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THOUGHTS ON A BUSEMANN EQUATION 

GIORGIO TALENTI (UNIVERSITY OF FLORENCE, ITALY) 
 

1. INTRODUCTION 

1.1. In the present talk we comment on the following equation 
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This equation may be viewed as a caricature of one that A. Busemann designed in investi-

gating irrotational conical flows of compressible fluids. The same equation governs non-

parametric maximal surfaces in the three-dimensional Minkowski space, as well as stream 

functions attached to two-dimensional flows of a Chaplygin gas. It is also cognate to La-

vrentiev-Bitsadze equation, and shows up in certain generalizations of geometrical optics 

where complex-valued eikonals are involved. 

{Adolf Busemann (Lübeck 1901, Boulder 1986) was an eminent aerospace engineer 
and applied mathematician, and a pioneer of supersonic aerodynamics. He designed 
the Busemann biplane, which emits no sonic shock waves, and invented the swept 
wing equipping most modern aircrafts.} 
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1.2. Observe: 
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= Equation (B) has a mixed elliptic-hyperbolic character. Since 
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For instance, (B) has the following solutions 
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  );everywhere  elliptic(arcsinh),( 22 yxyxu   
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  ).everywhere  hyperbolic(arcsin),( 22 yxyxu   
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= Equation (B) plus the condition   ux
2  uy

2     can be recast in a divergence form thus 
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=(B) is formally the Euler-Lagrange equation of the variational integral defined thus 
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2. MOTIVATIONS: CONICAL VELOCITY FIELDS 
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2.1. Consider the 3D steady irrotational flow of a perfect gas, and let 

x, y, z = space rectangular coordinates, 

potential,  velocity   

. speed  sound  

Standard principles of fluid dynamics yield the following equations. First, 

    offunction  suitable a  

— for instance 

Constants),()(
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in the case where the flow is adiabatic and isentropic. Second, 
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 — a quasi-linear partial differential equation of elliptic-hyperbolic type governing . Ve-

locity potential  is an elliptic solution where velocity is subsonic, a hyperbolic solution 

where velocity is supersonic.  
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According to Busemann, the flow is conical if 

 either the set of its streamlines is invariant under homothetic transformations,  

 or the isoclines of the velocity field are rays from the origin 

— two equivalent conditions. 

Recall 

 Streamlines = lines of steepest descent of the velocity potential = orbits of 

.::: zyx dzdydx    

 Isoclines = paths along which the velocity field keeps a constant direction. The isoc-

lines are the orbits of 
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 The flow is conical if and only if the velocity potential obeys 
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— i.e. the first-order derivatives of   are homogeneous functions of x, y, z and all have the 

same degree. 
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Didactic digression: how level lines, streamlines and isoclines look like? 

For instance, if 
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Busemann showed (in his 1942 paper displayed above) that if the flow is conical and u, v, w 

denote the components of the velocity, i.e.  u  x ,  v  y ,  w  z , then 

 The Jacobian determinant of u, v, w vanishes identically — any component of the ve-

locity is a function of the remaining two. 

  The equation, which governs w as a function of u and v, takes the form 
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Aerodynamicists often lower the number of independent variables by virtue of geometric or 

physical hypotheses. The conical-flow analysis of Busemann provides a mean of descend-

ing from a three-dimensional to a two-dimensional potential equation. 
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2.2. Let us call dimensional analysis into play, and zoom in. If h and k obey 
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— an alias of equation (B). 
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3. MOTIVATIONS, CONTINUED: MAXIMAL SPACE-LIKE SURFACES IN 3D MINKOWSKI SPACE 

Elliptic solutions to equation (B) obey both 
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therefore render an appropriate area a maximum — they can be viewed as non-parametric 

maximal space-like surfaces in the three-dimensional Minkowski space. Recall that 
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4. MOTIVATIONS, CONTINUED: BEYOND GEOMETRICAL OPTICS 

4.1. Let  n  be a real-valued, strictly positive, sufficiently smooth function of  x  and  y — in 

technical words, n = refractive index of a two-dimensional, isotropic, non-conducting me-

dium, 1/n = velocity of propagation. The solutions to the following equation 
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are known as two-dimensional eikonals. 

The theory of real-valued sufficiently smooth eikonals is the main constituent of geome-

trical optics (GO), which provides asymptotics for high-frequency electromagnetic fields. 

Two-dimensional GO ultimately amounts to manipulating: 

 the Riemannian metric known as travel time or Fermat metric, i.e. 

;)()(),( 22 dydxyxn   

 appropriate one-parameter families of relevant geodesics  whose members are 

named rays;  

 the envelopes of rays — called caustics. 
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GO-eikonals are precisely those functions whose lines of steepest descent are rays. They 

 shine in light regions (those spanned by relevant rays), 

 burn out beside caustics (where the ray system breaks down), 

 shut down in shadow regions (the complements of light regions, which rays avoid). 

On the one hand, GO is enough for successfully modeling basic optical processes — such as 

the propagation of light and the development of caustics. On the other hand, GO is intrinsi-

cally unable to account for optical processes that take place beyond a caustic, on the dark 

side of it. 

Authors (Felsen, Kravtsov, Ludwig) realized that complex-valued eikonals profitably con-

tinue geometric optical eikonals into shadow regions. In other words, complex-valued ei-

konals prove apt to account for certain optical phenomena — e.g. the rise of evanescent 

waves past a caustic — that are ignored by geometrical optics. 
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4.2. EWT is a theory of complex-valued eikonals, whose basic ingredients appear below. 

Governing PDS and equations. The eikonal equation 
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Such a system discloses two scenarios — the former is tantamount to GO, the latter opens 

up a full vista of EWT. Either 
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or the following inequalities and equations prevail 
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Peculiarities. Both (4.3) and (4.4) are quasi-linear partial differential equations of the 

second order. 

Equation (4.3) exhibits a mixed elliptic-hyperbolic character: a solution  u  is  

.   if  hyperbolic   ,   if elliptic nunu 
 

Equation (4.4) is elliptic-parabolic or degenerate elliptic: a solution v such that v is free 

from zeros is strictly elliptic, degeneracy occurs at the critical points of v. 

Equations (4.5) define a Bäcklund transformation, which does the following. First, it de-

couples solution pairs to system (4.2). Second, it maps any elliptic solution to (4.3) into an 

elliptic solution to (4.4), in such a way that the resulting pair satisfies system (4.2). 

Degeneracy causes (4.4) to suffer from pathologies. Relevant solutions need not possess 

smooth second-order derivatives, and cannot have isolated critical points. Boundary values 

fail to identify solutions uniquely. Solutions obeying boundary conditions happen to minim-

ize a certain convex, coercive, variational functional — however, such a functional is not 

smoothly differentiable. Non-constant solutions exist that either identically equal a constant 

in an open region, or exhibit a continuum of extremum points. 
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If n  1, the following formulas 
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provide us with a particular solution to equation (4.4), which has a closed cuspidate line of 

critical points and can be smoothly continued by 0 inside such a line. 
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A solution to equation (4.4), having three straight-lines of critical points, is shown in the 

next figure. 
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Viscosity. A viscosity process, apt to overcome degeneracy, entails the following steps. 

(i) Introducing a small, positive parameter . 

(ii) Letting 
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— respectively, a kernel comme il faut and a smooth, convex, and coercive functional. 

 



 
 26 

(iii) Solving 
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in a suitable function space and under appropriate boundary conditions — i.e. solving either 
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— two tame, uniformly elliptic partial differential equations. 

(iv) Defining u via the Bäcklund transformation 
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(v) Taking limits as  approaches . 
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The process in hand results in a certain function pair [u  v]. 

 The latter entry v belongs to the proper functions space, takes the prescribed boundary 

values and solves equation (4.4) without a hitch. 

 The former entry u behaves properly where the gradient of v is essentially different 

from 0, however need not do the same in the complementary set. Instead of satisfying ux
2  

uy
2  n2(x,y), it obeys the looser constraint 

    )6.4(0log2
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in any open set where the gradient of v vanishes identically. 

4.3. Equation (4.6) is the Euler-Lagrange equation of the variational integral 
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and coincides with (B) if n  1. 
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5. LAVRENTIEV-BITSADZE EQUATION 

5.1. An embedded surface in 3D Euclidean space is qualified developable if its Gauss cur-

vature vanishes identically. Any developable surface is either trivial (i.e. a plane, a cylinder, 

a cone) or is spanned by the tangent straight-lines to some saddle curve which turns into an 

edge of regression. 

Let u be a real-valued smooth function of two real variables x and y, and let the range of u 

be named hodograph in short. Basically, the graph of u is a developable surface if and only 

if the hodograph of u is either a point or a line — i.e. a function 

  ),( qpfqp   

exists that satisfies 

0)()( 22  qfpf  

and causes u to obey the following first-order partial differential equation 

.0),( yx uuf  

Proposition. Let u be a sufficiently smooth solution to equation (B), and let the graph of u 

be a developable surface. Then either u is linear, or u obeys 

,122  yx uu  

or else  ux
2  uy

2     and a constant parameter C exists such that 



 
 29 

1)sin()cos(  CuCu yx  

— in other terms, the hodograph is either a point, or the unit circle, or else some tangent 

ray to the unit circle. 

5.2. Suppose u is a sufficiently smooth solution to (B), and the Gauss curvature of its graph 

is everywhere different from zero — in particular, the graph of u is definitely not developa-

ble. 

Then the gradient of u is locally a diffeomorphism; the hodograph of u has a non-empty in-

terior; the first-order derivatives of u are apt to perform as curvilinear coordinates — in 

particular, u changes into a function of its gradient. 

The hodograph polar coordinates  and , given by 
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plus equation (B), plus the hypotheses in force imply the following linear-looking equation 
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A new variable , given by either 
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turns (5.1) into 

)2.5(0)sgn(
2
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
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
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






uu

 

— Lavrentiev-Bitsadze equation. 

Lavrentiev-Bitsadze equation appears in the present context as a masked version of (B). 
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6. LEGENDRE TRANSFORMS 

6.1. Sample solutions to (B), whose graph is not developable, result from an appropriate 

use of the Legendre transformation. 

This transformation is instrumental in classical and statistical mechanics, thermodynamics, 

convex analysis, and differential equations. One of its peculiarities is turning second-order 

quasi-linear homogeneous partial differential equations in two independent variables, 

whose coefficients depend on first-order derivatives only, into surrogates that are linear and 

more tractable. 

6.2. Let u be a real-valued, twice continuously differentiable function of two real variables x 

and y; suppose the gradient of u is a bijection, and the graph of u has a non-vanishing 

Gauss curvature. A recipe for handling the Legendre transform U of u reads thus. Let 

uqp   of range  thefrompair any  ),(

slope

  

— a slope — and consider the tangent plane to the graph of u that is orthogonal to 


 vectornormal

1

















q

p

; 



 
 33 

then 

origin  theabove plane asuch  ofheight   the),(

intercept




qpU
 

— an intercept. In other words, the triple 

p, q, value of U at (p,q) 

detects any tangent plane to the graph of u. The following formulas result 
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
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and provide a parametric representation of both u and U — parameters coincide with rele-

vant first-order derivatives. 
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6.3. If u obeys (B) and the above hypotheses, then the Legendre transform U of u obeys 

)1.6(.0)1(2)1(
2
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 Equation (6.1) is 

;1  where,1  where 2222  qpqp hyperbolicelliptic
 

 the characteristic lines in the hyperbolic region are tangent rays to the unit disk. 

If characteristic coordinates  &   are introduced in the hyperbolic region according to 

,

2
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2
sin

,

2
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2
cos


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












 qp

 

,1sincos,1sincos   qpqp  
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then in the hyperbolic region equation (6.1) takes the following form 

)2.6(0
)sin(
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UUU

 

— somewhat reminiscent of the Euler-Poisson-Darboux equation. 

If hodograph polar coordinates  &  are in use, (6.1) takes the following form 

)3.6(.0
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6.4. Sample solutions to (6.1) result from routine devices. Separating variables in equation 

(6.3) gives 
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 
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For instance, a solution to (B) having a mixed elliptic-hyperbolic character results from 

),3cos(
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3),(,sin,cos
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and is shown in the next figures. 
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7. DIGRESSING ON BÄCKLUND TRANSFORMATIONS 

7.1 Loosely speaking, a Bäcklund transformation converts a solution to some partial diffe-

rential equation into a different solution to the same equation, or into a solution to another 

partial differential equation. Such a transformation allows an extra solution to a partial 

differential equation to come out if one particular solution to the same or another equation is 

in hand. A Bäcklund transformation typically looks like a first-order partial differential 

system, which relates two functions in a convenient way and drives them to obey partial 

differential equations individually. Bäcklund transformations may be of considerable 

service; however, no systematic way of finding them is available. These transformations 

trace back to works by L. Bianchi and A.V. Bäcklund in differential geometry, and play a 

role especially in soliton theory and integrable systems. They come up in gas dynamics too, 

and are a key to the present work. 

7.2. Miscellaneous examples follow. 

(i) If a11 , a12 , a21 , a22 are bounded and measurable functions of x and y and their matrix is 

non-singular, then the transformation attached to the equation 

u
aa

aa
v 




















2221

1211

01

10

 

generalizes Cauchy Riemann equations. It maps any (suitably smooth) solution to 

http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Soliton_theory
http://en.wikipedia.org/wiki/Integrable_system
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0div
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into a solution to 
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that obeys the orthogonality condition 

.0
2221
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


vu

aa

aa

 

For instance, the following Bäcklund transformation 

,, xyyx uyvuv   

convert any solution of 

0 yyxx uuy  

— the Tricomi equation — into a solution of 
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,0
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xx  

which obeys 

.0 yyxx vuvuy  

(ii) Let a11 , a12 , a21 , a22 be bounded and measurable functions of x and y such that 

a11  0    &    a22  0, 

and let  obey  

.02 221211  yyxyxx aaa   

If 
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 then u and v are related by the following transformations 
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and obey 
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(iii) Suppose  )(0  j   is a smooth real-valued function, and 0)0( j . Let u be an 

extremal of the variational integral 

,22

 



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 dxdyuuj yx  

i.e. a solution to 
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and let   and   be the hodograph polar coordinates given by 

.
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




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
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
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The following equation holds 
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
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— in other words, a Bäcklund transformation relates   and . 

(iv) The transformation attached to the following formula 


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22
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maps solutions to 

0v  

(Laplace equation) into solutions to 

)exp(uu   

(Liouville equation). 

Here is a sample pair 

).(),(,
)(

)(32
log),( 22

22222

322

yxxyyxv
yxyx

yx
yxu 






 



 
 47 

 



 
 48 

 



 
 49 

(v) The transformations attached to the following formulas 

,,
1

)1( 2/12

x

y

u

u
v

v
vu 








 

 

are inverse of one another. They convert any (suitably smooth) solution u to 

122  yx uu  

(eikonal equation of geometrical optics) into a solution v to 

0 yx vvv  

(inviscid Burgers equation), and vice versa — the level-lines and the shock-line of v are the 

isoclines and the caustic of u, respectively. 

Here is a relevant pair 

.tan,),(1),(
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(vi) If ε is a positive parameter, the transformations attached to the following formulas 
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(known as Cole-Hopf transformations) are inverse of one another. They map solutions to 

xxxy uuuu    

(viscous Burgers equation) into solutions to 

xxy vv    

(heat equation), and viceversa. 

Here is a sample pair 
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(vii) If ε is a positive parameter, the transformation attached to the following system 

,
2

sin
2
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
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maps any solution to 

uuxy sin  

(known as Sine-Gordon equation) into a solution to the same equation 

.sin vvxy   

Here is a sample pair 
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(viii) If p is a constant parameter such that  p   , the transformations attached to these 

systems 
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are the inverse of one another. They map a solution u to 
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(the p-Laplace equation) into a solution v to 

0)1()2(2)1( 2222 
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(the p/(p1)-Laplace equation) in such a way that 

.0 yyxx vuvu  

(viii) Consider a two-dimensional, steady, adiabatic, isentropic, irrotational flow of a per-

fect gas. The following equations and inequalities hold in proper units. First, 

(Pressure)(Density)  1 

— here     adiabatic constant,    for a monatomic gas,    for a diatomic gas 

such as nitrogen or oxygen. Second, the velocity potential    obeys both the inequality 
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and the equation 
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http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Oxygen
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— in other words, it is an extremal of the variational integral 
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Third, the Bäcklund transform of    given by 
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is a stream function — i.e. a function whose lines of steepest descent are orthogonal to 

equipotential lines. 

Though not physically significant, the case where the adiabatic constant equals  is 

instrumental in the present context. 
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8. ELLIPTIC SOLUTIONS 

8.1. Formulas. Elliptic solutions to (B) are the same as space-like maximal surfaces in the 

three-dimensional Minkowski space. Therefore, they can be parametrically represented by 

Kobayashi formulas [Ko]: 

 

 
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

 

— here 1i , f is holomorphic, g is a meromorphic function such that 1g  and 
2fg  

is holomorphic. 

For example, putting  

)1()1()(and)1(6)( 2   gf  

and manipulating result in the quartic equation 
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),(27)( 2224 uyxux   

which supplies an elliptic solution to (B) and whose graph is shown below. 
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8.2. Allied minimal surfaces. 

=Elliptic solutions to (B) are in one-to-one correspondence with standard minimal sur-

faces from Euclidean three-dimensional space. 

=The Bäcklund transformations attached to the following formulas 
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amount to rotating gradients by ninety degrees, then stretching them suitably. They are the 

inverse of one another, and enjoy the following properties. 

 The former acts on elliptic solutions u to equation (B) — such solutions are precisely 

what make 

u
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 well-defined and a gradient. 
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 The latter acts on solutions v to the following equation 

)3.8(,0)1(2)1( 22  yyxxyxyxxy vvvvvvv  

i.e. on functions whose graphs are minimal surfaces — such functions are precisely 

what make 

v
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
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 01
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1
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2  

a gradient. 

 Both convert any elliptic solution to (B) into a non-parametric minimal surface, and any 

non-parametric minimal surface from Euclidean three-dimensional space into an elliptic 

solution to (B). 

=The Bäcklund transformations in hand allow properties of equation (B) to conveniently 

follow from properties of minimal surfaces. For instance, Bernstein-Calabi theorem on el-

liptic entire solutions to (B) can be immediately demonstrated along this line. 



 
 62 

=They also call the notion of Chaplygin gas into play. According to usage, “Chaplygin 

gas” is a nickname for a hypothetical fluid whose adiabatic constant equals (), i.e. whose 

density and pressure are inversely proportional to one another. If units are appropriate, 

,1  

and the space dimension is two, the equations 
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govern the a velocity potential    and a stream function    of such a fluid. The following 

assertions result. First: the Bäcklund transformations attached to equations (8.2) are precise-

ly those relating a velocity potential and a stream function of a Chaplygin gas. Second: 

while the minimal surface equation governs a velocity potential, equation (B) governs a 

stream function of a Chaplygin gas. 
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=Either one of equations (8.2) implies 

    )4.8(,0,111 2222  yyxxyxyx vuvuvvuu  

a first-order fully non-linear partial differential system having a rotation-invariant structure. 

System (8.4) plus the condition 

0
yx

yx

vv

uu

 

imply both equations (8.2). 

The entries of any solution pair to (8.4), whose Jacobian determinant does not change its 

sign, satisfy equation (B) and represent a minimal surface, respectively. 

System (8.4) pairs off solutions to equation (B) and minimal surfaces, whereas Bäcklund 

transformations (8.2) decouple solution pairs to (8.4). 
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Here is a sample pair 











y

x
yxvyxyxu

cos

cos
log),(,)sinarcsin(sin),(  

— the former entry is an elliptic solution to equation (B), the latter is Scherk’s minimal 

surface. 
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9. HYPERBOLIC SOLUTIONS 

9.1. Formulas. Hyperbolic solutions to equation (B) result from the formulas of Gu and Li: 

)1.9(,)()(

,sin)(sin)(

,cos)(cos)(

,parameters,

 

 

 









 

 

 









dbdau

dbday

dbdax

 

which involve two non-zero real functions a and b at user’s disposal, and imply 

.
2

sin
2

cos,
2

cos
2

cos 






 








 







 








  
yx uu
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Here are examples. 

 

;cos)(,)2cos()(   ba
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;)15sin()(,)5cos()(   ba
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;1)(,1)( 22   ba
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;2)(,2)(   ba
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;2)(,
)5/sin(

)( 



  ba
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.2)(,)5sin()(   ba
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9.2. Allied solutions. 

=The Bäcklund transformations attached to the following formulas 

)2.9(,
01
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1

1
,

01
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1

1
22

v
v

uu
u

v 

















 




 

are inverse of one another, and enjoy the following properties. 

 Both act on hyperbolic solutions to (B). 

 They convert any hyperbolic solution u to equation (B) into another hyperbolic solution 

v to the same equation. 

 They imply 

2
yx

yx

vv

uu

 

— in particular, make the mapping 

)],(),([][ yxvyxuyx 
 

a local one-to-one diffeomorphism. 
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=Either one of equations (9.2) implies 

    )3.9(,0,111 2222  yyxxyxyx vuvuvvuu
 

a first-order fully non-linear partial differential system endowed with a rotation-invariant 

structure. 

System (9.3) plus the condition 

0
yx

yx

vv

uu

 

imply equations (9.2) simultaneously. 

Both entries of any solution pair to (9.3), whose Jacobian determinant does not change its 

sign, satisfy (B) — in other words, system (9.3) pairs off solutions to equation (B).  

Equations (9.2) decouple all solution pairs to (9.3) whose Jacobian determinant is positive. 

Example. The following solution to (B) 

,
cosh

cosh
log),( 










y

x
yxu
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is of mixed hyperbolic-elliptic type and has the following two mates 

  
surface  minimal  a

)sinhharcsin(sin),(),sinh(sinharccosh),( yxyxvyxyxv 
 

— the former is a hyperbolic solution to (B), the latter is a minimal surface. 
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7.3. D’Alembert equation. Suppose u and v are allied hyperbolic solutions to equation 

(B), i.e. 

.
01

10

1

1
,

01

10

1

1
22

v
v

uu
u

v 

















 




 

Think of u and v as curvilinear coordinates, and think of x and y as functions of u and v 

— in other words, interchange the role of dependent and independent variables. 

The following properties hold. 

 x and y obey both 

)4.9(,
01

10
1

1

rotationstretching

22 


















 

















y

x

uyxy

x

v uu   

and 
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)5.9(.0,1

2222





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










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
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












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FGE

v

y

u

y

v

x

u

x

v

y

v

x

u

y

u

x

 

Observe that letting E, F and G stand for the coefficients of the Euclidean metric, i.e. sa-

tisfy 

,)(2)()()( 2222 dvGFdudvduEdydx   

allows system (9.5) to read thus 

.0,1  FGE  

 x and y obey D’Alembert equation, i.e. 
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Proof number 1. Coupling 
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results in 
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The claim follows. 
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Proof number 2. System (9.4) can be recast as 
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
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provided the following notations and abbreviations are in use 
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We consequently have 
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We conclude 
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as claimed. 
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The above statements yield the following consequence.  

=The hyperbolic solutions u and v to equation (B), which are paired by Bäcklund trans-

formations (9.2), can be represented thus 

    )7.9(2)()(,2)()(

,2)(,2)(
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vu
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— here 

parameters ,   

and  A, B, C, D  satisfy 
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10. INITIAL VALUE PROBLEMS 

Let the following ingredients be in stock. 

First, 

   curve  initial

)(),( sysx    

— a parametric representation of a smooth, plane, initial curve. Suppose s  arc length. 

Second, 

),(ss   

— a real-valued smooth function. 

An initial value problem consists in looking for a solution u to 

)(0121 22 B
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
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
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  yyxxyyxxxy uuuuuuu

 

that satisfies 
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0)(),()(),(),(),(

of derivative normal


  

u

yx s
ds

d
yxus

ds

d
yxusyxu




 

for all x and y that run on the initial curve. 

Such a problem is non-characteristic if 

)4.8(;everywhere1)( s
ds

d
 

if even 

)5.8(,everywhere1)( s
ds

d
 

then any solution leaves the initial curve in a hyperbolic status. 
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Ad hoc formulas read as follows 


,)()(2,)()(2,2,2

solution  allied
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Here is an example: 

)3sinsin3()(),3coscos3()(

),212arccos(),int(

parameter,another ,length arc

12
1

12
1 ttstts

skktsk

ts










 

— a nephroid of Huygens — and 

ss  0156.2)(  

— a helix above the nephroid. 
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