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Plan of the talk

1 The problem: learning a set from random data

2 The ingredients: a completely regular reproducing kernel Hilbert
space and a low-pass filter

3 The results: a kernel estimator and its consistency

4 (Preliminary) experiments
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The problem

we have a sample of n-examples x1, . . . , xn

we fix a (possibly high dimensional) representation

xi = (x1
i , . . . , x

d
i ) ∈ Rd with d� n

we believe that the points similar to the examples do not live in
a fat region of Rd, but they belong to a thin subset
we aim to learn some properties of this thin subset from the
examples

General Intuition 

The Data are represented in 

high dimensions but are 

concentrated in a small, 

possibly lower dimensional , 

region.

Diffusion geometry:

Problem: We are given a large data set {xj}N
j=1 in a high-dimensional space RD.

We have reason to believe that the data is clustered around some low-dimensional
manifold, but do not know the manifold.

Its geometry is revealed if we can parameterize the data in a way that conforms to
its own geometry.

Picture courtesy of Mauro Maggioni of Duke.

A parameterization admits clustering, data completion, prediction, learning, . . .

How can we formalize the above statement?

Manifold Learning: The support of the data distribution is a low 

dimensional Riemannian Manifold embedded in a Euclidean space

[Roweis et al. ’00], [Tenenbaum et al. ’00], [Nyogi and  Belkin ’03], [Coifman et al.’08] ....
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The mathematical setting

we assume that the examples are sampled independently according
to an unknown probability measure ρ defined on a compact
subset X of Rd

we model the thin subset as the smallest closed subset Cρ such
that ρ(Cρ) = 1, i.e Cρ is the support of the measure ρ
the goal is to define a set Cn, depending on the examples, such
that Cn is close to Cρ with respect some distance among sets
for example the Hausdorff distance

dH (Cn, Cρ) = max{ sup
x∈Cn

d(x,Cρ), sup
x∈Cρ

d(x,Cn)}

Note that dH (Cn, Cρ) is a random variable
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State of the art

Many different frameworks

1 support density estimation

2 level set density estimation

3 novelty/anomaly detection

4 one-class classifier
5 spectral manifold learning

6 dimensionality reduction

Our approach is based on the idea of “spectral regularization” and
i) ρ is not assumed to have a density with respect to the Lebesgue

measure
ii) Cρ is not assumed to be a Riemannian submanifold

iii) Our algorithm is easy to implement (at the cost of an SVD)
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Our results

Three steps

1 we define a continuous function F : X → [0, 1] such that

Cρ = {x ∈ X | F (x) = 1}

which explicitly depends on ρ
2 we define a continuous estimator Fn : X → [0, 1] of F such that

a) Fn only depends on the examples through a matrix Kn

b) Fn converges uniformly to F
3 The plug-in estimator is given by

Cn = {x ∈ X | Fn(x) ≥ 1− τn}

where τn is a tuning parameter.
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Ingredients

We need
A completely regular reproducing kernel Hilbert space

I Example: the Abel kernel

K(x, x̃) = e−γ‖x−x̃‖∝ Fourier transform of the Poisson kernel

where γ > 0 is a fixed parameter
A low-pass filter rλ in the frequency domain, where λ is a
regularization parameter

I Example: the Tikhonov filter

rλ(σ) =
σ

σ + λ
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Reproducing Kernel Hilbert space (RKHS)

A Hilbert space H is a RKHS if
the elements of H are functions f : X → R with the pointwise
operations
for any x ∈ X there is a unique Kx ∈ H such that

reproducing formula f(x) = 〈f,Kx〉 f ∈ H

the reproducing kernel K : X ×X → R

K(x, x̃) = Kx(x̃) = 〈Kx̃,Kx〉

is continuous ( so that the elements of H are continuous functions )
Kx 6= Kx̃ for all x 6= x̃ and K(x, x) = 1 for all x

The feature map Φ
X 3 x 7→ Kx ∈ H

is a continuous embedding of X into the linear space H (dimH � d)
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Mercer theorem (revisited)

The integral operator on L2(X, ρ)

(Lf)(x) =
∫
X

K(x, x̃) f(x̃) dρ(x̃)

is a positive Hilbert-Schmidt operator with range into H
There is a base (ϕk)k∈N of eigenfunctions of L with the
corresponding sequence of eigenvalues (σk)k∈N: Lϕk = σkϕk

Mercer theorem∑
k

σk|ϕk(x)|2 = K(x, x) = 1 x ∈ Cρ∑
k

σk|ϕk(x)|2 6= K(x, x) x /∈ Cρ ?

YES, provided that H separes Cρ:

for any x /∈ Cρ there exists f ∈ H

f(x) 6= 0 and f(x̃) = 0 ∀x̃ ∈ Cρ
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Separating property and universal kernels

Cρ is separated by H if there exists a closed subspace K such that

Φ(Cρ) = K ∩ Φ(X)

a completely regular RKHS is able to separate any closed subset

Examples

Sobolev spaces with smoothness s > d
2

Hs = {f ∈ L2 |
∫
Rd

|f̂(p)|2|p|2s dp < +∞}

are completely regular

The Abel kernel K(x, x̃) = e−γ‖x−x̃‖ (H ' H d+1
2 ) is completely

regular
the linear kernel is able to separate only linear subspaces!
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The function F

Let H be a completely regular RKHS H with normalized kernel K.

The continuous function

F : X → R F (x) =
∑
k

σk|ϕk(x)|2

is such that
Cρ = {x ∈ X | F (x) = 1}

A little bit of algebra

F (x) =
∑
σk>0

|√σkϕk(x)|2 =
∑
σk>0

|〈√σkϕk,Kx〉|2 =
〈
T †TKx,Kx

〉
where T = L|H ∈ L(H) and T † is the generalized inverse
Note that T †T is the spectral projection associated with the strictly
positive eigenvalues of T
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A good empirical estimator of T

define the finite rank positive operator on Tn : H → H

(Tn f)(x) =
1
n

n∑
i=1

K(x, xi)f(xi),

depending on the examples x1, . . . , xn
Hoeffeding inequality for Hilbert space valued random variables
gives

lim
n→∞

√
n

log n
‖Tn − T‖HS = 0 with probability 1

Naive idea: Fn(x) =
〈
T †nTnKx,Kx

〉
Since T is compact, then 0 is an accumulation point for the
spectrum and〈

T †nTnKx,Kx

〉
does not converge to

〈
T †TKx,Kx

〉
The instability is due to the fact that T † is unbounded
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A filter function: (Groetsch, C.W. Boll.Un.Mat.Ital. B 17 (1980) 1411–1419)

Take a filter function rλ : [0, 1]→ [0, 1] depending on a regularization
parameter λ > 0 satisfying

1 rλ(0) = 0 so that rλ(σ) = σgλ(σ)
2 lim

λ→0
rλ(σ) = 1 for all σ > 0

3 |rλ(σ)− rλ(σ̃)| ≤ Cλ|σ − σ̃| for all λ > 0

then

i) lim
λ→0

sup
x∈X
|〈rλ(T )Kx,Kx〉 −

〈
T †TKx,Kx

〉
| = 0

ii) ‖rλ(T )− rλ(Tn)‖HS ≤ Cλ‖T − Tn‖HS ( simple proof due to A. Maurer)

where ‖T − Tn‖HS is the Hilbert-Schmidt (Frobenius) norm.

Item ii) is also consequence of the theory of double operator integrals due to Birman and Solomyak
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Examples

1 Tikhonov
rλ(σ) =

σ

σ + λ
Cλ =

1
λ

2 Spectral Cut-Off

rλ(σ) =

{
1 = σ

σ σ ≥ λ
σ
λ σ ≤ λ Cλ =

1
λ

3 Landweber

rm(σ) = σ

m∑
k=0

(1− σ)m Cm = m+ 1

4 Truncated SVD (kernel PCA)

rλ(σ) =

{
1 σ ≥ λ
0 σ < λ

it is not a Lipschitz function
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A regularized empirical estimator as kernel method
Define

Fn,λ(x) = 〈rλ(Tn)Kx,Kx〉 =
〈
(Tn + λI)−1TnKx,Kx

〉︸ ︷︷ ︸
Tikhonov

kx is the n-dimensional column vector

ktx = (K(x, x1), . . . ,K(x, xn))

Kn the n× n-matrix (Kn)ij = K(xi, xj) Knv̂k = σ̂kv̂k

F λn (x) =
1
n

ktx gλ
(Kn

n

)
kx

=
1
n

n∑
k=1

gλ(σ̂k)|ktxv̂k|2 =
n∑
i=1

yi(x)e−γ‖x−xi‖︸ ︷︷ ︸
Abel kernel

= ktx(Kn + nλI)−1kx︸ ︷︷ ︸
Tikhonov
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A kernel method point of view

1 given n-examples x1, . . . , xn ∈ Cρ and a new point x ∈ X
2 label the examples according to the similarity function K

yi = K(xi, x) = e−γ‖x−xi‖

{
yi ∼ 1 xi ∼ x
yi ∼ 0 xi 6∼ x

3 consider the linear inverse problem

find f ∈ H such that f(xi) = yi ⇐⇒ Sn
sampling operator

f = y

4 find the regularized solution according to the filter function gλ

fλn = gλ(S∗nSn)S∗y =⇒ fλn (x) = F λn (x)

5 x is estimated to be in Cρ if and only if y = fλn (x) ≥ 1− τn
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Consistency
If we choose the regularization parameter λn so that

lim
n→∞

λn = 0

limsup
n→∞

Cλn
log n√
n
< +∞ Tikhonov filter: λn = logn√

n

lim
n→∞

sup
x∈X
|F λnn (x)− F (x)| = 0 with probability 1

Define Cn = {x ∈ X | F λnn (x) ≥ 1− τn}

lim
n→∞

τn = 0 limsup
n→∞

‖Fn − F‖∞
τn

≤ 1

lim
n→∞

dH (Cn, Cρ)
Hausdorff distance

= 0 with probability 1

With the Abel kernel the above results also hold for non-compact X
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Some numerical experiments

The final algorithm has 3 tuning parameters
I kernel width (K(x, x̃) = e−γ‖x−x̃‖) → the median 10-NN distance
I regularization parameter (rλ(σ) = σ

σ+λ ) → eigenvalues decay of Kn

I threshold parameter (Cτ = {x ∈ X | Fn(x) ≥ 1− τ})→ ROC curve
The database is MNIST (hand-written digits)

I training set with 500 images of the same digit
I test set of 200 images of two different digits
I Each experiment consists of training on one class and testing on two

different classes and was repeated for 20 trials over different
training set choices.
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MNIST 9 vs 4

Real Data
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Figure 1: Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corresponding
regularization parameter (Left) and a detail of the first 50 eigenvalues (Right).

Fn(x) = kx
T (Kn + nλI)−1kx and a point is labeled as belonging to the support if Fn(x) ≥ 1 − τ . The

computational cost for the algorithm is, in the worst case, of order n3, like standard regularized least squares,
for training and order Nn2 if we have to predict the value of Fn at N test points. In practice, one has to
choose a good value for the regularization parameter λ and this requires computing multiple solutions, a so
called regularization path. As noted in [13], if we form the inverse using the eigendecomposition of the
kernel matrix the price of computing the full regularization path is essentially the same as that of computing a
single solution (note that the cost of the eigen-decomposition ofKn is also of order n

3 though the constant is
worse). This is the strategy that we consider in the following. In our experiments we considered two data-sets
the MNIST data-set and the CBCL face database. For the digits we considered a reduced set consisting of a
training set of 5000 images and a test set of 1000 images. In the first experiment we trained on 500 images
for the digit 3 and tested on 200 images of digits 3 and 8. Each experiment consists of training on one class
and testing on two different classes and was repeated for 20 trials over different training set choices. The

performance is evaluated computing ROC curve (and the corresponding AUC value) for varying τ, τ ′, τ
′′
.

For all our experiments we considered the Laplacian kernel. Note that, in this case the algorithm requires to
choose 3 parameters: the regularization parameter λ, the kernel width σ and the threshold τ . In supervised
learning cross validation is typically used for parameter tuning, but cannot be used in our setting since support
estimation is an unsupervised problem. Then, we considered the following heuristics. The kernel width is
chosen as the median of the distribution of distances of theK-th nearest neighbor of each training set point
forK = 10. Fixed the kernel width, we choose regularization parameter in correspondence of the maximum
curvature in the eigenvalue behavior– see Figure 1, the rational being that after this value the eigenvalues
are relatively small. For comparison we considered a Parzen window density estimator and one-class SVM
(1CSVM )as implemented by [6]. For the Parzen window estimator we used the same kernel used in the
spectral algorithm, that is the Laplacian kernel and use the same width used in our estimator. Given a kernel
width an estimate of the probability distribution is computed and can be used to estimate the support by fixing
a threshold τ ′. For the one-class SVM we considered the Gaussian kernel, so that we have to fix the kernel
width and a regularization parameter ν. We fix the kernel width to be the same used by our estimator and

fixed ν = 0.9. For the sake of comparison, also for one-class SVM we considered a varying offset τ
′′
. The

ROC curves on the different tasks are reported (for one of the trial) in Figure 2, Left. The mean and standard
deviation of the AUC for the 3 methods is reported in Table 5. Similar experiments were repeated considering
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7 Center,
CBCL Right.
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7 Center,
CBCL Right.
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7 Center,
CBCL Right.
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Figure 1: Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corresponding
regularization parameter (Left) and a detail of the first 50 eigenvalues (Right).

Fn(x) = kx
T (Kn + nλI)−1kx and a point is labeled as belonging to the support if Fn(x) ≥ 1 − τ . The

computational cost for the algorithm is, in the worst case, of order n3, like standard regularized least squares,
for training and order Nn2 if we have to predict the value of Fn at N test points. In practice, one has to
choose a good value for the regularization parameter λ and this requires computing multiple solutions, a so
called regularization path. As noted in [13], if we form the inverse using the eigendecomposition of the
kernel matrix the price of computing the full regularization path is essentially the same as that of computing a
single solution (note that the cost of the eigen-decomposition ofKn is also of order n

3 though the constant is
worse). This is the strategy that we consider in the following. In our experiments we considered two data-sets
the MNIST data-set and the CBCL face database. For the digits we considered a reduced set consisting of a
training set of 5000 images and a test set of 1000 images. In the first experiment we trained on 500 images
for the digit 3 and tested on 200 images of digits 3 and 8. Each experiment consists of training on one class
and testing on two different classes and was repeated for 20 trials over different training set choices. The

performance is evaluated computing ROC curve (and the corresponding AUC value) for varying τ, τ ′, τ
′′
.

For all our experiments we considered the Laplacian kernel. Note that, in this case the algorithm requires to
choose 3 parameters: the regularization parameter λ, the kernel width σ and the threshold τ . In supervised
learning cross validation is typically used for parameter tuning, but cannot be used in our setting since support
estimation is an unsupervised problem. Then, we considered the following heuristics. The kernel width is
chosen as the median of the distribution of distances of theK-th nearest neighbor of each training set point
forK = 10. Fixed the kernel width, we choose regularization parameter in correspondence of the maximum
curvature in the eigenvalue behavior– see Figure 1, the rational being that after this value the eigenvalues
are relatively small. For comparison we considered a Parzen window density estimator and one-class SVM
(1CSVM )as implemented by [6]. For the Parzen window estimator we used the same kernel used in the
spectral algorithm, that is the Laplacian kernel and use the same width used in our estimator. Given a kernel
width an estimate of the probability distribution is computed and can be used to estimate the support by fixing
a threshold τ ′. For the one-class SVM we considered the Gaussian kernel, so that we have to fix the kernel
width and a regularization parameter ν. We fix the kernel width to be the same used by our estimator and

fixed ν = 0.9. For the sake of comparison, also for one-class SVM we considered a varying offset τ
′′
. The

ROC curves on the different tasks are reported (for one of the trial) in Figure 2, Left. The mean and standard
deviation of the AUC for the 3 methods is reported in Table 5. Similar experiments were repeated considering

MNIST 9vs4
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7 Center,
CBCL Right.
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Figure 1: Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corresponding
regularization parameter (Left) and a detail of the first 50 eigenvalues (Right).

Fn(x) = kx
T (Kn + nλI)−1kx and a point is labeled as belonging to the support if Fn(x) ≥ 1 − τ . The

computational cost for the algorithm is, in the worst case, of order n3, like standard regularized least squares,
for training and order Nn2 if we have to predict the value of Fn at N test points. In practice, one has to
choose a good value for the regularization parameter λ and this requires computing multiple solutions, a so
called regularization path. As noted in [13], if we form the inverse using the eigendecomposition of the
kernel matrix the price of computing the full regularization path is essentially the same as that of computing a
single solution (note that the cost of the eigen-decomposition ofKn is also of order n

3 though the constant is
worse). This is the strategy that we consider in the following. In our experiments we considered two data-sets
the MNIST data-set and the CBCL face database. For the digits we considered a reduced set consisting of a
training set of 5000 images and a test set of 1000 images. In the first experiment we trained on 500 images
for the digit 3 and tested on 200 images of digits 3 and 8. Each experiment consists of training on one class
and testing on two different classes and was repeated for 20 trials over different training set choices. The

performance is evaluated computing ROC curve (and the corresponding AUC value) for varying τ, τ ′, τ
′′
.

For all our experiments we considered the Laplacian kernel. Note that, in this case the algorithm requires to
choose 3 parameters: the regularization parameter λ, the kernel width σ and the threshold τ . In supervised
learning cross validation is typically used for parameter tuning, but cannot be used in our setting since support
estimation is an unsupervised problem. Then, we considered the following heuristics. The kernel width is
chosen as the median of the distribution of distances of theK-th nearest neighbor of each training set point
forK = 10. Fixed the kernel width, we choose regularization parameter in correspondence of the maximum
curvature in the eigenvalue behavior– see Figure 1, the rational being that after this value the eigenvalues
are relatively small. For comparison we considered a Parzen window density estimator and one-class SVM
(1CSVM )as implemented by [6]. For the Parzen window estimator we used the same kernel used in the
spectral algorithm, that is the Laplacian kernel and use the same width used in our estimator. Given a kernel
width an estimate of the probability distribution is computed and can be used to estimate the support by fixing
a threshold τ ′. For the one-class SVM we considered the Gaussian kernel, so that we have to fix the kernel
width and a regularization parameter ν. We fix the kernel width to be the same used by our estimator and

fixed ν = 0.9. For the sake of comparison, also for one-class SVM we considered a varying offset τ
′′
. The

ROC curves on the different tasks are reported (for one of the trial) in Figure 2, Left. The mean and standard
deviation of the AUC for the 3 methods is reported in Table 5. Similar experiments were repeated considering
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7 Center,
CBCL Right.
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Figure 1: Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corresponding
regularization parameter (Left) and a detail of the first 50 eigenvalues (Right).

Fn(x) = kx
T (Kn + nλI)−1kx and a point is labeled as belonging to the support if Fn(x) ≥ 1 − τ . The

computational cost for the algorithm is, in the worst case, of order n3, like standard regularized least squares,
for training and order Nn2 if we have to predict the value of Fn at N test points. In practice, one has to
choose a good value for the regularization parameter λ and this requires computing multiple solutions, a so
called regularization path. As noted in [13], if we form the inverse using the eigendecomposition of the
kernel matrix the price of computing the full regularization path is essentially the same as that of computing a
single solution (note that the cost of the eigen-decomposition ofKn is also of order n

3 though the constant is
worse). This is the strategy that we consider in the following. In our experiments we considered two data-sets
the MNIST data-set and the CBCL face database. For the digits we considered a reduced set consisting of a
training set of 5000 images and a test set of 1000 images. In the first experiment we trained on 500 images
for the digit 3 and tested on 200 images of digits 3 and 8. Each experiment consists of training on one class
and testing on two different classes and was repeated for 20 trials over different training set choices. The

performance is evaluated computing ROC curve (and the corresponding AUC value) for varying τ, τ ′, τ
′′
.

For all our experiments we considered the Laplacian kernel. Note that, in this case the algorithm requires to
choose 3 parameters: the regularization parameter λ, the kernel width σ and the threshold τ . In supervised
learning cross validation is typically used for parameter tuning, but cannot be used in our setting since support
estimation is an unsupervised problem. Then, we considered the following heuristics. The kernel width is
chosen as the median of the distribution of distances of theK-th nearest neighbor of each training set point
forK = 10. Fixed the kernel width, we choose regularization parameter in correspondence of the maximum
curvature in the eigenvalue behavior– see Figure 1, the rational being that after this value the eigenvalues
are relatively small. For comparison we considered a Parzen window density estimator and one-class SVM
(1CSVM )as implemented by [6]. For the Parzen window estimator we used the same kernel used in the
spectral algorithm, that is the Laplacian kernel and use the same width used in our estimator. Given a kernel
width an estimate of the probability distribution is computed and can be used to estimate the support by fixing
a threshold τ ′. For the one-class SVM we considered the Gaussian kernel, so that we have to fix the kernel
width and a regularization parameter ν. We fix the kernel width to be the same used by our estimator and

fixed ν = 0.9. For the sake of comparison, also for one-class SVM we considered a varying offset τ
′′
. The

ROC curves on the different tasks are reported (for one of the trial) in Figure 2, Left. The mean and standard
deviation of the AUC for the 3 methods is reported in Table 5. Similar experiments were repeated considering
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7 Center,
CBCL Right.
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Figure 1: Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corre-
sponding regularization parameter (Left) and a detail of the first 50 eigenvalues (Right).

regularization defines an estimator Fn(x) = kx
T (Kn + nλI)−1kx and a point is labeled as belonging to

the support if Fn(x) ≥ 1 − τ . The computational cost for the algorithm is, in the worst case, of order
n3, like standard regularized least squares, for training and order Nn2 if we have to predict the value
of Fn at N test points. In practice, one has to choose a good value for the regularization parameter λ
and this requires computing multiple solutions, a so called regularization path. As noted in [?], if we
form the inverse using the eigendecomposition of the kernel matrix the price of computing the full reg-
ularization path is essentially the same as that of computing a single solution (note that the cost of the
eigen-decomposition of Kn is also of order n3 though the constant is worse). This is the strategy that
we consider in the following. In our experiments we considered two data-sets the MNIST data-set and
the CBCL face database. For the digits we considered a reduced set consisting of a training set of 5000
images and a test set of 1000 images. In the first experiment we trained on 500 images for the digit 3 and
tested on 200 images of digits 3 and 8. Each experiment consists of training on one class and testing on
two different classes and was repeated for 20 trials over different training set choices. The performance
is evaluated computing ROC curve (and the corresponding AUC value) for varying τ, τ ′, τ

′′
. For all

our experiments we considered the Laplacian kernel. Note that, in this case the algorithm requires to
choose 3 parameters: the regularization parameter λ, the kernel width σ and the threshold τ . In super-
vised learning cross validation is typically used for parameter tuning, but cannot be used in our setting
since support estimation is an unsupervised problem. Then, we considered the following heuristics.
The kernel width is chosen as the median of the distribution of distances of the K-th nearest neighbor
of each training set point for K = 10. Fixed the kernel width, we choose regularization parameter in
correspondence of the maximum curvature in the eigenvalue behavior– see Figure ??, the rational be-
ing that after this value the eigenvalues are relatively small. For comparison we considered a Parzen
window density estimator and one-class SVM (1CSVM )as implemented by [?]. For the Parzen window
estimator we used the same kernel used in the spectral algorithm, that is the Laplacian kernel and use
the same width used in our estimator. Given a kernel width an estimate of the probability distribution
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7
Center, CBCL Right.

8

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

Eigenvalues Index

E
ig

e
n

v
a

lu
e

s
 M

a
g

in
it
u

d
e

Eigenvalues Decay

 

 

Eigenvalues Decay

Regularization Parameter

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

Eigenvalues Index

E
ig

e
n

v
a

lu
e

s
 M

a
g

in
it
u

d
e

Eigenvalues Decay

 

 

Eigenvalues Decay

Regularization Parameter

Figure 1: Decay of the eigenvalues of the kernel matrix ordered in decreasing magnitude and corre-
sponding regularization parameter (Left) and a detail of the first 50 eigenvalues (Right).

regularization defines an estimator Fn(x) = kx
T (Kn + nλI)−1kx and a point is labeled as belonging to

the support if Fn(x) ≥ 1 − τ . The computational cost for the algorithm is, in the worst case, of order
n3, like standard regularized least squares, for training and order Nn2 if we have to predict the value
of Fn at N test points. In practice, one has to choose a good value for the regularization parameter λ
and this requires computing multiple solutions, a so called regularization path. As noted in [?], if we
form the inverse using the eigendecomposition of the kernel matrix the price of computing the full reg-
ularization path is essentially the same as that of computing a single solution (note that the cost of the
eigen-decomposition of Kn is also of order n3 though the constant is worse). This is the strategy that
we consider in the following. In our experiments we considered two data-sets the MNIST data-set and
the CBCL face database. For the digits we considered a reduced set consisting of a training set of 5000
images and a test set of 1000 images. In the first experiment we trained on 500 images for the digit 3 and
tested on 200 images of digits 3 and 8. Each experiment consists of training on one class and testing on
two different classes and was repeated for 20 trials over different training set choices. The performance
is evaluated computing ROC curve (and the corresponding AUC value) for varying τ, τ ′, τ

′′
. For all

our experiments we considered the Laplacian kernel. Note that, in this case the algorithm requires to
choose 3 parameters: the regularization parameter λ, the kernel width σ and the threshold τ . In super-
vised learning cross validation is typically used for parameter tuning, but cannot be used in our setting
since support estimation is an unsupervised problem. Then, we considered the following heuristics.
The kernel width is chosen as the median of the distribution of distances of the K-th nearest neighbor
of each training set point for K = 10. Fixed the kernel width, we choose regularization parameter in
correspondence of the maximum curvature in the eigenvalue behavior– see Figure ??, the rational be-
ing that after this value the eigenvalues are relatively small. For comparison we considered a Parzen
window density estimator and one-class SVM (1CSVM )as implemented by [?]. For the Parzen window
estimator we used the same kernel used in the spectral algorithm, that is the Laplacian kernel and use
the same width used in our estimator. Given a kernel width an estimate of the probability distribution
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Figure 2: ROC curves for the different estimator in three different tasks: digit 9vs 4 Left, digit 1vs 7
Center, CBCL Right.
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•kernel width is chosen as the median 10-NN distance

•regularization parameter:

Thursday, January 27, 2011

Figure: ROC curves for the estimator in two different tasks. Left: digit 9 vs
4, Center: digit 1 vs 7, Right : Eigenvalues decay

3 vs 8 8 vs 3 1 vs 7 9 vs 4
Spectral 0.8371± 0.0056 0.7830± 0.0026 0.9921± 4.7283e− 04 0.8651± 0.0024
Parzen 0.7841± 0.0069 0.7656± 0.0029 0.9811± 3.4158e− 04 0.0.7244± 0.0030
1CSVM 0.7896± 0.0061 0.7642± 0.0032 0.9889± 1.8479e− 04 0.7535± 0.0041

Table: Average and standard deviation of the AUC for the different
estimators on the considered tasks.
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Thank you
and we are ready for the

cake
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