THOUGHTS ON A BUSEMANN EQUATION

GIORGIO TALENTI (UNIVERSITY OF FLORENCE, ITALY)

1. INTRODUCTION

1.1. In the present talk we comment on the following equation

2 2
(uy—l)-uxx—ZUXuy-uW+(uX —1)-uyy =0. (B)

This equation may be viewed as a caricature of one that A. Busemann designed in investi-
gating irrotational conical flows of compressible fluids. The same equation governs non-
parametric maximal surfaces in the three-dimensional Minkowski space, as well as stream
functions attached to two-dimensional flows of a Chaplygin gas. It is also cognate to La-
vrentiev-Bitsadze equation, and shows up in certain generalizations of geometrical optics
where complex-valued eikonals are involved.

{Adolf Busemann (Liibeck 1901, Boulder 1986) was an eminent aerospace engineer
and applied mathematician, and a pioneer of supersonic aerodynamics. He designed
the Busemann biplane, which emits no sonic shock waves, and invented the swept

wing equipping most modern aircrafts.}



1.2. Observe:
>

—(u; -y —2u, U, Uy +Uy Uy )+ (U +U, ) =0

v

~
:\Vu \3><(curvature of the level lines of u) =Au

» Equation (B) has a mixed elliptic-hyperbolic character. Since

2
u, -1 -uu,

2
-u,u,  u -1

. J

-~
coefficient matrix

the eigenvalue s of [ } are -1 & u;+u;-1,

a solution u is

. : 2 2 . 2 2
elliptic where u; +u; <1, hyperbolicwhere u; +uj >1.

For instance, (B) has the following solutions

u(x,y) = |09(

cosh X
coshy

(elliptic where sinh|x|-sinh|y| <1, hyperbolic where sinh|x-sinh|y|>1);



A simple solution to Busemann equation

Solution type: green=hyperbolic, blank=elliptic

L

X o elliptic region
T

>




u(x, y) =arcsinh (w/x2 +y° ) (elliptic everywhere);

An elliptic solution to Busemann equation




(hyperbolic everywhere).

)

arcsin ( X +y

y) =

u(x

L
O
-+

g

=

(o]

D

L

L

4]

=

€L

oo

T
m

O
-+

-
O
-+
=

O

)]
9
[e)
O

[

D

O

=
L
<L




» Equation (B) plus the condition Uu,* + uy2 # 1 can be recast in a divergence form thus

0 u 0 u
—7 |t —
‘ oy ‘ux+uy—1

=0.

1/2
x| 12, 2
X |uZ +u -1 |

» (B) is formally the Euler-Lagrange equation of the variational integral defined thus

Mz‘l—pz‘llzsgn(l—pz) (0< p <o), J(u):ﬂkj(w/uf+u§)dxdy.
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2. MOTIVATIONS: CONICAL VELOCITY FIELDS
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2.1. Consider the 3D steady irrotational flow of a perfect gas, and let
X, Y, Z = space rectangular coordinates,
@ = velocity potential,
o =sound speed.

Standard principles of fluid dynamics yield the following equations. First,
o = asuitable function of Vg

— for Instance

o(Vo)= L\/M ? —\Vgp\z (L,M = Constants)
in the case where the flow is adiabatic and isentropic. Second,
(GZ(Vco)—cof)-qoxx +(02(V¢)—¢§)-¢W +(02(V¢)—¢3)-¢zz +
20,0, Py = 20,0, 0, — 20,0, ¢, =0

— a quasi-linear partial differential equation of elliptic-hyperbolic type governing ¢. Ve-
locity potential ¢ is an elliptic solution where velocity is subsonic, a hyperbolic solution

where velocity is supersonic.



According to Busemann, the flow is conical if
e either the set of its streamlines is invariant under homothetic transformations,

e Or the isoclines of the velocity field are rays from the origin
— two equivalent conditions.

Recall
e Streamlines = lines of steepest descent of the velocity potential = orbits of

dx:p, =dy:p,=0dz:¢,.

e Isoclines = paths along which the velocity field keeps a constant direction. The isoc-
lines are the orbits of
(coxde P dy + coxdej P = (qoxde @, dy + coydej P, = (coxde @, dy + cozdej [P, .

e The flow is conical if and only if the velocity potential obeys

{X(Dxx + y¢xy + Zgoxzj : Dy = [Xgpxy + y(Dyy + Zwyzj : ¢y - (waz + yqpyz + Z¢ZZJ : P,

— 1.e. the first-order derivatives of ¢ are homogeneous functions of x, y, z and all have the

same degree.



Didactic digression: how level lines, streamlines and isoclines look like?
For instance, if

u(x,y) =arccosh(%\/(x+1)2+y2+%\/(X_1)z+y2)’

an ellipticcoordinate

the relevant level lines, streamlines and isoclines obey

X + y2 =1
2 - 2.
cosh“u sinh-u
2 2
X Y 1 (C = Constant),

cos’C  sin’C
x*+2C-xy—y°=1 (C = Another Constant),

respectively.
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Level lines & stream lines Isoclines of u

stream lines




A particular isocline of u and some values of grad u

a particular isocline of u

rad u
L gra

- grad u




Busemann showed (in his 1942 paper displayed above) that if the flow is conical and u, v, w
denote the components of the velocity, i.e. U=¢, V=¢,, W =¢;, then

e The Jacobian determinant of u, v, w vanishes identically — any component of the ve-
locity is a function of the remaining two.

e The equation, which governs w as a function of u and v, takes the form

v2 VW OW w2\ aw\’ | 8w
1-— 220 112 22
o o° oV o oV ou
UV VWow  uw ow w? \ow ow | o*w
2 + —|1- : +
ou ov | ouov

_|_
c® o?’ou o ov o2

[ 2 2 2 2
+ 1_U_ZUV;/8W+(1_W ](8\/\/) ]8 W_o

o’ o ou o’ ]\ du oV?

Aerodynamicists often lower the number of independent variables by virtue of geometric or
physical hypotheses. The conical-flow analysis of Busemann provides a mean of descend-
ing from a three-dimensional to a two-dimensional potential equation.



2.2. Let us call dimensional analysis into play, and zoom in. If h and k obey

2
h > o(0,0, h), k? . 5 h —-1|=1,
supersonicvelocity normalnzing factor
then
replacing u,v,w by &-U,e-v,h+g-K-w
and
letting & approach O

results in

w

(1—W5)-Wuu +2W, W, - W, +(1—W5)-W =0

— an alias of equation (B).



3. MOTIVATIONS, CONTINUED: MAXIMAL SPACE-LIKE SURFACES IN 3D MINKOWSKI SPACE
Elliptic solutions to equation (B) obey both
2 2
u,+u; <1
and

o u, o u,

+ =0
2 2\1/2 2 2\1/2 !
ox|{ (L—u; —uy) oy L—uy, —uy)

therefore render an appropriate area a maximum — they can be viewed as non-parametric
maximal space-like surfaces in the three-dimensional Minkowski space. Recall that

metric = (dx)* + (dy)* — (du)?,
area of a spacelike graph = ﬂ \/1— u; —usdxdy

if a manifold a la Minkowski is involved.



4. MOTIVATIONS, CONTINUED: BEYOND GEOMETRICAL OPTICS

4.1. Let n be areal-valued, strictly positive, sufficiently smooth function of x and y —in
technical words, n = refractive index of a two-dimensional, isotropic, non-conducting me-
dium, 1/n = velocity of propagation. The solutions to the following equation

ow) (ow)
55 - re D

refractive index
are known as two-dimensional eikonals.

The theory of real-valued sufficiently smooth eikonals is the main constituent of geome-
trical optics (GO), which provides asymptotics for high-frequency electromagnetic fields.
Two-dimensional GO ultimately amounts to manipulating:

e the Riemannian metric known as travel time or Fermat metric, i.e.

n(x, y)y/ (dx)? + (dy)? ;

e appropriate one-parameter families of relevant geodesics — whose members are
named rays;
e the envelopes of rays — called caustics.




Warning!

ordinates

Initial conditions:
Xx=0.2341
y=0.0215

phi =-6.3080




GO-eikonals are precisely those functions whose lines of steepest descent are rays. They
e shine in light regions (those spanned by relevant rays),

e burn out beside caustics (where the ray system breaks down),

e shut down in shadow regions (the complements of light regions, which rays avoid).

On the one hand, GO is enough for successfully modeling basic optical processes — such as
the propagation of light and the development of caustics. On the other hand, GO is intrinsi-
cally unable to account for optical processes that take place beyond a caustic, on the dark
side of it.

Authors (Felsen, Kravtsov, Ludwig) realized that complex-valued eikonals profitably con-
tinue geometric optical eikonals into shadow regions. In other words, complex-valued ei-
konals prove apt to account for certain optical phenomena — e.g. the rise of evanescent
waves past a caustic — that are ignored by geometrical optics.



4.2. EWT is a theory of complex-valued eikonals, whose basic ingredients appear below.
Governing PDS and equations. The eikonal equation
(ow/ox)” +(ow/ay)* =n?(x,y),
plus
u=Rew, v=Imw, w=u-+lv,

result in the following system

—|vu|® = |wv|?
R N N
U, +U; —Vv, —Vvy =n (X,Y),
U,V + U,V =0. (4.2)
Vu\-va

Such a system discloses two scenarios — the former is tantamount to GO, the latter opens
up a full vista of EWT. Either

2 2 2
u +u,=n" & v, =v, =0,

/

~
eikonalequation



or the following inequalities and equations prevail
Vu|>n & |Vv|>0,

(\ vul' - nzuﬁ)uXX +2n°u,u, U, +(\ vul' - nzuf)uyy —nvu[(vn|vu)=0, (4.3)

(\ W+ nzvi)vXX —-2n°V.V, Vv, + (\ W+ nzvf)vyy +nWw[(Vn|w)=0, (4.4)

X"y °xy

2

o)
VvV = Vu, f°=1- 5 )
t 9] Vu

V—
rotation stretching

sgn f =sgn (u,v, —u,v,). (4.5

V -
Jacobian




Peculiarities. Both (4.3) and (4.4) are quasi-linear partial differential equations of the
second order.

Equation (4.3) exhibits a mixed elliptic-hyperbolic character: a solution u is

elliptic if |Vu|>n, hyperbolicif |Vu|<n.

Equation (4.4) is elliptic-parabolic or degenerate elliptic: a solution v such that Vv is free
from zeros is strictly elliptic, degeneracy occurs at the critical points of v.

Equations (4.5) define a Backlund transformation, which does the following. First, it de-
couples solution pairs to system (4.2). Second, it maps any elliptic solution to (4.3) into an
elliptic solution to (4.4), in such a way that the resulting pair satisfies system (4.2).

Degeneracy causes (4.4) to suffer from pathologies. Relevant solutions need not possess
smooth second-order derivatives, and cannot have isolated critical points. Boundary values
fail to identify solutions uniquely. Solutions obeying boundary conditions happen to minim-
ize a certain convex, coercive, variational functional — however, such a functional is not
smoothly differentiable. Non-constant solutions exist that either identically equal a constant
In an open region, or exhibit a continuum of extremum points.



If n =1, the following formulas

X:SIn—a) p+sin‘w |, y:M p’+cos’w| (0<p<owo,—m<w<r),
1+ p° 1+ p°
,03

V= sin(2w), Vv, =pCosw, V,=psinw

241+ p?

provide us with a particular solution to equation (4.4), which has a closed cuspidate line of
critical points and can be smoothly continued by 0_inside such a line.

A solution v to equation (6) Negat ¢ 1grad vi
egative of |grad v




A solution to equation (4.4), having three straight-lines of critical points, is shown in the
next figure.

Imaginary part of a complex-valued eikonal




Viscosity. A viscosity process, apt to overcome degeneracy, entails the following steps.
(i) Introducing a small, positive parameter «.
(i) Letting

S 3,0 =, @ n? dxdy

j.(p) = jt

— respectively, a kernel comme il faut and a smooth, convex, and coercive functional.

Plots of d(jsubepsilon)/d(rho) versus rho
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(iii) Solving
J_(v) = Minimum

in a suitable function space and under appropriate boundary conditions — i.e. solving either

1 h
2(1-¢)

div<| 1+ 1-¢ Vvi=0,

vy

or
gnZ(n2 +‘VV‘ZJAV+(‘VV‘4 +n2v§jvXX -2n*v,v, v, +(\Vv\4 +n2vxzjvyy +n|wv [ (Vn|wv) =0

— two tame, uniformly elliptic partial differential equations.
(iv) Defining u via the Backlund transformation

(v) Taking limits as € approaches 0.




The process in hand results in a certain function pair [u V].

e The latter entry v belongs to the proper functions space, takes the prescribed boundary
values and solves equation (4.4) without a hitch.

e The former entry u behaves properly where the gradient of v is essentially different
from 0, however need not do the same in the complementary set. Instead of satisfying u,” +
u,° =n?(x,y), it obeys the looser constraint

(u2=n?)-u, —2uu, -u +(u2=n?)-u, + Vu’(Viegn|vu)=0 (4.6

X

in any open set where the gradient of v vanishes identically.

4.3. Equation (4.6) is the Euler-Lagrange equation of the variational integral

- 2 4|42 2 - ‘Vu‘ 2
i(p)=1+|p" -1 “sgn(p® -1 (0<p<o) Iu)=|[ ]| |n*dudy,

and coincides with (B) if n= 1.



5. LAVRENTIEV-BITSADZE EQUATION

5.1. An embedded surface in 3D Euclidean space is qualified developable if its Gauss cur-
vature vanishes identically. Any developable surface is either trivial (i.e. a plane, a cylinder,
a cone) or is spanned by the tangent straight-lines to some saddle curve which turns into an
edge of regression.

Let u be a real-valued smooth function of two real variables x and y, and let the range of Vu
be named hodograph in short. Basically, the graph of u is a developable surface if and only
If the hodograph of u is either a point or a line — i.e. a function

[p a]~ f(p.0)
exists that satisfies

(of /ap)* + (of /ag)” >0
and causes u to obey the following first-order partial differential equation
f(u,,u,)=0.

Proposition. Let u be a sufficiently smooth solution to equation (B), and let the graph of u
be a developable surface. Then either u is linear, or u obeys

u; +u; =1,

orelse u,”+u,” >1 and a constant parameter C exists such that



u, cos(C) +u,sin(C) =1

— in other terms, the hodograph is either a point, or the unit circle, or else some tangent
ray to the unit circle.

5.2. Suppose u is a sufficiently smooth solution to (B), and the Gauss curvature of its graph
Is everywhere different from zero — in particular, the graph of u is definitely not developa-

ble.

Then the gradient of u is locally a diffeomorphism; the hodograph of u has a non-empty in-
terior; the first-order derivatives of u are apt to perform as curvilinear coordinates — in
particular, u changes into a function of its gradient.

The hodograph polar coordinates p and @, given by
length
—— | COSw
Vu=p- { . } ,
sin w

%f_/
slope

plus equation (B), plus the hypotheses in force imply the following linear-looking equation

2 2
22ﬂ+a—afnfM+a“:ﬂ. (5.1)
0

op Ow’

@-p%)p



A new variable & given by either
dé B 1
% f-p]

1/2 ! 5(1) =0,
or

§=|09£1+ 12—1] If O0<p<], f:—arccos1 If 1< p<oo,
Yo,

rho-axis




turns (5.1) into

o’u o
2 T 2

0E%  dw

son(&) =0 (5.2)

— Lavrentiev-Bitsadze equation.
Lavrentiev-Bitsadze equation appears in the present context as a masked version of (B).




6. LEGENDRE TRANSFORMS

6.1. Sample solutions to (B), whose graph is not_developable, result from an appropriate
use of the Legendre transformation.

This transformation is instrumental in classical and statistical mechanics, thermodynamics,
convex analysis, and differential equations. One of its peculiarities is turning second-order
quasi-linear homogeneous partial differential equations in two independent variables,
whose coefficients depend on first-order derivatives only, into surrogates that are linear and
more tractable.

6.2. Let u be a real-valued, twice continuously differentiable function of two real variables x
and y; suppose the gradient of u is a bijection, and the graph of u has a non-vanishing
Gauss curvature. A recipe for handling the Legendre transform U of u reads thus. Let

(p,q) =any pair from the range of Vu
%r_J

slope

— a slope — and consider the tangent plane to the graph of u that is orthogonal to

P

q
__ 1_ ’

(N J
Vo

normal vector




then
—U (p, g) =theheight of such a plane above the origin

i '
intercept

— an intercept. In other words, the triple
P, g, value of U at (p,q)
detects any tangent plane to the graph of u. The following formulas result

_u _u
p—ax(x,y), q—ay(x,y),
Xp +yq =u(x,y)+U(p,q),
_u _u

X = . (p,0), y= 5 (p,q),

and provide a parametric representation of both u and U — parameters coincide with rele-
vant first-order derivatives.






6.3. If u obeys (B) and the above hypotheses, then the Legendre transform U of u obeys
@ZU 0°U GZU
opaq

~0. (6.1)

(p°

e Equation (6.1) is
elliptic where p®+qg°<1, hyperbolic where p*+qg°>1
e the characteristic lines in the hyperbolic region are tangent rays to the unit disk.
If characteristic coordinates 4 & x are introduced in the hyperbolic region according to

cosl+” sinl+“

2 2
p=——~5— , g=—75—,
COSﬂ # COSl #

pcosA+qsinA =1 pcosu+qsinu=1,



+p

sin
P=——F—"—" » 9=——F_ >
cos’lz’u fo—ith

Cos

pcosA+qgsind=1, pcosu+gqgsinu=1.
qA

(cos A,sin A)

(p,q)

(cosu,sin i)



then in the hyperbolic region equation (6.1) takes the following form

o°U 1 (au _aujzo (6.2)

0A0u  sin(A—w)\ 604  ou

— somewhat reminiscent of the Euler-Poisson-Darboux equation.
If hodograph polar coordinates p & ware in use, (6.1) takes the following form

2 2
U TV 10U (g
op° pop p°ow

6.4. Sample solutions to (6.1) result from routine devices. Separating variables in equation
(6.3) gives

1-p%)




p=pcosw, (=psine, U(p,q)=R(p) -cos(kw) (k=0,+142,+3,--),

-~
separationof variables

hodograprpt;lfarcoordinates

R(p)=p"Q(z), z=p’,

~
changeof variables

z1-2)Q"+[k +1—(k +1)z]Q' -

hypergeomdric differential equation

K k=1
Q(z) = F(E’T’k+l’zj'

F@, b;c;z) = hypergeomeriaffunction,see [AS, Chapterl5].

k(k —1)
4

Q=0,

For instance, a solution to (B) having a mixed elliptic-hyperbolic character results from
. 12 8
p=pcosw, (=psinw, U(p,q)=|3p——+— |c0s(3w),
P P

and is shown in the next figures.



Plotting Legendre transform U(p,q) versus p and ¢
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7. DIGRESSING ON BACKLUND TRANSFORMATIONS

7.1 Loosely speaking, a Backlund transformation converts a solution to some partial diffe-
rential equation into a different solution to the same equation, or into a solution to another
partial differential equation. Such a transformation allows an extra solution to a partial
differential equation to come out if one particular solution to the same or another equation is
in hand. A Bé&cklund transformation typically looks like a first-order partial differential
system, which relates two functions in a convenient way and drives them to obey partial
differential equations individually. Bé&cklund transformations may be of considerable
service; however, no systematic way of finding them is available. These transformations
trace back to works by L. Bianchi and A.V. Backlund in differential geometry, and play a
role especially in soliton theory and integrable systems. They come up in gas dynamics too,
and are a key to the present work.

7.2. Miscellaneous examples follow.

(i) If ay1 , a», @1, @ are bounded and measurable functions of x and y and their matrix is
non-singular, then the transformation attached to the equation

W:{O 1“% aﬂ}w
-1 0}||a,, a,,

generalizes Cauchy Riemann equations. It maps any (suitably smooth) solution to


http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Soliton_theory
http://en.wikipedia.org/wiki/Integrable_system

div{{a“ a”} Vu} -0
a21 a22

T
div L {a“ alz} Vv:=0
a;;a,, —8,,a,, dy; Ay

that obeys the orthogonality condition
<{a“ a“}Vu Vv )=0.
a21 a22

For instance, the following Béacklund transformation

vV, =—U vV, =Yy-u,,

into a solution to

convert any solution of
y-u, +u, =0

— the Tricomi equation — into a solution of



V =0,

o Vy

wx T

oy y
which obeys

y-uyv, +uyv, =0.

(i1) Let a1, @10, @51, A2, be bounded and measurable functions of x and y such that

ap#0 & ap=#0,

and let @ obey
Ay Py + 2a12¢xy + 8,0, = 0.

Voo

then u and v are related by the following transformations

0 -—-a 2 a
Vv:—l{ ZZ}VU, Vu=—1{ %z 22}Vv,

Ay, | Qg 2a12 Ay | — 8y, 0

If



and obey

1 2 1 0
le{{aﬂ a”} Vu}zo, dIV{{ - }Vv}zo.
a22 O a‘22 all 2a12 a'22
(iii) Suppose 0<p j(p) is a smooth real-valued function, and J'(0)=0. Let u be an
extremal of the variational integral

I3 o va oy,

I.e. a solution to

o j'( /u2+u2) o + 9 j'(,/u2+u2j u =0
OX BN (T RTER Q) BN (T,
and let pand @ be the hodograph polar coordinates given by

VU .| COS@
P lsinew |

The following equation holds



-1 Of|sin® cosw 0 1||-sinw COSw

W){o 1“0050) —sina)Hpj”(p)/j’(p) OHcosa) sina)}vp
yo,

— in other words, a Backlund transformation relates p and w.

(iv) The transformation attached to the following formula
2 2
vV, +V
u=logl 2———
Vv

Av=0

maps solutions to

(Laplace equation) into solutions to

Au =exp(u)

(Liouville equation).

Here is a sample pair

32(x* + y?)? 2 2
,y)=Io V(X y) =xy (xF —y?).
u(x,y) 9V () (X y)=xy (X" —y*)




A solution u to Liouville equation

4
.. wmw “"anuil'm

‘ mmH_HM\HJ _‘.‘

R !
f i




A harmonic function v




(v) The transformations attached to the following formulas

1
Vu:(1+v2)1’{ } v=—",
v

are inverse of one another. They convert any (suitably smooth) solution u to
u; +u; =1
(eikonal equation of geometrical optics) into a solution v to
v, +vv, =0

(inviscid Burgers equation), and vice versa — the level-lines and the shock-line of v are the
isoclines and the caustic of u, respectively.

Here is a relevant pair

X=pCOSw, Yy=psSinw (<p<w,—-r<w<r),

.1
w(x, y)=arcsin —+ w,

P
u(x,y)=+/p° -1+w(x,y), v=tanw.
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A solution to inviscid Burgers equation




(vi) If € is a positive parameter, the transformations attached to the following formulas

1 1 1
V, =——uv, V,=—=|u ——u-|,
2& y 2 2
UZ—ZEV—X,
V

(known as Cole-Hopf transformations) are inverse of one another. They map solutions to
U, +uu, =&-U,
(viscous Burgers equation) into solutions to
V, =&V,
(heat equation), and viceversa.
Here is a sample pair

X(X—2)+ 2y
x> (Xx—3)+6£(x—1)y

u(x,y)=—6¢ V(X,y) =X*(Xx=3)+6s(x-1)y.




A solution to viscous Burgers equation

ll' ﬁ'T[m | Tll i TI'I""I"HTT ]—,.rrr““ e
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(vii) If € is a positive parameter, the transformation attached to the following system
. (V+U 2 . (v—U
V, =u, +2&sinf —— |, VvV, =—U, +—SIn| —— |,
2 £ 2
maps any solution to
u, =sinu
(known as Sine-Gordon equation) into a solution to the same equation

VW =SInVv.

Here is a sample pair

u=0, v=4arctan(exp(sx+y/e)).

J/

g
a traveling wave



A traveling wave obeying Sine-Gordon equation

v-axis
LA ] —_ P {5} = i o =~
P ;

(viii) If p is a constant parameter such that 1< p < oo, the transformations attached to these
systems

Vv=\Vu\p_2 (1) _01 vu, Vu=\Vu\p/(p_1)_2 (1) _01 Vv,

are the inverse of one another. They map a solution u to

[(p—l)uf+uj}uxx +2(p—2)uu,u, +[uf jL(p—l)uj}uyy =0



(the p-Laplace equation) into a solution v to
2 2 2 2
|:VX +(p —1)vy}vXX —2(p—-2)v,v,V,, +{( p-1)v, jtvy}vyy =0
(the p/(p—1)-Laplace equation) in such a way that
uyv, +uv, =0.

(viii) Consider a two-dimensional, steady, adiabatic, isentropic, irrotational flow of a per-
fect gas. The following equations and inequalities hold in proper units. First,

(Pressure)x(Density) " =1

— here y = adiabatic constant, y = 5/3 for a monatomic gas, y = 7/5 for a diatomic gas
such as nitrogen or oxygen. Second, the velocity potential ¢ obeys both the inequality

1- y—_l‘Vgp‘z >0
2
and the equation

+1 -1 -1 +1
(1—y—¢2 —Lwij% ~20.0, ¢, +(1—7—<0f —7—405)% =0

2 2


http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen

— in other words, it is an extremal of the variational integral

7/_1 , yI(y-1)

Third, the Backlund transform of ¢ given by

y1_ V0 -
Vi =1-L"2|v %
7 ( 5 | colj L o} 7

Is a stream function — i.e. a function whose lines of steepest descent are orthogonal to
equipotential lines.

Though not physically significant, the case where the adiabatic constant equals —1 is
instrumental in the present context.




8. ELLIPTIC SOLUTIONS
8.1. Formulas. Elliptic solutions to (B) are the same as space-like maximal surfaces in the

three-dimensional Minkowski space. Therefore, they can be parametrically represented by
Kobayashi formulas [Ko]:

A, 1 =real parameters,

1 P A+iu

x=Re> [ 1O+ 9(¢)ac,
y=Re [ f(©)l-a(¢r]ac.
u=-Re["™" £(0)g()ds 81

. 2
— here I = —1, f is holomorphic, g is a meromorphic function such that ‘g‘ #1 and fg
Is holomorphic.

For example, putting

f(¢)=6(1+¢)" and g(¢) =(1-£)/(1+S)

and manipulating result in the quartic equation



(Xx—u)* =27(x* +y* —u°),

which supplies an elliptic solution to (B) and whose graph is shown below.




8.2. Allied minimal surfaces.

»Elliptic solutions to (B) are in one-to-one correspondence with standard minimal sur-
faces from Euclidean three-dimensional space.

» The Backlund transformations attached to the following formulas

1 0 1 1 [0 -
Vv = { ]Vu, Vu = 2{ ]Vv, (8.2)
Ji—|vu? 710 JiewyP L1 0

amount to rotating gradients by ninety degrees, then stretching them suitably. They are the
inverse of one another, and enjoy the following properties.

e The former acts on elliptic solutions u to equation (B) — such solutions are precisely
what make

1 {0 1}
-Vu
Ji-|vu? -1 0

well-defined and a gradient.



e The latter acts on solutions v to the following equation

2 2 _
(L+Vv)) v, —2v vy, +(1+v)v, =0, (8.3
I.e. on functions whose graphs are minimal surfaces — such functions are precisely
what make
0 -
1 - { ]Vv
1+wy* L 0
a gradient.

e Both convert any elliptic solution to (B) into a non-parametric minimal surface, and any
non-parametric minimal surface from Euclidean three-dimensional space into an elliptic
solution to (B).

» The Bécklund transformations in hand allow properties of equation (B) to conveniently

follow from properties of minimal surfaces. For instance, Bernstein-Calabi theorem on el-
liptic entire solutions to (B) can be immediately demonstrated along this line.



»They also call the notion of Chaplygin gas into play. According to usage, “Chaplygin

gas” is a nickname for a hypothetical fluid whose adiabatic constant equals (—1), I.e. whose
density and pressure are inversely proportional to one another. If units are appropriate,

y =-1,
and the space dimension is two, the equations

+1 -1 -1 +1
(1—%%2 —%wij% —20.0, ¢, +(1—7T<0f —%cﬁij% =0

1/(y-1)
y—1 2 0 -1
Vy =|1-—|V \Y
4 ( 2 | ¢|) {l O} ¢

govern the a velocity potential ¢ and a stream function y of such a fluid. The following
assertions result. First: the Backlund transformations attached to equations (8.2) are precise-
ly those relating a velocity potential and a stream function of a Chaplygin gas. Second:
while the minimal surface equation governs a velocity potential, equation (B) governs a
stream function of a Chaplygin gas.



»Either one of equations (8.2) implies
2 .2 2 2
(1—uX —uy)-(1+vX +vy):1, u,v, +uv, =0, (8.4)

a first-order fully non-linear partial differential system having a rotation-invariant structure.
System (8.4) plus the condition

imply both equations (8.2).
The entries of any solution pair to (8.4), whose Jacobian determinant does not change its
sign, satisfy equation (B) and represent a minimal surface, respectively.

System (8.4) pairs off solutions to equation (B) and minimal surfaces, whereas Béacklund
transformations (8.2) decouple_solution pairs to (8.4).



Here is a sample pair

. _ y
u(x, y) = arcsin(sin x-siny),  v(x, y) = log| =~
COS Y

— the former entry is an elliptic solution to equation (B), the latter is Scherk’s minimal

surface.

Scherk minimal surface

An elliptic solution to Busemann equation

u-axis




9. HYPERBOLIC SOLUTIONS

9.1. Formulas. Hyperbolic solutions to equation (B) result from the formulas of Gu and L.i:

A, 1 = parameters,

A )7,
x:ja(z)cos,zd,ujb(y)cosﬂdﬂ,
A K
y =ja(z)sinzdmjb(y)sinydy,

u= fa(z)dmfb(y)dy, (9.1)

which involve two non-zero real functions a and b at user’s disposal, and imply

cos(ﬂ_—ﬂj-uxzcos(/ﬂﬂj, cos(/l_ﬂj-u :sin(/ﬂﬂj.
2 2 2 g 2




Here are examples.

a(A) =cos(24), b(u)=cos u;

Into Busemann egin s




a(A) =cos(51), b(u)=sin(+/15u);

A hyperbaolic ion to Busemann equation




a(l)=a/ 1+ 2, b(u)=p/1+ 1" ;

alfa=t, 7
_.-beta=35 :




o) ol )

'E;'t:' 2 ]B




() =2 ()= o




a(1) =asin(5), b(u)=p/\2m .




9.2. Allied solutions.

» The Backlund transformations attached to the following formulas

Vv=\/| 1|2 [(1) _O}Vu, Vu:\/| 1|2 [01 (ﬂVv, (9.2)
Vu| —1 Vv —1L"

are inverse of one another, and enjoy the following properties.
e Both act on hyperbolic solutions to (B).

e They convert any hyperbolic solution u to equation (B) into another hyperbolic solution
v to the same equation.

e They imply

— in particular, make the mapping

X yI=[uxy) v(xy)]

a local one-to-one diffeomorphism.



»Either one of equations (9.2) implies
2 2 2 2 _
(uX +U, —1)-(vX +V, —1)=1, u,v, +uyv, =0, (9.3)

a first-order fully non-linear partial differential system endowed with a rotation-invariant
structure.

System (9.3) plus the condition

imply equations (9.2) simultaneously.

Both entries of any solution pair to (9.3), whose Jacobian determinant does not change its
sign, satisfy (B) — in other words, system (9.3) pairs off solutions to equation (B).

Equations (9.2) decouple all solution pairs to (9.3) whose Jacobian determinant is positive.

Example. The following solution to (B)

0(x y)=log£COShXj,

coshy



A solution of mixed type




Is of mixed hyperbolic-elliptic type and has the following two mates

V(X, y) = arccosh(sinh x-sinh y), v(x,y)=arcsin(sinh x-sinhy)

-~
a minimal surface

— the former is a hyperbolic solution to (B), the latter is a minimal surface.

A hyperbolic mate An allied minimal surface




7.3. D’Alembert equation. Suppose u and v are allied hyperbolic solutions to equation
(B), i.e.

1 0O -— 1 0 1
VV = Vu, VU= VV.
JIvuf -1 [l 0} N = [—1 0}

Think of u and v as curvilinear coordinates, and think of x and y as functions of u and v
— in other words, interchange the role of dependent and independent variables.

The following properties hold.
e xandy obey both

R e i 1
ov|Yy X;+Y, [1 0 jouly

o . J

' v
stretching rotation

and



&) (&) (5] (&) -+ aaran-o oo
ou ou \ OV o) guov auov

E G F

A4

Observe that letting E, F and G stand for the coefficients of the Euclidean metric, i.e. sa-
tisfy

(dx)® + (dy)* = E(du)* + 2Fdudv + G(dv)?,
allows system (9.5) to read thus

E+G=1, F=0.

x and y obey D’Alembert equation, i.e.

o0 0% )| X
(@uz WZ]M > o0




Proof number 1. Coupling

and
OX  OX |
ou  ov|_|Y
5 3l
| Ou oV
results in
OX  OX |
u, -—u
iy g=(uf+u§){uy .
| ou oV

The claim follows.




Proof number 2. System (9.4) can be recast as

@_f(@j
oV ou )’

provided the following notations and abbreviations are in use

]

2_8)(2 @2 _i_ %_ 0_1%
=242 ator= %1, f(auj—g(mL O}au.

We consequently have




{2
ou

We conclude

as claimed.

[l

i

oW

ou

1 10
O}g(p){o J+

a—u ou ou
X dy (ayjz
ou ou ou

T dg(p) , o2 || O
[ o] ]

r9(p)

|

dg(p)
do

82 62

ou?  ov?

+9(p)" =-1.

(8x)2 ox oy




The above statements yield the following consequence.

» The hyperbolic solutions u and v to equation (B), which are paired by Backlund trans-
formations (9.2), can be represented thus

u=(A+u)/~2, v=(A-u)/2,
x=[A(2)+B(m)]/¥2, y=[C(A)+D(w)]/v2 (9.7)

— here
A, ;1 = parameters

1, {dB(ﬂ)T{dD(u)TEl-

du du

and A, B, C, D satisfy

Lo [ L]

di da



10. INITIAL VALUE PROBLEMS
Let the following ingredients be in stock.

First,

initial curve
N\

x=a(s), y=p(s)
— a parametric representation of a smooth, plane, initial curve. Suppose s =arc length.
Second,

S y(S),
— a real-valued smooth function.

An initial value problem consists in looking for a solution u to

(uz—l)-uxx—ZUXuy-uxy+(uf—1)-uyy =0 (B)

y

that satisfies



U(x, y) = (). —ux(x,y)‘j'j—f(s)+uy(x,y)‘(’j—f(s)=o

~
normal derivative of u

for all x and y that run on the initial curve.
Such a problem is non-characteristic if

d—7/(3) =1 everywhere
ds
if even
dy
E(S) >1 everywhere,

then any solution leaves the initial curve in a hyperbolic status.

(8.4)

(8.5)



Ad hoc formulas read as follows

allied solution

2u=a+u, NN =A—pu. 2x=AA)+B(). N2y =C(A)+D(x).

A’(@jz#-a’(s)i\/l— ,1 = B'(8),
y'(S)




Here is an example:

s=arclength, t=another parameter,
kK=iInt(s), t=Kkx+arccos(2k +1-2s),
a(s) =+ (3cost—cos3t), A(s)=7=(3sint—sin3t)
— a nephroid of Huygens — and
(s) =2.0156-

— a helix above the nephroid.




u-axis

Views of the initial curve

saddle initial curve

<

nephroid
0.3

-0.3
04 04 X-axis
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