0 vVieC,
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Separating property and universal kernels

e (), is separated by H if there exists a closed subspace K such that
P(Cy) =KNP(X)
e a completely regular RKHS is able to separate any closed subset

Examples

@ Sobolev spaces with smoothness s > %

H = {f e I?| / F@)PIp dp < +o0)
]Rd

are completely regular

o The Abel kernel K (z,%) = e #=21 (H ~ H%) is completely
regular

@ the linear kernel is able to separate only linear subspaces!

v
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The function F
Let H be a completely regular RKHS H with normalized kernel K.

The continuous function
F:X—>R  F)=) okler)
k

is such that
Co={zxe X |F(z)=1}

A little bit of algebra

= Y IWare@)? = Y [(Varew Ka)P = (T'T K., K. )

o >0 o, >0

where T' = Ly, € L(H) and T is the generalized inverse

Note that 77T is the spectral projection associated with the strictly
positive eigenvalues of T’
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A good empirical estimator of T'

o define the finite rank positive operator on 15, : H — H

(T D) = - S Kl ) (@),
i=1

depending on the examples z1,..., Ty,
e Hoeffeding inequality for Hilbert space valued random variables
gives

vn

lim
n—oc logn

o Naive idea: F(z) = <T,ITn KxKx>

Ty, — T|lus =0 with probability 1

e Since T is compact, then 0 is an accumulation point for the
spectrum and

<T,TLTn K., Kw> does not converge to <TTTK$,Km>
The instability is due to the fact that 7' is unbounded
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A ﬁlter fllIlCtiOIlI (Groetsch, C.W. Boll.Un.Mat.Ital. B 17 (1980) 1411-1419)

Take a filter function ) : [0, 1] — [0, 1] depending on a regularization
parameter A > 0 satisfying

@ 7,(0) =0 so that ry(0) = ogr(0)
(2] )l\ir%r,\(a) =1foralo >0

@ |ra(0) —ra(6)| < Cy\lo — & for all A >0

then

1) lim sup |[(r\(T) Ky, K;) — <TTTKm7Kx>| =0
A—0 xeX

11) ||T)\(T) — T)\(Tn) HHS S C)\”T - TnHHS ( simple proof due to A. Maurer)

where ||T — T,,||gs is the Hilbert-Schmidt (Frobenius) norm.

Item ii) is also consequence of the theory of double operator integrals due to Birman and Solomyak
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Examples
@ Tikhonov

7",\(0’)2 C)\Z

Q
_I_
>
>| =

@ Spectral Cut-Off

A
Cy =
A A

> =

© Landweber
rm(a):aZ(l—U)m Cn=m+1
k=0

© Truncated SVD (kernel PCA)

1 >\
ra(o) = 7= it is not a Lipschitz function
0 o<

E. De Vito (Genova) Spectral Methdos 2011 February, 2 14 / 20



A regularized empirical estimator as kernel method
Define

For(@) = (A (T0) Ky, Ku) = (T, + M) ' T, K, K,

Tikhonov

o k, is the n-dimensional column vector
k! = (K(z,21),...,K(z,2,))
o K, the n x n-matrix (K,);; = K(z;,x;) K, 0, = 61,01
1 K
Fl@) = 2o (57) ke

I~ . ) g oz,
== ZQA(Uk)’k;”kF - Zyi(x)e Az =il
i=1

k=1

Abel kernel
= k! (K, + n\) "'k,

Tikhonov
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A kernel method point of view

@ given n-examples z1,...,z, € C, and a new point x € X

@ label the examples according to the similarity function K

~1 i~z
= K(z;,2) = e Vllz—zil Yi g
4 (w0 2) yi~0 @ fx
© consider the linear inverse problem
find feH suchthat f(a;)=y; < S. =y

sampling operator

@ find the regularized solution according to the filter function gy

fa = 983828y = [fi(z) = F(x)

@ z is estimated to be in C, if and only if y = f)(z) > 1 — 7,

E. De Vito (Genova) Spectral Methdos 2011 February, 2 16 / 20



Consistency

If we choose the regularization parameter A\, so that

o lim A\, =0
n—oo
. logn . 1
1 Cy,— < Tikh filter: A\, = &~
° 17rbrfélop An /n +0o0 ikhonov filter: A, Jn
lim sup|F"(z) — F(x)| =0 with probability 1 J
=00 zeX
Define C, = {r € X | F}(2) > 1 —7,}
F,—F
e lim 7,=0 limsup ”"—”oo <1
n—00 n—o0 Tn
lim d,(Cp,C,) =0 with probability 1
%0 Hausdorff distance

With the Abel kernel the above results also hold for non-compact X
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Some numerical experiments

@ The final algorithm has 3 tuning parameters

» kernel width (K (x,%) = e~ 122} — the median 10-NN distance

> regularization parameter (r)(o) = -%5) — eigenvalues decay of K,

» threshold parameter (C = {z € X | F,(z) > 1 —7})— ROC curve
e The database is MNIST (hand-written digits)

» training set with 500 images of the same digit

> test set of 200 images of two different digits

» Each experiment consists of training on one class and testing on two

different classes and was repeated for 20 trials over different
training set choices.
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MNIST 9 vs 4
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Figure: ROC curves for the estimator in two different tasks.
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Egenalues Index

Left: digit 9 vs

3 vs 8 8 vs 3 1vs 7 9 vs 4
Spectral 0.8371 £ 0.0056 0.7830 £ 0.0026 0.9921 + 4.7283e — 04 0.8651 + 0.0024
Parzen 0.7841 £ 0.0069 0.7656 £ 0.0029 0.9811 + 3.4158e — 04 0.0.7244 £ 0.0030
1CSVM 0.7896 + 0.0061 0.7642 + 0.0032 0.9889 + 1.8479e — 04 0.7535 + 0.0041

Table: Average and standard deviation of the AUC for the different
estimators on the considered tasks.
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Thank you
and we are ready for the
cake

Spectral Methdos 2011 February, 2 20 / 20



	The problem: learning a set from random data
	The ingredients: a completely regular reproducing kernel Hilbert space and a low-pass filter
	The results: a kernel estimator and its consistency
	(Preliminary) experiments

