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Image Deblurring and Denoising

Discrete Image Formation model

yδ = Hx + δ

where

yδ ∈ RN is the detected image of N = n ×m pixels;

H ∈ RN×N N = n ×m matrix:
I H Identity matrix → denoising
I H Block-Toeplitz matrix describing the blur → deblurring

δ ∈ RN noise vector;

x ∈ RN is the unknown image to be recovered

Ill Posed Problem → Regularization
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Regularization Methods

Regularization Methods

Definition of a data fidelity functional:

J (x) = ‖Hx− yδ‖22

Definition of regularization functional R(x):
I Tikhonov: R(x) = ‖Lx‖22. Where L = I of L = ∇2 discrete Laplacian

operator.
I Total variation: R(x) = TVβ(x)

Definition of minimization problem:
I Constrained Least Squares (CLS)

min
x
J (x), R(x) ≤ γ, γ > 0,

I Constrained minimization:

min
x
R(x), J (x) ≤ σ, σ > 0
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Constrained Least Squares

Iterative Constrained Least Squares Method

Goals:

Define an iterative algorithm that solves

min
x
‖Hx− yδ‖22, s.t. R(x) ≤ γ (1)

Compute a smoothing parameter γ such that the solution of (1) is a
good approximation of the solution x∗ of the noiseless problem
Hx∗ = y for the given regularization function: R(x).

If R(x) is a convex function then (1) is a convex
optimization problem.
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Constrained Least Squares

Iterative Method

Lagrangian function: L(x, λ) ≡ ‖Hx− yδ‖2 + λ (R(x)− γ)

Dual problem:

max
λ

(
min

x
L(x, λ)

)
Find λ̂ s.t. ∇λL∗(λ̂) = 0 where L∗(λ̂) ≡ minx L(x, λ̂)

since ∇λL∗(λ) ≡ R(x(λ))− γ

Find λ̂ s.t. R(x(λ̂))− γ = 0

where x(λ̂) ≡ x̂ s.t. HtHx̂ + λ̂∇xR(x̂)−Htyδ = 0
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Constrained Least Squares

The Iterative Method

Solve the nonlinear equation R(x(λ))− γ = 0 v.s. λ

⇓

Define an iterative update of the lagrange multipliers.

Case R(x) ≡ ‖x‖2
T. F. Chan, J. A. Olkin, and D. W. Cooley, Solving quadratically constrained least squares using black box solvers, BIT

32 (1992), pp. 481–495.

Case R(x) ≡ ‖x‖pp, 1 < p <∞
C. Cartis, N.I.M. Gould, and P.L. Toint. Trust-Region and other regularizations of linear least squares problems, BIT,

49(1), (2009) pp. 21-53.

R(x) ≡ ‖Dα(x)‖22, Dα discrete differential operator of order
α = 0, 1, 2
E.Loli Piccolomini, F. Zama, An Iterative algorithm for large size least-Squares constrained regularization problems,

submitted AMC
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Constrained Least Squares

Nonlinear Solver

Bisection Method
I λ0 > 0 given value s.t. R(x(λ0)) ≤ γ.
I R(x) is a convex and twice continuosly differentiable function s.t.

0 < R(x(λ))− γ ≤ 0, ∀λ ≥ λ̂, R(x(λ))− γ > 0, ∀λ ∈ [0, λ̂).

I compute (xk , λk) s.t.

HtHxk + λk∇xR(xk)−Htyδ = 0
λk+1 = λk + sign(R(xk)− γ)λ0

2k

, k = 0, 1, 2, . . . (2)

I (xk , λk) converge to (x̂, λ̂) where x̂ solves problem (1) and λ̂ is the
relative Lagrange multiplier.
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Constrained Least Squares

Nonlinear Solver

Secant Method

I λ0 > 0 and λ1 > 0 s.t. R(x(λ0))− γ > 0, R(x(λ1))− γ > 0.

HtHxk + λk∇xR(xk)−Htyδ = 0

λk+1 = λk − R(xk )−γ
R(xk )−R(xk−1)

(λk − λk−1)
, k = 0, 1, 2, . . . (3)

Hybrid Method: Bisection (k ≥ 2) + Secant
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Algorithm

Algorithm outline

1 Computation of the parameter γ:

2 Computation of the starting value λ0.

3 Computation of the sequence {xk , λk}, k = 1, 2 . . . using the iterative
procedure (2) + (3).

4 Stopping condition:

|λk+1 − λk | ≤ τr |λk |+ τa, τa ≈ 10−7, τr ≈ 10−4
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Algorithm

Parameter γ

R(x(λ)) decreasing w.r. λ

Let’s define:

γ̂ ≡ argminγ
‖xγ − x∗‖
‖x∗‖

where
xγ ≡ argmin{‖Hx− yδ‖, s.t. R(x) ≤ γ}

Observations:
1 γ̃ < γ̂ if γ̃ ≡ R(x̃) where x̃ smooth approximation by low pass filtering.
2 γ̂ ≤ γδ if γδ ≡ R(yδ)

Definition of γ:

γ = (1− θ)γ̃ + θγδ, θ ∈ (0, 1)
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Algorithm

Examples

Deblurring problem:L = I
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Algorithm

Examples

Deblurring problem:L = ∇2
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Algorithm

Examples

Denoising problem:
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Algorithm

Starting value λ0

1 Deblurring Problem
I Symmetric boundary conditions ⇒ H and L diagonalized by unitary

discrete Fourier Transform Matrix 1:
H = F∗DF, L = F∗MF, D = diag(d`), M = diag(µ`)

I Compute
λ0 = min

`

∣∣∣∣ (Fyδ)`
d`

∣∣∣∣
2 Denoising Problem: Compute xLw by Gaussian lowpass filtering of y δ.

λ0 =
‖xLw − yδ‖2

R(xLw )

1P.C. Hansen, J.G. Nagy, D.P. O’Leary, Deblurring Images, Siam, 2006
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Algorithm

Step 3

1 Deblurring problem, solve the linear system:(
HtH + λkLtL

)
xk = Htyδ ⇒ xk = F∗Φ(λk)Fyδ

xλk
= F∗Φ(λk)Fyδ, Φ(λk)` =

|d`|2

|d`|2 + λk |µ`|2

H = F∗DF, L = F∗MF, D = diag(d`), M = diag(µ`)

Computational cost for k iterations: (2 + k + 1) FFTs

2 Denoising problem: H = I, R(x) ≡ TVβ(x). Solve non linear
equations system:

x + λL(x)x = Htyδ, L(x)w = −∇ ·

(
∇w√

|∇x |2 + β2

)

Fixed Point + (Preconditioned) Conjugate Gradient Method. 2

2C. R. Vogel and M. E. Oman, SIAM J. Sci. Comput., 17:227-238, 1996
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Numerical experiments

Deblurring Experiment

Original Image x∗

506× 800 RGB Image
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Numerical experiments

Deblurring Experiment
Blurred Noisy Image: yδ = y + δ, y = Hx∗ Gauss Blur, Gauss Noise

‖yδ − x∗‖
‖x∗‖

= 0.25, SNR = 13
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Numerical experiments

Deblurring Experiment

R λ ‖x− x∗‖/‖x∗‖ (SNR) k γ θ

I 5.6e-2 1.87e-1 (15) 11 5.1e-1 9.e-1
∇2(x) 1.35e-1 1.74e-1 (15) 9 1.02e-3 1.e-2

F. Zama (Bologna University) Image Denoising and Restoration ... 18 / 37



Numerical experiments

Deblurring Experiment

R λ ‖x− x∗‖/‖x∗‖ (SNR) k γ θ

I 5.6e-2 1.87e-1 (15) 11 5.1e-1 9.e-1
∇2(x) 1.35e-1 1.74e-1 (15) 9 1.02e-3 1.e-2

F. Zama (Bologna University) Image Denoising and Restoration ... 18 / 37



Numerical experiments

Denoising Experiment
Noisy Image: yδ = x∗ + δ,

‖yδ − x∗‖
‖x∗‖

= 0.25, SNR = 12
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Numerical experiments

Denoising Experiment
TV(x) =

√∑3
i=1 TVβ(xi )2, x = [x1, x2, x3] 3

R λ ‖x− x∗‖/‖x∗‖ (SNR) k(it) γ θ

TV 12.5 1.459e-1 (17) 5(80) 6.9 0.5

3P. Blomgren, T. F. Chan, Color TV: Total Variation Mathods for Restoration of
Vector Valued Images, IEEE Tr. on Im. Proc., vol.7, 1998.

F. Zama (Bologna University) Image Denoising and Restoration ... 20 / 37



Numerical experiments

Convergence

Deblurring experiment: Relative Error
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Numerical experiments

Convergence

Denoising experiment: Relative Error
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Numerical experiments

Constrained regularized formulation

f : RN → R continuous differentiable function

minimize R(x) subject to x ∈ Σ = {x ∈ Rn | ‖Hx − y‖2 ≤ σ2}

Advantages over the unconstrained formulation:

minimizeR(x) + γ‖Hx − y‖2

It doesn’t require the choice of the regularization parameter

It’s easily extensible to different functions f (x)

It prevents from too noisy solutions
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FDTR method

Feasible directions Trust Region method (FDTR)

The method starts with x0 ∈ Σ and generates a sequence {xk} of strictly
feasible iterates of the form

xk+1 = xk + λkdk

where:

dk is a feasible descent direction

λk ∈ (0, 1] is the steplength computed by a line search along dk by
the Armijo rule.
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FDTR method

dk computation

The direction dk is obtained as the solution of the Trust Region
subproblem:

min ϕ(d) = ∇R(xk)T d +
1

2
dT Mkd subject to ‖d‖C ≤ ρk

where:

Mk is a symmetric and positive definite approximation of the Hessian
∇2R(xk)

‖d‖C := (dT Cd)1/2, C = HT H

the radius ρk is defined so that xk + dk is strictly feasible:

ρk = (1− ε)(σ − ‖Hxk − y‖), ε ∈ (0, 1)
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FDTR method

dk computation

The minimization problem is solved by the a Newton-CG method,
where the linear system:

Mkd = −∇R(xk)

is inexactly solved by the Steihaug Truncated CG method.

The CG iterations are stopped when the condition on the residuals:
‖rk‖C < ε‖r0‖C is satisfied. The direction d is one of the followings:

I the k-th CG iterate dk if dk is feasible
I a scaled version of dk lying on the border of the feasible region

otherwise
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FDTR method

FDTR algorithm

Choose x0 ∈ int(Σ) and compute M0, spd approximation of the Hessian matrix.
Given ε ∈ (0, 1) and η ∈ (0, 1);
for k = 0, 1, 2, . . .

1. Computation of the trust region radius ρk

Set ρk = (1− ε)(σ − ‖Hxk − z‖);
2. Computation of the search direction dk

Compute dk by approximately solving Mkd = −∇R(xk) via the Steihaug
algorithm;

if dk = 0
return xk ;

3. Computation of the step-length λk

Find the smallest integer i = 0, 1, 2, . . . satisfying
R(xk + 2−idk) ≤ R(xk) + η2−idT

k ∇R(xk)
and set λk = 2−i ;

4. Updates
Compute a new symmetric positive definite approximation Mk+1

of the Hessian matrix;
Set xk+1 = xk + λkdk and k = k + 1;
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FDTR method

Convergence properties

We proved that:

The direction dk is a descent direction and a feasible direction for the
constraints

The line search completes successfully

In the case of finite iterations, the last computed iterate is a
stationary point

The FDTR method globally converges to stationary points
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FDTR method

Implementation details:Hessian approximation

The matrix Mk should be a positive definite approximation of the exact
Hessian matrix ∇(f (xk).

Tikhonov regularization term

R(x) = ‖Dx‖2

M(xk) = ∇2R(x) = DtD
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FDTR method

Implementation details
The Hessian approximation M(xk)

Total Variation (TV) regularization term:

R(x) =
1

N2

∑
1≤i ,j≤N

√
|∇xi ,j |2 + β

∇2R(x) = L(x) + L′(x)x

where, for v ∈ RN×N , the operators L(x) and L′(x) are defined by

< L(x)v , v >:=
1

N2

N∑
i ,j=1

< ∇vi ,j ,∇vi ,j >√
|∇xi ,j |2 + β

,

< (L′(x)x)v , v >:= − 1

N2

m∑
i ,j=1

< ∇xi ,j ,∇vi ,j >
2√

(|∇xi ,j |2 + β)3

Then:
M(xk) = L(xk), ∀k = 0, 1, 2, . . . .
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FDTR method

Implementation details

Stopping criteria

∣∣∣‖xk − y‖ − σ
∣∣∣ < τ1

∣∣∣‖x0 − y‖ − σ
∣∣∣

τ1 > 0

‖λkdk‖ ≤ τ2
τ2 > 0

k > maxitFDTR
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Numerical Results

Deblurring results

Blurry (psfgauss.m, ς = 2)
and noisy (noiselevel = 10−3)
observed image

True image
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Numerical Results

Deblurring results

FDTR-Tikhonov reconstruction
(rel. err.=0.087)

Difference image
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Numerical Results

Deblurring results

FDTR-TV reconstruction (rel.
err.=0.082)

Difference image
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Numerical Results

Deblurring results

Reg. Noise Level Variance Rel. Error Inner It. Outer It.

TV 1.0e-3 ς = 2 8.2575e-002 13 8
TV 5.0e-3 ς = 2 1.0076e-1 36 8
TV 1.0e-3 ς = 3 1.0805e-1 17 11

Tikh 1.0e-3 ς = 2 8.7267e-2 10 8
Tikh 5.0e-3 ς = 2 1.1331e-1 24 7
Tikh 1.0e-3 ς = 3 1.0922e-1 12 11

Tabella: Numerical results for the image deblurring test problems.
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Numerical Results

FDTR method with automatic noise estimate

—————————————————————————-

Algorithm (Automatic Image Denoising Algorithm)

Input: z, ε ∈ (0, 1), η ∈ (0, 1), θ ∈ (0, 1), ε > 0 and τ1 > 0
Output: x, σ

Set x0 = z and σ0 = ‖z‖;
Set updateσ = true; Set k = 0

Repeat until convergence

Step 1: image denoising.
Compute the new iterate xk+1 with FDTR algorithm .

Step 2: noise estimate.
If updateσ

2.1 Compute the new estimate σk+1:
2.1.1 Compute δk = ‖xk+1 − y‖;
2.1.2 Compute σk+1 = θδk + (1− θ)σk .

2.2 If σk − σk+1 < τ1, set updateσ = false.

Set k = k + 1.

Set x = xk and σ = σk .
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Numerical Results

Denoising results

noisy (noiselevel = 1.3 · 10−1)
observed image

True image
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Numerical Results

Denoising results

FDTR-TV reconstruction (rel.
err.=5.39 · 10−2)

difference image
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Numerical Results

Denoising results

FDTR-TV automatic recon-
struction (err.=6.32 · 10−2)

difference image
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Numerical Results

Denoising results

Reg. Noise Level Rel. Error Inner It. Outer It. time (sec)

TV 1.3e-1 5.39e-2 11 3 1
TV(nogamma) 1.3e-1 6.32e-2 55 25 3.3

TV 2.5e-1 7.86e-2 13 3 1
TV(nogamma) 2.5e-1 8.13e-2 50 22 2.8

Tabella: Numerical results for image denoising.
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Conclusions

Conclusions
The discrete ill-posed problem Hx = y has been reformulated as a
constrained minimization regularized problem in two different forms.
Iterative solution methods have been presented for the solution of the
constrained minimization problems.
The following regularization functions:

I R(x) = ‖Lx‖2
I R(x) = 1

N2

∑
1≤i,j≤N

√
|∇xi,j |2 + β

have been considered, but the methods are usable for any convex
function R(x).
The regularized solutions are computed on the basis of some
parameters:

I The noise on the recorded image
I the smoothness of the solution

that can be approximated by using only the information from the
recorded image.
Numerical results for image deblurring and denoising applications
show that the methods have good precision and fast convergence,
hence they are suitable for large size problems.
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