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Abstract

Applications requiring the support of database technology have been increasing in
the last few years. The need for sophisticated functionalities has also lead to the
evolution of database theory, requiring the development of appropriate data models
and optimization techniques.

The need of representing composite data has lead to the definition of object-
oriented and nested relational data models. Such models extend the traditional re-
lational model to represent not only flat data, modeled as sets of tuples, but also
complex data, obtained by arbitrary combinations of set and tuple constructors.

More recently, other applications have required the use of database technology to
manage not only finite data but also infinite ones. This is the case of spatial and
temporal databases (i.e., databases representing spatial and temporal information).

Starting from the observation that often infinite information can be finitely rep-
resented by using mathematical constraints, constraint databases have been proposed
with the aim of inserting mathematical constraints both at the data and at the lan-
guage level. At the data level, constraints allow the finite representation of infinite
objects. At the language level, constraints increase the expressive power of specific
query languages, by allowing mathematical computations. Different mathematical
theories can be chosen to represent and query different types of information in differ-
ent database models.

At least two different issues should be addressed in order to make constraint
databases a practical technology. First of all, advanced models have to be defined
combining the constraint formalism with the support for sophisticated functionalities.
The definition of constraint data models for complex objects and the integration of
constraint query languages with external primitives are only some of the topics that
should be addressed. As a second aspect, architectures supporting the efficient ma-
nipulation of constraints have to be designed. In particular, optimization techniques
have to be defined in order to efficiently access constraint objects.

In this dissertation, we investigate the extension of the relational model and the
nested relational model with constraints, both from the point of view of data models
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and optimization techniques. Results about data modeling are presented in the first
part of the thesis, whereas results about optimization issues are presented in the
second one.

With respect to data modeling, we propose a new semantics for relational con-
straint databases and we introduce data manipulation languages for this model. In
particular, we propose an algebraic language and a calculus-based language, extended
with external functions, and we prove their equivalence. As far as we know, this is
the first approach to integrate external functions in constraint query languages. An
update language is also proposed. As a second contribution, we formally present a
nested constraint relational model. This model overcomes most of the limitations
of the already proposed nested models by relying on a formal background based on
structural recursion and monads.

With respect to optimization, we first discuss logical optimization for the proposed
algebraic language. Then, we introduce two new indexing techniques. The first is
based on a dual representation for multidimensional spatial objects and allows the
efficient detection of all objects that intersect or are contained in a given half-plane.
The second technique is based on a segment representation of constraint databases
and efficiently detects all segments intersecting a given segment, with a fixed direction.
This result is an improvement with respect to the classical stabbing query problem,
determining all segments intersecting a given line. The proposed techniques are also
theoretically and experimentally compared with respect to other existing techniques,
such as R-trees.
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Sempre pil frequentemente nuove applicazioni richiedono I'uso della tecnologia delle
basi di dati. Allo stesso tempo, la necessita di funzionalita sempre piu sofisticate ha
determinato un’evoluzione della teoria delle basi di dati, richiedendo lo sviluppo di
modelli dei dati e tecniche di ottimizzazione adeguati alle nuove esigenze.

Il bisogno di rappresentare dati complessi ha portato, ad esempio, alla defini-
zione delle basi di dati orientate ad oggetti e delle basi di dati relazionali annidate.
Questi modelli estendono il tradizionale modello relazionale alla rappresentazione di
dati complessi, ottenuti dalla combinazione arbitraria di costruttori tupla e costruttori
insieme. Piu, recentemente, altre applicazioni hanno richiesto I'uso delle basi di dati
per rappresentare e manipolare non solo informazione finita ma anche informazione
infinita. Questo e il caso tipico delle basi di dati spaziali e temporali, che richiedono
la manipolazione di aspetti spazio-temporali, tipicamente di natura infinita (si pensi
all’insieme dei punti che compongono un oggetto spaziale o ad un evento che si ripete
periodicamente nel tempo).

Partendo dall’osservazione che spesso l'informazione infinita puo essere finita-
mente rappresentata utilizzando teorie logiche matematiche, le basi di dati con vincoli
sono state proposte come un nuovo modello che estende i modelli esistenti alla mo-
dellazione e alla manipolazione di informazione infinita tramite 'utilizzo di adeguate
teorie logiche. I vincoli, cioe le formule atomiche della teoria prescelta, possono essere
utilizzati sotto due distinti punti di vista. Da un punto di vista della rappresentazione
dei dati, essi permettono di rappresentare finitamente oggetti di natura infinita. Dal
punto di vista del linguaggio di interrogazione, essi estendono i tipici linguaggi alla
rappresentazione di computazioni matematiche. La scelta della teoria logica dipende
ovviamente dal tipo di applicazione che si intende rappresentare.

Affinche le basi di dati con vincoli diventino una tecnologia praticamente utilizza-
bile, almeno due aspetti devono essere presi in considerazione. In primo luogo, e
necessario definire nuovi modelli dei dati in grado di sopperire ad esigenze applicative
sempre pitt complesse. La definizione di modelli in grado di integrare vincoli ed
oggetti complessi nonche I'introduzione di primitive esterne nei linguaggi con vincoli
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sono alcuni esempi di problematiche che devono essere risolte. In secondo luogo, e
necessario definire nuove architetture che garantiscano una efliciente manipolazione
dei vincoli. In particolare, la definizione di tecniche di ottimizzazione si pone come
una esigenza primaria.

L’argomento centrale di questo lavoro di tesi e introduzione del concetto di vin-
colo nel contesto del modello relazionale e del modello relazionale annidato, sia dal
punto di vista dei modelli dei dati sia dal punto di vista dell’ottimizzazione del sis-
tema. I risultati relativi alla modellazione verranno presentati nella prima parte della
tesi, mentre i risultati relativi all’ottimizzazione verranno presentati nella seconda
parte.

Per quanto riguarda la parte relativa alla modellazione, la tesi propone una nuova
semantica di riferimento per basi di dati relazionali con vincoli e introduce adeguati
linguaggi di manipolazione. In particolare, in analogia con il modello relazionale,
verranno introdotti rispettivamente un linguaggio algebrico ed un linguaggio logico.
Tali linguaggi, a differenza di altri linguaggi definiti in letteratura, prevedono I’utilizzo
di funzioni esterne per aumentare la capacita espressiva del linguaggio di base. L’equi-
valenza tra i linguaggi proposti, in presenza di funzioni esterne, verra inoltre provata
formalmente. Accanto alla definizione di opportuni linguaggi di interrogazione, la tesi
propone inoltre un linguaggio per ’aggiornamento della base di dati, rappresentata
secondo il modello introdotto. Come secondo contributo, la tesi presenta un modello
formale per basi di dati relazionali annidate con vincoli. Questo modello estende i
modelli di precedente definizione, utilizzando come base formale concetti relativi alla
ricorsione strutturale.

Per quanto riguarda la parte relativa all’ottimizzazione, come primo contributo la
tesi introduce un sistema di regole di riscrittura per il linguaggio algebrico proposto.
Quindi, verranno introdotte due nuove tecniche di indice per basi di dati con vincoli.
La prima tecnica si basa su una rappresentazione duale definita per oggetti spaziali
multidimensionali e permette di determinare in modo efficiente tutti gli oggetti conten-
uti o intersecanti un dato semipiano. La seconda tecnica assume una rappresentazione
basata su insiemi di segmenti e permette di determinare I'insieme dei segmenti che
intersecano un certo segmento dato, avente una direzione prefissata, con complessita
molto vicina a quella ottima. Questo problema estende una classica problematica
analizzata in letteratura, relativa alla determinaazione di tutti i segmenti che inter-
secano una certa retta verticale. Le tecniche proposte saranno inoltre confrontate,
teoricamente e sperimentamente, con altre tecniche esistenti.
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Chapter 1

Introduction

Information is a crucial resource of any organization. Information must be acquired,
processed, transmitted, and stored in order to be adequately used by the organization
itself. All these tasks are performed by the information system, which usually consists
of human resources and automatized tools and procedures to manage information. An
information system represents information in form of data. Each datum represents
the registration of the description of any characteristic of the reality to be modeled,
on a persistent support (for example, a disk), by using a given set of symbols with
an intended meaning for the users.

The component of the information system providing facilities for maintaining large
amounts of data is called database system. A database system therefore consists of
a, typically large, set of logically integrated data stored on a persistent support (the
database) and a database management system (DBMS), providing several facilities
for storing and efficiently manipulating data in the database.

One of the main goals of a DBMS is to make available a non-ambiguous formalism
to represent and manipulate information. Such a formalism is called data model. Data
manipulation is usually performed by providing a query language, to specify data to
be accessed, and an update language, to specify data modifications.

Since databases are often very large and must be accessed and manipulated ac-
cording to very strict time constraints, a basic requirement for data access and ma-
nipulation is efficiency. Efficiency is usually measured in terms of number of accesses
of secondary storage. For these reasons, techniques have to be developed in order
to reduce the number of accesses during data access and manipulation. The specific
techniques to be used depend on the particular data representation, i.e., they depend
on the chosen data model.

The aim of this dissertation is the investigation of data models and optimization
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techniques for constraint databases, a new approach to represent and manipulate
data based on the use of mathematical constraints. In the following, after a brief
introduction to constraint databases, we introduce in Section 1.2 research problems
and objectives of this dissertation whereas Section 1.3 presents an overview of the
dissertation.

1.1 A short introduction to constraint databases

Constraint databases represent a recent area of research that extends traditional data-
base systems by enriching both the data model and the query primitives with con-
straints.

The idea of programming with constraints is not new. This topic has been in-
vestigated since the seventies in Artificial Intelligence [55, 99, 105, 134], Graphical
Interfaces [23], and Logic Programming [48, 51, 77, 143]. The constraint program-
ming paradigm is fully declarative, in that it specifies data and computations by
stating how these data and computations are constrained.

Due to the declarativity of the constraint programming paradigm, the introduc-
tion of such a paradigm in database systems is very attractive. However, the first
proposal to introduce constraints in database systems is relatively recent [83]. Con-
straints, intended as atomic formulas of a decidable logical theory, can be inserted in
database systems at two different levels. At the data level, conjunctions of constraints
allow infinite sets of objects (all tuples of values that make true the conjunction of
constraints in the domain of the logical theory) to be finitely represented. At the lan-
guage level, constraints increase the expressive power of specific query languages by
allowing mathematical computations to be expressed. Different mathematical theories
can be chosen to represent and query different types of information.

Due to their ability to finitely represent infinite information, constraint databases
represent a good framework for applications requiring the use of database technology
to manage not only finite but also infinite data. This is the case of spatial and
temporal databases. Spatial data are generally infinite since spatial objects can be
seen as composed of a possibly infinite set of points. From a temporal perspective,
infinite information is very useful to represent situations that are repeated in time.

The concept of constraint is orthogonal to the chosen data model. Approaches have
been proposed to insert constraints in the relational model, in the nested relational
model, and in the object-oriented model. However, several issues, both related to the
definition of advanced data models and to the design of efficient architectures, have
still to be investigated in order to make constraint databases a practical technology.

In this dissertation, we focus on the introduction of constraints in relational and
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nested relational database systems, both from the point of view of data models and
optimization techniques.

1.2 Research problems and objectives

The main contributions of this dissertation can be summarized as follows.

Data modeling. The integration of constraints in the relational model is possible by
interpreting a conjunction of constraints as a generalized tuple, finitely representing
a possibly infinite set of relational tuples. In this model, a generalized relation is
defined as a set of generalized tuples and finitely represents a possibly infinite set
of relational tuples. The generalized relational calculus and the generalized relational
algebra have been introduced as a natural extension of the relational calculus and the
relational algebra to deal with infinite, but finitely representable, relations.

Due to the semantics assigned to generalized relations, the user is forced to think
in terms of single points (i.e., in terms of relational tuples) when specifying queries;
as a consequence, the only way to manipulate generalized tuples as single objects is
to assign to each generalized tuple an identifier. This approach may be unsuitable
when the constraint database is used to model spatial and temporal information, and
in general, in all applications where it may be useful to manipulate generalized tuples
as single objects.

The first contribution of this dissertation is the introduction of a new semantics
for generalized relations, that overcomes the previous limitation. In the proposed
semantics (called nested semantics) each generalized relation is interpreted as a finite
set of possibly infinite sets, each representing the extension (i.e., the set of solutions)
of a generalized tuple in the domain of the chosen theory. Thus, the obtained model
admits one level of nesting and represents a natural extension of the original relational
semantics for constraint databases.

By using this new semantics, we provide new manipulation languages for rela-
tional constraint databases that allow the manipulation of generalized tuples as if
they were single objects. In particular, we propose, and prove to be equivalent, an
extended generalized algebra and an extended generalized calculus. One of the most
interesting properties of these languages is that they contain operators dealing with
external functions. The use of external functions is a very important topic in con-
straint databases since the logical theory, chosen with respect to specific complexity
and expressivity requirements, may not always support all the functionalities needed
by the considered application. As an example, consider the use of the linear poly-
nomial constraint theory in modeling a spatial application. This theory is usually
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chosen since it guarantees a good trade-off between expressive power and compu-
tational complexity. However, the computation of the Euclidean distance cannot be
represented by using this theory, even if this is a common operation in spatial data-
bases [3]. This additional functionality can be provided by the constraint language
in the form of external functions.

As we will see, the introduction of external functions complicates the proof of the
equivalence of the proposed languages. In particular, the same technique used in [88]
to prove the equivalence of the relational calculus and the relational algebra extended
with aggregate functions (such as MAX, MIN, COUNT) has to be applied. As far as
we know, this is the first approach to integrate external functions in constraint query
languages.

Since a database system should provide languages to both query and modify the
database, an update language based on the nested semantics is also proposed.

As we have already stated, the proposed model admits only one level of nesting.
Some proposals exist in the literature to introduce constraints in the nested relational
model, thus admitting any level of nesting. However, most of them are defined only
for specific theories or model sets up to a given depth of nesting. Others do not have
this restriction, but the definition of a formal basis, that supports the definition and
the analysis of relevant language properties, has not been addressed.

The second contribution of this dissertation, with respect to data modeling, is the
presentation of a formal nested constraint relational model, overcoming the limita-
tions of other proposals. The definition of this model is based on structural recursion
and monads.

Some results about data modeling have already been published. In particular, res-
ults about the extended generalized algebra can be found in [12, 13] whereas results
about the update language can be found in [14].

Optimization issues. Each conjunction of constraints can be seen as the symbolic
representation of the extension of a spatial object. For this reason, optimization tech-
niques proposed in the context of spatial databases can also be applied to constraint
databases. However, constraint databases differ from spatial databases in at least two
aspects:

e typically, only 2- or 3-dimensional spatial objects are considered whereas con-
straint databases generally represent arbitrary d-dimensional objects (this is
useful for example in Operations Research applications);

e spatial objects are typically closed whereas constraint objects may be unbound.
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For the previous reasons, optimization techniques developed in the context of spatial
databases cannot always be efficiently applied to constraint databases.

The first contribution of the dissertation with respect to optimization is the
presentation of logical rewriting rules for the proposed extended generalized relational
algebra. Logical rewriting rules allow rewriting algebraic expressions into equivalent
expressions that guarantee a more efficient execution of the query they represent.
Such rules are based on specific heuristics, such as performing selections as soon as
possible, in order to reduce the size of the intermediate results. The heuristics of the
algebraic approach are based on the assumption that selection conditions are readily
available. As it has been pointed out in [27], extracting such conditions from the
constraints of a query involves mathematical programming techniques which are in
general expensive. Therefore, rules presented for the relational algebra have to be
extended and modified in order to be applied to the proposed extended generalized
algebra.

The second group of contributions is related to the definition of indexing tech-
niques for constraint databases. In particular, two new approaches are presented.
The first approach introduces indexing techniques for constraint databases, repres-
enting d-dimensional objects, based on the dual transformation for spatial objects
presented in [67]. These techniques allow the efficient detection of all generalized
tuples that intersect or are contained in a given half-plane. The proposed techniques
are also experimentally compared with respect to R-trees, a well known spatial data
structure [71, 130]. The obtained results show that the proposed techniques perform
very well in almost all situations. The second approach is based on a segment repres-
entation for constraint databases. A technique is introduced to efficiently determine
all segments intersecting a given segment, with a fixed direction. Preliminary exper-
imental results are also reported.

Some results about the proposed indexing techniques have already been published.
In particular, results about the indexing technique based on the dual representation
can be found in [19] whereas results about the technique based on the segment rep-
resentation can be found in [20].

The interested reader is referred to [18, 16] for some results, not discussed in this
dissertation, about the application of constraint databases to model and manipulate
shapes in multimedia databases.
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1.3 Overview of this dissertation

Since the dissertation covers two distinct but complementary topics — data modeling
and query optimization — the dissertation has been organized in two parts, the first
presenting results about data modeling and the second presenting results about op-
timization techniques. The first chapter of each part surveys the basic concepts and
the main results proposed in the context of constraint data modeling and constraint
optimization, respectively. More precisely, the thesis is organized as follows.

Part I is dedicated to data modeling in constraint databases. Chapter 2 formally
introduces relational constraint databases and surveys the existing proposals for in-
troducing constraints in the nested relational model and in the object-oriented model.
Examples of applications of constraints to model spatial and temporal data are also
presented.

In Chapter 3, the new reference model for relational constraint databases is in-
troduced. The general properties of languages based on such a model are formally
stated. Then, an algebra and a calculus based on this model and extended with
external functions are introduced and proved to be equivalent.

Chapter 4 presents an update language based on the same principles on which
languages introduced in Chapter 3 are based.

In Chapter 5, a formal nested constraint relational model is introduced, over-
coming the limitations of other proposals. The definition of this model is based on
structural recursion and monads.

Part 1T deals with optimization techniques in constraint databases. Chapter 6 sur-
veys the state of the art with respect to indexing techniques and query optimization.

In Chapter 7, optimization rules for the algebraic language, introduced in Chapter
3, are presented, pointing out the differences existing with respect to classical rela-
tional optimization rules.

In Chapter 8, an indexing technique for constraint databases representing objects
in an arbitrary d-dimensional space is introduced. This technique is based on a dual
representation for spatial objects, first proposed in [67].

In Chapter 9, another indexing technique, based on a segment representation for
constraint databases is formally introduced.

In Chapter 10 the contributions of this dissertation are summarized and future
work is outlined.

Finally, three appendices are also included. They present the proofs of the main
results introduced in Chapters 3, 5, and 8, respectively.



Part 1

Data modeling in constraint
databases






Chapter 2

Introducing constraints in
database systems

The constraint programming paradigm has been successfully used in several areas,
such as Artificial Intelligence [55, 99, 105, 134], Graphical Interfaces [23], and Logic
Programming [48, 51, 77, 143]. The main idea of constraint languages is to state
a set of relations (constraints) among a set of objects in a given domain. It is a
task of the constraint satisfaction system (or constraint solver) to find a solution
satisfying these relations. An example of a constraint is F' = 1.8 x C' + 32, where
C' and F are respectively the Celsius and Fahrenheit temperature. The constraint
defines the relation existing between F and C'. Thus, the constraint programming
paradigm is fully declarative, in that it specifies computations by specifying how
these computations are constrained.

Constraints have been used in several contexts. For example they have been
successfully integrated with Logic Programming, leading to the development of Con-
straint Logic Programming (CLP) as a general-purpose framework for computation
[77]. One reason for this success is that the operation of first-order term unification is
a form of efficient constraint solving (for equality constraints only). More expressive
power can therefore be obtained by replacing unification with more general constraint
solving techniques and allowing constraints in logic programs [48, 51, 77, 143]. This
extension of logic programming has found applications in several contexts, including
Operations Research and Scientific Problem Solving.

Even though constraints have been used in several fields, only recently this para-
digm has been introduced in database systems. The delay in developing this integra-
tion has been due to the fact that for some time it was not clear how the bottom-up and
set-at-a-time style of database query evaluation would be integrated with a top-down,

9
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depth-first evaluation typical of Constraint Logic Programming. The key intuition to
fill this gap is due to Kuper, Kanellakis and Revesz [83]:

a tuple in traditional databases can be interpreted as a conjunction of
equality constraints between attributes of the tuple and values on a given
domain.

The introduction of new logical theories to express relationships (i.e., constraints)
between the attributes of a database item leads to the definition of Constraint Data-
bases as a new research area, lying at the intersection of Database Management,
Constraint Programming, Mathematical Logic, Computational Geometry, and Oper-
ations Research.

Note that this approach is different from the traditional use of constraints in
database systems to express conditions on the semantic correctness of data. Those
constraints are usually referred to as semantic integrity constraints. Integrity con-
straints have no computational implications. Indeed, they are not used to execute
queries (even if they can be used to improve execution performance [69]) but only to
check database validity.

The aim of this chapter is to introduce constraint databases from the point of
view of data modeling. Issues related to optimization of constraint databases will
be discussed in Chapter 6. The chapter is organized as follows. The basic aspects
related to the introduction of constraints in database systems are discussed in Section
2.1. Section 2.2 deals with the use of constraints to model data whereas Section 2.3
introduces constraint query languages. Section 2.4 surveys some approaches to model
complex objects in constraint databases. Finally, Section 2.5 discusses some relevant
applications of constraint databases and Section 2.6 presents some conclusions.

2.1 Constraints and database systems

Formally, a constraint represents an atomic formula of a decidable logical theory [38].
Each first order formula ¢ with constraints (also called constraint formula), with
free variables X1, ..., X,,, is interpreted as a set of tuples (aq, ..., a,) over the schema
X1i,..., X, that satisfy ¢.

By taking this point of view, constraints can be added to database systems at
different levels:

e At the data level, each constraint formula finitely represents a possibly infinite
set of points (i.e., relational tuples). For example, the conjunction of constraints
X <2AY >3, where X and Y are real variables, represents the infinite set of
tuples having the X attribute less than 2 and the Y attribute greater than 3.
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Thus, constraints are a powerful mechanism that can finitely model infinite
information, such as spatial and temporal data. Indeed, spatial objects can
be seen as infinite sets of points, corresponding to the solutions of particular
arithmetic constraints. For example, the constraint X2 4 Y2 < 9 represents a
circle with center in the point (0, 0) and with radius equal to 3. From a temporal
perspective, constraints are very useful to represent situations that are infinitely
repeated in time. For example, we may think of a train leaving each day at the
same time.

o At the query language level, constraints increase the expressive power of existing
query languages by allowing mathematical computations to be specified. This
integration raises several issues. Constraint query languages should preserve
all the nice features of relational languages. For example, they should be closed
(i.e., the result of each query execution should be representable by using the
underlying data model) and bottom-up evaluable.

In the following, we assume that each theory @ is associated with a specific struc-
ture of interpretation D, having D has domain [38]. To simplify the notation, we use
D to denote both the interpretation structure and its domain [38]. Among the theories
that can be used to model and query data, we recall the following:

e Real polynomial inequality constraints (PoLY): all the formulas of the form
p(X1,...,X,) 6 0, where p is a polynomial with real coefficients in variables
X1, ... Xyand 0 € {=,#,<,<,>,>}. Thedomain D is the set of real numbers
and function symbols 4, *, predicate symbols 8 and constants are interpreted
in the standard way over D.

e Dense linear order inequality constraints (DENSE): all the formulas of the form
X60Y and X6c, where X, Y are variables, ¢ is a constant and 6 € {=,#, <, <,
>,>}. The domain D is a countably infinite set (e.g. the rational numbers)
with a binary relation which is a dense linear order. Constants and predicate
symbols @ are interpreted in the standard way over D.

e Fquality constraints over an infinite domain (EQ): all the formulas of the form
X60Y and X6c, where X,V are variables, ¢ is a constant and 8 € {=,#}. The
domain D is a countably infinite set (e.g. the integer numbers) but without
order. Constants and predicate symbols 6 are interpreted in the standard way
over D.

When polynomials are linear, the corresponding class of constraints (LPOLY) is of
particular interest. Indeed, a wide range of applications (Geographic Information Sys-
tems, Operations Research applications) use linear polynomials. Linear polynomials
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have been studied in various fields (Linear Programming, Computational Geometry)
and therefore several efficient techniques have been developed to deal with them [94].

In the logical theories listed above, variables range among elements of a certain
numerical domain (for example reals or rationals). Other classes of constraints have
been considered, in which variables range among sets of elements of a certain domain
[35, 122]. Such constraints are useful to represent and query complex objects (see
Section 2.4).

As stated by Kanellakis, Kuper and Revesz, the integration of constraints in tra-
ditional databases must not compromise the efficiency of the system [83]. This means
that the resulting languages must have a reasonable complexity and that optimization
techniques already developed for traditional databases have to be extended to deal
with constraints. The second part of this dissertation deals with this topic.

2.2 Using constraints to represent data

The use of constraints to model data is based on the consideration that a relational
tuple is a particular type of constraint [83]. For example, the tuple (3,4), contained in
a relation r with two real attributes X and Y, can be interpreted as the conjunction
of equality constraints X =3 AY = 4.

By adopting more general theories to represent constraints, the concept of re-
lational tuple can be generalized to be a conjunction of constraints on the chosen
theory. For example, the formula X < 2AY > 5, where X and Y are real variables,
can be interpreted as a generalized tuple, representing the set of relational tuples
{X=aAY =bla<2,b>5,a€R,be R}. From the previous example, it follows
that the introduction of constraints at the data level allows us to finitely represent
infinite sets of relational tuples, all those representing solutions of the generalized
tuple in the domain associated with the chosen theory. In this framework, relational
attributes can still be represented by simple equality constraints.!

Formally, the relational model can be extended to deal with constraints as follows.

Definition 2.1 (Generalized relational model) Let ® be a decidable logical the-
ory.

o A generalized tuple t over variables Xy, ..., Xy and on the logical theory ® is a
finite conjunction @1 A ...\ @n, where each @;, 1 <1 < N, is a constraint over
®. The variables in each ¢; are among Xy, ..., Xy. The schema of t, denoted
by a(t), is the set {Xq,..., X}

'This is a convenient simplification from a theoretical point of view. However, from a practical
point of view, separately handling regular data and constraint data may have certain advantages.
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o A generalized relation r* of arity k on ® is a finite set r = {t1,...,tas} where
each t;, 1 <1< M, is a generalized tuple over variables X1, ..., Xy and on ®.
The schema of r, denoted by «(r), is the set {Xq,..., Xr}. The degree of r,
denoted by deg(r), is k.

o A generalized database is a finite set of generalized relations. The schema of a
generalized database is a set of relation names Ry, ..., R, each with the corres-
ponding schema. a

Generalized relations are interpreted as the finite representation of a possibly
infinite set of relational tuples.

Definition 2.2 (Relational semantics) Let & be a decidable logical theory. Let D
be the domain of ®. Let r ={t1,...,t,} be a generalized relation on ®. Let ext(t;) =
{o|lo : a(t;) = D,D |, t;}.2 A generalized tuple t; is inconsistent if ext(t;) = 0,
i.e., if Ao such that D \=, t;. The relational semantics of r, denoted by rel(r), is
ext(t;)U...Uext(t,). Two generalized tuples t; and t;, such that a(t;) = «(t;), are
equivalent (denoted by t; =, t;) iff ext(t;) = ext(t;). Two generalized relations rq
and ry are r-equivalent (denoted by ri =, ra) iff rel(r1) = rel(ry). a

The set ext(t) for a generalized tuple ¢, and the set rel(r) for a generalized relation
r = {ty,...,t,}, are sets of assignments, making ¢ or the formula ¢; V... V ¢, true in
the considered domain. However, each assignment can be seen as a relational tuple.
Therefore, in the following the elements of ext(t) or rel(r) are called either assignments
or relational tuples, depending from the context.

From the relational semantics of relational constraint databases it follows that
there exists a strong connection between generalized tuples and spatial objects. In
particular, a generalized tuple with d variables can always be interpreted as a d-
dimensional spatial object.

Example 2.1 Consider a spatial database consisting of a set of rectangles in the
plane. A possible representation of this database in the relational model is with a
relation containing a tuple of the form (n,a,b,c,d) for each rectangle. In such a
tuple, n is the name of the rectangle with corners (a,b), (a,d), (¢,b) and (¢,d). In
the generalized relational model, rectangles can be represented by generalized tuples of
the form (ID =n)A(a < X <e)A(b<Y <d). Figure 2.1 shows the rectangles
corresponding to the generalized tuples contained in relation ry (white) and relation
ro (shadow). ry contains the following generalized tuples:

?In the following, we use lowercase letters to denote generalized relations and uppercase letters

to denote generalized relation names.
?|= denotes the logical consequence symbol. Thus, D =, t; means that t;o is true in D [38].
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r2,1 y=x-1
r1,2
r1,1
\
1+ / ] r1,3
1
r2,2

Figure 2.1: Relation ry (white) and ry (shadow).

7‘171]D21/\1§X§4/\1§Y§2
T‘LQIDIQ/\QSXS?/\QSYS?)
ria:ID=3A3< X <6A-1<Y <15

ro contains the following generalized tuples:

7‘271§ID21/\—3§X§—1/\1§Y§4
7‘2721D22/\5§X§6/\—3§Y§0 &

When dealing with the generalized relational model, a significant problem is how
generalized tuples are represented inside the database. A specific representation for
generalized tuples is often called canonical form. The use of canonical forms should
reduce tuple storage space and query execution time. In particular, as pointed out in
[58], canonical forms should satisfy the following properties:

o Efficiency. Canonical forms should be efficiently computed and efficiently stored.

e Succinctness. By using canonical forms, the detection of inconsistent general-
ized tuples should be efficiently performed, possibly in constant time. Indeed,
inconsistent generalized tuples do not contribute to the definition of the gen-
eralized relation semantics but increase the storage occupied by the relation.
Therefore, they should be removed from the database.
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o Redundancy. Canonical forms are usually obtained by removing redundant
constraints from the original generalized tuples, since they not add any new
information. In general, this is an expensive operation. Therefore, often, only
a partial removal of redundant constraints is performed.

At the generalized relation level, redundancy corresponds to the presence of
generalized tuples whose extension have a non empty intersection. Canonical
forms for generalized relations should avoid this situation.

o Updates. In a database system, it is highly desirable to perform insertions and
updates in time depending only on the size of the individual generalized tuple to
be inserted or updated. Since generalized tuples have to be converted into their
canonical form before being inserted or updated, the generation of the canonical
form must not require a scan of the entire relation.

A canonical form for dense-order constraints, based on tableaux, has been pro-
posed by Kanellakis and Goldin [82] whereas a canonical form for linear polynomial
constraints has been proposed in [61].

2.2.1 Additional topics

As we have seen, each generalized tuple represents a possibly infinite set of relational
tuples, one for each assignment that makes the generalized tuple true in the domain
of the chosen theory. Thus, an universal quantification is assumed when assigning the
semantics to a generalized tuple.

A different approach has been taken in [91] and [133], where each generalized
tuple is interpreted in an existential way. This means that only one assignment that
makes the generalized tuple true is taken as semantics of the generalized tuple. Thus,
a generalized tuple is interpreted as a set of possible values for schema variables.
In [133], several semantics with respect to different understandings of incomplete
information are also proposed.

2.3 Using constraints to query data

From the language point of view, it is important to develop declarative, powerful,
closed, and, at the same time, efficient and bottom-up evaluable constraint query
languages.

A constraint language is closed if each query that can be expressed in the language,
when applied to any input generalized database on a certain theory ®, returns a new
generalized relation that can be represented by using ®. A constraint language is
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bottom-up evaluable if it is possible to assign a bottom-up semantics to any expression
of the language, i.e., the semantics is assigned by induction on the structure of the
expressions.

The basic idea in defining a constraint query language is to extend an already
existing query language to deal with constraints. Such integration should preserve the
“philosophy” of the host language and add only a few new concepts. In defining such
languages, a careful balance between expressive power, computational complexity,
and efficient representation should be achieved. This is in general possible by using
Mathematical Programming (e.g. [129]), Computational Geometry (e.g. [118]) and
Operations Research (e.g. [147]) techniques.

One of the first approachesin this direction has been proposed by Hansen, Hansen,
Lucas and van Emde Boas [72]. In their proposal, constraints modeling infinite rela-
tions are used to increase the expressive power of relational languages. However, they
do not introduce constraints at the data level. The first general principle underlying
the design of constraint database languages has been proposed by Kanellakis, Kuper
and Revesz [83]. In their paper, the syntax of a constraint query language is defined
as the union of an existing database query language and a decidable logical theory.

Another fundamental property of data manipulation languages is declarativity.
By using a declarative language, a user can specify what he/she wants to retrieve
without specifying how the items of interest have to be retrieved. However, to make
possible query optimization and efficient evaluation, declarative user queries have to
be translated into equivalent procedural expressions before they are optimized and
evaluated. In the relational model, the relational algebra represents the procedural
language corresponding to the declarative relational calculus. Similarly to the rela-
tional model, two languages, the generalized relational calculus and the generalized
relational algebra, for the generalized relational model are proposed and proved to be
equivalent.

In the following we survey both the generalized relational calculus and the general-
ized relational algebra. Then, we briefly introduce complexity of constraint languages
and survey some further topics related to constraint query languages, such as the in-
troduction of aggregate functions and recursion.

2.3.1 The generalized relational calculus

The syntax of a calculus-based constraint query language can be defined as the union
of an existing calculus-based query language and a decidable logical theory. In the
relational model, the relational calculus is defined as first order logic extended with an
additional predicate symbol for each relation name [47]. By extending the relational
model with a logical theory, each constraint of the theory becomes a new atomic
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formula for the considered query language.

Example 2.2 Consider a generalized relation name R, having as schema {ID, X,
Y}, with the meaning introduced in Example 2.1. In order to express the query
retrieving all the pairs of intersecting rectangles, using the relational approach, we
have to write:*

{(nhn?) | ny # o A (El a17a27b17b27cl7027d17d2)
(R(nh aq, b17 C1, dl) A R(n27 a2, b27 Ca, d?)
ATz, y € {ay, ag, by, by, c1,¢2,dy, da})
(a1 <2< Ay <y<diNay<z<caNby <y<dy))}

In the generalized relational calculus, the above query is expressed as follows:

{(n1,n2) | n1 # na A (3z,y)(R(ny, z,y) A R(ng, z,y)) }

Note that the use of constraint query languages supports more compact and clearer
query representation.

A query to retrieve all rectangles intersecting the half-plane Y > X +2 is expressed
as follows:

{(n1) | 3a,y) (R(n1,z,y) ANy >z+2)}

In the previous expression, constraint y > x + 2 is used to express a condition on

data. &

In order to formally define the semantics of generalized relational calculus ex-
pressions, predicate symbols and constraints have to be interpreted. The meaning
of predicate symbols depends on the input generalized relations, whereas the mean-
ing of the constraint symbols depends on the particular constraint theory. Thus, the
semantics of the language is based on the semantics of the chosen decidable logical the-
ory, by interpreting database atoms as shorthand for formulas of the theory. Formally,
let ¢ = ¢(z1,...,2,) be a calculus expression using free variables z1, ..., z,. Let pre-
dicate symbols Ry, ..., R, in ¢ name the input generalized relations and let rq, ..., 7.,
be the corresponding input generalized relations. Let ¢[ri/Ry,....,7n/Ry] be the
formula of the theory obtained by replacing each database atom R;(z1, ..., 2;) in ¢
with the formula corresponding to the input generalized relation r;, with its variables
appropriately renamed to zq, ..., zr. The output is the possibly infinite set of points in
the n-dimensional space D", such that the instantiation of the free variables zy, ..., z,,
of formula ¢[ri/Ry, ...,/ Rpy] to any one of these points makes the formula true.

*We use uppercase letters to denote variables belonging to the relation schema and lowercase
letters to denote variables inside calculus expressions.
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Example 2.3 Consider a generalized relation r containing the generalized tuples
ID=1ANX>22AY <land ID =2ANX =3AY > 4. Let ¢(n1,ng) be the
first query presented in Fxample 2.2. The result of the query, when applied to r, can
be represented as follows:

{(a1,a3) | o[R/r][a1/n1, az/n2] is true}

where ¢[R/r] denotes the formula obtained by replacing R(n1,z,y) in ¢ with the
formula (ny =1A2 >2Ay <1)V(ng =2A2 =3Ay >4) and R(ng, z,y) in ¢ with
the formula (ng =1ANax >2Ay < 1)V(ng=2Aa2=3Ay >4). The result of this
query is the set of all the pairs (a1, as) such that, when ny is replaced with ay and ny
is replaced with ay, ¢[R/r] is evaluated to true. &

In the following, the set of generalized calculus expressions is denoted by GCAL.
From a formal point of view, each query language £ is associated with a semantic
function p. Such function takes an expression e of the language and returns a new
function, called query, representing the semantics of e. Thus, p(e) is a function that
takes a database, represented by using the considered data model, and returns a new
database.® In the following, the set of queries, represented by the language obtained
by extending the relational calculus with a logical theory &, is denoted by GCAL(®).

Not all combinations of the relational calculus with decidable logical theories lead
to a closed constraint query language, as the following example shows.

Example 2.4 Consider the theory of real polynomial equalities. These are con-
straints of the form p(z1,...,2,) 0 0, where 8 is = or #. Let R(X,Y) be a bin-
ary predicate symbol for the input generalized relation {Y = X?}. The result of
dz.R(z,y) is the set {Y | Y > 0}, which cannot be represented by polynomial equality
constraints. <&

A fundamental property of the relational calculus is safety [140]. Safety guarantees
that the result of any calculus expression is a finite relation. This assumption is
superfluous for the generalized relational calculus; indeed, if the language is closed,
the result of any query can be finitely represented by using the chosen theory &.

2.3.2 The generalized relational algebra

The algebraic approach represents the correct formalism to obtain both a formal
specification of the language and a suitable basis for implementation.

5 Actually, p(e) is a query if it is a partial mapping between database instances, invariant with
respect to permutations of the domain [36].
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The class of algebras (one for each decidable theory) we present in the following is
a direct extension of the relational algebra and is derived from the algebra presented
in [59, 82, 115]. Since we do not consider any particular theory, no assumption about
the constraint representation is used in defining such algebra.

Table 2.1 presents the operators of the algebra.® Following the approach proposed
in [81], each operator of Table 2.1 is described by using two kinds of clauses: those
presenting the schema restrictions required by the argument relations and by the
result relation, and those introducing the operator semantics. Ry, ..., R, are relation
names and e represents the syntactic expression under analysis. The semantics of
expressions is described by using an interpretation function p that takes an expression
e and returns the corresponding query. The query takes a set of generalized relations
on a theory ® and computes a new generalized relation as result.

Finally, note that Table 2.1, together with the resulting relation, also presents the
relational semantics of such relation.” Table 2.1 thus defines a class of algebras, one
for each logical theory ®.

From the definition of operators, it follows that the algebra is closed if projection
and complement operators guarantee closure. Since projecting out some variables
logically corresponds to existentially quantifying a formula and then removing the
quantifier, closure of the projection operator is guaranteed if the chosen logical theory
admits variable elimination [38]. A theory admits variable elimination if each formula
JX F(X) of the theory is equivalent to a formula GG, where X does not appear. On
the other hand, the complement operator is closed if the logical theory is closed under
complementation, i.e., if, when ¢ is a constraint of ®, then —c¢ is equivalent to another
constraint ¢ of ®.

Given a constraint theory @, admitting variable elimination and closed under com-
plementation, we denote by GRA(®P) the set of all the queries that can be expressed
in the algebra on theory ® and with GRA the set of corresponding expressions.

GRA(®) satisfies an important property: the result of the application of a GRA(®)
query to a generalized database corresponds to the application of the corresponding
relational algebra query to the relational database, represented by the relational se-
mantics of the input generalized relations. This property is stated by the following

SComplement has been included to prove the equivalence of the generalized relational algebra
with the generalized relational calculus. Actually, the algebra proposed in [82] does not include the
complement operator. This operator can be simulated if a relation representing all possible relational
tuples on the given domain is provided. In our setting, we assume that algebraic operators can only
be applied to relations belonging to the database schema. Therefore, we need to explicitly include
this operator.

TOther interpretations could have been defined, maintaining the same semantics for resulting
relations.
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Op. name Syntax e Semantics 7 = p(€) (71, eees )
n € {1,2}
Restrictions
atomic relation | R rel(r) = rel(ry)
r=nr
a(e)’ = a(R)
selection op(R1) rel(r) ={t |t € rel(r1),t € ext(P)}

r={tAP|te&rext(t N P)#0}
a(P) C a(Ry)
a(e) = a(Ry)
renaming o141 (Ry) rel(r) = {t{A| B]*: t € rel(r1)}
r={{{A|B]:ten }
Ac oz(Rl), B Q oz(Rl)
a(e) = (alRi) \ {A}) U (B}
union RiUR, rel(r) = rel(r1) Urel(rz)
r={t|t€rorter}
ale) = a(fy) = a(Re)
projection H[X,l,...,x,p](Rl) rel(r) = {”[X,I,W,X,p](t)d: terel(r)}
r= Uter1 W[X,l,...,x,p](t)e
oz(Rl) = {)(17 ...,Xm}
ale) ={X:, ..., Xi,}
a(e) C a(R)
natural join Ri M Ry rel(r) = {t;1 Witz : &1 € rel(r1),t2 € rel(r2)}
r = {tl A ta | t1 €Er,t2 € T2,6:L‘t(t1 AN t2) ;é @}
a(e) = a(R) Ua(Rs)
complement - R rel(r) ={t |t & rel(r1)}
r={t1,...,tm | &1 V... V&, is the disjunctive
normal form of =1 A ... A =iy,
1 :_{tl, ...,tn},
ext(t;) #0,i=1,...,m}
ale) = a(f)

“We assume that r; does not contain inconsistent generalized tuples, 1 = 1, ..., n.

*We denote by a(e) the schema of the relation obtained by evaluating the query corresponding
to expression e.

°Given an expression F', F[A | B] replace variable A in F' with variable B.

9This is the relational projection operator.

¢Given a generalized tuple ¢, the expression T[Xiy e Xiy ] () represents the set of generalized tuples

obtained by applying a quantifier elimination algorithm to the formula Ja(R1) \ {X:,,..., X, } t.

Table 2.1: GRA operators.
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| Op. name | Syntax e | Restrictions | Derived expression |
difference Ri\ R ale) = a(Ry) = a(Rs) Ry X =R,
Cartesian product Ri x R» a(ri)Na(r) =0 Ri X Ry
ale) = a(R)Ua(Rs)
intersection RiNnR, ale) = a(Ry) = a(R2) Ri X Ry
Table 2.2: GRA derived operators.
proposition.

Proposition 2.1 (Closure property) [82] Let OP be a GRA operator and let

OP" be the corresponding relational algebra operator. Let r;, i = 1,...,n, be gener-
alized relations on theory ®. Then
rel (WOP)(r1, ..., ) = p(OP™) (rel(r1), ..., rel(ry)). O

By using the operators of Table 2.1, some useful derived operators can be defined,
whose semantics is described in Table 2.2.

It has been proved that, given a theory ® admitting variable elimination and closed
under complementation, GRA(®) and GCAL(®) are equivalent [82].

2.3.2.1 Operation efficiency

From a formal point of view, generalized algebraic operators are a direct extension of
relational algebraic operators dealing with infinite relations. The same does not hold
for their implementation. Indeed, algorithms for implementing generalized relational
algebra operators are significantly different from those for the relational algebra, since
they rely on approaches developed in mathematical programming, computational geo-
metry, and operations research.

A minimal requirement for practical constraint databases is that each algebraic
operation must be “efficiently implementable”. This means that the additional op-
erations that must be performed to evaluate algebraic operators, with respect to the
corresponding relational ones, must have a “reasonable cost”. In general, for general-
ized tuples containing m constraints and k variables, algorithms should be polynomial
in m and k (also called strongly polynomial algorithms). The main algorithms that
have to be applied in evaluating algebraic operators can be summarized as follows:

e Projection. One of the most critical issue in designing a “good” algebra is to
make projection simple and cheap. Indeed, projection is a very trivial operation
in relational databases; however, in constraint databases, this operation concep-
tually corresponds to the application of an existential quantifier elimination
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algorithm (for example, the Fourier-Motzkin algorithm [129]) to a generalized
tuple. In general, for a set of m linear constraints with & variables, elimination
of some variables has a worst case complexity bound exponential in m and k.
This complexity is too high when these algorithms are applied in query exe-
cution. Strongly polynomial algorithms for dense-order constraints and for a
specific class of linear constraints have been proposed [58, 59, 26].

In order to reduce the overhead deriving from the application of the projection
operator, it may be useful to delay projection until the relation has to be re-
turned to the user [58]. Under this approach, existentially quantified variables
are maintained inside generalized tuples contained in a generalized relation,
leading to a lazy representation of the relation itself.

Satisfiability check. As we have already stated, inconsistent generalized tuples
should be removed, in order to reduce the occupancy of the relation and the
query execution time. In order to detect inconsistent generalized tuples, a sat-
isfiability check must be performed. The satisfiability check is usually performed
by eliminating all variables and establishing if the obtained formula is always
true in the considered domain. Such algorithms have worst-case polynomial
time complexity in k and m [74].

Redundancy elimination. Algebraic operators often introduce redundant con-
straints inside the generalized tuples. For example, projection of a generalized
tuple often contains more constraints than the original tuple, most of them be-
ing redundant. A similar situation arises for selection, join, and complement
that, by conjuncting different generalized tuples, may introduce redundant con-
straints in the generalized tuples. Finally, when performing the union of two
relations, redundant tuples, corresponding to the presence of duplicates in the
relation, should be removed.

Redundancy elimination is a very expensive operation. For example, by as-
suming we deal with LPOLY, removing redundant generalized tuples from a
generalized relation is a co-NP complete problem [131].

2.3.3 Complexity of relational constraint languages

Constraint query languages can be used in practice only if the data complexity of
the queries they represent is low. The data complexity of a query ) is the time
complexity, measured with respect to the size of the database, of a Turing machine
that, given an input database d, produces a new database )(d) as output, assuming a
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standard encoding of the database [83, 144] (see [8] for an introduction to structural
complexity).

The data complexity of a language is considered acceptable if it is in PTIME, i.e.,
if all queries that can be expressed in the language can be executed in polynomial
time in the size of the input database.

Data complexity is a common tool for analyzing expressibility in finite model
theory. The complexity parameterin data complexity is the number of items contained
in the database. Therefore, in constraint databases, this corresponds to the number of
generalized tuples contained in the input generalized relations. Under this approach,
the number of variables k contained in the generalized tuples is treated as a constant
[37, 144]. This use of data complexity distinguishes the constraint database framework
from arbitrary, and inherently exponential, theorem proving.

Under the hypothesis of data complexity, many combinations of database query
languages and decidable theories have PTIME data complexity [3, 65, 92, 121]. For
example, the relational calculus extended with poLY is in NC whereas the relational
calculus extended with DENSE or EQ is in LOGSPACE. Note however that this does
not necessarily means that the algorithms used are efficient. Indeed, data complex-
ity often hides parameters in which algorithms are exponential (this is the case of
parameter k for projection) in a large constant [113].

2.3.4 Additional topics

In order to be practically usable, constraint query languages should support all func-
tionalities of typical relational languages, such as SQL.

In this respect, an interesting issue is related to the integration of aggregate func-
tions inside constraint query languages. Aggregate operators in the relational context
allow the expression of statistical operations such as AVG, MIN, COUNT [88]. When
dealing with constraint databases, some aggregate operators, such as COUNT, are not
applicable, since relations are infinite. However, other operators, such as length, area
and volume, have to be considered [93].

The introduction of such aggregate functions in constraint query languages may
result in new languages that are not closed. This is true for any of the interesting class
of constraints, i.e., dense-order, linear, or polynomial constraints [93]. In [45], some
aggregate operators under which constraint query languages are closed are presented.
In [44] a restriction on the schema of constraint databases is proposed to guarantee
closure of languages dealing with aggregate functions.

Another operation which is nowadays essential for expressing practical queries
is recursion. It is well known that recursion cannot be expressed by using first
order logic. Constraint query languages dealing with recursion can be obtained by
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introducing constraints in logic-based query languages, such as Datalog [83]. As for
aggregate functions, the main problem is to define query languages having a tractable,
i.e., polynomial data complexity and guaranteeing closure. We refer the reader to
[60, 83] for some work on this topic.

Finally, as with any other database system, constraint database systems should
include update languages. This is an essential aspect in order to define a complete
data manipulation language for constraint databases. The only work on this topic we
are aware of has been developed by Revesz [123]. Starting from the consideration that
users should specify which kind on information has to be inserted in the database,
without specifying how this can be achieved, Revesz introduces the concept of model-
theoretical minimal change [85] for relational constraint databases, based on PoLY.

2.4 Modeling complex objects in constraint databases

The generalized relational model extends the relational model to deal with possibly
infinite, but finitely representable, relations. Thus, it inherits all its modeling limit-
ations. For example, it cannot model complex entities nor support modular schema
definitions. The need to represent composite data has lead to the definition of object-
oriented data models [22] and nested relational data models [1]. Such models extend
the traditional relational model to model not only flat data, represented by set of
tuples, but also complex data, obtained by arbitrary combinations of set and tuple
constructors.

An interesting topic is how the object-oriented data model and the nested rela-
tional data model can be extended to deal with constraints. In the following, we
survey the approaches proposed in the literature for both kinds of extensions. Table
2.3 classifies these approaches according to four criteria: the underlying data model;
the chosen theory and the underlying query language; the maximal allowed set depth;
the data complexity.

2.4.1 Introducing constraints in the nested relational model

The simplest idea for introducing constraints in the nested relational model is to use
generalized tuples to finitely represent infinite sets of tuples. As for the generalized
relational model, it is necessary to provide a framework for extending the nested
relational model with an arbitrary decidable logical theory. This allows the model to
be used in different types of applications.

The first approach towards the definition of such a model has been proposed
by Grumbach and Su [65]. The proposed language, called C-CALC, is obtained
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Language Theory Max. Complexity
Underlying nesting
query language

LyriC LPOLY n>0 C PTIME
XSQL [87]

DatalogCP(Z) set constraints on in- | 2 C EXPTIME
teger numbers
Datalog

C-CALC DENSE n>0 C H-EXPTIME
relational calculus for
complex objects [75]

FO(Region, Region’) - 2 it depends on Region

and Region’

FO

Table 2.3: Language comparison.

by extending the nested relational calculus [75] to deal with infinite sets, finitely
representable with DENSE.

The main limitation of C-CALC is that its semantics is well defined only for
DENSE. Thus, the language cannot be used for real-life spatial applications, where
at least linear polynomial constraints are needed. Moreover, the data complexity of
C-CALC is hyper-exponential (denoted by H-EXPTIME in Table 2.3) in the size of
the database. The high complexity is mainly due to the fact that variables may range
over sets.

Another proposal to introduce complex objects into the relational model is due
to Revesz, which proposed the Datalogcp(z) language. This language allows the
representation of possibly infinite sets of integers by extending Datalog to deal with set
constraints [35, 122]. The data complexity of this language is exponential. Moreover,
it does not allow arbitrarily complex objects to be represented but only a specific
type of sets.

Finally, we also recall the languages proposed in [112], where first-order logic
(FO) is extended to deal with quantifiers ranging over specific regions (i.e., sets of
points) and not over points, as usual.

2.4.2 Introducing constraints in the object-oriented model

Brodsky and Kornatsky [28] introduce constraints as first-class objects in an object-
oriented framework. To guarantee a low data complexity, LPOLY is considered. How-
ever, the framework can be extended to deal with any other logical theory.

In this approach, constraint formulas (usually represented by existentially quanti-
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fied disjunctions of conjunctions of constraints) are interpreted as objects, in the usual
object-oriented terminology [22]. Object identifiers are represented by object canon-
ical forms. Thus, equivalent constraints with different canonical forms are considered
different objects. Constraint objects are organized in classes. The class C'ST (k)
identifies all constraints with k& variables. Methods are in this case represented by
the usual operations on constraints, such as union and intersection. An inheritance
hierarchy exists between constraint classes. In particular, CST(k + 1) is considered
a subclass of C'ST' (k).

To query the object-oriented database, a language, called LyriC, has been pro-
posed, extending a typical object-oriented query language [87] to the new constraint
framework. This language is equivalent to the usual generalized relational calculus,
extended with linear polynomial constraints.

As a final consideration it is important to note the main difference between the
introduction of constraints in the relational or the nested relational model, and in
the object-oriented model. In the latter case, the model is extended to deal with a
new type of object. In the former case, a specific type of constraint formulas, the
generalized relations, represents the model itself [25].

2.5 Applications of constraint databases

From an application point of view, at least two main characteristics make constraint
databases attractive:

e Constraints are characterized by a high modeling power and can serve as a
uniform data type for conceptual representation of heterogeneous data, including
spatial and temporal data and complex design requirements.

e Constraint query languages use the same formalism to represent typical data
manipulation operators, instead of using a separate operator for each type of
transformation, as it is typically done in spatial and temporal databases.

For these characteristics, constraint databases are suitable to model spatio-tempo-
ral applications, including multidimensional design [28], resource allocation, data fu-
sion and sensor control, shape manipulation in multimedia databases [18,; 16]. In the
following we survey some of the specific topics arising when using constraints to model
spatial and temporal applications.

2.5.1 Spatial applications

Spatial applications require both relational query features, arithmetic computation
and extensibility to define new spatial data. Both the relational and the object-
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oriented model fail to model spatial data. Indeed, extensions of database systems
with spatial operators typically are: (i) limited to low (typically 2- or 3-) dimensional
spaces; (ii) have query languages restricted to predefined spatio-temporal operators;
(iii) lack global filtering and optimization. Moreover, spatial and non-spatial data are
often not homogeneously integrated.

The previous drawbacks can be overcome by constraint databases because:

e They support a homogeneous description of spatial data together with simple
relational data.

e The geometry of point sets is implicit in the concept of constraint.

e Constraint theories often support a direct implementation of spatial operators,
simplifying query optimization.

Kanellakis claims that by generalizing the relational formalism to the constraint
formalism, it is in principle possible to generalize all the key features of the relational
data model to spatial data models [80]. A first step in this direction is represented
by the constraint relational algebra proposed for spatial databases by Paredaens et
al. [114, 115].

According to the definition of spatial data given in [70], LPOLY has the sufficient
expressive power to describe the geometric component of spatial data in geographical
applications [94]. In order to represent geometry of geographical objects by using
constraints, the approach is to use a generalized relation with n variables representing
points of a n-dimensional space.

Note that concave spatial objects cannot be represented by a single generalized
tuple. Rather, a set of generalized tuples is needed containing one generalized tuple
respectively for each convex object belonging to the convex decomposition of the
composite spatial object. Moreover, an identifier should be assigned to all generalized
tuples representing the same object.

The types of point-sets of £ which can be described by using generalized tuples
on LPOLY are shown in Table 2.4. The first three types, POINT, SEGMENT and
CONVEX, correspond to conjunctions of constraints of the LPoLY. The fourth type,
COMPOSITE Spatial Object, corresponds to a set of generalized tuples. In the
table, we restrict our attention to the Euclidean Plane (£?) and we assume that
the generalized relation schema is {ID, X,Y}. Variable I D represents the object
identifier whereas variables X and Y represent the object points.

Generalized relational languages introduced in Section 2.3 can be used to directly
model typical spatial manipulations, as discussed in the following example.
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Graphical Analytical Representation in LPOLY®
representation representation
POINT Cp(p) = (ID = cia)’A
(p) p=(z,y) (X —z=0)A
b (Y —y=0)
SEGMENT
(s) Cu(s) =
Py = (x1,
P2 s = Pl = Ezl Zlg ([D - cld)
. 2 2 I (£1 = X <O)A (X — 22 <O)A
riaztby+e=0 (aX +bY +c=0)°
Py
CONVEX o) =
(c) Ce
P, = (CE,‘, yl) ([ = Czd)/\
P, P, c= rita;x+bxr+c; =0 (sg(Pr, P2)(a1 X +b1Y 4+ ¢1) > 0)
1=0—>n Ao A
Py 7o (sg( 1, Pr)(an X +0,Y 4+ ¢5) > 0)¢
COl\/éPO)SITE Cor(csp) =
P (ID = cia)A
83 Co(p)ANID =cqq, ...,
D1 %y csp = (mU..Upy)U épl(’]gnl))/\ 1D = ] U
51 E‘“E"'SS";) v {Cu(s1) AID = cig, ...,
€2 e Ci(sm) AID = cig} U
C1 P2 {Cex(c1) N ID = cia, ...,
Cca:(sl) ANID = C,‘d}

“In all the presented tables, symbol = is used to denote syntactic equivalence.

bc;q is a numeric constant.

“One or both of the first two disjuncts of this formula can be removed if a semi straight line or
a complete straight line has to be represented.

4The introduction of the function sg() is necessary in order to take into account that the polygonal
region represented by a simple polygon is always on the left side of the polygon itself. Thus, function
sg(Pl,PQ) returns 1 or —1 according to the direction of the line defined by P; and P».

Table 2.4: Representation of point-sets of the Euclidean Plane in LPOLY.
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| Query | GRA expression | Conditions |
RANGE ERASE QUERY:

calculate all spatial objects
obtained as difference of | R\ op(RU-R)*
each object in R with a rect-
angle rt € £2

RANGE QUERY ON PRO-
JECTION: retrieve all spa-
tial objects in R whose pro- | Ilj;pj(op (Ijp, xj(R))) MR | P=(x0 < X)A (X < x1)
jection on the X axis inter-
sects the interval [zo, z1]
SPATIAL INTER- | RX Q[ID“D,](S)
SECTION: generate all spa-
tial objects that are intersec-
tion between one object in R
and one object in S

“The difference operator (\) is defined as derived operator in Table 2.2.
C.y() is defined in Table 2.4.

Table 2.5: Examples of spatial queries in GRA(LPOLY).

Example 2.5 (GRA(®) for spatial applications) Table 2.5 shows some spatial
queries referring to a geographical application (the reader can refer to [50, 57, 70,
128, 139] for some examples of spatial query languages and models). For each query,
the table contains a textual description and the mapping to GRA. Queries refer to
two sets of spatial objects, which are represented by two generalized relations R and S
on LPOLY, where a(R) = «(S)={ID,X,Y}. ID is the generalized tuple identifier
whereas X and Y represent points of the spatial objects. <&

2.5.2 Temporal applications

The management of temporal information is an important topic in current database
research.  Due to their ability to finitely model infinite sets of points, generalized
databases have been successfully used to represent infinite temporal information [10,
79, 109], arising when describing situations that are repeated in time. Linear repeating
points are a typical type of constraints used for these purposes. A linear repeating
point has the form ¢+ kn, where ¢ and k are integer numbers and variable n takes
values from the set of all integer numbers. Thus, each linear repeating point represents
an infinite sequence of time points. A generalized tuple in most temporal models
consists of a set of linear repeating points and a set of non-temporal data values.
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Analytical Representation in DENSE
and graphical representation
INSTANT (3) Cins()) = (ID =cia)* AN (X =k)
7
|
k

INTERVAL (int) Cine(int) = (1D = cia)
1

wnt

—

 E—

ki ko
NON-CONTIGUOUS INTERVAL (intp)

Cnci(intp) = {]D = Cia N\ Cins(il), ey
ID =cig N\ Cins(in)} W]
{]D = Cia N\ Cl‘m(intl), ey
ID = c,‘d/\Cl‘m(intm)

(11 U...Utn) U (int1 U...Uinty)

ity 11 ntm in
| |
T 1

“ciq 18 a numeric constant.

Table 2.6: Representation of subsets of the axis of time in DENSE.

Additional constraint on temporal attributes can be added to each tuple.

The representation of time intervals is another interesting application for con-
straint databases. An interval consists of a time duration which is bound by two
endpoints. These endpoints are instants on the time axis. An interval degenerates to
an instant when its endpoints coincide. Moreover, an interval is non-contiguous if it
does not contain all instants of the axis of time which lie between its endpoints. The
dense-order constraint theory is sufficient to represent the types INSTANT, INTER-
VAL and NON-CONTIGUOUS INTERVAL, as shown in Table 2.6.

Note that non-contiguous intervals, similarly to composite spatial objects, can
only be represented by using sets of generalized tuples.

The generalized relational languages introduced in Section 2.3 can be used to
directly model typical temporal manipulations, as discussed in the following example.

Example 2.6 (GRA(®) for temporal applications) Table 2.7 shows some quer-
ies involving temporal data. The queries concern the trains arriving at a transit
station S and leaving from the same station S. The entire set of information is
represented by a generalized relation A on DENSE with four variables (1D, F,1,T).
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| Query | GRA expression | Conditions |
INSTANT QUERY: select P = Cins(t)
all trains standing by at sta- | ljrpj(op (A4)) oz(]_D) :mE]}

tion S at time ¢

INTERVAL QUERY: re-

trieve all trains that leave P=(I=3)

to station 3 after time ¢, to- H[ID,F](UP(UQ (4))) Q= QPost(CinS(t))b
gether with their departure a(Q) ={I}

station

TEMPORAL JOIN: re-
trieve all trains with destin- H[ID,ID'](UP (A) M A')

P
ation station 3, standing by | 4/ _
R S = Q[iD JE i, T og (A
at station S together with a By Fies 'TI]( @ (4) @

train from station 4

“Cine() is defined in Table 2.6.
bQPOSt(t) is a short form for the set of instants that follow the intervals represented by ¢.

Table 2.7: Examples of temporal queries GRA(DENSE).

Variable I represents the interval during which the train stops at station S, variable
F represents the numeric code of the departure station of the train, and variable T
represents the numeric code of the destination station of the train. Finally, vari-
able 1D uniquely identifies each group of information (thus, it is a generalized tuple
identifier). The time is expressed in minutes from the beginning of the day. <&

2.6 Concluding remarks

Constraint databases are a young research area. In this chapter we have investigated
the main issues arising in the extension of existing data models with constraints and
we have surveyed several approaches.

Three main constraint database system prototypes have already been developed.
CCUBE [30] is a constraint object-oriented database system. It has been implemen-
ted on top of a commercial object-oriented database system and supports standard
database features. The query language provided is LyriC. The database supports
extensible constraint families, aggregation, optimization and indexing.

Another implementation effort is the DISCO system [35]. DISCO (Datalog with
Integer and Set Order COnstraints) has a high expressive power, due to the class of
constraints considered and the underlying query language (see Section 2.4). However,
its data complexity is exponential in the size of the database and it does not support
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important database features such as persistent storage.

Finally, DEDALE [62, 63] is a prototype of recent definition, introducing linear
constraints inside the generalized relational calculus. Like CCUBE, DEDALE has
also been implemented on the top of an object-oriented database system. The main
issue in developing such a system has been the comparison of two different data-
base technology: constraint databases and spatial databases. For this reason, several
optimization issues have also been considered in the development of such a system.

As a final remark, it is useful to recall that an important direction of research is
the analysis of the expressive power of constraint query languages. In this respect,
the main questions are whether and how some typical spatial and temporal queries
can be expressed in a constraint query language based on a given theory ®. We refer
the reader to [3, 15, 64, 66, 92, 142] for some results on this topic.

Besides the work on constraint databases reported in this chapter, constraints
have also been considered in the database literature to optimize deductive queries, i.e.,
queries expressed using logical rules [140]. In particular, the problem of manipulating
and repositioning constraints inside logical rules has been extensively investigated

86, 95, 100, 106, 132, 135].



Chapter 3

New languages for relational
constraint databases

The languages presented in Section 2.3 handle a generalized relation as a (possibly
infinite) set of relational tuples. This approach forces the user to think in term of
single points when specifying queries; as a consequence, the only way to manipulate
generalized tuples as single objects is to assign an identifier to each generalized tuple.

We believe that the relational semantics is not the only way to assign a meaning
to generalized relations. In particular, a generalized relation can also be interpreted
as a nested relation [1, 2], containing a finite number of possibly infinite sets, each
corresponding to the extension of a generalized tuple.

By assigning a nested semantics to generalized relations, the user has to think
in term of sets. Therefore, new languages should be introduced in order to be able
to manipulate generalized relations under the new semantics. In particular, such
languages should manipulate generalized relations in two different ways:

o As a possibly infinite set of points in a d-dimensional space: a typical example
is the detection of the intersection of the extension of a set of generalized tuples
with a specific region of space. This type of manipulation is called point-based.

o As a finite set of objects, each represented by a possibly infinite set of points:
a typical example is the detection of all generalized tuples whose extension
is contained in the extension of a given generalized tuple. In this case, the
same computation is applied to all the points belonging to the extension of the
generalized tuple. This type of manipulation is called object-based.

The aim of this chapter is the introduction of the nested semantics and of some
languages based on it. As a second contribution we investigate the issue of intro-

33
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ducing external functions in the proposed languages. This is a very important topic
in constraint databases. Indeed, the chosen logical theory is often not adequate to
support all the functionalities needed by the considered application. Such additional
functionalities can be made available in the constraint language in the form of external
functions.

The chapter is organized as follows. We first extend the definition and the se-
mantics of generalized tuples, by introducing the nested semantics (Section 3.1).
Then, we propose a classification of generalized relational languages for constraint
databases (Section 3.2) with respect to the semantics on which they are based (either
relational or nested). An algebra and a calculus based on the nested semantics are
introduced in Section 3.3 and Section 3.4, respectively. The introduction of external
functions in the proposed languages is investigated in Section 3.5 whereas in Section
3.6 we formally prove their equivalence. Finally, Section 3.7 presents some concluding
remarks.

3.1 The extended generalized relational model

As we have seen, each generalized tuple represents a (possibly infinite) set of rela-
tional tuples. In Section 2.2, generalized tuples have been defined as conjunctions of
constraints. Thus, an arbitrary set, which can be represented in FO extended with
the theory ® without quantifiers, cannot always be represented as the extension of a
generalized tuple. In particular, only convex sets of points can be represented by a
single generalized tuple. Non-convex sets of points can only be represented by using
several generalized tuples (see Section 2.5).

In the following, we extend the definition of generalized tuple, in order to express
more general sets in their extension. This is possible by using additional logical
connectives. The basic requirement is that generalized tuples must be quantifier-
free, to guarantee an eflicient computation. As we will see in Section 3.2, the use of
more expressive generalized tuples increases the expressive power of some classes of
constraint languages.

Definition 3.1 (Extended generalized relational model) Let ® be a decidable
logical theory and ¥ a set of FO logical connectives without quantifiers (X is called a
signature). A generalized tuple on ® and ¥ over variables Xy, ..., Xy is a FO formula
whose free variables belong to X4, ..., Xy, atoms are atomic formulas on ®, and logical
connectives belong to 2. A generalized relation on ® and X is a set of generalized
tuples over ® and X; a generalized database on ® and X is a set of generalized
relations on ® and X. a
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Notice that, under the new definition, generalized tuples introduced in Definition
2.1 are generalized tuples on ® and {A}.

Since we have defined ¥ to be a set of FO logical connectives without quantifi-
ers, the only possible signatures are: {A},{V},{A,V}, {—,A},{=,V},{=,A,V}. By
considering only theories @ closed under complementation, the sets of all general-
ized tuples on ® and one of the signatures {A, V}, {—, A}, {—,V}, {—, A, V} coincide.
Therefore, in the following, to simplify the notation, we only consider the signatures
{n},{V}, and {A,V}. Generalized tuples on ® and {A,V} allow us to represent all
the sets that can be characterized in FO without quantifiers and are called disjunctive
generalized tuples or d-generalized tuples.

For what we will discuss in the following, it is useful to denote in some way the set
of generalized relations on ® and ¥, leading to the definition of extended generalized
relational support.

Definition 3.2 (EGR support) Let ® be a decidable logical theory and ¥ a signa-
ture. The set of all generalized relations over ® and ¥ (denoted by S(®,X)) is called
extended generalized relational support (EGR support for short) over ® and ¥. O

Note that the generalized relations introduced in Definition 2.1 belong to

S(®,{A})-

Example 3.1 Tables 3.1 and 3.2 show how composite spatial objects and non-conti-
guous intervals can be represented by using disjunctive generalized tuples. In such a
representation, each disjunct represents, respectively, a convex polygon belonging to
the convexr decomposition of the original object, or either an instant or an interval
belonging to the representation of the non-contiguous interval. No generalized tuple
identifier is needed in this case. <&

3.1.1 Nested semantics for EGR supports

The relational semantics is not the only way to assign a meaning to generalized
relations. In particular, generalized relations can be interpreted as nested-relations
[1, 2]. A nested-relation is a relation in which attributes may contain sets as values. A
generalized relation can be interpreted as a nested-relation containing a finite number
of possibly infinite sets, each representing the extension of a generalized tuple. This
interpretation leads to the definition of the following semantics.

Definition 3.3 (Nested semantics) Let r = {ty,...,t,,} be a generalized relation.
The nested semantics of r, denoted by nested(r), is the set {ext(t1),...,
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Graphical Analytical Representation using
representation representation d-gen. tuples in LPOLY

COMPOSITE (csp)

S3

P1 _
) Cei(csp) =
52 csp = (pU..Upp)U '
51 ESiU...Usm)) U (Cp(p1) V ...V Cp(pn)) V
- (c1U...Uey) (Ce(s1) V ooV Celsm) V
C1 D2 (Cc.r(cl) \% V Cep Sl))

Table 3.1: Representation of concave sets of points in the Euclidean Plane in LPOLY.

Analytical and Representation using
graphical representation d-gen. tuples in DENSE

NON-CONTIGUOUS INTERVAL (intp)

Crei(intp) = (Cins(i1) V oo V Cins(in)) V

(11 U...Utn) U (inty U...Uinty,) (Com(int1) V.V Cone(int)

int1 il intm ln
] (. |
L1 LI A [ | T

Table 3.2: Representation of non-contiguous subsets of the axis of time. in DENSE

ext(ty,)}. Two generalized relations ri and ry are n-equivalent (denoted by ry =, r2)
iff nested(ry) = nested(rz). O

Note that distinct generalized tuples with the same extension represent the same
object. From Definition 3.3 it follows that, if two generalized relations are n-equivalent,
they are also r-equivalent [13]. However, the converse does not hold, as shown by the
following example.

Example 3.2 Consider a generalized relation ry containing only the generalized tuple
1 <X <2A2<Y <4 and the generalized relation ro containing the generalized
tuples 1 < X <2A2<Y <3 and 1 < X <2A3 <Y < 4. It is simple to show that
r1 =, ro. However, ry #,, o, since the sets represented inside ry,ry are different. <&

3.1.2 Equivalence between EGR supports

The aim of this subsection is to compare the expressive power of different EGR
supports with particular attention to S(®, {A,V}) and S(®, {A}). For this purpose,
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we first introduce the concept of containment and equivalence for supports. We
propose a general definition of these concepts, considering supports with arbitrary
theories and signatures.

Definition 3.4 (Equivalence of EGR supports) Let S(®,%;) and
S(®,3,) be two EGR supports. Let t € {r,n}. S(®,%;) t-contains S(P,Xy) (de-
noted by S(®,%4) C; S(P,Xq)) iff for each generalized relation r € S(P,X;) there
exists a generalized relation ' € S(®,%4) such that r =, r'. S(P,%;) and S(P, Xy)
are t-equivalent (denoted by S(P, %) =, S(P, X)) iff S(P, %) t-contains S(P, Xy)
and S(®,X;) t-contains S(P, 34). o

From the properties of first-order logical connectives [38], the following result

holds.

Proposition 3.1 Let S(®,%;) and S($,%X;) be two FEGR  supports.
S(®@,%) =, S(®,X9) iff the signature X1U{V} is equivalent* to XyU{V}. S(®,%)) =,
S(P, Xq) iff the signature ¥y is equivalent to ¥s. O

From the previous proposition, it follows that S(®,{A,V}) is r-equivalent to
S(®,{A}), but S(®,{A,V}) is not n-equivalent to S(P, {A}).

3.2 Extended generalized relational languages

The classes of algebraic and calculus-based languages (one for each decidable logical
theory admitting variable elimination and closed under complementation) presented
in Subsection 2.3 are based on the relational semantics for generalized databases (see
Table 2.1 and Proposition 2.1).

In general, when adopting the nested semantics for generalized relations, other
operators can be defined, considering the extension of each generalized tuple as a
single object. The following example better clarifies which operations can be useful.

Example 3.3 Consider a relation R, representing spatial objects contained in the
Fuclidean plane and having schema N, X,Y, where N is a generalized tuple identifier
and X and Y represent the object points. Consider the query “Find all objects in R
that are contained in the object 0”. Let P be the generalized tuple representing “o”

'Two sets of first-order logic operators A and B are equivalent iff for each formula that can be
expressed by using operators in A there exists an equivalent formula, expressed by using operators
in B, and vice versa.
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in the Fuclidean space. Let a(P) = {X,Y}. This query is expressed in GRA(®) as
follows:

(Hgrpy(R)\ (I py(R \ op(ID)))) M R.

The previous expression has the following meaning:

e op(R) selects the points (X,Y) of R contained in P, together with the identifier
of the object to which they belong.

o lp(R\ op(R)) selects the identifiers of the objects having at least one point
not contained in P. Thus, all the retrieved identifiers correspond to objects not
contained in P.

o lp)(R)\ (Izp)(R\ op(R))) selects the identifiers of the objects contained in
P.

o (I;;py(R) \ (Nrp)(R\ op(R)))) M R selects the objects contained in P.

The previous expression is not very simple to write and to understand, even if
the query is one of the most common in spatial applications. The problem is that the
query deals with the extension of generalized tuples taken as a single object, whereas,
in general, GRA operators deal with single relational tuples, belonging to the extension
of generalized tuples. <&

In a general setting, we believe that at least two classes of languages to manipulate
generalized relations can be designed:

e R-based languages. R-based languages are such that the relational semantics of
the result of any query they can express is equivalent to the result of an equival-
ent relational language query, when applied to a set of relations representing the
relational semantics of the input generalized relations (as the algebras presented
in Subsection 2.3.2).

o N-based languages. N-based algebras are such that the nested semantics of the
result of any query they can express is equivalent to the result of an equivalent
nested-relational language query [1, 2], when applied to a set of nested relations
representing the nested semantics of the input generalized relations.

All relational algebra expressions can obviously be expressed in the nested rela-
tional algebra. The same holds for the calculus. It has been proved that also the
opposite result holds [116], when input and output relations are not nested objects.
When input/output relations are nested objects, the equivalence is guaranteed by the
use of object identifiers to code nested objects into flat ones [141].



3.2. Extended generalized relational languages

39

q
T1yeeyTh Frn1
rel{nested rel \nested
7 ! 7
T‘l,...,T‘n r?’L-l—l
7
q

Figure 3.1: R-based and n-based languages.

In the remainder of this paper, we use the following notation. Let L be a constraint

relational language.

o [(®) is the set of all the queries that can be expressed in L (also called semantic

language). Thus, for each expression e € L, there exists a function p(e) € L(P)
representing the semantics of e.

Note that each query in L(®) is a function with polymorphic type, since it can
be applied to arbitrary supports. Moreover, there exists a one-to-one corres-
pondence between expressions contained in L and queries contained in L(®).
For this reason, in the following, when it is clear from the context, we use in-
differently L and L(®) to denote both the syntactic and the semantic language.
Similarly, an expression e is also used to denote the semantic function p(e).

L(®,Y) is the set of all the queries contained in L(®) and having S(®, X)) as
support.

Note that, by using this notation, GRA(®), introduced in Subsection 2.3.2,
corresponds to GRA(®,{A}). Thus, from now on, we use this notation.

We can finally introduce n-based and r-based languages.

Definition 3.5 (R-based and n-based languages) Let L be a constraint query
language. Let ® be a logical theory admitting variable elimination and closed under
complementation. Let Rel be the set of all relational queries. Let N_Rel be the set

of all nested-relational queries. Then:

o L(®) is r-based iff there exists a query mapping h : L(®) — Rel such that
h(q) = ¢’ and for all supports S(®, %), for all generalized relations r; € S(®,X),

i=1,..,n, rel(q(ry,....rn)) = ¢(rel(r1), ..., rel(ry,)) (see Figure 3.1).
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o L(®) is n-based iff there exists a query mapping h : L(®) — N_Rel such that
h(q) = ¢' and for all supports S(P,Y), for all generalized relations r; € S(P, %),
i = 1,...,n, nested(q(ry,...,mn)) = ¢’(nested(r1), ..., nested(r,)) (see Figure
3

). a

Note that Definition 3.5 implies that algebraic operators are independent of the
chosen support, i.e., similar computations can be applied to different supports.
Moreover, from Definition 3.5 and Proposition 2.1, it follows that GRA(®P) and
CAL(®) are r-based.

Since relational operators are part of any nested-relational algebra, r-based al-
gebras are also n-based. The same holds for the calculus. We call strict n-based
languages the languages that are n-based but are not r-based.

3.2.1 Relationship between languages and EGR supports

Given two semantic languages, the relationships existing between the supports on
which they are based allow the detection of some relationships between the express-
ive power of such languages. In order to formalize these notions, the concept of
equivalence between languages is introduced.

Definition 3.6 (Equivalence between languages) Let Ly and Ly be two con-
straint query languages. Let ® be a decidable theory, admitting variable elimination
and closed under complementation. Let S(®,%4) and S(®,X3) be two EGR sup-
ports. Lett € {r,n}. L1(P,X;) is t-contained in L2(P, ;) (denoted by L1 (P, %) C;
Lo (®,35)) iff for each query q € L1(P,34) there exists a query ¢' € La(P,X5) such
that for each input generalized relation r; € S(®,%;), ¢ =1, ...,n, a generalized rela-
tionr! € S(®,Sy) exists such that r; =; vl and q(ry, ..., ) =¢ ¢ (r], ooy rh). L1 (P, 39)
is t-equivalent to Lo(®,%5) (denoted by L1 (P, %) =, L2(P,X9)) iff L2(P,3s) <
Ll(q)7 21) and Ly (CI)7 22) ¢ Ll(q)7 21) O

In the following, if the queries associated with two expressions e; and e, are
t-equivalent we write e; =; es.

Note that in the previous definition of equivalence, equivalent expressions take
equivalent input relations. We now analyze the expressive power of a constraint
language L(®P) with respect to different EGR supports (proofs of the following results
are presented in Appendix A).

Proposition 3.2 Let L1 and Ly = L be two constraint query languages. Let ® be
a decidable theory admitting variable elimination and closed under complementation.
Let t € {r,n}. The following facts hold:
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1. If L;(®) is t-based, then for all S(®,%;), S(P,X;), S(P,%) S S(P, %) iff
LZ(¢7 21) - LZ(¢7 22)

2. ]f Ll(q)7 21) = L2(¢7 22) then S(@, 21) = S(@, 22) a

Since GRA(®) is r-based and S(®,{A}) =, S(P,{A, V}), Proposition 3.2 implies
that queries that can be expressed in GRA(®, {A}) can also be expressed by using
GRA(®,{A,V}).

Another interesting property is stated by the following proposition.

Proposition 3.3 Let L be a constraint query language. Let ® be a decidable theory
admitting variable elimination and closed under complementation. Lett € {r,n}. Let
S(P, %) and S(P,Xs) be two FGR supports. If L(®) is t-based, for all ¢ € L(P),
for all ri,...,r, € S(®,%y) and for all vy, ...,rl, € S(®,Xs), such that ri = ry,

q(riy ey o) =¢ q(ry, ...y rl) holds. O

Proposition 3.3 specifies that queries expressed in a t-based language are inde-
pendent of the particular representation given to t-equivalent generalized relations.
Note that the previous propositions, as well as Definition 3.5, imply that the semantics
of operators is independent of the chosen support.

3.3 EGRA: a n-based generalized relational algebra

In the following, we present a n-based algebra for constraint databases that we call
FEzxtended Generalized Relational Algebra, since it is obtained by extending the gen-
eralized relational algebra with new operators. In particular, it provides two sets of
operators, representing two different types of data manipulation:

1. Set operators. They apply a certain object-based computation to groups of
relational tuples, each represented by the extension of a generalized tuple.

Consider a generalized relation R(.X,Y) where each generalized tuple represents
a rectangle. Each tuple has the form: X > a1 AX < asAY > b AY < by, If we
want to know which rectangles are contained in a given space, each generalized
tuple must be interpreted as a single object and a subset of the input rectangles
must be returned as query answer.

2. Tuple operators. They apply a certain point-based computation to generalized
relations and assign a given nested representation to the result. As an example
of an application, consider again a generalized relation R(X,Y) where each
generalized tuple represents a rectangle. The detection of the set of points
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representing the intersection of each rectangle with a given spatial object is a
typical tuple operation.

Note that, under the nested semantics, tuple operators apply computations to
relational tuples, nested inside sets and represented by generalized tuples.

We believe that both types of operators are useful when dealing with constraint data-
bases, since they correspond to two complementary types of generalized tuple manip-
ulations.

The new syntactic language is denoted by EGRA. EGRA operators are the fol-
lowing:

e Tuple operators, except complement, are exactly the operators introduced in
Table 2.1.

The EGRA complement operator always returns a generalized relation which
is relationally equivalent to the generalized relation returned by the GRA com-
plement operator (when both operators are applied to the same generalized
relation). However, such resulting relations are not nested equivalent.

e Set operators are the following:

1. Set difference. Given two generalized relations r; and ry, this operator
returns all generalized tuples contained in ry for which there does not
exist an equivalent generalized tuple contained in ry. This is the usual
difference operation in nested-relational databases [1, 2].

2. Set complement. Given a generalized relation r, this operator returns a
generalized relation containing a generalized tuple ¢’ for each generalized
tuple ¢ contained in r; ¢’ is the disjunctive normal form of the formula —t.

3. Set selection. This operator selects from a generalized relation all the
generalized tuples satisfying a certain condition. The condition is of the
form (Q1,Q2,80), where 8 € {C, (M#£ ()} and @y and () are either:

— A generalized tuple PP on the chosen support.
— Expressions generated by operators {¢/0,Ilx,  x,/1}. t represents
the input generalized tuple whereas the interpretation of [y, . x,]is

a function taking a generalized tuple ¢’ and returning the projection
of t' on variables Xy, ..., X,,.
In order to point out that ¢ and () are applied on a single generalized
tuple ¢, in the following they will be denoted by Q1 (¢) and Q2(¢). Moreover,
for the sake of simplicity, they will be used to represent both the syntactic
expressions and their semantic function.
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Op. name Syntax e Semantics r = p(e)(r1,...,7n), n € {1,2}°
Restrictions
| Tuple operators
atomic R rel(r) = rel(ry)
relation r=n
selection op(R1) r={tAP:t€r,ext(t A\ P)#0}
a(P) C a(Ry)
a(e) = a(Ry)
renaming o141 (Ry) r={t{A| B]:t€nr}
A€ ale),B¢&ale)
ale) = (a(R) \{A}) U {B}
projection H[X,l,...,x,p](Rl) r= {ﬂ[X”Wyle](t) |t €ri}
oz(Rl) = {)(17 ...,Xm}
ale) ={Xi, ..., Xi,}
a(e) C a(R)
natural join R X R r={ti Atz 1 t1 € r1,t2 € ro,ext(ty Atz) # 0}
ale) = a(R) Ua(Rs)
complement -R r={ti1 V..Vt | t1 V... Vi, is the disjunctive
normal form of =1 A A—tn, r1 = {t1, ..., tn },
ext(ti) #0,i=1,...,m}
a(e) = a(R)
| Set operators
union RiIUR, r={t:tE€rortery}
a(R1) = a(Re) = ale)
set difference Ri\* R r=At:t€r, A €rs:ext(t) =exi(t)}
a(R1) = a(Re) = ale)
set -*Ry r = {not it e, ext(not t) # 0}
complement
ale) = a(R)
set selection U(SQl,Qz,Q))(Rl) r={t:t€r,

ext(Q1(t)) C ext(Ilja(g,)(Q2(8)))}

a(Q1) € a(Q2)
a(e) = a(B)

5

T(01,Q2 w20y (B1)

r={t:t €ry,ext(Q:(t)) Next(Q=(t)) # 0}

a(Q1) = a(Q2)
a(e) = a(R)

“We assume that r; does not contain inconsistent generalized tuples, 1 = 1, ..., n.

*The expression not ¢ represents the disjunctive normal form of the formula —¢.

Table 3.3: EGRA operators.
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The set selection operator with condition (Q1, @3, ), applied on a general-
ized relation r, selects from r only the generalized tuples ¢ for which there
exists a relation  between ext(Q1(t)) and ext(Q2(t)). When a condition
C' is satisfied by a generalized tuple, we denote this fact by C'(¢).

The possible meanings of # operators are the following;:

— # = C: in this case, we require that a(Q1) C a(Q3). It selects all
generalized tuples ¢ in r such that ext(Q1(t)) C ext(Ily g,y (Q2(1)))-
— 6 = X% (: in this case, we require that a(Q1) = «(Q2). It selects all
generalized tuples ¢ in r such that ext(Qq()) Next(Q2(t)) # 0.
Note that, since the considered theory ® is decidable, set selection condi-
tions are also decidable.

Table 3.3 presents set and tuple operators, according to the notation introduced
in Subsection 2.3.2. Note that, in order to guarantee operator closure, EGRA op-
erators can only be applied to generalized relations belonging to the EGR support
S(P,{A,V}), where ® is a logical theory admitting variable elimination and closed
under complementation. Thus, from now on, EGRA(®) should be interpreted as a
shorthand for EGRA(®, {A, V}).

It can be easily shown that EGRA(®) operators are independent, i.e., the semantic
function of no operator can be expressed as the composition of the semantic functions
associated with other operators [13].

Example 3.4 Tables 3.4 and 3.5 show examples of spatial and temporal queries in
FEGRA(LpOLY) and EGRA(DENSE) respectively. Generalized relations are interpreted
as in Framples 2.5 and 2.6. <&

Clearly, all GRA derived operators can also be seen as EGRA derived operators.
However, by using set operators, other EGRA derived operators can be defined, whose
semantics is described in Table 3.6. For a more detailed description, see [13].

3.3.1 Properties of EGRA(®, {A,V})

In the following we prove that:
1. EGRA(®) is a n-based algebra.
2. GRA(®,X;) #. EGRA(®,{A,Vv}), and therefore GRA(D,%;) #,
EGRA(®,{A,V}), for all ;.

However, we introduce a weaker notion of equivalence and we show that
GRA(®,%;) and EGRA(®, {A,V}), under specific conditions for ¥y, are equi-
valent under this new definition.
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that are adjacent to a spatial
object sp € £2

3.3. EGRA: a n-based generalized relational algebra
Query EGRA Conditions*
expression

RANGE INTERSECTION

QUERY: select all spatial

objects in R that intersect ot (R) P = Ce(rt)

the region of space identified (1,7, ("£8)) a(P)y={X,Y}

by a given rectangle rt € £2

RANGE CONTAINMENT

QUERY: select all spatial

objects in R that are con- . (R) P = Cey(rt)

tained in the region of the 7(t,P.C) a(P)y={X,Y}

space identified by a given

rectangle rt € £2

ADJACENT QUERY: se- P = Cep(sp)

lect all spatial objects in R s s a(P)={X,Y
7:, (02, (R) SRS

C1 = (ant(t)7QInt(P)7 (M: (D))
c2 = (QBna(t), @pna(P), (M#£0))

SPATIAL JOIN
(intersection based): gener-
ate all pairs of spatial objects
(r,s)r € R, s € S, such that
r intersects s

o (R M ox) 0, v1y1(9))

c = (Q1(t), Q2(t), (X 0))
Q1(t) = x,v(t)
Q2(t) = erx' 15, v 1y 1 x v (8))

SPATIAL JOIN (adjacency
based): generate all pairs of
spatial objects (r,s), r €
R, s € 5, such that r i1s ad-
jacent to s

(o2, (R)

o;
R Mopx) s, vy (S)

c1=(Q1.1(t), Q12(t), M=10)))
Q11(t) = Qrne(Ilx v1(t))
Q12(t) = Qne(9(t))

c2 = (Q2,1(t), Q22(¢), (MF# D))
Q2,1 (t) = QBna(ll[x,v(t))
Q22(t) = @snal(g(t))

9(t) = arx 1 v (Mxr v (8))

DIFFERENCE QUERY: se-
lect all spatial objects in R
for which there are no spatial
objects in S with the same
projection on X

H[leyl](a'{j(R/ X R”))
R =T (R)\* T (3)
R" = oix1,,,v1y1(R)

¢ = (Hx(t), epxr 11 (M (1)), =)

COMPLEMENT QUERY:
compute the portions of &£2
that are the complement of a
spatial object of R

~(R)

“In this column the following symbols are used:

o C.p() and Cu(): see Table 2.4,

® pnd and Q1 represent a short form for queries retrieving the boundary and the interior of
a spatial object respectively [142].

Table 3.4: Examples of spatial queries in EGRA(LPOLY).
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Query EGRA Conditions*
expression
INSTANT SELECTION: 113, :?502(5’"5(t))
select all trains that leave
. . s Q(t) = Qsep(;p(t))

after time ¢ (expressed in (c1Acs) (A) (P) — (I}
minutes from time 00 : 00) — (Ot ) )
to station a o = (t, ([><I;£ @))
RANGE  SELECTION: P= mt(l)
select all trains that arrive | o2 (A) G(P) ={I}
in the interval 2 c= (QStP(H[I](t))v P, (X# 0))
TEMPORAL JOIN: se-
lect all trains that arrive o8, (AN A) P=(T=d)
at the station S when an- 7ca N Q) = erry, (1))

; - A''= go(0Z,(4)) _ A
other train to destination d C=[IDyp F g I, T |v] c1 = (b, P, (M#£ 0))
is standing by at the same ’ ’ ’ C2 = (QStP(H[I](t))7 Q(t), X 0)
station

“In this column the following symbols are used:

o Cine() and Cipe(): see Table 2.6;
o Qsip(t):

starting points of all contiguous intervals contained in ¢;

it is a short form for the query retrieving the set of instants that represent the

e post(t): it is a short form for the query retrieving the set of instants that follow the interval
represented by ¢.

Table 3.5: Examples of temporal queries in EGRA (DENSE).

3. Under specific assumptions, the data complexity of EGRA(®, {A, V}) is equal
to the data complexity of GRA(®,{A, V}).

3.3.1.1 EGRA(®) is a n-based language

In order to show that EGRA(®) is n-based, following Definition 3.5, we present a
mapping from EGRA expressions to nested-relational algebra expressions, satisfying
Definition 3.5.

Let D be a domain of values. The nested-relational model deals with objects of

type:

Tu=D | (A7, ATy | {7}

where Ay, ..., A, are attribute names. In the literature, several nested-relational al-

gebras have been proposed, most of which are equivalent (see [1] and [2] for some
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Op. name Syntax e Derived expression
Restrictions
set intersection | Ri; N® R» R\’ (R1\° R2)
| HEERLAREE

derived set 701,04, () T(0s,01,0) (1)

selection
a(@Q1) 2 a(Q2)
ale) = o(R)

U(SQ17Q27Z)(R) R\ Ql Q2,C )(R)

a(Q1) C «(Q2)
ale) = oz(R)

U(SQ17Q272)(R) R\ Q2 Q1,C )(R)

a(Q1) 2 a(@2)

70y, @am=0) (B) | B\ 009 o, nze) (1)

a(e) = a(R)
0o ne, (1) oo, (R)Nog, (R)
a(e) = a(R)
oe,ve, (R) oo, (R) Vo, (R)
ale) = a(R)
olc, (1) R\* oz, (R)
] ozge) = a(R)
901,02 ) | 9(0,,02.000(02.9,.0 (1)
a(Q1) = a(Q2)
] ozge) = a(R)
a(Qth,C)(R) 9(Q1.92.9)A~(Q1,Qz, )(R)
a(Q1) C a(Q2
i ozge) = a(R)
U(Q17Q2,3)(R) J(Q27Q1 C)A-(Q1,Q2, )(R)
a(Q1) C a(Q2
ale) = a(R)
7(01,Q2.0) (1) opxt/x )M (oc, (06, (Q1 W Q2))))
Qi(r) = {1, Aarx; i 1Qi)|tert,i=1,2

G, = (H[X;]( ); Q[X2|X1](H[X2]( ), =)
Cr = (H[Y;]( ) Q[Xj|§1](H[Xj]( )) 6)

it depends on 4

Table 3.6: EGRA derived operators.
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examples).
Theorem 3.1 EGRA(®) is a n-based algebra.

Proof: (Sketch) It is possible to show that for each EGRA(®) query there exists an
equivalent nested-relational algebra query. Let D be the domain of ®. The proof,
presented in Appendix A, is based on the following translation of generalized relations
and generalized tuples into nested relations:

e Each generalized relation R with schema {X7, ..., X,,} can be seen as a nested-
relation of type {(A : {(Xy : D, ..., X,, : D)})}, where D is the domain of the
chosen theory.

e Given a generalized tuple P with schema { X1, ..., X,,}, P can be interpreted as
the nested-relation r(P) defined as {(Ap : (X1 1 a1, ..., Xyt an)) | X1 = a1 A/
X, = a, € ext(P)}. Note that the typeof r(P)is {(Ap : (X1 : D, ..., X,, : D)) }.

e Given a generalized tuple P with schema { X1, ..., X,,}, P can also be interpreted
as the nested-relation n(P) containing only one element, represented by the set
ext(P). Thus, n(P) coincides with the set {(Ap : {(X; a1 A ... A X, 1 ap)}) |
Xi=a N...ANX, =a, € ext(P)}. The type of n(P) is {(Ap : {(X;y :
D,..X,:D)}H}.

Using this representation, for each EGRA(®) query it is possible to construct an
equivalent nested-relational algebra query. The complete proof is presented in Ap-
pendix A. a

3.3.1.2 Equivalence results

It is immediate to prove the following proposition.
Proposition 3.4 GRA(®, %) C, EGRA(®, {A,V}).

Proof: It is simple to show that, given some generalized relations ry, ..., r,, EGRA(®)
tuple operators, when applied to ry,...,r,, return a generalized relation that is r-
equivalent to the generalized relation that is obtained by applying the correspond-

ing GRA(®) operator to rq,...,r,. Thus, GRA(®,{A,V}) C, EGRA(P,{A,V}).
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Moreover, it can be shown that S(®,%;) C, S(®,{A,V}), for all £;.2 From Pro-
position 3.2, it follows that GRA(®,¥;) C, GRA(®, {A, V}). The proposition follows
from the previous results by transitivity. a

Since the semantic function associated with the complement in GRA(®) always
returns a generalized relation which is not n-equivalent to the generalized relation
returned by the semantic function associated with the complement in EGRA(®) (when
both semantic functions are applied to the same input generalized relation), it follows
that GRA(®, ;) Z,, EGRA(®, {A,V}).

Now we analyze the opposite containment. A necessary condition for expressing
an EGRA(®, {A,V}) query in GRA(®, ;) is to modify the input database, coding
in some way each generalized tuple as a set. The aim of this section is to prove that,
due to this transformation, EGRA(®, {A,V}) and GRA(®, ¥;) are not r-equivalent,
whatever X is.

To prove this result, a weaker notion of equivalence is first introduced. This new
equivalence relation is called weak, since it relaxes the conditions under which the
usual equivalence is defined (see Definition 3.6). The basic idea of weak equivalence is
that of codingin some way the input of an EGRA(®,{A, V}) query, before applying the
corresponding GRA (P, ;) query. After that, a decoding function should be applied
to the result, to remove the action of the encoding function. A similar approach has
been taken in [137] and in [149] to prove results about the nested-relational algebra
and the relational algebra. Encoding and decoding functions can be formalized as
follows.

Definition 3.7 (Encoding and decoding functions) An  encoding
function of type (¥, X1, X2) is a total computable function f from S(P,X;) to S(P, Xy).
A decoding function of type (P, X1, X2) is a partial computable function g from S(P, ¥s)
to S(@, 21) . a

Weak equivalence can be defined as follows.

Definition 3.8 (Weak equivalence) Let Ly and Ly be two constraint query lan-
guage. Let S(®,%4) and S(P,X;) be two EGR supports. Lett € {r,n}. Li(P,%)
is weakly t-contained in Ly(®,Ys) (denoted by Li(P,%1) CF La(P,X2)) iff there
exist an encoding function f of type (P,31,%3) and a decoding function g of type
(P, X4, X9) such that for each query q € Li(®, X)) there exists a query ¢' € Lay(P,X5)
with the following property:

forall relationsr; € S(®,%1),1=1,...,n,¢(r1,....rn) =¢ g(¢'(f(r1), .., f(rn))).
2We recall that 21 € {{A}, {V}, {A, V1]
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Moty Mn+l

..... P r
1 n n+1

Figure 3.2: Graphical representation of weak containment.

Li(®,34) is weakly t-equivalent to Lo(®,Y5) (denoted by L1(P, %) = L2(P, 35))
fo Ll(q)7 21) Q}U L2 (CI)7 22) and Ll(q)7 21) Q;U L2(¢7 22) O

Figure 3.2 graphically represents weak containment. It is simple to show that if
Li(®,31) Cp La(P,35), then Li(P, %) CF Lo(P,33). Moreover, if two languages
L1(®,34) and Ly(P,Xs) are weak equivalent, they are also equivalent iff functions f
and ¢ can be represented in La(®P, X5).

In the following we prove that EGRA(®, {A,V}) CY GRA(®, ¥;), assuming that
A € Xy (thus, either 1 = {A} or ¥; = {A, V}). However, to simplify the presenta-
tion, we suppose that 3y = {A}. The other case derives from that.

The chosen encoding and decoding functions of type (®, ¥4, ¥3) are presented in
Table 3.7. Assuming we deal with a countable set of variables, without compromising
the generality of the discussion, the definitions are given with respect to a countable
set of variables N, only used to assign identifiers to generalized tuples.

The encoding function transforms a generalized relation r € S(®, {A,V}) into a
generalized relation r’ € S(®, {A}), such that each generalized tuple of r is contained
in 7’ together with a new variable identifier, represented by a constraint admitting
only one solution. Each generalized tuple of r containing disjunctions is divided in r’
into several generalized tuples, all having the same identifier.

The decoding function projects the input relation on all variables, except those
contained in N, if any. If more than one tuple in the input relation has the same
values for variables in N, the disjunction of such tuples is taken.

Table 3.8 shows, for each EGRA operation, the corresponding weak equivalent
GRA expression. In the following, the query function associated with an EGRA
(GRA) operator is called operator semantic function. The two lemmas, presented
below, are used in the proof of Theorem 3.2. See [13] for their complete proofs.

Lemma 3.1 Let r; € S(P, X) such that a(r;) AN#0D,i=1,...,n,n€e{l,2}. Letq
be the query associated with one of the GRA expressions listed in the second column
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Func. of type Definition
(¢, {n, v} {AD)
Encoding f f(r)y= Uter’ ()
rl= {0 L e = {t, et )

forall 4,j,1 <i<n,1<j<mn,t#7, ext(t;) # ext(t;) = m; # my,

m; €D, i1=1,...,n}
tmEN:m/\t,NEN,NQ@(T),tET,mED
FiOy={N=mAti,. ., N=mAl, |[t=N=mA(t1V..Vt)}
D is the domain of the considered theory &

Decoding g g(r) = {H[a(r)\N](tl) V..V H[a(r)\N](t") |
t1,..,th €T, H[N](tl) =..= H[N](tn),
/th+1 e, H[N](tn+1) = H[N](tl), such that
ext(tny1) # ext(t;),1=1,...,n }

Table 3.7: Encoding and decoding functions.

of Table 3.8. Let [ and g as defined in Table 3.7. Then

9(a(f(g(r))s - Fl9(ra)))) =n 9(q(r1, s 7))

a

Lemma 3.2 Let f and g as defined in Table 3.7. Let X1 and >4 be two signatures
such that X1 = {A,V} and N € ¥y, For each EGRA(®,%;) operator semantic
function fop of arity n, n € {1,2}, there exists a GRA(P,Xs) query q such that for

all 1,y € 1,2}, € S(P,%1), for(r1y -y ) =0 9(q(f(r1), ooy f(rn))).

Proof: (Sketch) Let Ry, ..., R, be the names of the generalized relations belonging to
the schema we consider. Let a(R!) = o(R;)U{N},i=1,....,n, N € N. Let D be the
domain of ®. Let Q! be the query obtained from query @; by inserting variable N in
all projection operators. Table 3.8 shows for each basic EGRA(®, {A,V}) query the
weakly equivalent GRA(®, ¥;) query. See [13] for the complete proof. O

Theorem 3.2 Let ¥y and Y be two signatures such that ¥y = {\,V} and N € X.
Then, FGRA(®,%4) CY GRA(®,X,).

Proof: We prove the theorem by induction on the structure of an EGRA(®, {A,V})
query q.

Base case: q is an operator semantic function. The theorem follows from Lemma 3.2.
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| EGRA | GRA |
R; R!

opv..vp, (R) op (R iffn=1

op (RYU...Uop, (R') otherwise

R X Ry Rll X Q[N/N/](Ré)7 N eN

Rl (@] R2 (Rll X H[N’](Q[N/N’](O'N=n1 (Rll (@] _|R/1)))) U A where
A = (R W v (epv/n(0n=n, (B2 U —R3))))

N’ (S ]\/y7 n ;ATLQ, ny,n2 € D

i (R) H[?u{N}](R/)
R Mo (rny\ (v (7 R) X iy (on=n, (R'U-R')), m1 €D
Ri\° R (I (RY) \ Iy (Y X Z)) X R} where

X =R} x o (Ry), N' € N
Y = e, vy (X) \ Hiw, vy (W)
W = Ha(ryuinpi(X)\ @‘15211]“ (Mianacry)uiv (X))
Z = xn(X)\ U, v(T)

_1[R)]
T =07 " (Miagonacrp) oy n (N \ Mia(ry o (X)
~(R) L) (R') X R

7{9,,9,.0) (1) (I (RO \ T (Q1(R)® \Q5(R))) X R
70, qamzn) (1) | v (Q1(R) M Q5(R)) M R

1
ag[];},] denotes the operation replacing each variable X of Rj also contained in the schema of
2

_1[R!]
7
R2

R} by a new variable X’ such that X' € Niff X € N. Moreover, g

denotes the operation

~ 1
replacing each variable X’ ¢ N previously changed by g[];},] by its original symbol X.
2
*If @ is a generalized tuple P, Q!(R') is the query that, for each generalized relation r, returns
a new generalized relation containing n generalized tuples, where n is the cardinality of r. Each
generalized tuple is equivalent to N = m A P, where m is the generalized tuple identifier of a tuple
in r.

Table 3.8: Translation of EGRA expressions into GRA expressions.

Inductive step: Let ¢ = fop(q1,q2) where fop is an operator semantic function and
¢1 and gy are queries (the proof assumes OP to be a binary operator; a similar
proof holds also for unary operators). By inductive hypothesis we know that
q1,¢h € GRA(®P,X,) exist such that:

Vrey ey € S(P,21) Gi(r1, oo ) =0 9((f(r1), ooy f(rn))) i = 1,2

g(‘]z/'(f(rl)v oy [(rn))) € S(@, %)

From Theorem 3.1, we know that EGRA(®) is n-based. From Proposition 3.3
and the inductive hypothesis, we obtain that
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q(rh seey rn) = fOP(q1 (rlv cey rn)v q?(rlv cey rn))

is nested equivalent to

S = for(g(ai(f(ra), o f(ru))) 9(aa(f(r1), s f(rn))))-

Let ¢’ be the GRA(®) query corresponding to fop in Table 3.8. By Lemma 3.2,
S is nested equivalent to g(¢'(f(r}), f(r}))), where ! = g(¢:(f(r1), ..., f(rs))),
i €{1,2}.

From Lemma 3.1, we can replace f(r!) with ¢/ (f(r1), ..., f(rs)), i = 1,2, ob-
taining that ¢(¢'(f(r}), f(ry))) is nested equivalent to

9@ (@ (f(r1), oo f(rn))s g (F (r1)s ooy f(1n))))-
Note that Lemma 3.1 can be applied since ¢/(f(r1), ..., f(rs)) satisfies the hy-
pothesis of the lemma.

The query § = ¢' (¢}, ¢5) satisfies the theorem. O

Note that if A ¢ X5, the equivalence does not hold. Indeed, in this case, there
does not exist an encoding function of type (&, {A, V}, X3).

The following corollary presents final equivalence results about EGRA(®, 1) and
GRA(®,%,).

Corollary 3.1 Let ¥y and Xg be two signatures such that ¥y = {A\,V} and N\ € Xs.
The following facts hold:

1. EGRA(®,%,) =" GRA(P,X,).
2. EGRA(®,%,) #, GRA(D,X,).
Proof:
1. It follows from Proposition 3.4 and Theorem 3.2.

2. This result derives from the fact that the proposed encoding and decoding
functions cannot be represented in GRA (P, X). o

The presented equivalence results are similar to equivalence results that have been
presented for relational and nested relational languages. Indeed, nested computations
can be embedded into FO, modulo the encoding of complex objects into flat ones and
the corresponding decoding of output [117, 141].

Finally, note that even if EGRA(®,{A,V}) =¥ GRA(®D, {A}), GRA expressions
are often very complex when compared with the equivalent EGRA expressions (see
Table 3.8), even those implementing simple user requests.
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Example 3.5 The query of Frample 3.3, which in GRA is represented as

(i (B) \ (Hpnp(B\ op(R)))) M R.
can be simply expressed in EGRA as U(St,P,C)(R)' <&

From Theorem 3.1 and Theorem 3.2, it is simple to prove that
EGRA(®,{A,V}) is a strict n-based language.

Corollary 3.2 FGRA(®) is a strict n-based algebra.

Proof:
o FGRA(®) is a n-based algebra: it follows from Theorem 3.1.

o EGRA(®) is not r-based: suppose EGRA(®) be r-based. Since GRA(P) is 1-
based, this means that for each signature ¥3 and for ¥; = {A, V} EGRA(®, ¥)
is r-equivalent to GRA(®, ;). But this is not true. Indeed:

— If A € Xy, from item (2) of Corollary 3.1 it follows that EGRA(®, 3) is
not r-equivalent to GRA(®, ).

— If A & X5, then S(P, %) is not r-equivalent to S(P, ;). Therefore, by
Proposition 3.2, EGRA(®, ¥4) is not r-equivalent to GRA(®, X).

Since in both cases we obtain a contradiction, EGRA(®) is not r-based. O

3.3.1.3 Data complexity

The analysis of data complexity of EGRA(®, {A,V}) queries follows from the fact
that EGRA(®, {A,V}) = GRA(®,3,), assuming that A € X, and results about
data complexity of GRA(®, 35).

It is simple to show that the data complexity of the chosen encoding and decoding
functions f and ¢ is in class NC.? Therefore, by considering Figure 3.2, we can deduce
that, if the complexity of GRA(®, 3;) is in a complexity class C containing or equal
to NC, the data complexity of EGRA(®, {A, V}) is equal to the data complexity of
GRA(®, ;). Otherwise, it is at most in NC.

For example, from [82, 83] it follows that GRA(pPoLy, {A}) has NC data complex-
ity. Therefore, EGRA(PoLY, {A,V}) has NC data complexity.

®Thus, they can be executed in log-time, using a polynomial number of processors [8].
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3.4 ECAL: a n-based generalized relational calculus

The relational algebra is a typical procedural language. This procedural language has
a very natural declarative counterpart, represented by the relational calculus [47].

A similar situation arises in the generalized relational model where, as we have
seen in Chapter 2, the generalized relational algebra and the generalized relational
calculus have been defined as a natural extension of the corresponding relational
languages to deal with infinite, but finitely representable, relations. As a consequence,
the definition of an extended relational calculus which is equivalent to the algebra
presented in Section 3.3, becomes an important issue.

There are at least two approaches in the literature to define a calculus and prove
its equivalence with an algebra:

e Codd’s relational calculus [47]. The calculus is based on first-order formulas.
The calculus may generate unsafe relations, i.e., relations containing an infinite
number of tuples. Safety is guaranteed by defining specific safety rules, that
syntactically restrict the calculus expressions.

In order to translate a calculus expression into the equivalent algebraic expres-
sion, a Cartesian product is generated from the set of all symbols existing in
the database and then the answer is extracted from this set.

This calculus has been extended in [125] to deal with relations having sets of
atomic values as tuple components.

e Klug’s relational calculus [88]. This calculus eliminates unsafe expressions by
introducing explicit range expressions for variables. This approach results in
a much cleaner way of expressing a calculus query and removes the burden of
checking for safe expressions from users. The calculus also deals with aggregate
function. Thus, the calculus must also be able to quantify over relations that
are the result of an aggregate operation, and the only way to do this is to
actually compute the result. For this reason, Klug’s calculus is defined via
mutual recursion on three types of expressions: terms, formulas, and alphas.
Alphas are used to construct such intermediate relations.

With aggregate functions, new aggregate values are created. Thus, in order
to translate a calculus expression into the equivalent algebra expression, the
approach based on the Cartesian product does not work. Therefore, a different
approach is used. In particular, each object is translated into an algebraic
expression; these algebraic expressions are then combined to generate the final
expression.
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Such a calculus has been extended in [111] to deal with relations containing sets
of numbers as tuple components and in [93] to deal with constraints.

In order to define the extended generalized relational calculus, we take Klug’s
approach. The reason for this choice is motivated by the fact that, in Section 3.5, we
will extend the generalized relational algebra and the generalized relational calculus to
deal with external functions. External functions have some similarities with aggregate
functions, in that they generate new values. Thus, the use of Klug’s calculus simplifies
the proof of the equivalence between the algebra and the calculus.

3.4.1 Syntax of the extended generalized relational calculus

The extended generalized relational calculus ECAL is defined via mutual recursion on
three types of expressions: terms, formulas, and alphas. Terms represent the objects
on which computations are performed (in our case, atomic values and generalized
tuples). Formulas express properties about terms, and alphas are used to create new
relations, composed either of relational tuples (thus defining a new generalized tuple)
or of generalized tuples (thus defining a new generalized relation).

In defining the calculus, it is more convenient to use a positional notation. Thus,
in the following, an attribute of a relational tuple is not identified by its name but by
its position inside the tuple.

In defining the above objects, we assume we deal with two sets of variables:

e aset V ={v, vy, vs,..} of variables representing relational tuples;

e aset G =1{g,91,9,...} of variables representing generalized tuples.

By considering a logical theory @, having D as domain, calculus objects are form-
ally defined as follows.

Terms. Terms are used to represent the objects on which computations are per-
formed. They can be either:

o simple, if they represent values from a given domain, such as real numbers;

e set, if they represent sets of relational tuples, whose attribute values are taken
from the considered domain. Each set variable is a set term. Moreover, for each
natural value n, we introduce a particular set term, representing the set of all
possible relational tuples on domain D having n attributes. The introduction
of these terms allows us to prove the equivalence of the algebra and the calculus
even when queries generate new values with respect to those contained in the
database.
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No term is introduced to represent a single relational tuple since, due to the nested
semantics, queries always manipulate (the extension of) generalized tuples.

Definition 3.9 (Terms) A term has one of the following forms:
e ¢, such that c € D;
e v[A], where v € V and A is a column number;
o D", representing all relational tuples with degree n, with values from D;
e g, such that g € G.

The last two types of terms are set terms, whereas the first two are simple terms. O

Note that the considered set terms are different from those presented in [111].
Indeed, in that case, the available sets contain only atomic values whereas in our
case, sets contain relational tuples.

Formulas. Formulas are used to express properties about terms. Atomic formulas
are used to specify on which relation a generalized tuple or a relational tuple ranges,
and to specify the relationship existing between two generalized tuples or some simple
terms. Complex formulas are obtained by logically combining or quantifying other
formulas. Both atomic and complex formulas can be either simple or set formulas. In
the first case, they specify conditions on simple terms; in the second case, they specify
conditions on set terms.

Definition 3.10 (Formulas) A formula has one of the following forms:

o Atomic formula:

— Simple formulas:

* t(v), where v € V and t is a closed target alpha (see below) or a set
term;

* pu(t1, ..., tn), where p is a constraint and ty, ..., t, are simple terms.
— Set formulas:

* a(g), where a is a closed general alpha (see below) and g € G
* 110ty, where ty,ty are set terms and 0 € {C, D, =, #,X= 0, X#£ 0}.

o Complex formulas:
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— 01 A bg, where ¥y and 1y are either simple formulas or set formulas; in
the first case, 11 N\ g is a simple formula, in the second case, is a set
SJormula;

— a1 V be, where ¥y and 1o are either simple formulas or set formulas; in
the first case, 11 V 1y is a simple formula, in the second case, is a set
SJormula;

— = is a simple (set) formula if v is a simple (set) formula;

— (Fry)ep is a simple (set) formula if v is a simple (set) formula and ry is
a range formula for x. The scope of (Ary) is 1. a

Since 11 A 1P is equivalent to —(—t)y V =)z, in the following we do not further
consider symbol A [38].

Range formulas. Range formulas specify a range for either a simple variable or
a set variable. Ranges for simple variables are closed target alphas (see below) or
set terms and are called simple range formulas. Ranges for set variables are closed
general alphas or atomic alphas (see below) and are called set range formulas.

Definition 3.11 (Range formulas) Let v € V and let oy, ...,y be either closed
target alphas or set terms. Then,

a1 (V) V...V ag(v)

is a stmple range formula.
Let g € G and let oy, ..., oy be closed general alphas or atomic alphas. Then,

a1(g) V...V ag(g)
is a set range formula. a

Alphas. An alpha represents either a set of relational tuples, i.e., a new generalized
tuple, or a set of generalized tuples, i.e., a new generalized relation. Atomic alphas
are a particular type of alphas, represented by generalized relation symbols.

Definition 3.12 (Alphas) An alpha has one of the following forms:

o Atomic alpha: for each generalized relation symbol R, R is an alpha.

o Target alpha: if t1,...,t, are simple terms, rq, ..., are simple range formulas
for the free variables in ty,...,t,, and 2 is a simple formula, then

((t1y cos b)) 171y ey i 2 00)
is a target alpha.
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o General alpha: if t is a target alpha or a set term, ry,...,r,, are set range
formulas for the free variables in t, and 1 is a formula, then

((t) s 71y ey T 2 D)

is a general alpha.

In the last two cases, 1 is called the qualifier and (t1,...,t,) and t are called the
target. Moreover, we denote n by deg(a). O

When the target of a target alpha has the form (v[1], ...,v[n]), v € V, and n is the
arity of v, for the sake of simplicity we write v instead of (v[1], ..., v[n]).

The scope of a range formula in an alpha expression is the associated target and
the qualifier of the alpha. Occurrence of a variable z is free if it is not bound by
quantifiers or range formulas. A calculus object (term, formula, alpha) is closed if it
has no free occurrences of any variable.

In the following, we denote with ECAL the language composed of all the closed
set alphas generated by combining terms, formulas, and alphas, as explained before.
Given a decidable logical theory ®, admitting variable elimination and closed under
complementation, we denote with ECAL(®) the set of queries represented by ECAL
expressions. Note that, due to the fact that disjunction is allowed in formulas, the
underlying signature is {A, V}.

ECAL(®) allows the representation computations on generalized relations in two
steps: first, conditions on generalized tuples are checked in the more external closed
set alpha; then the more internal target alpha allows checking conditions on the ex-
tension of the selected generalized tuples.

The declarative nature of the calculus simplifies the interaction between the user
and the system. The following examples present ECAL(®) queries corresponding to
some of the EGRA(®) queries presented in Tables 2.5 and 3.4.

Example 3.6 The following ECAL(®) expression represents the generalized tuple
X+Y <2AY > 7.

(v:D*(v) :v[l]+v[2] < 2A0[2] > 7).

The range formula of the previous alpha specifies that we are interested in all relational
tuples containing two attributes. The qualifier specifies the relation that must hold
between the attributes of v. We assume that X corresponds to the first attribute and
Y to the second one. Finally, the target specifies that we want to return all relational
tuples v satisfying the qualifier. <&
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In the following, to simplify notation, the target alpha representing a generalized
tuple P is denoted by tp.

Example 3.7 Consider the temporal join query presented in Table 2.7. In order to
select all trains with destination station 3, standing by at a station S together with
a train from station 4, the algebraic expression first selects all trains from station 4
(relation A') and all trains with destination station 3 and then performs a join of
the two constructed gemeralized relations. Finally, it retrieves the identifiers of the
selected pairs of trains. By using the calculus, assuming that the column number of
1D is 1, we can declaratively express the previous query as follows:

(((n[1]; v2l1]) = g1 (v1), g2(v2), tp(v1), to(va) 3)  @lgn), a(g2) = g1 M# D g2)

where o = ((v[3] : ¢g(v) :) : A(g) :) (position 3 identifies variable I1). The previ-
ous alpha first checks for intersection all pairs of generalized tuples in A in order to
determine all trains standing by at a station S together with another train. After
performing this selection, some conditions are checked on the extension of the re-
trieved generalized tuples. In particular, the identifiers of the pairs of trains, the first
having destination station 3 (specified by the range tp(vy), where tp represents the
target alpha corresponding to the generalized tuple P = (T' = 3)) and the second be-
ing from station 4 (specified by the range tq(ve), where tg represents the target alpha
corresponding to the generalized tuple P = (F = 4)) are returned to the user.

As another example consider the spatial join, intersection based, presented in
Table 3.4. The corresponding calculus expression is

(((v1,v2) 2 g1(v1), g2(v2) 1) : R(g1), R(g2) : g1 XF£ 0 g2).

In the previous expression, first the intersection between spatial objects (i.e., gen-
eralized tuples) is checked and then the result is constructed starting from the ex-
tensions of each pair of intersecting tuples. This second step is required since the
resulting tuple has to be a new generalized tuple, obtained by joining the extensions
of the intersecting tuples. <&

3.4.2 Interpretation of ECAL objects

In order to assign an interpretation to calculus objects introduced in the previous
section, we follow the approach presented in [88], extended to deal with set terms.
The proposed translation differs from that presented in [111], since the set terms we
consider represent sets of relational tuples and not sets of atomic values, as in [111].

The result of the interpretation varies according to the type of the object under
consideration:
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e the interpretation of a formula produces values true (1) or false (0);
e the interpretation of a term is an atomic value or a set of relational tuples;

e the interpretation of an alpha is a relation.

In order to establish the association between variables in a calculus object and
tuples in the current instances of the corresponding relations, the notion of model is
introduced. Formally, a model M for a calculus object ¢ is a triple (I,.S, X'), where:

e [ is a database instance.

e S (the free list for object ¢) is a list of ordered pairs (u;, S;), where u; € VUG
is a free variable occurring in ¢ and S; is the domain (the relation) over which

v; Tanges.

o X (the valuation list for ¢ and D) is a list of pairs (u;, 2;), where u; € VUG is
a free variable in ¢ and ; € 9; such that (u;,5;) € S.

Interpretations are assigned as follows.

Terms interpretation

e D"(M)= D"
L] gz(M) = I;
Formula interpretation

' _ 1 ifz; € Oé(M)
o a(gi)(M) = { 0 otherwise

_ 1 if T; €%
® gi(v;)(M) = { 0 otherwise

1 i1 (M)Ybta(M) =1

° (t10t2)(M) = { 0 othle(rwi)se 2( )
Lif p(ty (M), .. 0 (M)) = 1
0 otherwise

o (ultry s tn)) (M) = {
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oresaon =} 0=t 0 =
_ )L ifgpM) =0
* GV _{ 0 otherwise
_J 0 if 7, (M) is empty
° ((Hrul)¢)(M) o { MAX{¢(I7S’7 X/) | u e rvi(M)} otherwise

S’ is similar to S except that the pair (v;, ;) is replaced in S by (v;, ry, (M)).
X" is similar to X except that the pair (v;, u) replaces (v;, ;).

Alpha interpretation

e R;(M) =r;and r; is the generalized relation named R; in I.

o ((t1yeestn) i1y ey s ) (M) = {81 (M), ooyt (M) | (M) = 1}
where M’ = (I'; 8", X'). S’ is the same as S except that for those variables
v; ranging over ry, 1 < k < m, S’ contains (v;,rr(M)). X' is the same as
X except that for those variables v; ranging over ri, 1 < k < m, S’ contains
(vj,u), uw € rp(M).

o (1) 11y rm ) (M) = {s(M) | $(M') = 1}
where M' = (1", 5", X'). S’ is the same as S except that for those variables u;
ranging over ry, 1 < k < m, S’ contains (u;, ry(M)) (note that u; € VUG). X'
is the same as X except that for those variables u; ranging over ri, 1 < k < m,
S" contains (uj,u), u € ri(M).

3.5 External functions

The introduction of external functions in database languages is an important topic.
Functions increase the expressive power of database languages, relying on user defined
procedures. External functions can be considered as library functions, completing the
knowledge about a certain application domain.

In the context of constraint databases, external functions can be modeled as func-
tions manipulating generalized tuples. Such manipulations must preserve the closure
of the language. Thus, an external function f takes a generalized tuple ¢ defined on
a given theory ® and a signature ¥ and returns a new generalized tuple ¢ on ® and
Y (to guarantee closure), obtained by applying function f to . We assume that each
function is total on the set of generalized tuples defined on ® and 3.
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Given a generalized tuple ¢, it is often useful to characterize an external function
[ with respect to the following features:

e The set of variables belonging to «(t) to which the manipulation is applied.
Indeed, it may happen that function f only transforms a part of a generalized
tuple. Formally, this means that function f projects the generalized tuple on
such variables before applying the transformation.

This set is called input set of function f and it is denoted by is(f). Thus,
is(f) € a(t).

In order to make the function independent of «(t), we consider an ordering of
a(t). Such ordering is a total function, from {1, ..., card(a(t))}* to a(t). Using
such an ordering, is(f) can be characterized as a set of natural numbers. We
assume that each number ¢ € is(f) identifies a variable X; and it is denoted by

ordera(t)(i).

e The set of variables, belonging to «(t), that are contained in a(f(¢)). This
set of variables is called local output set and it is denoted by los(f). Thus,
los(f) Cis(t)Na(f(t)).

Also los(f) can be represented as a set of natural numbers.

If ¢ € is(f) but ¢ € los(f) this means that f uses variable X; during its com-
putation but it does not return any new value for X;.

e The cardinality of set o(f(¢))\ e(t), denoted by n(f). For simplicity, we assume
that, if card(a(f(t))\ a(t)) = n, new variables are denoted by Newy, ..., New,,.

In summary, each function is associated with two sets of natural numbers is(f)
and los(f) and an integer number n(f).

By using the previous notation, an external function for constraint databases
which guarantees closure is called an admissible function and can be formalized as
follows (in the following, DOM (®,3, m) is the set of all the possible generalized
tuples t on ® and 3, such that card(a(t)) = m).

Definition 3.13 (Admissible functions) Let ® be a decidable logical theory and X
be a signature. An admissible function f for ® and ¥ is a function from DOM (P, ¥, nq)
to DOM(®, X, ny), such that ny > maz{z|z € is(f)} and ny = card(los(f))+n(f).
For any generalized tuple t € DOM(®,3, ny), associated with a given ordering
ordery(y), function f returns a new generalized tuple t' € DOM(®,%, ng) such that
a(t') = {order ) (2)]i € los(f)} U {Newr, ..., New, 5} 0

“Given a set S, card(S) represents the cardinality of S.
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Given a generalized tuple ¢ and an external function f, function order, (s is
derived as follows:

order,y(j) if j is the i-th element of the increasing
order,(5(1))(1) = ordering of los(f)
Newy, if card(los(f)) < i and k =1 — card(los(f)).

The ordering induced by function f first lists variables in los(f) and then new
variables.

Example 3.8 To show some examples of external functions, we consider metric re-
lationships in spatial applications. Metric relationships are based on the concept of
Fuclidean distance referred to the reference space £*. Since a quadratic expression
is needed to compute this type of distance, metric relationships can be represented in
EGRA only if proper external functions are introduced. For example the following
two functions can be considered:

e Distance: given a constraint ¢ with four variables (X,Y, X", Y"), representing
two spatial objects, it generates a constraint Dis(c) obtained from ¢ by adding
a variable Newy which represents the minimum Fuclidean distance between
the two spatial objects. Thus, assuming ordery (1) = X, order,)(2) =Y,
ordery((3) = X', and orderyy(4) = Y', we have is(Dis) = {1,2,3,4},
los(Dis) = {1,2,3,4}, and n(Dis) = 1.

A similar function, Dis', can be defined such that given a constraint ¢ with
four wvariables (X,Y, X" Y"), representing two spatial objects, it generates a
constraint Dis'(¢) representing the minimum FEuclidean distance between the
two spatial objects. In this case, is(Dis') = {1,2,3,4}, los(Dis") = 0, and
n(Dis’) = 1.

e Buffer: given a constraint ¢ with two variables (X,Y), it generates the con-
straint Bufs(c) which represents all points that have a distance from c less
than or equal to §. Thus, assuming ordery (1) = X and order,y(2) =Y,
we have is(Bufs) ={1,2}, los(Bufs) = {1,2}, and n(Bufs) = 0. This means
that the returned points are represented by using variables X and Y.

In temporal applications, we believe that a “duration” function should also be
included in the language. Note that the measure of the duration of an interval cannot
be represented by DENSE, since none of the mathematical operations are admitted in
this theory. Therefore, in order to take into account the duration of an interval, the
following external function has to be introduced:
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e Duration: given an interval t, a(t) = {X}, it produces the distance Dur(t) on
the axis of time between its starting point and its ending point (for example,
the constraint (X > 6) A (X < 10) is transformed into (X = 4)). If t is a
non-contiguous interval, the sum of the duration of all its intervals is produced.
Thus, is(Dur) = {1}, los(Dur) = {1}, and n(Dur) = 0. This means that the
returned value is represented by variable X . <&

3.5.1 Introducing external functions in EGRA

When using external functions, new algebraic operators, called application dependent
operators® can be added to EGRA(®):

e The family of Apply Transformation operators allows the application of an ad-
missible function to all generalized tuples contained in a generalized relation.
Two different types of apply transformations can be defined:

— Unconditioned apply transformation.
ATy(r) ={f@t) | t € r}.
By using this operator, only the result of the function is maintained in the
new relation.

— Conditioned apply transformation.
ATF (r) = {5 (8) ¥ f(t) | £ €}
where X C a(r). This transformation is called conditioned since the res-
ult of the application of function f to a generalized tuple ¢ is combined
with some information already contained in {. By changing X, we obtain
different types of transformations.

Note that for each conditioned apply transformation ATJX there exists an

external functions f’ such that, for any generalized relation r, ATJX(r) =
AT (r). The main difference between the two approaches is that the con-
ditioned approach is more flexible and reasonable from a practical point
of view

e The second operator (Application dependent set selection) is similar to the set
selection of Table 3.3; the only difference is that now queries specified in the
selection condition C'; may contain apply transformation operators.

®The term application dependent operators comes from the fact that functions reflect the applic-
ation requirements.
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Op. name Syntax e | Restrictions Semantics
r = p(e)(r)
non-conditioned ATy (R) r={f(t)|t€r}
apply transformation
conditioned ATFE(R) | X Ca(R) r={Ilg(H) X f(t) [t}
set selection crscf (R1) ale)=a(Ry) | r={t:ter,Cs(t)}

Table 3.9: EGRA(®, F) application dependent operators.

By wusing the previous operators, we can now define the constraint algebra

EGRA(®, F)

Definition 3.14 Let ® be a decidable logical theory, admitting quantifier elimination
and closed under complementation, and X2 be a signature. Let F be a set of admissible
functions for ® and ¥. We denote by EGRA(®,F) the set of queries that can be
expressed by using FGRA operators and operators introduced in Table 3.9. We
denote with FGRA(F) the corresponding syntactic language. a

Example 3.9 Consider the external functions introduced in Frxample 3.8. As a first
consideration, note that, given a generalized tuple t with four variables, expressions
ATpis(R) and ATSEQ(R) are equivalent. Indeed, in the first case each generalized
tuple contained in the input generalized relation r is replaced by a new generalized
tuple representing the old generalized tuple and, by using a new variable, the distance
between the objects represented in the considered generalized tuple. In the second case,
the function, only returns a new variable representing the distance between the two
objects. The old objects are maintained due to the join performed by the ATBEQ(R)
operator.

Some relevant spatial queries using external functions are shown in
Table 3.10(A). An example of temporal query using the function Duration is re-
ported in Table 3.10(B). <&

3.5.2 Introducing external functions in ECAL

In order to introduce external functions in ECAL, a new set term must be introduced
in the language, representing the application of an external function to a generalized
tuple. Given a set of admissible functions F, the set term is

f(g:), where f € F and ¢; € (.

Given a model M, the new set term is interpreted as follows:

fl9:) (M) = [(g:(M)).
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| Query | EGRA expression | Conditions |
| (A) Spatial Queries |
DISTANCE QUERY: se-

lect all spatial objects in
R that are within 50 K'm | (R X Q[X|X,7y|y,](5'))
from the object m S | S = ATBufegp,, (0£(S))
identified by the point
pt € &2

SPATIAL JOIN: gener-
ate all pairs (r,s) € R x
S such that the distance
between r and s is less
than 40 K'm, together
with the real distance

P= Cpoint(pt)
a(P) ={X,Y}
¢ = (x, v (1), Upxer, vy (£), X5 0)

O'New1§40(ATDiS(R X S/))
S" = o1x1y vy ()

between r and s

| (B) Temporal Queries
DURATION  SELEC-

TION: select all trai P=(1>2)
Ganiig o i 3o | 4 Zian piel)
c=(Q(t), P,X#£

more than two minutes

Table 3.10: Spatial and temporal queries in EGRA(LpPoLY, F) and EGRA (DENSE, F).

This means that the interpretation of the application of a function to a generalized
tuple variable is equivalent to applying function f to the interpretation of the gener-
alized tuple variable.

Example 3.10 Consider the spatial join introduced in Table 3.10. All pairs of spatial
objects, the first contained in a generalized relation R and the second contained in
a generalized relation S, have to be retrieved together with the distance among the
objects, if it is less than 40 Km. In order to express this query in the calculus,
first the alpha representing all pairs of spatial objects is generated; then, the distance
1s computed and, if it is lower than 40 Km, the pair is returned to the user. The
expression is the following:

(g : ar(g) : 3 g(v) v[5] < 40)

where oy = (Dis(g) : aa(g) 1) and ag = (((v1,v2) : g1(v1), g2(v2) 1) : R(g1), R(g2) ).
In the previous expression, ag represents all pairs of spatial objects (corresponding
to the algebraic Cartesian product), aq applies function Dis to the pairs of objects
and the outer alpha checks the condition about the distance, represented by the fifth
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column of the generalized tuples contained in oy. As we can see, the previous ex-
pression allows us to represent the result in a “bottom-up” way, layering the different
computations on different, but nested, alphas. <&

Definition 3.15 Let ® be a decidable logical theory, admitting quantifier elimination
and closed under complementation and X be a signature. Let F be a set of admissible
functions for ® and . We denote by ECAL(®, F) the set of queries obtained by in-
cluding term f(t) in the calculus presented in Section 3.4. We denote with ECAL(F)
the corresponding syntactic language. a

3.6 Equivalence between EGRA(®,F) and ECAL(D, F)

For the generalized relational calculus and algebra to be equivalent, the set F cannot
be completely arbitrary, as the set of aggregate functions considered in [88] was not
arbitrary. As in [88], we require that, if there is a function in F which operates on
a given set of attributes, there must be similar functions which operate on all other
possible sets of columns. This property, known as uniformness property, allows us
to prove that each ECAL expression can be translated into an equivalent EGRA
expression. It can be formally stated as follows.

Definition 3.16 (Uniformness property) Let F be a set of admissible functions.
Let f € F, f: DOM(®,%,n1) = DOM(®,X,ng). Let r € S(P,X) be a generalized
relation such that deg(r) > ny. Let Z C a(r). Suppose that card(Z) > maz{z|z €
is(f)}. We define ATy z(r) = {f(Iln(t)) |t € r}.

The uniformness property holds in F iff for all f € F, for all r € S(P,Y),
for all Z C a(r) such that card(Z) > max{z|z € is(f)}, there ewists f such that
Asz(T‘) = AT?(T‘). O

Note that, due to the defined ordering on Il 7 (t), the application of function f to
Iz (t) is well defined.

The uniformness property prevents situations as the following one. Suppose that
a function f is defined for LPOLY. For example, f may count the number of edges
belonging to the spatial object representing the extension of a given generalized tuple.
Now consider a generalized relation r on POLY. In general f cannot be applied to
generalized tuples of r. However, suppose that we know that the projection of each
generalized tuple in r on X and Y is linear. In this case, f can be applied to r,
ensuring that only attributes X and Y are considered. This assumption violates the
uniformness property, saying that f should be applied to all pairs of attributes.

In the following, we formally prove that EGRA(®, F) and ECAL(®, F) are equi-
valent if F satisfies the uniformness property.
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3.6.1

Translating EGRA(®,F) to ECAL(®, F)

In the following, for each algebraic expression e € EGRA(F), an equivalent closed
alpha o € ECAL(F) is presented such that for all generalized relational database
instances I, e(I) = a(I). The notation T,.(e) = a denotes this transformation.

To simplify the presentation, we use the following notation:

Tac(e): ( ) rl,.. Ty 2 O
Toc(er) = a1 = (1) : rl,. ,r}n Dy
Tac(e) = Q3 = (t2) 7‘17. B m ¢2
deg(e) = n.b

Translation T, is defined as follows. The proof of the equivalence between algebra
and calculus expressions is presented in Appendix A.

1.

2.

7.

8.

T..(R;) = R..
Too(op(e) = (¢ : gla) tp(a) 2) : alg) o

where tp is the target alpha representing the generalized tuple P.

- Tac(Upxy(e)) = @[X] 71y eyt (3rngr) oo (Frm) )

t[X] contains free variables vy, ..., v ranging over ry, ..., r;. Variables of « that
are not included in the projection list range over rp41, ..., rum.

Since « is a general alpha, ¢ is either a target alpha or a set term. In the first
case, if t = (t1 : ry, ..., vl 1 ), t{X] is defined as (¢1[X]: r],...,7} = ), in the

Y n v n

second case t[X] is defined as (v[X]:t(v) :).

c Taeler Meg) = (as :a1(g1), a2(g2) )

where a3 = ((v1,v3) @ g1(v1), g2(v2)  Ag=1,,v1[Xi,] = v2[X},]) and each pair

(X, X;,) represents a pair of variables on which natural join is performed and

vs3 is the tuple formed by all columns of vy except X; , ..., X;
ac(me) = ((v: D™(v) : (Balg)) g(v)): 2)

ac(=*(€)) = ((v: D"(v) : =g(v)) : alg) 2)

ac(erUez) = (t: a1(g) V az(g) 5)

Toc(er \* €2) = (t : ar(g) : ~az(g))

in*

6Given an expression e, we denote with deg(e) the arity of any relation r’ obtained as result of

uie).
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10.

11.

12.

cTacler\ez) = ((v:gr(v) : =Faz(g2)g2(v)) t a1(g1) )

Tac(U(SQhQ%e) (e)) =

(9:alg) + (FAac(@1) (9))(BTac([a(01))(Q2))(92)) 91092))

where )} is obtained from ); by replacing constant ¢ with relation {¢}. Note that
Tuc(Q4) (1) is always a generalized relation containing a single generalized tuple,
that can be represented by using a target alpha ¢;. For the sake of simplicity,

expression (37,.(Q1)(91)) (AT ac(l[o(g,)(Q3))(92)) 910g2) is denoted by #,6%,.
Tac(ATy(e)) = (f(9) = alg) »).

ac(ATf () = (((va[X \dos(N)],v1) = (F(9))(v1), 9(v2) = va[ X 1 los(f)] =
vi[X nlos(f)]) : eg) :).7

3.6.2 Translating ECAL(®,F) to EGRA(®,F)

Similarly to what has been done in [88, 111], a calculus object ¢ is translated into

an algebraic expression by translating each individual component of ¢ recursively
and then combining these translations. The translation is based on the following
principles:

the translation of a simple term produces a relation containing only one (unary)
relational tuple;

the translation of a set term produces a generalized relation containing only one
generalized tuple;

a set formula is translated into a generalized relation containing those general-
ized tuples for which the interpretation of the formula is 1;

a simple formula is translated into a relation containing those relational tuples
for which the interpretation of the formula is 1;

a set alpha is translated into a set of generalized tuples that satisfy the range
formulas as well as the qualifier;

a simple alpha is translated into a set of tuples that satisfy the range formulas
as well as the qualifier.

N “In the previous expression, U,[f( N los(f)] is a shorthand for the tuple (vz2[i1],...,v2[ts]), ¢5 €
X Nlos(f),7=1,...,s
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The problem of a recursive translation is the presence of free variables. Indeed,
during the recursive translation, free variables must be represented in some way, since
a calculus object cannot have a well-defined value until values for the free variables
are given. To consider this aspect, the translation does not map a calculus object
into just an algebraic expression. Rather, a list of pairs is associated with each
calculus object and called free-attribute list. Each pair maintains information about
the relationship between variables (or variable attributes) and column numbers of the
algebraic expression associated with the calculus object.

More formally, as in [88, 111], the input of the translation consists of a calculus
object ¢ and a model M. The output contains an algebraic expression e, a free attrib-
ute list L and either a projection list 7 (for terms and alphas) or another expression
FE (for formulas), whose meaning is explained below:

e / contains the sequence of those columns numbers that are projected from e.

e [V is an algebraic expression that provides the domain where a formula is eval-
uated.

e [ represents either a simple free attribute list or a set free attribute list.

A simple free attribute list is a set of pairs (v;[A],¢), where v; € V ranges
over a relation e such that deg(e) > A and ¢ is a column number of relation €',
associated with ¢. Such a pair says that column ¢ in € “represents” column A
of the free variable v;.

A set free attribute list is a set of pairs (g;, sc), where g; € G ranges over a
generalized relation e, and sc is a set of column numbers of relation €’ associated
with g. Such a pair says that the projection of the generalized tuples contained
in the resulting expression on sc “represents” variable g;.

We denote with T,,(¢) the translation function. To simplify the presentation, we
assume that the qualifier of a set alpha is a set formula. This assumption does not
reduce the expressivity of the calculus. Indeed, as we can observe from the translation
presented in Subsection 3.6.1, all calculus expressions equivalent to the algebraic ones
satisfy this condition.

In the following, if Ly is a simple free attribute list and Ls is a set attribute list,
we use the following notation:

1. Ly = X.
If (v;[A],¢) € Ly, then ¢ = x;[A]® is a component of L; = X.

8Recall that we assume that (vi,z;) € X.
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2. L, =X.
If (g, sc) € La, then (z;,I;,(t), =) belongs to Ly = X.

Given a model M = (1,5, X) and a calculus object ¢, the translation is defined
as follows:

e For every simple term ¢, we define an expression e, a simple free attribute list
L, and a projection list 7 such that for all I, S, and z: Iz (or=z(€))(I) =

{t(1,5,2)}.

e For every set term ¢, we define an expression e, a set free attribute list L, and a
projection list 7 such that for all 7, S, and @: Tz (ai_.(e)) (1) = {t({, 5, z)}.

e For every simple formula v we define an expression e, a simple free attribute
list L, and another expression E such that for all 7, S, and z:
or=2(E)(I) # 0
or=c(e)({) = op=(F)(I) if¢(I,5z)=1
Ormale)(1) = 0 it (1,5, 2) = 0

e For every set formula ¢, we define an expression e, a set free attribute list L,
and a another expression F such that for all I, S, and z:
0f—o(E)(I) # 0
ot (€)(I) = 07 (E)(I) ifo(l,5 2)=1
os_.(e)(I)=10 if (1,9,2)=0

e For every simple alpha «, we define an expression e, a simple free attribute list
L, and a projection list 7 such that for all I, S, and z: Iz (or=z(€))(I) =
a(l, S, z).

e For every set alpha « define an expression e, a set free attribute list L, and a
projection list 7 such that for all 7, S, and @: (07 _,(e))(I) = a(l, 5, z).

Without assuming that the qualifier of a set alpha is a set formula, the translation
of set alphas becomes more complicated since the set selection has to be replaced by
a sequence of set and tuple selections. The formal proof of the equivalence is very
technical, as the proofs presented in [88] and [111], and it is presented in Appendix
A. As a final remark, it is important to note that, in order to guarantee that in the
given translation selection operators are always well defined, it is necessary to prove
the following result. The proof can be easily derived by induction on the structure of
calculus objects.
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Lemma 3.3 Let ¢ be a calculus object. Let T.o(q) = (e, F, L), where I’ may be an
expression or a projection list. If q is a set object, then L is a set free attribute list;
if ¢ is a simple object, then L is a simple free attribute list. a

3.7 Concluding remarks

In this chapter we have introduced a new nested semantics for generalized relations.
The new semantics is obtained by slightly modifying the relational semantics intro-
duced in Chapter 2 and interpreting each generalized relation as a finite set of pos-
sibly infinite sets, each representing the extension of a generalized tuple. We have
also characterized the properties of languages based on this semantics with respect
to languages for generalized databases based on the relational semantics. An algebra
and a calculus based on the nested semantics have then been proposed and extended
with external functions. Finally, these two languages have been formally proved to be
equivalent. As far as we know, this is the first approach introducing external functions
in constraint query languages.
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Chapter 4

An update language for relational
constraint databases

A data manipulation language must provide constructs to both retrieve and update
data. The definition of an update language is a much harder issue in constraint
databases, especially when used to represent spatial data. Indeed, spatial objects
are often subject to transformation with respect to either their shape (for example,
in rescaling or adding a new object component) or their position in the space (for
example, translation or rotation).

The aim of this chapter is to introduce an update language based on the same
principles on which the query languages presented in Chapter 3 are based. Following
the relational approach, at least three update operators must be defined for constraint
databases: insertion, deletion, and modification of generalized tuples.

The distinction between point-based and object-based manipulation, introduced
in Chapter 3, can also be taken into account in the definition of update operators. At
this level, they have the following meaning:

e A point-based update modifies a set of generalized tuples, seen as a possibly
infinite set of points. Thus, it may add, delete, or modify some points, possibly
changing the extension of the already existing generalized tuples.

e An object-based update modifies a generalized relation by inserting, deleting,
or modifying a generalized tuple, seen as a single value.

The remainder of this chapter is organized as follows. In Section 4.1, insert
operators are presented, together with examples motivating their introduction. Delete
operators are presented in Section 4.2 whereas update operators are introduced in
Section 4.3. We show under which hypothesis the proposed update operator collapses

75
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Operator Syntax e Restrictions Semantics r; := p(e)(r1)
Name

tuple insert | Ins'(Ri,C,u) a(u) C

N
2
=

rii="{tVu |t €ri AC(H)} U
{t|teri AC(8)}

set insert Ins®(Ry,u) a(u) Ca(Ry) | ri:=ry U{u}
tuple delete Delt(Rl7 C,u) a(u) Ca(Ry) | n={tr-u|terAC(H)}U
{t|teriA=C(1)}
set delete Del*(R:,C) a(C)yCa(Ry) | m={t|ter A=C(t)}
set update Upd®’(R1,C,Q) | a(@) Ca(Ry) | m:={t|tern A=C(t)}U
a(C) C alR) (@) 1t €r AC)

Table 4.1: Update operators.

to delete and insert operators and under which other hypothesis it corresponds to
some useful spatial operations, such as translation, rotation, etc.

All the queries and conditions we consider in the definition of the update language

are expressed by using EGRA(F), for some set of admissible functions F. A similar
definition can be proposed by using ECAL(F).

4.1

Insert operators

Specific application requirements lead to the definition of tuple and set insert operat-
ors. In particular:

e The definition of a set insert operator is motivated by the fact that a typical

requirement is the insertion of a new generalized tuple in a generalized relation.

The set insert operator satisfies this requirement by taking a generalized relation
r and a generalized tuple ¢ as input, and adding ¢ to r, thus increasing the
cardinality of r. Since r is a set, the set insert operation is a no-operation if
t is already contained in r. This operation can be reduced to an equivalence
test between generalized tuples. As generalized tuples are usually represented
by using canonical forms [82], this test usually reduces to check whether two
canonical forms are identical.

Because a generalized relation contains sets of relational tuples, the user may be
interested in inserting a relational tuple or a set of relational tuples into some
of the existing sets of relational tuples. Note that this requirement is different
from the previous one, since in this case we extend the extension of the already
existing generalized tuples but we do not insert any new one.
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Given a generalized relation r, a boolean condition C' (see the definition of set
selection in Chapter 3) and a generalized tuple ¢, the tuple insert operator selects
all generalized tuples of r that satisfy ' and adds to them the relational tuples
contained in ext(t). Notice that the tuple insert does not change the cardinality
of the target generalized relation.

In Table 4.1, the syntax and the semantics of insert operations are presented
following the style used in Table 2.1 in Chapter 2 and Table 3.3 in Chapter 3. For
update operations, p is a function that takes an update expression and returns a
function, representing the update semantics.

Example 4.1 Figure /.1 shows a possible geographical domain. The space is decom-
posed in four districts. Districts may contain towns, railway sections, and stations.
Districts, towns, and railway sections are concave objects, whereas stations are con-
vex. A possible representation of this domain in the extended generalized relational
model is the following:

o Districts can be stored in a generalized relation D. Fach d-generalized tuple
represents a single district.

o Towns can be stored in a generalized relation T'. Fach d-generalized tuple rep-
resents a single town.

o Railway sections and stations can be stored in several ways. For example, each
ratlway section, together with the stations located along the section, can be rep-
resented by using a single d-generalized tuple. We assume that railway sections
and stations are represented in this way inside a generalized relation R.

We assume that the schema of generalized relations D, T, and R contains two
variables X and Y, representing points belonging to the object extension, and a vari-
able 1D, representing the generalized tuple identifier. This identifier is not inserted to
“glue” together the extension of different generalized tuples, as in the generalized re-
lational model. Rather, it has been introduced to better identify the considered spatial
objects in query expressions.

Figure 4.1 also shows a dashed line and an empty square, representing a new
railway section and a new station to be inserted in the database, respectively. In
particular, the new railway section identified by ID =5 (in the figure, represented by
V) is added to the generalized relation R and the new station is added to the railway
sections identified by 1D € {1,2,4}, since it is an interchange node of the railway
network. The first insertion is performed using the set insert operator, because a
new spatial object has to be created. In order to perform the second insertion, the
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[ | Distri

owns ® Stations /Rajlway O New Station ~ ~ New Railway

Figure 4.1: The map shows the content of the generalized relations D, R and T,
together with the spatial objects to be inserted.

tuple insert operator can be used, since, due to the chosen representation, only a
modification of the extent of existing spatial objects has to be performed. Table 4.2
shows the expressions corresponding to the two insertions. <&

4.2 Delete operation

For the delete operations the discussion is similar to the one presented for the insert
operations. We therefore introduce two operators:

e The set delete operator, given a generalized relation r and a boolean condition
C, deletes from r all generalized tuples that satisfy C'.

e The tuple delete operator, given a generalized relation r, a boolean condition
C', and a generalized tuple ¢, selects all the generalized tuples of r that satisfy
(' and removes from their extension the relational tuples contained in ext(t).



4.3. Modify operators 79

In Table 4.1, the syntax and semantics of delete operations are presented. As an
example, referred to Example 4.1, Table 4.2 shows the expressions to delete respect-
ively the town with I D = 1 and the station of the railway section with ID = 2.

4.3 Modify operators

Traditional database systems provide a modify operation to deal with updates that
are function of the old values of the tuples. In constraint database systems this case
is very common since operations of this kind, like rescaling, translation or rotation,
are often applied to spatial objects, represented by generalized tuples. Therefore the
introduction of a modify operator (also called update operator) in a spatial oriented
data model is necessary.

Note that, due to the nested semantics assigned to a generalized relation, point-
based and object-based modify operations coincide. However, we choose to classify
the modify operator as a set operator, since it always modifies a generalized tuple.

In a traditional data manipulation language (for example, SQL), the modify op-
eration allows computing the new value, to be assigned to the updated tuple, by a
database query. Following the same approach we propose a set update operator with
the following semantics. Given a generalized relation r, a boolean condition (', and a
query Q)(t), the set update operator selects all tuples ¢ of r that satisfy C' and substi-
tutes each ¢ with Q(¢). The query Q(t) acts on a single generalized tuple, denoted by
t, at a time, as in the definition of the set selection operator. The generalized tuple
t is considered as a generalized relation containing only one generalized tuple. This
implies that all set operators of EGRA(®) are useless, since eventually they can only
delete t. Note that, also the union operator cannot be used inside Q (), because it
will necessary generate a relation with at least two generalized tuples. However, since
an operator that generates the disjunction of two generalized tuples could be

useful to express some spatial transformations, we introduce a tuple union operator

defined as
RiU Ry=t11V. ..Vl Via1 V... Vigy,

assuming that Ry = {ty1,...,t1,} and Ry = {t31,...,t2,}. Therefore, we restrict
Q(t) to be an expression of (EGRA(F)\ {U, 0, \*,—°}) U {U'}?. Table 4.1 presents
the definition of the set update operation.

Notice that, depending on the operators used in Q (), a different modification of
tuple t is obtained. In particular, the following proposition holds.

2With (EGRA(F)\ S) U S’ we denote the expressions of the language obtained from EGRA(F)

by not using operators in .S but possibly using new operators contained in S’
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| Description | EGRA update expression |

insertion of a new raillway
section in R, with /D =5
insertion of a new station be-
longing to the railway sec- | Ins‘(R,(¢t,(ID =1V ID =2V ID = 4),X£ 0),
tions of R with /D € (53 < X <55A40 <Y < 42))
{1,2,4}
deletion of the town with | Del®(T, (¢t,(ID = 1),X#£ 0))
ID =1 contained in T'
deletion of a specific station
from the railway section in R
with /D =2

Ins*(R,(ID =5A105 < X < 137° AY = —2 X + 50))

Del'(R, (t, (ID = 2), X ),
(65 < X <67A83<Y < 85))

“a < X < bis an abbreviation for X > a A X <b.

Table 4.2: Examples of EGRA(LPOLY) insertions and deletions.

Description
ECAL | EGRA
Projection (@57 5 (u))
i X,
it projects the n-dimensional generalized tuple u onto the X, , ..., X;i,, (m < n) coordinates
(((v[aa], s 0fim]) = #(v) ) = R(E) 2) Hpx,,,ox,1(w)

Minimum Bounding Rectangle (Q™ (u))
it generates the Minimum Bounding Box of the extension of u

(((va[1], 02[2]) = tv1), t(v2) 2) = R(E) 2) Hpxy(u) M vy (u)

Translation ( ZZ(U))

it translates the extension of u according to the vector < a,b >

(((v[1],v[2]) : t(v), te(v) 2) = a1 (t) ) where px vi(oe(orx vy 1 (w) M (uw U —u)))
ar = (((vi,v2) s ti(vr), ba(v2) )t R(41), D™ (t2) ) | c= X =X'"+aAY =Y 41
Rotation ( ;—Of?alya%blh(u))

it rotates the extension of u according to the rotation coefficients < a1, az,b1, by >

(I, o2]) < o). £e(0) ) - (1) 2) where T ) (0 (0 v 1 (0) B (4 U7 =)

(((vi,v2) s t1(v1), b2(v2) 1) s R(81), D™ (t2) :) | e = (X =ar (X' —_X) +az (Y’ —_Y))/\
(Y = by (X' = X) 4 bo(Y' = 7))

“The coefficients a1, a2, b1, by define the rotation, however only 2 of them are independent, i.e.,
a1 =a,a12 =b,az1 = —band az» = a, where a = cos o, b = sin «, and « is the rotation angle.
» b 3 b 3 3 1 b )

Table 4.3: Examples of queries to be specified in the modify operator. In the ECAL
column, R represents the alpha (¢, ::), where ¢, is the target alpha representing u
(see Subsection 3.4.1).
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Proposition 4.1 Given a generalized relation identifier R, a boolean condition C'
and a query @, -expressed by using the operators of EGRA\{p,1l,U,cf,
\?, =%}, a generalized tuple P exists such that:

Upd®*(R,C,Q(t)) = Upd®*(R,C,op(t)).

Proof: Since ¢ is a generalized tuple, op(t) is equal to (¢t A P). Thus, the proposition
is proved if we show that a generalized tuple P always exists, such that Q(¢) =t A P.
This is proved by induction on the structure of Q(¢):

e Base step: Q(t) =t. The generalized tuple P, representing the true formula on
the schema of R, satisfies the proposition.

o Inductive step:

- Q) = op(f(1)).
By inductive hypothesis, f(t) =t A P'. Thus, from the definition of the
selection operator, Q(t) =t A P' A P, and therefore Q(t) = t A P, where
P=P AP.

Q) = F)\ £,
By inductive hypothesis, f'(t) =t A P!, f"’(t) =t A P" . Thus, from the
definition of the difference operator, Q(t) = t AP’ A=(t A P"), and therefore
Q) =tANP AN=P" =t AP, where P = P' AN =P".

= Q)= f'(t) W f"(t).
By inductive hypothesis f/'(t) = t A P, f"(t) =t A P”. Thus, from the
definition of the natural join operator, Q(t) =t A P’ A P”, and therefore
Q) =t A P, where P = P' A P". ]

The previous result does not hold if the query Q(¢) contains a projection operator.
Indeed, in this case, the query specified in the update operator may generate relational
tuples that are not contained in ext(t) (consider for example, the query Q(t) =
Hpxp(t) M y(t) where t = (X =Y A1 <Y < 10)). Thus, in general, a constraint
P such that Q(t) = op(t) cannot be found. A similar consideration holds if Q(¢)
contains the renaming operator.

Some examples of queries that can be used inside the set update operator in order
to modify spatial data are shown in Table 4.3. For each query, together with the
algebraic expression, an equivalent expression in ECAL(F) is also proposed. Notice
that, since the translation and the rotation of a spatial object of £2 can be expressed
in EGRA(®, F), all the movements of a spatial object in £ can be described in this
language.
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Some relationships exist between the proposed set update operator and the pre-
viously defined tuple operators, as stated by the following proposition. The proof
trivially follows from the definition of the operators.

Proposition 4.2 Given a generalized relation identifier R, a boolean condition C,
and a generalized tuple P, the tuple insert and the tuple delete operators can be
expressed, respectively, as follows:

Del'(r,C, P) = Upd®(r,C,o-p(t)) Ins'(r,C,P)=Upd®(r,C,t U op(t U =t)).2
a

From the previous results it follows that the proposed set update operator is
sufficient to model tuple insert and tuple delete operators, that therefore represent
simpler syntactic forms to express data modifications.

4.4 Concluding remarks

In this chapter we have introduced an update language for constraint databases, based
on the nested semantics. This language, together with the query languages introduced
in Section 3, completes the definition of a data manipulation language for relational
constraint databases based on a nested semantics.

As we have already remarked, in this chapter we have assumed that queries and
conditions are expressed using EGRA. However, due to the equivalence between
EGRA(®, F) and ECAL(®, F), they can also be expressed by using ECAL(F). In
this case: (i) a query is translated into the equivalent alpha (see Section 3.6); (ii) a
condition is translated into a calculus formula (see Section 3.6).

For some examples of alphas used in the definition of the update operator, see
Table 4.3.

®Notice, that P is generated by the query ap(t U' —t).



Chapter 5

A formal model for nested
relational constraint databases

In Chapter 3 we have proposed an algebra and a calculus for relational constraint
databases, based on a simple nested model.  Though this model overcomes some
limitations of the generalized relational model, it still has some of the problems in
supporting complex applications that standard relational database systems have. In-
deed, in general, typical data modeled in constraint databases, such as spatial and
temporal data, are not flat, as the relational model requires, but composite. On the
other hand, neither the nested or the object-oriented models are suitable to model
such types of data, since they are not able to represent infinite information. An in-
tegration of both paradigms, nested relations and constraint relations, is therefore
needed to overcome the limitations of both.

As we have seen in Chapter 2, several approaches have been proposed to model
complex data in constraint databases. Most of them model sets up to a given height
of nesting [13, 122]. Thus, they do not allow the arbitrary combination of set and
tuple constructors. Others do not have this restriction but are defined only for specific
theories. This is the case of C-CALC [65]. For others, as LyriC [28], the definition
of a formal basis, supporting the definition and the analysis of relevant language
properties, has been left to future work.

The aim of this chapter is the definition of a model and a query language for
nested constraint relational databases overcoming some limitations of the previous
proposals. The proposed language is obtained by extending N'RC [148] to deal with
possibly infinite relations, finitely representable by using POLY, and it is called gN"RC
(generalized N'RC).

NRC is similar to the well-known comprehension mechanism in functional pro-

83
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gramming and its formulation is based on structural recursion [34] and on monads
[103, 145]. N'RC has been proved equivalent to most nested relational languages
presented before. The choice of this language is motivated by the fact that the formal
semantics assigned to NRC and the structural recursion on which it is based allow
us to prove several results about gNRC in a simple way. Moreover, even though
gN'RC has been defined for POLY, other theories can be easily modeled by the same
formalism.

The formal framework on which gNRC is based allows us to easily prove that
nested relational constraint languages have the conservative extension property. This
means that, when input and output are restricted to a specific degree of nesting, any
higher degree of nesting generated by the computation is useless. In particular, when
input and output relations represent flat generalized relations, gN"RC expressions can
be mapped into FO extended with poLy. This property also holds for relational and
nested relational languages [148]. Note that, even if this property may seem obvious,
this is the first formal proof of its validity in the context of constraint databases.

Giving a constructive proof, we also prove that gN'RC is effectively computable.
The same proof shows that the language has NC data complexity. In summary,
gN'RC is a real nested constraint language but it does not have extra computational
power compared to the usual constraint query languages. However, it allows a more
natural representation of data, ensuring a low computational complexity and a high
flexibility with respect to the chosen theory, thus overcoming most limitations of
previous proposals.

The chapter is organized as follows. In Section 5.1, a slight modification of the
nested relational model is proposed, to deal with finitely representable sets. The
finitely representable nested relational calculus gA/RC is then presented in Section
5.2. Section 5.3 proves that gAVRC has the conservative extension property. Results
about effective computability are then presented in Section 5.4, whereas Section 5.5
deals with complexity results. Finally, Section 5.6 presents some conclusions.

5.1 The generalized nested relational model

In the traditional generalized relational model, a relation can be an infinite set of
tuples taking values from a given domain, as long as the set is finitely representable.
We extend this paradigm to sets that can be nested to an arbitrary height. To this
purpose, we choose as an example the polynomial inequality constraint theory poLy.!
In particular, we allow such infinite sets of tuples of reals to appear at any depth in

'The proposed approach can be easily extended to deal with any other theory admitting variables
elimination and closed under complementation.
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a nested relation. However, we do not allow a nested set to have an infinite number
of such infinite sets as its elements, to guarantee effective computability and low data
complexity.

To be precise, the types that we want to consider are:

su=R|sy xX--Xs, | {s}|{pRx xR}

The type R contains all the real numbers. The type sy X --- X s, contains n-ary
tuples whose components have types sy, ..., s, respectively. The type {s} are sets
of finite cardinality whose elements are objects of type s. The type {5} are sets of
(possibly) infinite cardinality whose elements are objects of type s, where s is a type
of the form B x - - - x R. We also require each set in {,s} to be finitely representable
in the sense of [64, 83, 115].

For convenience, we also introduce a ‘type’ B to stand for Booleans. However, for
economy, we use the number 0 to stand for false and the number 1 to stand for true.

Example 5.1 Consider a spatial database, representing regions, cities, and rivers.
Fach region is characterized by a name, its geographical extension, the geographical
extension of its mountains, and the geographical extension of its flat countries. Clities
and rivers are characterized by their name and their geographical extension. Regions,
cities, and rivers can be represented using the proposed finitely representable nested
types as follows:

e Regions: Regions can be represented using a finite set. Fach element of the set
represents a single region and is represented by a tuple. The tuple is composed of
four elements: a real, representing the region identifier; a finitely representable
set, representing the geographical extension of the region; a finite set, containing
a finitely representable set for each group of mountains; a finite set, containing
a finitely representable set for each flat country inside the region. Geographical
extensions can be approximated by polygons and therefore each finitely repres-
entable set contains pairs of reals. Thus, regions can be represented by a complex

object of type REGIONS : {R X {f;,R xR} X {{{;R X R}} X {{f R XR}}}.

o Cities and Rivers: Both cities and rivers can be represented by a finite set. Fach
element of the set represents a single city (a single river) and it is represented
by a tuple. The tuple is composed of two elements: a real, representing the
city identifier (the river identifier) and a finitely representable set, representing
the geographical extension of the city (of the river). A city (a river) can be
either represented as a point or as a polygon. Therefore, also in this case, each
finitely representable set contains pairs of reals. Thus, cities and rivers can be



86 Chapter 5. A formal model for nested relational constraint databases

represented by complex objects respectively of types CITIES : {R X {7, R xR}}
and RIVERS : {IR x {7R x R}}. ]

5.2 The generalized nested relational calculus

To express queries over our finitely representable nested relations, we extend the
nested relational calculus N'RC defined in [34, 148]. We call the extended calculus
gN'RC, standing for generalized N'RC.

We present the language incrementally. We start from ANRC, which is equivalent
to the usual nested relational algebra [2, 34]. The syntax and typing rules of N'RC
are given below.

z% s c: R

€:8] X -+ X 8, €1:81 - €,:S8,

e s; (€1,...,€n) 181 X -+ X Sy

e:s er:{s} ey:{s} er :{t} ex:{s}
{}?:{s} {e}: {s} epUeg: {s} U{er | 2° € ex} : {t}

e1:R ey: R e1:B ex:s e3:s e:{R}
€1 =e9: B if eq then eq else ez : s empty e : B

We often omit the type superscripts as they can be inferred. An expression e having
free variables & is interpreted as a function f(Z) = e, which given input O produces
6[6/5] as its output. An expression e with no free variable can be regarded as a
constant function f(#) = e that returns e on all input 7.

Let us briefly recall the semantics (see also [34]). Variables 2° are available for
each type s. Every real number ¢ is available. The operations for tuples are standard.
Namely, (eq, ..., e,) forms an n-tuple whose ¢ component is e; and =; e returns the ¢
component of the n-tuple e.

{} forms the empty set. {e} forms the singleton set containing e. e; U ez unions
the two sets e; and ez. [J{e1 | € ez} maps the function f(z) = e; over all elements
in ey and then returns their union; thus if ey is the set {oy,...,0,}, the result of
this operation would be f(o;) U---U f(0,). For example, [J{{(z,2)} | € {1,2}}
evaluates to {(1,1),(2,2)}.

The operations for Booleans are also typical, with the understanding that true is
represented by 1 and false is represented by 0. e; = e returns true if e; and e; have
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the same value and returns false otherwise. empty e returns true if e is an empty set
and returns false otherwise. Finally, if ey then ey else e3 evaluates to ey if eq is true
and evaluates to e3 if e is false; it is undefined otherwise.

Now we deal with finitely representable relations and constraints. We add con-
structs analogous to the finite set constructs of N’RC to manipulate finitely repres-
entable sets and constructs for arithmetic to express real polynomial constraints.?

e:s e1:{srs} ex:{srs}
{5} {yrst {pred 1 {yrs} erUpr €2t {yrs}
er :{prs1} €2 :{srs2}
U{srer [ 2% €50 ea} : {yrs1}

e1:R ey: R e1:R ey R e1:R ey R e1:R ey R
el +ex: R e —ey R e1-ex R e1~—ex R
e:{pR}
R:{;R} emptys, e : B

The semantics of these constructs is analogous to those of finite sets. {;,} forms the
empty finitely representable set. {;.e} forms a singleton finitely representable set.
e1 Uy, ey produces a finitely representable set that is the union of the two finitely
representable sets ey and ey, [J{s.€1 | 2°2 €4, €3} applies the function f(z) =€ to
each element of e; and returns their union as a finitely representable set. For example,
if the elements of €3 are o1, 0, ..., then the result is f(o;) Ug,. f(og) Uype «--2

The four arithmetic operations have the usual interpretation. empty;, e tests if the
finitely representable set e of reals is empty. Finally, the symbol R denotes the infinite
(but finitely representable) set of all real numbers. It is the presence of this symbol R
that allows to express unbound quantification. For example, given a polynomial f(z),
we can express its set of roots easily: { if f(z) =0 then {;.x} else {;.} | x €4,
R}. Similarly, we can express the usual linear order on the reals, because the
formula 32.(z # 0) A (y — x = 2?), which holds iff © < y, is expressible as
not(empty ¢, (U{sr if not(z=0) then if y—a = z-z then {;, z} else {4, } else {3} |
z €4, R})), with not implemented in the obvious way.

The above constructs let us manipulate finite sets and finitely representable sets
independently. In order for these two kinds of sets to interact, we need one more
construct:

?Note that different sets of rules can be inserted to represent different logical theories admitting
variable elimination and closed under complementation.

¥In Section 5.4 we prove that this operation is computable, even if at a first sight this is not
obvious.
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er1:{frs1} ex:{s2}
U{srer [ 2% € ea}: {prs1}

This construct let us convert a finite set of real tuples into a finitely representable one.
The semantics of |J{sre1 | € €3} is to apply the function f(z) = e; to each element
of e and then returns their union as a finitely representable set. That is, if e5 is the set
{01,...,0,}, then it produces the finitely representable set f(o1) U, -+ Up f(og).
For example, the conversion of a finite set e of real tuples to a finitely representable

one can be expressed as U{;-{s-2} | z € €}.

The above constructs constitute the language gN"'RC. Before we study gNRC
properties, let us briefly introduce a nice shorthand, based on the comprehension
notation [33, 145], for writing gN'RC queries. Recall from [33, 34, 148] that the
comprehension {e | Ay,..., A,}, where each A; either has the form z; € ¢; or is an
expression ¢; of type B, has a direct correspondent in N'RC that is given by recursively
applying the following equations:

e {e|a;ce..t=U{{e] .-} |azi€el
o {e|e,...} =if e then{e]| ...} else {}

The comprehension notation is very user-friendly. For example, it allows us to write
{(z,y) | z € e1, y € ez} for the Cartesian product of e; and e instead of the clumsier
VU (@)} [y € e} | @ € ea).

The comprehension notation can be extended naturally to all gNVRC expressions.
We can interpret the comprehension {;-e | Ay,..., A, }, where each A; either has
the form x; € e; or has the form z; €y, e; or is an expression e; of type B, as an
expression of g N'RC by recursively applying the following equations:

° {f,,e | xiEei,...} :U{fr{fr€| } | xZ'Eei}
o {prelmicp e} =U{pdpel ) @i €pr e}
o {se|e,...} =if e then {se| ...} else {4}

For example, the query to find the roots of f(z) becomes {2 | z €7, R, f(z) = 0}.
Similarly, the query to test if x < y becomes

not(empty s ({sr2 | 2 €4 R, not(z2=0), y—x = 2-2})).

In addition to comprehension, we also find it convenient to use some pattern
matching, which can be eliminated in a straightforward manner. For example, we
write {(x, 2) | (z,y) € e1, (y,2) € e2, y =y} for relational composition instead of
the more formal {(7y 2y, 72 yz) | 2y € €1, yz € €3, w2 ¥y =71 yz}.
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We should also remark that while gANRC provides only equality test on R and
emptiness tests on {IR} and {;, R}, these operations can be lifted to every type s using
gN'RC as the ambient language; see [148]. Similarly, commonly used operations such
as set membership, set subset tests, set difference, and set intersection are expressible
at all types in g N'RC. Thus, under the proposed framework, generalized relations on
POLY, as defined in [83], are easily defined.

Example 5.2 Consider the types introduced in Frample 5.1. Suppose we want to
represent a city, identified by number 10, whose extension, in some reference space,
is approximated by the constraint 50 < X < 60 A 20 < Y < 25.% Using the
comprehension syntax, this city is represented in gN'RC as (10,{;-(z,y) | = €,
Ry €4 R,z > 50,2 < 60,y > 20,y < 25}), where @ < y is defined as before:
if not(emptys({sr2 ]2 €s R, not(z=0), y—a=2z-2})) then 1 else x =y.

Now consider three expressions regions: REGIONS, cities: CITILES,
rivers: RIVFERS, respectively representing a set of regions, a set of cities, and a
set of rivers, and a further expression reg: R, representing a region identifier. Using
the comprehension notation and pattern matching, gN'RC can be used to formulate
several interesting queries:

o “Find all rivers flowing in region reg”. This query can be expressed in gN'RC
as follows:
{nriv | (re& Eregy Myrey, fr’eg) € region57 (nriw eriv) € I‘iVGI‘S, nOt(ereg meriv =
o “Iind all cities whose extension contains some mountains”. This query can be
expressed in gN'RC as follows:
{ncity | (nreg7 €regs Mreg7 freg) € regions, My € Mreg7 (ncity7 ecity) € cities,

not(ecity N Myeg = 0)}.

o “Iind all rivers flowing in at least two different regions”. This query can be
expressed in gN'RC as follows:

{n”U | (n;egﬁ e;eg7 m;egﬁ 7’16g) € regions, (nzem eZeg7 mzegﬁ 7’2eg) € regions,
(Nyiv, €riy) € rivers, not(e%eg N eppp = @),not(ezeg N eppp = @),not(nieg =
nZeg)}' D

*We use uppercase letters to denote variables belonging to the relation schema and lowercase
letters to denote variables inside calculus expressions.
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5.3 Conservative extension property

The conservative extension property basically says that the expressive power of a
query language is independent of the height of set nesting in the intermediate data
produced during the evaluation of a query. In the following, we give a precise definition
and then prove that gNRC possesses it.

Given a type s, the height of s is defined as the depth of nesting of set brackets
{-} and {;,-} in s. Given an expression e of gN"RC, the height of e is defined as the
maximum height of all the types that appear in e’s typing derivation. For example,
{(z,y) | * € e1, y € ez} has height 1 if both e; and ez have height 1. On the other
hand, {(z,{f2 | 2 €5 R,z < 2}) | « € e} have height 2 if e has height 1.

Definition 5.1 (Conservative extension property) A language L is said to have
the conservative extension property if every function [ : sy — so that is expressible
in L can be expressed using an expression of height no more than the mazimum of
the heights of si and so. a

We now prove that g V'RC has the conservative extension property, just like N'RC
[148]. Asin [148], a set of strongly normalizing rewriting rules that reduces set height
is given. Then we show that the induced normal forms have height no more than that
of their free variables (i.e., their input variables).

Table 5.1 shows the rewriting rules that we want to use. Those for N'RC are taken
from [148]. As usual, we assume that bound variables are renamed to avoid capture
and that ej[es/x] denotes the expression obtained by replacing all free occurrences of
x in e by es.

It is readily verified that the proposed rewriting rules are sound. That is, expres-
sions obtained from e; by rewriting are semantically equivalent to e;. Furthermore,
using a straightforward adaptation of the termination measure given in [148], we can
prove the following result.

Proposition 5.1 If e; ~+ ey, then e; = e3.> Moreover, the rewriting system presen-
ted in Table 5.1 is guaranteed to stop no matter in what order these rules are applied
(it is strongly normalizing). O

The following result follows from the application of a simple induction on the
structure of expressions.

Proposition 5.2 Let e : s be an expression of gN'RC having free variables x1 : s,
ey Ty @ Sy such that e is a normal form with respect to the above rewriting system.
Then the height of e is at most the maximum of the heights of s, s1, ..., Sy. O

®The symbol = denotes semantic equivalence.



5.3. Conservative extension property

91

mi(er, ... en) ~ €

of true then ey else e5 ~ e

of false then ey else es ~» eq

{JUe~ce

eU{}~ce

empty(e; U - Uep) ~ false, if some e; has the form {e}
empty(e; U - Uep) ~ true, if every e; has the form {}
emptys,(e1 Upyr - - Uy €5) ~ false, if some e; has the form {;,e}
emptys,(e1 Upp - - Upy €5) ~ true, if every e; has the form {¢,}
Ute o€ {1}~ {)

Ufer |z € {ea}} ~ eaea/x]

U{er [z €esUes}~Ufer [ €ex} U Ufer | @ € es)

Uler [z € Ulez [y € est~ U{U{er | 2 €ea} [ y € es}

U{e1 | # € if ea then es else eq} ~ if eg then | J{e1 | © € e3} else

Uler | = € ea}
U{fre | Err {fr}} ~ {fr}
Udsrer [ 2 €pr {preatt ~ erfen/a]
Udsrer [ 2 €fr e2Uprest~ U{prer | 2 €5 2} Upr U{prer | 2 €fr st
Udsrer [ 2 €pr Ufprea |y €r estt ~ UL Ulsren [ @ €57 €2} |y €r €3}
re1 | & E¢p tf e then es else e4 } ~» if eq then €1 |z €, €3} else
f f f f

Ulsrer | @ €4 ea}
Ulpre lze {3t~ {}
U{srer | = € {ea}} ~ erfea/a]
Ulsrer [z €erUest~U{prer |z €eat UU{prer | 2 €est
Ulrrer [z € Ulea |y €estt~ ULprUlsrer | 2 €ea} |y €Eest
Udsrer |2 €5r Ulprea |y € esty ~ U Ulrrer | 2 €4 2} |y € €3}
U{sr e1 | = € if e then ez else es} ~ if e1 then | J{jre1 | @ € ea} else

Ulsrer | = € eq}

Table 5.1: Rewriting rules.
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Combining Propositions 5.1 and 5.2, we conclude the following.
Theorem 5.1 gN'RC has the conservative extension property. a

Note that the previous result implies that when the set height of a gN'RC ex-
pression e is higher than the set height of input and output expressions, then e can
be optimized, reducing the height of intermediate results, gaining in space and time
overhead.

Paredaens and Van Gucht gave a translation for mapping nested relational algebra
expressions having flat relations as input to an equivalent FO expression with bound
quantification [117]. This translation can be easily adapted to provide a translation
for mapping gN'RC expressions of height 1 to FO extended with poLy. The next
result follows from this and Theorem 5.1.

Corollary 5.1 If f:s1 — sy is a function expressible in gN'RC and s; and sy have
height 1, then [ is expressible in FO with POLY. a

Thus, all functions f : s; — s in gNRC, with s; and sy of height 1, are effectively
computable by compiling into constraint query languages such as those proposed in
[64, 83, 115].

As a consequence, we can make use of well-known results [15, 66, etc.] on con-
straint query languages to analyze the expressiveness of gN'RC with respect to such
functions. It is therefore simple to prove the following result.

Corollary 5.2 gNV'RC cannot express parity test, connectivity test, transitive closure,
etc. a

We can also use the above “compilation procedure” to study the expressive power
of gN'RC on functions whose types have heights exceeding 1. We borrow an example
from [97] for illustration. A set of sets O = {O1,...,0,} : {{R}} is said to have a
family of distinct representatives iff it is possible to pick an element z; from each O;
such that @; # «; whenever ¢ # j. It is known from [97] that A"RC cannot test if a
set has distinct representatives. We now show that it cannot be expressed in gN'RC
either.

Corollary 5.3 gNRC cannot test if a set of sets has distinct representatives.

Proof: By Corollary 5.2, gNRC cannot express parity test. It follows that it cannot
test if a chain has an even number of nodes. Let aset X, = {(z1,22), ..., (Zm-1,2m)}
be given, where m > 2. Then we can construct in gN"RC the set
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S = {{$1}7 {$m}7 {$1, $3}7 {$2, $4}7 RN {xm—% xm}}
According to [97], S, has distinct representatives iff m is even. It follows that gN"RC
cannot test for distinct representatives. a

5.4 Effective computability

Recall that expressions in g V'RC can iterate over infinite sets. An important question
that arises is whether every function expressible in gA'RC is computable. In the
previous section, we saw that if a function in gNRC has input and output of height
1, then it is computable. In this section, we lift this result to functions of all heights.

Our strategy is as follows. We find a total computable function p, : s— > s’ to
encode nested finitely representable sets into flat finitely representable sets. We also
find a partial computable decoding function ¢, : s — s so that ¢, o ps = i¢d. Finally,
we find a translation (-)’ that maps f: sy — s in gN'RC to (f)' : s — s} in gN'RC
such that ¢s, o (f)' o ps;, = f. Note that (f)" has height 1 and is thus computable.

Before we define p and ¢, let us first define s, the type to which s is encoded.
Notice that s’ always has the form {7 R x --- X R}.

o R'={;R}

o (51 x--xs8,) ={pt1 X+ Xt,}, where st = {;.t;}.
o {srst ={prR X s}

o {s} ={;RxRxt}, where s’ = {;,1}

The encoding function ps : s — s’ is defined by induction on s. In what follows,
0 stands for a tuple of zeros (0,...,0) having the appropriate arity. A finitely repres-
entable set is coded by tagging each element by 1 if the set is nonempty and is coded
by a tuple of zeros if it is empty. A finite set is coded by tagging each element by 1
and by a unique identifier if the set is nonempty and is coded by a tuple of zeros if it
is empty. More precisely,

® pr(0) = {sro}
L4 p51><~~~><sn((017"'70n)) = {fr(xlv"'vxn) | T Gfr’ Psq (01)7"'7$n Gfr’ psn(on)}

. p{frs}(O) = {f,,(O,ﬁ))}7 if O is empty. Otherwise, p{frs}(O) = {;(L,2) |
T €y O}
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e p3(0) = {4-(0,0, 0)}, if O is empty. Otherwise, pisi(0) = O1 Uy -+ - Uy, Oy,
if O ={o1,...,0,}and O; = {4, (1,4, 2) | €4, ps(0;) }. Note that we allow the
t’s above to be any numbers, so long as they are distinct positive integers.

We use (J{e1 |  €f, ez} to stand for the application of f(z) = e; to each
element of ey, provided the finitely representable set e has a finite number of ele-
ments, and then return the finite union of the results. Then the comprehension nota-
tion {e | Ay,...,A,} is extended to allow A; to be of the form z; €, e; and the
translation equations are augmented to include the equation: {e | z; €4, €;,...} =
Utfe | ..} | i € ei).

The decoding function ¢, : 8/ — s, which strips tags and identifiers introduced by
ps, can be defined as follows:

o 42(0) = 0,if O = {;,0}.

® (s xxs5,(0)=(01,...,04),if 0; = q5;, ({ prs | (x1,...,2,) €4 OF).
® ¢, 53(0) ={sa | (L,2) € O}

® 4(s1(0) ={es{py | (1,,y) €4 O, 1 =3} | (1,4,2) €4 O}

It is clear that p; and ¢; are both computable, even though they cannot be ex-

pressed in gN"RC. Moreover, using the fact that ps(O) is never empty, by induction
on the structure of s we can show that ¢, is inverse of p,.

Proposition 5.3 ¢, 0 p; — id. a

Note that p; is not deterministic. Let Oy : s’ and O3 : s’. Then we say O ~ O5
if ¢s(O1) = ¢5(O3). That is, O; and O, are equivalent encodings of an object O : s.
It is clear that whenever O; ~ Of, ..., and O,, ~ O}, then {;.(z1,...,2,) | 21 €4,
O1, ooy €5r Ony ~ {1, 2n) | 21 €5 OF, ..o, 2y €5, OL}. Tt is also obvious
that whenever O ~ O, then {s2; | (z1,...,2,) €5 O} ~ {pp2; | (21,...,2,)
€, O'}. We can now state the following key proposition.

Proposition 5.4 For cvery function f : s; — sy in gN'RC, there is a function
(f) : sy — sb such that

id f id
S1 S1 52 52
p51 (]51 (]52 p52

! !
51 51 82 82
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Proof: (Sketch) Left and right squares commute by definitions of ps, ¢, and ~. It is
then possible to construct (f)’ by induction on the structure of the gN"RC expression
that defines f such that the middle square and thus the entire diagram commutes. O

Now let f : s; — s3 be a function in gNRC, where s; and sy have arbitrary
nesting depths. Proposition 5.4 implies that there is a function (f)’ : s§ — s in
gN'RC such that g, o (f) ops, = f. Since s| and s, are both of height 1, by Theorem
5.1, we can assume that (f)" has height 1. Then by Corollary 5.1, we conclude that
(f) is effectively computable. Since ¢ and ps are also computable, we have the very
desirable result below.

Theorem 5.2 All functions expressible in gN'RC are effectively computable. a

The “compilation procedure” above essentially shows that the whole of gANRC
can be embedded in FO extended with PoLY, modulo the encodings p,s and ¢, (thus,
gN'RC is closed). We should remark that the converse is also true. For example, a
formula 3z.®(x) can be expressed in gN'RC as not(emptys{sr1 | x €5, R, ®(z)}).
So gN'RC does not gain us extra expressive or computational power, compared to
the usual constraint query languages. However, it gives a more natural data model
and a more convenient query language, since it is no longer necessary to model our
spatial databases as a set of flat tables.

5.5 Data complexity

A constraint query ) has data complexity in the complexity class C if there is a
Turing machine that, given an input generalized database d, produces some general-
ized relation representing the output Q)(d) and uses time in class C, assuming some
standard encoding of generalized relations [83].

Results about data complexity of gA/RC can be obtained from results presented in
Section 5.4 and from [83]. Consider the diagram introduced in Proposition 5.4. As f’
is expressed in FO extended with PoLy, it follows from [83] that its data complexity
is in NC. Moreover, it is simple to show that encoding and decoding functions p; and
qs are also in NC. The following result follows from these considerations.

Proposition 5.5 gN'RC has data complexity in NC. a

From the previous considerations, it follows that gAN"RC overcomes some limita-
tions of the previous proposals to model complex objects in constraint databases.
Indeed, no maximum degree of nesting is assumed and different theories can be
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used to finitely represent relations, ensuring at the same time a low data complexity.
Moreover, the formal semantics on which it is based allows us to easily analyze sev-
eral interesting properties (as conservative extensions) of nested constraint relational
languages.

5.6 Concluding remarks

We have proposed a formal model and a query language for constraint nested rela-
tions, overcoming some limitations of the previous approaches. The proposed lan-
guage, gNRC, has been obtained by extending NRC [148]. It is characterized by a
clear formal foundation, a low data complexity, and the ability to model any degree
of nesting. Moreover, even if the language has been defined for a specific theory, the
framework can be easily extended to deal with different theories, closed under comple-
mentation and admitting variable elimination. The idea is to replace rules introduced
to specify arithmetic with rules describing properties of the chosen theory.



Part 11

Optimization issues in constraint
databases
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Chapter 6

Optimization techniques for
constraint databases

In order to make constraint databases a practical technology, efficient optimization
techniques must be developed. In traditional databases, at least two different ap-
proaches are adopted in order to achieve good performance:

e Indexing. In this case, specific data structures are used to more efficiently
support retrieval and update operations of items stored in the database. Typical
relational index structures are B-trees and their variant B*-trees [11, 49].

o Query optimization. Different execution strategies can in general be applied
to execute the same query. However, the cost of applying such strategies may
be different. The aim of query optimization is to determine the execution plan
with the optimal cost. In general, two different, but complementary, approaches
can be used. First, the expression representing the query to be executed is
rewritten as another expression, equivalent to the original one but more efficient
to execute. This step, called algebraic optimization, is mainly based on the
application of specific heuristics. After that, the available cost parameters and
information about the available index data structures are used to determine the
most efficient execution plan (cost-based optimization).

The aim of this chapter is to illustrate which indexing and query optimization
approaches have been proposed for constraint databases, pointing out the difference
with respect to traditional and spatial databases. The chapter is organized as follows.
In Section 6.1, we survey indexing techniques for constraint databases whereas Section
6.2 surveys the few approaches that have been proposed to perform query optimization
in constraint databases. Some conclusions are then pointed out in Section 6.3.

99
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6.1 Indexing

Data structures for querying and updating constraint databases must be developed,
with time and space complexities comparable to those of data structures for relational
databases. Complexity of the various operationsis usually expressed in terms of input-
output (1/0) operations. An 1/O operation is the operation of reading or writing one
block of data from or to a disk. Thus, space complexity corresponds to the number
of disk blocks used to store data structures; time complexity of query and update
operations corresponds to the number of blocks that have to be read or written in
order to execute the query or the update operation.
Typical parameters, used to compute complexity bounds, are:

e B, representing the number of items (generalized tuples) that can be stored in
one page;

e 7, representing the number of pages to store N generalized tuples (thus, n =

N/B);

e {, representing the number of pages to store T’ generalized tuples, representing
the result of a query evaluation (thus, t =T/B).

Complexity can be analyzed with respect to either the worst-case or the average
case.! Efficient data structures are usually required to process queries in O(loggn+t)
1/O operations, perform insertions and deletions in O(loggn) 1/O operations (this is
the case of B-trees and BT-trees), and use O(n) blocks of secondary storage. All
complexities are worst-case.

In the following we say that a data structure has optimal complexity bounds if
its space complexity is O(n), its query complexity is O(loggn + t), and its update
complexity is O(loggn).

At least two constraint language features should be supported by index structures:

o ALL selection. It retrieves all generalized tuples contained in a specified gen-
eralized relation whose extension is contained in the extension of a given gen-
eralized tuple, specified in the query (called query generalized tuple).

If the extension of a generalized tuple ¢ is contained in the extension of a
query generalized tuple ¢, we denote this fact by All(q,t). Given a general-
ized relation r and a query generalized tuple ¢, we denote by ALL(q,r) the set
{t|t € r, All(q,t)}.

An example of ALL selection is represented by the EGRA set operator O'(SPJQ).

'For the basic notions about complexity functions, see [8].
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Figure 6.1: Various 2-dimensional range queries.

o FXIST selection. It retrieves all generalized tuples contained in a specified
generalized relation whose extension has a non-empty intersection with the ex-
tension of a query generalized tuple.

If the extensions of t and ¢ have a non-empty intersection, we denote this fact
by Fxist(q,t). Given a generalized relation r and a query generalized tuple ¢,
we denote by EX ST (q,r) the set {t|t € r, Ezist(q,t)}.

Since ALL(q,r) € EXIST(q,r), it is more convenient to define the query
EXIST.(q,r)=FEXIST(q,r)\ ALL(q,r).

Therefore EXIST(q,r) N ALL(¢q,r) = (. In a similar way, we denote by
Ezist.(q,t) the fact Eaist(q,t) A—All(g,t).

Examples of EXIST selections are represented by the EGRA set operator
U(SP,t,M;é(D) and the EGRA tuple operator op.

Due to the analogies between constraint and spatial databases, eflicient indexing
techniques developed for spatial databases can often be applied to (linear) constraint
databases.

For spatial problems, data structures with good worst-case complexity have been
proposed only for some specific problems, in general for dealing with 1- or 2-dimensional
spatial objects. In particular, several data structures, characterized by an 1/O com-
plexity for search and update operations comparable to the internal memory res-
ults, have been proposed for the so-called point databases, storing a set of (multi-
dimensional) points [76, 84, 120, 136], and for segment databases, storing a set of
2-dimensional segments [7, 84, 119]. In point databases, the most intensively in-
vestigated problem is the 2-dimensional range searching for which several efficient
algorithms have been proposed (see Figure 6.1) [76, 84, 120, 136].

Nevertheless, several data structures proposed for managing spatial data behave
quite well in average. Examples of such data structures are grid files [107], various
quad-trees [127], z-orders [110], hB-trees [98], cell-trees [68], and various R-trees [71,
130]. In general, these techniques are applied after objects are approximated in some
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way. A typical approximation is the one that replaces each object by its minimum
bounding box (MBB). In 2-dimensional space, the MBB of a given object is the
smallest rectangle that encloses the object and whose edges are parallel to the standard
coordinate axes. The previous definition can be generalized to higher dimensions in
a straightforward manner. When approximations are used, the evaluation of a query
consists of two steps, filtering and refinement. In the filtering step, an index is used
to retrieve only relevant objects, with respect to a certain query. To this purpose,
the approximated objects are used instead of the objects themselves. During the
refinement step, the objects retrieved by the filtering step are directly checked, to
determine the exact result.

Similarly to the spatial case, in the context of constraint databases two differ-
ent classes of techniques have been proposed, the first consisting of techniques with
good worst-case complexity, and the second consisting of techniques with good av-
erage bounds. Techniques belonging to the first class apply to (linear) generalized
tuples representing 1-dimensional spatial objects and mainly optimize EXIST selec-
tion. Techniques belonging to the second class allow indexing more general generalized
tuples, by first applying some approximation.

In the following, both approaches will be surveyed.

6.1.1 Data structures with good worst-case complexities

In relational databases, the 1-dimensional searching problem on a relational attribute
X is defined as follows:

Find all tuples such that their X attribute satisfies the condition a; <
X S as.

The problem of 1-dimensional searching on a relational attribute z can be refor-
mulated in constraint databases, defining the problem of I-dimensional searching on
the generalized relational attribute X, as follows:

Find a generalized relation that represents all tuples of the input general-
ized relation such that their X attribute satisfies a1 < X < aq.

A simple initial, but inefficient, solution to the generalized 1-dimensional search-
ing problem is to add the query range condition to each generalized tuple. In this
case, the new generalized tuples represent all the points whose X attribute is between
a1 and agy. This approach introduces a high level of redundancy in the constraint rep-
resentation. Moreover, many inconsistent (with empty extension) generalized tuples
can be generated.
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A better solution can be defined for convex theories. A theory ® is convex if
the projection on X of any generalized tuple over @ is one interval by < X < bs.
This is true when the extension of the generalized tuple represents a convex set.
Theories DENSE and POLY are examples of convex theories. The solution is based on
the definition of a generalized 1-dimensional index on X as a set of intervals, where
each interval is associated with a set of generalized tuples and represents the value
of the search key for those tuples. Thus, each interval in the index is the projection
on the attribute X of a generalized tuple. By using the above index, the detection
of a generalized relation, representing all tuples from the input generalized relation
such that their X attribute satisfies a given range condition a; < X < ag, can be
performed by adding the condition to only those generalized tuples whose associated
interval has a non-empty intersection with a; < X < ay i.e., to only those tuples ¢
satisfying Fzist(a; < X < ag,t). Insertion (deletion) of a given generalized tuple is
performed by computing its projection and inserting (deleting) the obtained interval
into (from) a set of intervals.

From the previous discussion it follows that generalized 1-dimensional indexing
reduces to dynamic interval management on secondary storage. Dynamic interval
management is a well-known problem in computational geometry, with many optimal
solutions in internal memory [43]. Secondary storage solutions for the same problem
are, however, non-trivial, even for the static case. In the following, we survey some
of the proposed solutions for secondary storage.

Reduction to stabbing queries. A first class of proposals is based on the reduction
of the interval intersection problem to the stabbing query problem
[43], and therefore is based on solutions that have been proposed for point and seg-
ment databases. Given a set of 1-dimensional intervals, to answer a stabbing query
with respect to a point x, all intervals that contain & must be reported.

The main idea of the reduction is the following [84]. Intervals that intersect a
query interval fall into four categories (see Figure 6.2). Categories (1) and (2) can
be easily located by sorting all the intervals with respect to their left endpoint and
using a BT-tree to locate all intervals whose first endpoint lies in the query interval.
Categories (3) and (4) can be located by finding all data intervals which contain the
first endpoint of the query interval. This search represents a stabbing query.

By regarding an interval [#1, 23] as the point (21, 23) in the plane, a stabbing query
reduces to a special case of 2-dimensional range searching. Indeed, all points (21, 22),
corresponding to intervals, lie above the line X =Y. An interval [z, 23] belongs to a
stabbing query with respect to a point z if and only if the corresponding point (21, 22)
is contained in the region of space represented by the constraint X < z AY > z.
Such 2-sided queries have their corner on line X = Y. For this reason, they are called
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Dataintervals

Query interval

Figure 6.2: Categories of possible intersections of a query interval with a database of
intervals.

(x1,x2)

x1 | X2

Figure 6.3: Reduction of the interval intersection problem to a diagonal-corner search-
ing problem.

diagonal corner queries (see Figure 6.3).

The first data structure that has been proposed to solve diagonal-corner queries
is the meta-block tree which does not support deletions (it is semi-dynamic) [84]. The
meta-block tree is fairly complicated, has optimal worst-case space O(n) and optimal
1/0O query time O(loggn + t). Moreover, it has O(loggn + (loggn)/B) amortized
insert 1/O time.

A dynamic (thus, also supporting deletions) optimal solution to the stabbing query
problem [7] is based on the definition of an external memory version of the internal
memory interval tree. The interval tree for internal memory is a data structure to
answer stabbing queries and to store and update a set of intervals in optimal time [43].
It consists of a binary tree over the interval endpoints. Intervals are stored in sec-
ondary structures, associated with internal nodes of the binary tree. The extension
of such a data structure to secondary storage entails two issues. First, the fan-out of
nodes must be increased. The fan-out that has been chosen is /B [7]. This fan-out
allows the storage of all the needed information in internal nodes, increasing only of
2 the height of the tree. If interval endpoints belong to a fixed set F, the binary tree
is replaced by a balanced tree, having v/B as branching factor, over the endpoints
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FE. Each leaf represents B consecutive points from F. Segments are associated with
nodes generalizing the idea of the internal memory data structure. However, since now
a node contains more endpoints, more than two secondary structures are required to
store segments associated with a node. The main problem of the previous structure
is that it requires the interval endpoints to belong to a fixed set. In order to remove
such assumption, the weight-balanced B-tree has been introduced [7]. The main differ-
ence between a B-tree and a weight-balanced B-tree is that in the first case, for each
internal node, the number of children is fixed; in the second case, only the weight,
that is, the number of items stored under each node, is fixed. The weight-balanced
B-tree allows the removal of the assumption on the interval endpoints, still retaining
optimal worst-case bounds for stabbing queries.

Revisiting a Chazelle’s algorithm. The solutions described above to solve stabbing
queries in secondary storage are fairly complex and rely on reducing the interval in-
tersection problem to special cases of the 2-dimensional range searching problem. A
different and much simpler approach to solve the static (thus, not supporting inser-
tions and deletions) generalized 1-dimensional searching problem [119] is based on an
algorithm developed by Chazelle [39] for interval intersection in main memory and
uses only Bt-trees, achieving optimal time and using linear space.

The proposed technique relies on the following consideration. A straightforward
method to solve a stabbing query consists of identifying the set of unique endpoints
of the set of input intervals. Each endpoint is associated with the set of intervals
that contain such endpoint. These sets can then be indexed using a BT-tree, taking
endpoints as key values. To answer a stabbing query it is sufficient to look for the
endpoint nearest to the query point, on the right, and examine the intervals associated
with it, reporting those intervals that intersect the query point.

This method is able to answer stabbing queries in O(loggn). However, it requires
O(n?) space. It has been shown [119] that the space complexity can be reduced
to O(n) by appropriately choosing the considered endpoints. More precisely, let
€1, €2, ..., €2, be the ordered lists of all endpoints. A set of windows Wy, ..., W, should
be constructed over endpoints w; = ey, ..., wp41 = €, such that W, = [w;, wjt1],
7 =1,...,p. Thus, windows represent a partition of the interval between e; and eg,
into p contiguous intervals. Each window W; is associated with the list of intervals
that intersect W;.

Window-lists can be stored in a BT-tree, using their starting points as key values.
A stabbing query at point p can be answered by searching for the query point and
retrieving the window-lists associated with the windows that it falls into. Each interval
contained in such lists is then examined, reporting only those intervals intersecting the
query point. Some algorithms have been proposed [119] to appropriately construct
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windows, in order to answer queries by applying the previous algorithm in O(loggn),
using only O(n) pages.

6.1.2 Approximation-based query processing

To facilitate the definition of indexing structures for arbitrary objects in spatial data-
bases, a filtering-refinement approach is often used. The same approach can be
used in constraint databases to index generalized tuples with complex extensions.
However, there are some differences between the use of the filtering approach in spa-
tial databases and constraint databases. In the first case, only 2-dimensional and
3-dimensional objects are typically considered; in the second case, each generalized
tuple may contain thousands of variables (for example, in Operations Research ap-
plications). Moreover, spatial objects are typically closed whereas constraint objects
may be open. Therefore, filtering approaches can be applied to constraint databases
if only if they scale well to large dimensions and can be applied to open objects.

The filtering approach based on MBBs, when applied to constraint databases,
even if appealing, has some drawbacks. In particular, it may be ineffective if the set
of objects returned by the filtering step is too large. This means that there are too
many intersecting MBBs. Moreover, it does not scale well to large dimensions.

In order to improve the selectivity of filtering, an approach has been proposed,
based on the notion of minimum bounding polyboxz [29]. A minimum bounding polybox
is the minimum convex polyhedron that encloses the object and whose facets are
normal to preselected axes. These axes are not necessarily the standard coordinate
axes and, furthermore, their number is not determined by the dimension of the space.
Algorithms for computing optimal axes (according to specific optimality criteria with
respect to storage overhead or filtering rate) in a d-dimensional space have also been
proposed [29].

If data structures for arbitrary dimensions are not available, a possible alternat-
ive is the following. Given a generalized relation of degree m, a data structure for
2-dimensional data has to be allocated for each pair of variables. Thus, m? data struc-
tures are needed, with a consequent increment of the space complexity. However, in
this way, indexes can be used to answer queries with respect to any 2-dimensional
space.

In any case, the constraint object is transformed in a simpler one, against which
indexing is performed. For example, if MBB are used, R-trees and their variant can
be used for indexing [71, 130]. If each object is approximated by a convex polyhed-
ron, cell-trees may be used [67]. Sometimes it is more useful to decompose the spatial
objects in several more simple objects, and then index these new ones. This topic has
been considered in a very general way by Brodsky and Wang in [31], who have de-
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veloped an infrastructure for approximation-based query processing based on monoid
comprehension. Such infrastructure has then been tailored to constraint objects. The
proposed approach is based on the concepts of approzimation grouping and inverse
grouping. Approximation grouping is the association of each approximating object
with the set of decomposed objects it approximates. Inverse grouping is the associ-
ation between each decomposed object with the objects it belongs to. Using these
two concepts, approximation-based query processing strategies have been developed.
Approximating objects can then be indexed by using techniques developed for spatial
databases.

6.2 Query optimization

Besides the use of specific data structures, there have traditionally been two major ap-
proaches to query optimization. One is based on compile time algebraic simplification
of a query by using heuristics [72, 140]. We call this approach logical optimization.
Logical optimization is intended to improve the cost of answering the query independ-
ently of the actual data or the physical structure of data. A typical approach to logical
optimization is to apply logical transformation to the query representation following
three main steps:

1. standardize the query (standardization), i.e., an internal query representation is
determined, leaving the system all necessary freedom to optimize query evalu-
ation;

2. simplify the query to avoid duplication of effort, removing redundancy (simpli-
fication);

3. construct expressions that are more efficient with respect to query execution
performance (amelioration). Amelioration is based on rewriting rules and heur-
istics, dictating when to apply these rules. A typical heuristic requires perform-
ing selection as soon as possible [140].

The second approach, here called cost-based optimization, is based on the cost
estimation of different strategies [140]. This approach requires making assumptions
about the distribution of data (like uniformity within attributes and independence of
attributes). Based on these assumptions, the possible query execution strategies are
typically represented as a tree and the cost of each of these strategies is estimated,
starting from some basic parameters, assumed to be known.

As discussed in [27], both approaches fail when applied to constraint databases.
Indeed, the heuristics of the algebraic approach are based on the assumption that
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selection conditions are readily available. By contrast, extracting such conditions
from the constraints of a query involves linear programming techniques which are
in general expensive. For the cost estimation approach, a similar problem exists,
to extract explicit constraints which are needed for the estimation. Even if these
constraints were readily available, there is a second problem; such approaches often
rely on assumptions about the data distribution which do not always hold in constraint
databases.

From all those considerations it follows that traditional query optimization meth-
ods are not adequate when applied to constraint databases. Therefore, new methods,
tailored to constraint databases, have to be defined.

Up to now, very little work has been carried out in this context. With respect to
logical optimization, since GRA is an extension of the relational algebra dealing with
infinite relations, the rewriting rules that have been defined for the relational algebra
expressions can still be applied, at least from a theoretical point of view, to GRA
expressions. However, these rules not always are practically applicable since they
often require the use of expensive algorithms (such as additional projections). The
only work about logical optimization we are aware of has been proposed by Grumbach
and Lacroix [61]. They investigated the problem of logical optimization for GRA when
LPOLY is used. In particular, they proposed a canonical form for linear generalized
relations and a list of primitive operations used in the evaluation of queries. Most
of such operations are similar to classical techniques for constraint solving [51, 118].
Then, they analyze the complexity of applying relational rewriting rules to generalized
relational algebra expressions, in terms of the proposed primitive operations. Finally,
they propose various query evaluation schemes that refine the usual relational ones,
by extending it with constraint solving techniques. This approach will be deeply
discussed in Chapter 7, where it will be extended to deal with EGRA expressions.

With respect to cost-based optimization techniques, the only work in this direction
we are aware of has been proposed by Brodsky, Jaffar, and Maher [27]. The idea is
to use statistical sampling for the cost estimation of specific plans, which has the
advantage of being independent of the data distribution. Since it is impracticable to
consider all possible plans when searching for the best one, trials of evaluation plans
are performed, one at the time, reducing the work required for the estimation. The
amount of the avoided work is based on the best cost estimated so far. The algorithm
is then used to optimize constraint queries, composed of selection, projection and
join operators, by using statistical methods. This allows the detection of the optimal
plan with reasonable costs.

The main limitation of such an approach is the use of sampling. Though the
sampling method often gives more accurate estimation than other methods (see [41]
for a short survey), it can be considered successful only in estimating the cost of
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statistical queries, usually not involving complex selectivity estimation. On the other
hand, in the context of query optimization where selectivity estimation is much more
frequent, the cost of the sampling method is prohibitive and not of practical use.

6.3 Concluding remarks

Optimizing constraint databases is a fundamental issue in order to make constraint
databases a practical technology. Little work has been done in this context. In
particular, from our point of view, the following issues require further investigation:

e Definition of other optimal worst-case complexity data structures for constraint
databases, possibly scaling to arbitrary dimensions.

e Detection of the optimal execution plan, when filtering approaches are used.

e Since each generalized tuple with d variables can be seen as the symbolic rep-
resentation of a spatial object in the d-dimensional space, and since each spatial
object can be represented as a set of bounding segments, an interesting re-
search direction is to analyze how indexing data structures defined for segment
databases can be applied to constraint databases, retaining optimal worst-case
complexity in the number of the generalized tuples.

e The use of constraints might sometimes simplify the execution of some spatial
queries. For example, the intersection-based spatial join can be computed on
constraints by applying a satisfiability check, without using a computational
geometry algorithm. This new approach to process spatial queries has to be
compared with the classical one, based on the use of computational geometry
algorithms.
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Chapter 7

Logical rewriting rules for EGRA
expressions

The aim of this chapter is to investigate the logical optimization of EGRA and GRA
expressions. The basic issues in defining a logical optimizer for GRA have been
investigated in [61]. In this chapter, we review that already proposed approach and
introduce some additional considerations. We then introduce rewriting rules and
heuristics for EGRA set operators and show under which conditions they can be used
to optimize GRA expressions.  Set operators (especially set selection) allow the
definition of new rewriting rules for GRA that cannot be derived from the relational
ones. From this point of view, EGRA can be seen as a useful intermediate language
to optimize GRA expressions.

The chapter is organized as follows. In Section 7.1, rewriting rules for GRA are
introduced. Simplification and amelioration rules (also called optimization rules) for
EGRA are presented in Section 7.2. A discussion about how such rules can be used as
part of an optimizer is then presented in Section 7.3. The analysis is performed with
respect to an arbitrary logical theory @, admitting variable elimination and closed
under complementation.

7.1 Rewriting rules for GRA expressions

In the following we discuss how simplification and optimization relational rewriting
rules can be applied to GRA expressions.

Simplification rules. In general, there may be several semantically equivalent ex-
pressions representing the same query. One source of differences between two equival-
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ent expressions is their degree of redundancy. An operator is redundant if the result
of the execution of the associated query against a given generalized relation r is equal
to r. A straightforward execution of a query would lead to the execution of a set
of operations, some of which are redundant. The aim of the simplification step is to
rewrite an expression into a more efficient one, by reducing redundant subexpressions.

A typical simplification rule in relational databases removes redundant selection
operators from a cascade of selections. Formally, if F'is an EGRA expression, sim-
plification rules can be expressed as follows:!

op (op,(F)) =, 0 if ext(Py A P) is empty
op,(op,(F)) =, op, (R) if ext(Py) C ext(F,).

For other simplification rules, see [78].

Optimization rules. The application of rewriting rules does not necessarily produce
a unique expression. Syntactically different but semantically equivalent expressions
may greatly differ with respect to some performance parameters. The aim of the
optimization is to rewrite an expression into an equivalent expression admitting a
more efficient execution. Efficiency is measured in terms of the dimension of the
input relations (i.e., the cardinality of their schema), the size of the relations (the
number of generalized tuples) and the number of constraints per tuples. As it has been
proved in [61] for LPOLY, the cost of any GRA expression can be expressed in terms
of these parameters. In particular, all algebraic operations, except projection and
complementation, are linear in the number of tuples. The cost of projection mainly
depends on the arity of the relation and the number of constraints per tuple. The cost
of complementation depends on the number of tuples and the number of constraints
per tuple. Moreover, as we have seen in Chapter 2, all algebraic operations may
generate redundant constraints and inconsistent tuples.

Rewriting is based on the application of a set of heuristics, aiming at reducing the
parameters described above. In the relational context, the typical heuristics are the
following:

1. Perform selection and projection as early as possible. This transformation al-
lows the reduction of the dimension and the size of the intermediate relations,
generated by the computation.

2. Combine sequences of unary operations. A cascade of unary operations
— selections and projections — can be combined into a single operator. This
allows us to access and analyze each tuple only once.

'In this chapter, § denotes an empty expression.
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When applying the relational rewriting rules to GRA expressions, two aspects
have to be taken into account:

e A GRA operator may be costly for two different reasons: (i) the algorithm to
perform the algebraic operation is expensive; (ii) the computation increases one
of the parameters described above.

e The heuristics of the algebraic approach are based on the assumption that selec-
tion conditions are readily available. Thus, they can be easily checked, without
additional costs. By contrast, extracting such conditions from the constraints
of a query involves techniques which are in general expensive [27].

From the previous considerations it follows that not all heuristics successfully ap-
plied in the relational context can be applied to GRA expressions, since the trade-off
between costs of the expressions involved in the rewriting may be different. An im-
portant aspect is the redundancy introduced by algebraic operators. For example,
each time the selection operator is applied, a new constraint is inserted in each gener-
alized tuple. No relational operator generates redundancy. Therefore, relational rules
have to be modified in order to consider these additional aspects.

Relational rewriting rules have been carefully investigated by Grumbach and
Lacroix in the context of GRA expressions, when applied to LPOLY [61]. Such rules
are presented in Table 7.1. Besides the rules presented in [61], the table presents a
further rule (rule (13)) that allows the rewriting of the union of two selections into a
single selections with respect to a d-generalized tuple. For the sake of completeness,
the table also presents the commutativity rule for tuple selections. The table, for
each typical relational rewriting rule, introduces a specific heuristic (i.e., a rewriting
direction, represented by an arrow) in order to efficiently apply such a rule to GRA
expressions. Only heuristics for rules (8) and (11) are different with respect to the
corresponding heuristics used in the relational context. The proof of the correctness
of these heuristics is presented in [61].

7.2 Rewriting rules for EGRA expressions

In the following we analyze which further rewriting rules can be defined for EGRA
expressions. Since GRA operators are a subset of EGRA operators, the additional
rules deal with set operators, in particular with the set selection operator.



114 Chapter 7. Logical rewriting rules for EGRA expressions

(1) F1NF2HF2[><]F1

(2) Fi M (Fy XOES) & (Fy MOES) XFy
23; op (op,(F)) & ap,(op, (1))
(5)

P,
4) op (op, (F)) = opiap, (F)
5) iy, x,1(op(F)) = op(lliy, .. x,](F))
( ) C {Xh 7Xn}
(6) Tpx, g (00 (F))
Mix, ... x.00p(Ux, o x v, v ()
Oé(F) = {X17 ceey Xm Y17 ceey Ym}
(1) Mixy e x] vy v ) (F) = Txy L x, ) (F)
Ve oy o 0, X0
8] op(FL ¥ F3) — op(Fy) W op(F)
a(P) C a(l)Ua(ly)
(9) O'P(Fl M FQ) — UP(Fl) Xy
a(P)Nna(Fy) =0
(10) 0P AP, (Fl e Fg) — op, (Fl) X op, (Fg)
(Pl) N Oé(FQ) @
a(P)Nna(F) =10
(11) UPIAP2(F1 FQ) — UP2(UP1 (Fl) M FQ)
(Pl) N Oé(FQ) =
( 2) O'P(Fl U FQ) — O'P(Fl) U O'P(FQ)
(13) o7, (F) Uop, (F) = op.un, (F)
(14) O'P(Fl \ FQ) — O'P(Fl) \ F2
(15) Hpx, . x, (Fy WOFy) = Mgy, v, (F1) Mz, 7,0(F2)
TV alE, Az TYE a(E)
Vs oo Yo Zrs s 75} = { X1y o X}
(16) Ux, . x, ) (F1 U ) & My, |y (F) Uz, 7(F)
{Yh ...7Yh} Q Oé(Fl)7 {Zh 7Zk} Q Oé(Fl)
(V1 ooy Vs Z1s ooy Z) = X1, oy X}

Table 7.1: Optimization rules for GRA operators.
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7.2.1 Simplification rules

Simplification rules for EGRA tuple operators correspond to simplification rules
presented in Section 7.1. However, new rules can be devised dealing with set op-
erators, as shown by the following example.

Example 7.1 Consider a generalized relation R with schema {X,Y}, on LPOLY.
Suppose that each generalized tuple in R represents a given region of a map. Consider
the following query:

“Select the part of regions contained in R that intersect a river P and are
contained in a given region G.”

If P and G are expressed by using LPOLY, the previous query can be represented
in EGRA as i, D)(UP(R)). Now suppose that the river is totally contained in G

(the user may not know this information). In this case, the previous expression is
equivalent to op(R).
As another example consider the following query:

“Select all regions contained in R that intersect a river P and are con-
tained in a given region G.”

The previous query can be represented in EFGRA as O'(SG . D)(U(SPt M;ﬁ(]))(R))‘ IfPand G
have empty intersection, for any input generalized database, the result of the previous
expression s empty. <&

Simplification rules for set operators essentially involve cascades of selections. In
particular, three types of expressions are manipulated by a simplification rule:

o tuple selection followed by a set selection
(i.e., expressions like O'p(O'(SQl Qs 9)(F));
o set selection followed by a tuple selection
(i.e., expressions like 701,05 0)(UP(F)));
o combination of set selections
. . . s s
(i.e., expressions like O'(QMQ%@)(O'(Q/pQé’e,)(F))).
A simplification rule is composed of: an input expression e, a set of conditions

c on e, and a resulting expression €’ which is equivalent to e under the condition ¢
and is structurally simpler than e (see Table 7.2).  Based on the structure of €',
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EGRA expression Simplified EGRA expression
Condition

Combination of set selections

701,020 (7{ap.ap.0n (1) | 9
Vi € F (=((Qi(H)Q:2(1) A (Q1(1)0'Q5(t)))
9{ar5.0m L)

Vi e F ((Q1(1)0Q2(1) « (Q1(1)0'Q5(1)))

A tuple selection followed by a set selection

O-(SQI 7Q27€) (O-(SQ/17Q57€/) (F))

UP(Ule,QQ,e) (1)) 0
Vi e F (Q1()0Q2(t)A Au u € ext(t) P(u))
7P(9(0,,05,6) (F)) 99,.0:.0)F)

Vi € F (Q1(1)00(1) — Vu € cat(l) P(u))

A set selection followed by a tuple selection

(1,2, (0P (1)) 0
Vi e F = (Qi(tAP)IQ:(t A P))
O-(SQMQQ,@)(UP(F)) O'p(F)

Vi e F (Q1(t A P)Q2(t A\ P))

Table 7.2: Simplification rules for cascades of selections.

two different types of simplification rules can be devised. The first group of rules
identifies cascade of selections leading to an empty result. the second group of rules
identifies redundant selections.

In both cases, the simplified expression contains less operators than the original
one. The proof of the correctness of these rules directly derives from the definition
of the selection operators. In the table, § € {C, D, X# (), X= (J}. The condition is
expressed by first-order logic. Q;(t), ¢ = 1,2, is a term representing the generalized
tuple obtained by applying the query represented by ¢); to t.

The table presents rules that can be applied to two adjacent selection operators
in cascade. However, the same rules can be applied to all pairs of (not necessarily
adjacent) selection operators belonging to a cascade of selections. Rules dealing with
pairs of set selection operators can be applied independently of the order in which they
appears, since set selections commute. However, rules dealing with a set selection
and a tuple selection must be applied to selection operators appearing in the order
specified in the table, since set and tuple selections do not commute (see Subsection
7.2.2).
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EGRA expression | Simplified EGRA expression
Condition®

‘ A tuple selection followed by a set selection ‘
ap (U(SPQ,Q,;)(F)) 0
P1 A da(Q) P, is satisfiable

7(p,.0.0) (F)
P+ da (Q)
ap (U(SPQ,Q,M:@)(F)) 0
P1 — ElOé(Q) P2

“See also the restrictions imposed by the selection operators (Table 3.3).

Table 7.3: Simplification rules with explicit conditions (A).

From Table 7.2, it follows that, in order to check the conditions for the application
of the simplification rules, the state of the database must be taken into account. This
check is obviously very inefficient. Therefore, simplification rules can be efficiently
applied only if the conditions presented in Table 7.2 are replaced by equivalent con-
ditions not requiring the analysis of the database state.

This property holds only for some combinations of selections (see Tables 7.3, 7.4,
and 7.5, and 7.6). Selection conditions used in the tables have the form (P, Q,#),
where P is a generalized tuple and ) is a projection operator. Note that this is not
a restriction in that:

due to the results presented in Section 3.3, all other types of set selection can
be reduced to an expression in which set selection contains conditions in which
only generalized tuples and projections appear;

condition (@, P, C) is equivalent to condition (P, Q, D);

condition (@, P, D) is equivalent to condition (P, Q, C);

condition (@, P, X (}) is equivalent to condition (P, Q,X# ();
(@

condition (@, P,X= () is equivalent to condition (P, Q,X= ().

Only two combinations of set selections do not appear in Tables 7.3, 7.4, 7.5, and

7.6:

op, (U(SPQ,Q,Q)(F))%
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EGRA expression | Simplified EGRA expression
Condition®

‘ A set selection followed by a tuple selection

oo @n ) | on(h)
P — ElOé(Q) P

0

Py A Ja(Q) Py is satisfiable
U(Spl,Q,g)(UPz (F)) 0
_ElOé(Q) P - B
Ufpl,Q,Mqé@)(UPz(F)) 0
Py A Ja(Q) Py is satisfiable
op, (F)

P — ElOé(Q) P
Ufpl,Q,M:@)(UPz(F)) 0
P2 — ElOé(Q) P1

op, (F)

Py A Ja(Q) Py is satisfiable

“See also the restrictions imposed by the selection operators (Table 3.3).

Table 7.4: Simplification rules with explicit conditions (B).

® Ip (U(SPQ,Q,M;&Q))(F))'

It is simple to prove that, in both cases, no check between P, and P, helps in simpli-
fying the expression.

As we can see from tables presenting simplification rules, the new conditions are
based on containment (logically represented by implication) and intersection (logically
represented by satisfiability) check between generalized tuples. As we have already
remarked, in a general case, the cost of projection is high.? Therefore, the application
of such rules is much more efficient when the schema of the generalized tuples and
the queries appearing in set and tuple selection conditions coincide. When this is not
true, the check of the condition is in general more expensive. However, we argue that
also in this case the proposed optimization rules have to be applied. Indeed, even if
some additional projection has to be executed at compile-time, rewriting rules may
avoid the execution of some selection operator at run-time, thus avoiding the execution

2The cost of projection is not high when it is applied to non-constrained variables or to a limited
set of attributes.
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EGRA expression Simplified EGRA expression
Condition®

‘ Cascade of set selections ‘

9tp,01.2) (P00 ()| 0
da(@Q1) P1 A Ja(Q2) P is satisfiable
p,.0, ) )

ElOé(Ql) P1 — ElOé(QQ) P2
9tp,01.0 0 (p0 ) () | 0
ﬁElOé(Ql) P1 — ElOé(QQ) P2

P00 (P00 I) | 9(r0,0) ()
da(@Q1) P — Ja(Q2) P; is satisfiable

U(SPl,Ql,M;e@)(U(SPQ,QQ,;)(F)) 0
da(@Q1) P1 A Ja(Q2) P is satisfiable
U(SP27Q273)(F)

Ja(Q1) P+ Fa(Q2) P

“See also the restrictions imposed by the selection operators (Table 3.3).

Table 7.5: Simplification rules with explicit conditions (C).

of much more expensive projections.

7.2.2 Optimization rules

Optimization rules for set EGRA operators can be derived from the optimization
rules presented for GRA expressions (see Table 7.7). Such rules are obtained from
the corresponding ones presented in Table 7.1 by observing that the set selection
cannot increase the redundancy of generalized tuples. Indeed, it works exactly as a
relational selection. This means that typical relational heuristics holds in this case
(this is the case of rules (23) and (26)).

Besides the rules derived from those presented in Table 7.1, other rules involving
set selections have been introduced. These rules combine two set conditions in order
to generate a new, non boolean, condition. In particular, they replace two containment
tests with a single containment test (rule (19)) and two empty-intersection tests with
a single empty-intersection test (rule (20)).

For the sake of completeness, the table also presents the commutativity rule for
set selections. Note that tuple and set operators do not commute, as pointed out by
the following proposition.
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EGRA expression Simplified EGRA expression
Condition®

‘ Cascade of set selections ‘

U(SPl,Ql,M:Q))(U(SPQ,QQ,;)(F)) U(SPQ,QQQ)(F)

da(@1) P A Ja(Q2) P, is satisfiable
0

Ja(Q1) P + Ja(Q2) P

U(Spl 7Q17M¢@)(U(SP27Q27§)(F)) U(SP27Q27C)(F)

da(@1) P A Ja(Q2) P, is satisfiable
U(Spl,Ql,M:@)(U(SPQ,QQ,Q(F)) 0
da(@1) P A Ja(Q2) P, is satisfiable
Py 01 420) (T (Bs, 00 p020) (E)) | 90, 0, a0 (F)

Ja(Q1) P + Ja(Q2) P
O-(SPl,Ql,M:(Z))(U(SPQ,QQ,M;AQ))(F)) 0
Ja(Q1) P + Ja(Q2) P
U(SP1 ,Q1,X=0) (U(SPQ,QQ,M:@) (F)) U(SPQ,QQ,M:@) (F)

Ja(Q1) Py — Ja(Q2) P

“See also the restrictions imposed by the selection operators (Table 3.3).

Table 7.6: Simplification rules with explicit conditions (D).

Proposition 7.1 Up(UthQz)ﬁ)(F)) + O'(SQMQ%@)(UP(F)).

Proof: Suppose that set and tuple selection operators commute. This would mean
that if a generalized tuple ¢ satisfies a condition (Q1,Q2,0), the same condition has
always to be satisfied by t A P and vice versa. But this is of course false. For example,
consider the generalized relation r containing the generalized tuple 2 < X <H A4 <
Y < 8. Now consider the following queries:

. UX§3(U(5LXZ47M¢®)(7‘)).

It is simple to show that the resulting relation contains the generalized tuple

2< X <3A4<Y <8,

¢ U(St,XZ4,M¢@)(UX§3(7‘))-

The result of the previous query is an empty relation.
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() & 0, (08, (F))*

(F)) = o0&, nc, (F)
U(SPMQ(U(SP%Q(F)) - U(SPl/\PQ,g)(F)b
py =) (T (p, ) (F)) = (p iy py ey ()
— o0& (Upx, . x, (F)

() C Xy, X

Mix, .. x,008 (Mx, o x v, v ()

Oé(F) = {X17 ceey Xm Y17 ceey Ym}

(23) ag, (F1 W Fy) — of, (F1) M ag (F2)
04(01) Q Oé(Fl) N Oé(FQ)

(24) O'é«(Fl M FQ) — O'é«(Fl) M F2
Oé(C) N Oé(FQ) =0

(25) 08, pc, (F1 M F) — 0, (F1) M og, (F2)
04(01) ﬂOé(FQ) =

(27) O'S1 (Fl U FQ) — O'é«l (Fl) U O'é«l (FQ)

C'
(28) o2, (F) Ut (F) = 08y, (F)
(29) o2, (F1\* Fy) = o2 (F1) \° I

¢y and Cy represent boolean conditions.
®P, and P; represent (possibly disjunctive) generalized tuples.

Table 7.7: Optimization rules for EGRA set operators.

Since the results of the previous expressions do not coincide, it follows that set
and tuple selections do not commute. a

7.3 Issues in designing GRA and EGRA optimizers

The rules presented in the previous section can be used to design a logical optimizer
for EGRA and GRA expressions. The input of such an optimizer is an expression
and the result is another expression, equivalent to the original one, but guarantee-
ing a more efficient execution. In the following we briefly discuss the issues arising
when defining such an optimizer. In particular, we first introduce the basic issues in
designing a GRA optimizer (see [61] for additional details). Then, we show how such
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an optimizer can be extended with rules for EGRA set operators.

7.3.1 Basic issues in designing a GRA optimizer

As it has been first recognized in [61], relational query evaluation schemes have to
be refined when applied to GRA expressions. In particular, when dealing with such
expressions, three different aspects have to be considered:

e syntactic computation: purely what the algebra does (see Table 2.1);

e semantics computation: this step corresponds to the removal of empty tuples
and redundant constraints (see Section 2.3.2.1);

e normalization: this step corresponds to the generation of normal forms for gen-
eralized tuples.

The evaluation of a query in constraint databases implies several syntactic com-
putation and at least one semantics computation step. Starting from these consid-
erations, Grumbach and Lacroix proposed three different logical optimizers, whose
properties can be summarized as follows:

o Naive evaluation. A typical relational logical optimization algorithm is applied
[140]. A semantic computation is then applied to the result.

o Semantic evaluation. In this case, syntactic and semantic computations are
mixed. In particular, semantic computations are applied in order to reduce the
number of tuples and the number of constraint per tuples after costly operations,
that is after intersection, projection, and selection.

o Normalization strategy. This strategy can be used when dealing with LPoLY. In
that case, a specific normal form has been proposed in [61], in order to represent
each generalized tuple by using a number of constraints which is bound by the
arity of the relation. The normalization strategy consists in mixing syntactic
steps with steps normalizing the output generalized tuples, assuming that the
input generalized tuples are normalized.

The application of these algorithms produces different results. In particular, the
semantic evaluation and the normalization strategy guarantees to better optimize
the query. However, no experiment has been conducted in order to validate these
approaches.
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7.3.2 Extending GRA optimizers to deal with set operators

In the following, we discuss the issues arising in extending GRA optimizers with
rewriting rules for set operators. In particular, we first discuss the basic concepts
underlying the definition of a EGRA optimizer and then we show how it can be
adapted to GRA expressions.

7.3.2.1 Basic issues in defining an EGRA optimizer

The first problem arising when designing an EGRA logical optimizer is the choice
of the order by which EGRA and GRA simplification and optimization rules are ap-
plied. Since the proposed simplification rules mainly apply to cascades of selections,
and since the generation of cascades of selections is one of the goals of optimization,
we claim that simplification should be applied in two steps, before and after optimiz-
ation. Indeed, the optimization may generate new subexpressions that can be further
simplified. On the other hand, the application of a simplification step before optim-
ization reduces the length of the expression to which optimization is applied. It is
simple to show that no new simplification step can further optimize the expression.
The following example motivates this choice.

Example 7.2 Consider the following simplified expression:
ot (00, (R) M ag, (R)).

Now suppose that the condition for applying rule (24) of Table 7.7 is satisfied; the
expression obtained is o, (oc,(R)) M af, (R). By applying the previous optimization
rule, a new cascade of selections has been generated. Now suppose that o¢, (o¢, (R))
can be rewritten in the empty expression 0. In this case, the original expression is
rewritten in of, (R). This reduction would have not be possible if simplification and
optimization rules were applied in a different order. <&

Another consideration is related to boolean conditions. Simplification rules have to
be applied to non-boolean conditions. Therefore, as a first step before simplification it
can be useful to remove boolean conditions by applying rules introduced in Chapter 3.
After the last simplification step, boolean conditions can be eventually reconstructed.

Based on the previous considerations, typical logical optimization algorithms, pro-
posed for the relational algebra, such as the one presented in [61, 140], can be easily
extended to deal with EGRA expressions.
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7.3.2.2 Introducing set rewriting rules in the definition of a GRA optim-
izer

In Sections 7.2.1 and 7.2.2, we have proposed new simplification and optimization rules
for EGRA expressions. From Chapter 3, we know that each set operator is equivalent
to a tuple expression, when generalized tuple identifiers are inserted inside generalized
relations. Under this assumption, set optimization rules can also be interpreted as
optimization rules for GRA expressions.

The use of the new rules to optimize GRA expressions is useful since it may
generate optimized GRA expressions that would have not necessarily been generated
by applying GRA optimization rules. Indeed, by using GRA rules, we are not sure
to generate the expression that is instead generated by applying EGRA optimization
rules. This is due to the fact that the equivalence of two relational expressions is in
general undecidable. [81]. The following example better clarifies this concept.

Example 7.3 Consider the following expression:

0im (Tt ) (R)). (7.1)
By applying rule (19) of Table 7.7, this expression is rewritten as follows:
T Py 0) (1) (7.2)
The GRA expression equivalent to (7.1) is the following:
(Hny(R) \ (R o(py) (B1)) X Ry) (7.3)

where
Ry = (I (R) \ Hnp(R\ o (p,) (1)) X R).
The GRA expression equivalent to (7.2) is the following:

(M (R)\ (R o (pap,) (R)) M R) (7.4)

It can be shown that, in order to rewrite expression (7.3) into expression (7.4), the
rules presented in Table 7.1 are not sufficient. Indeed, information about containment
among generalized relations generated as intermediate results of the evaluation are
required in order to perform this rewriting. This is mainly due to the presence of the
difference operator. <&

Three main issues have to be considered when using EGRA rules to optimize
GRA expressions:
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1. Since GRA expressions do not contain set operators, the query processor must
decide when patterns corresponding to set operators have to be detected inside
GRA expressions, according to Table 3.8.

2. A decision must also be taken with respect to when simplification and optimiz-
ation rules should be applied.

3. Since rewriting may generate new subexpressions corresponding to set operators,
a decision should be taken with respect to the number of times the optimization
is iterated.

In order to design a GRA optimizer, we assume that there exists a GRA optimizer,
as one of those presented in Section 7.3.1 and we suggest the following guidelines:

1. Since in spatial and temporal contexts it is likely that users will insert set
operators directly in their queries, GRA subexpressions should be rewritten
into set operators as the first step of the optimization. Note that no boolean
condition is generated by this step.

2. Simplification and optimization rules for set operators have to be first applied. In
particular, as discussed in Subsection 7.3.2.1, first simplification rules and then
optimization rules have to be applied. Then, a new simplification is applied in
order to simplify new cascades of selections generated by the optimization step.

3. After this step, the obtained EGRA expression must be standardized and given
as input to GRA optimizer.

4. The previous steps may be executed more than once, since each step may gen-
erate new possible optimizable sub-expressions. In this case, a loop termination
condition is required.

Figure 7.1 illustrates the suggested heuristics to design a GRA optimizer.

7.4 Concluding remarks

In this chapter, we have presented GRA and EGRA rewriting rules. GRA rules have
been taken from [61]. Additional EGRA rules dealing with set operators have then
been proposed. Such rules can be used not only to optimize EGRA expressions but,
due to the equivalence between GRA and EGRA, they can also be used to improve
the efficiency of GRA optimizers. The basic issues in designing such an optimizer
have also been discussed.
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T

set rewriting

set simplification

set amelioration

set simplification

standardization

GRA optimizer

Repeat?

no

Figure 7.1: The suggested heuristics to design a GRA optimizer.



Chapter 8

A dual representation for indexing
constraint databases

As we have seen in Chapter 6, good worst-case complexity data structures have been
defined only for 1-dimensional constraints. In this chapter, we analyze optimal worst-
case data structures for supporting a specific type of ALL and EXIST selections
applied to 2-dimensional constraints. The proposed techniques rely on the use of a
specific dual representation for polyhedra, first presented in [67]. The main advantage
of the dual representation is that it is defined for arbitrary d-dimensional objects; this
is particularly useful in constraint databases, where the dimension is usually not
limited a priori.

The specific problem we consider concerns the detection of all generalized tuples
whose extension intersects or is contained in a given d-dimensional half-plane. This
problem is not relevant in spatial databases, where closed objects are usually con-
sidered; however in constraint databases such queries are more significant since open
objects are often represented. When optimal solutions to this problem are not found,
techniques based on a filtering-refinement approach (see Chapter 6) are introduced.
The main characteristic of these techniques is that, differently from data structures
proposed for spatial databases, the approximation is not applied to the polyhedra
represented by generalized tuples but to the query half-plane. The proposed tech-
niques are then compared both from a theoretical and experimental point of view. A
comparison with R-trees, a typical spatial data structure [71, 130], is also presented.

The chapter is organized as follows. Section 8.1 motivates the investigation of
indexing techniques supporting half-plane queries. In Section 8.2, the dual represent-
ation for generalized tuples is presented. The problem of detecting the intersection
between a polyhedron and a half-plane is considered in Section 8.3 whereas in Section

127



128 Chapter 8. A dual representation for indexing constraint databases

8.4 we investigate the problem of detecting the intersection between two polyhedra.
External memory solutions for half-plane queries are considered in Section 8.5; an
optimal solution for a weaker problem is also presented. Sections 8.6, 8.7, and 8.8
present three different techniques approximating the solution of a half-plane query
when the problem cannot be reduced to the weaker one. A theoretical comparison of
the proposed approximated techniques is then presented in Section 8.9; experimental
results are finally discussed in Section 8.10.

8.1 Motivations and basic notation

As we have seen in Chapter 6, the main difference between spatial and constraint
databases is that spatial databases typically represent 2- or 3-dimensional closed
spatial objects whereas constraint databases admit the representation of arbitrary
d-dimensional, possibly open, objects. Spatial data structures have good perform-
ance when the object specified in the query is closed. Similar performance cannot be
guaranteed when spatial objects are open'. The design of data structures support-
ing selections based on open objects is therefore an important issue for constraint
databases.

Example 8.1 Consider a generalized relation Prod_process containing, in each gen-
eralized tuple, information about a specific production process. Fach production pro-
cess relates two products and three resources. Thus, each generalized tuple is a con-
junction of linear constraints with five variables: Py representing the quantity of the
first product, Py, representing the quantity of the second product, R; representing the
available quantity of the i-th resource, v = 1,...,3. The following is an example of a
possible generalized tuple:

3P +4P, < Ry AN100P; + P, < Ry A P; + 50, < Rs.

This tuple specifies how resources and products are related in a given production
process. Now suppose that we want to determine all processes that can be satisfied
(thus, specific quantities of products Py and Py can be found) assuming that a global
constraint 3Ry + bRy + 6R3 < 400 holds. In order to solve this query, all generalized
tuples whose extension has a non-empty intersection with the extension of the global
constraint must be determined. This corresponds to an FXIST selection with respect
to a query half-plane.

'In the following, the term “open” has not the classical topological meaning but it means
“unbound”.



8.1. Motivations and basic notation 129

As another example, suppose to determine all processes that, whatever the quantit-
ies produced are, satisfy the global constraint. In this case, all generalized tuples whose
extension is contained in the extension of the global constraint must be determined.
Thus this is an ALL selection with respect to a query half-plane. <&

From the previous example it follows that the definition of data structures effi-
ciently supporting queries with respect to open spatial objects is an important issue
in constraint databases.

In the following, we analyze ALL and EXIST selection problems with respect
to a half-plane (also called query half-plane). Generalized tuples are assumed to be
represented by using LPOLY. Thus, each generalized tuple has the form: A7_ 1a1X1 +

.+ adXd + ¢ 6 0, where §; € {>,<,=}. Generalized tuples of this kind and
generalized relations containing only such generalized tuples are called regular. In
the following any generalized tuple is assumed to be regular. Given a half-plane g, a
generalized relation r, and £ € {ALL, EXIST}, E(q,r)is called a query whereas F
is called the type of E(q,r). When the generalized relation is not specified, a query
is denoted by F(q).

Without limiting the generality of the discussion, we assume that each equality
constraint ale + ot adXd + ¢ = 0 is replaced by the equivalent conjunction of
constraints ale +.. —|—adXd+c > 0Aa X+ —|—adXd+c < 0. Moreover, we use
a notation very Close that used in spatial contexts. In particular, we call hyperplane
in a d- dimensional space (denoted by Ed) the spatial object having equation a% X +

-+ adXd +¢' =0 and half- plane in a d-dimensional space the spatial object having
equation ai Xy + adXd +c 60,0 € {> <}. A half-plane is called 1-half-plane
if it can be rewritten as Xy > 01 Xq + ... + bg_1 X4_1 + by, otherwise it is a 0-half-
plane. A d-dimensional convex polyhedron P in a d-dimensional plane is defined as the
intersection of a finite number of half-planes in E?. Moreover, we denote by p(P) the
boundary of P and with ¢p the generalized tuple representing P (thus, P = ext(tp)).

Given a polyhedron P and a hyperplane H, H is a supporting hyperplane with
respect to P if H intersects PP and P lies in one of the half-spaces defined by H. If H
is a supporting hyperplane for P then H N P is a face of P. The faces of dimension
1 are called edges; those of dimension 0 are called vertices. A supporting hyperplane
is called boundary hyperplane if the face H N P is of dimension d — 1. The faces of P
that are a subset of some supporting hyperplane with 8 = ¢ >’ and ay < 0 form the
upper hull of P; the faces of P that are a subset of some supporting hyperplane with
6 =*>"and ag > 0 form the lower hull of P.
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8.2 The dual transformation

In [67], Gunther proposed a dual transformation for polyhedra; using this transform-
ation, he gave complexity bounds for the problem of finding the intersections between
a polyhedron and a hyperplane or another polyhedron. In the following, we use this
transformation to determine:

e all generalized tuples intersecting a given half-plane;
e all generalized tuples contained in a given half-plane.

Thus, we extend results presented in [67] to deal with a set of polyhedra and
containment. The following concepts are taken from [67].

In order to present the dual transformation, we assume that none of the considered
half-planes are vertical.? Under this hypothesis, a hyperplane Xy = bjz; + ... +
bg_1Xy4_1 + by intersects the d-th coordinate in a unique point represented by the
equation:

Xg=biz1+ ...+ b1 X1+ by

where b; = —a;/ag,i = 1,...,d— 1 and by = ¢. Given a hyperplane H, the following
function is introduced:

Fy:E&L o BY
FH(Xh ---7Xd—1) =0 X1+ ...+ bg_1 Xg_1 + by

A point p = (p1, ..., pa) lies above (on, below) H if pg > (=, <) Fy(p1, .., pa—1). Using
the dual transformation proposed by Brown [32], each hyperplane can be mapped into
a point and vice versa. In particular, the dual representation D(H) of a hyperplane
Xqg = bizy + oo + bg—1X4—1 + bg is the point (by,...,b4) in E?. Conversely, the
dual representation D(p) of a point p = (p1, ..., p4) is the hyperplane defined by the
equation Xg = —p1 Xq... — pg—1X4—1 + pg. In the following, we call primal space the
reference space of the original polyhedra and dual space the reference space of the
dual representations. The following result holds.

Lemma 8.1 [67] A point p lies above (on, below) a hyperplane H iff the dual D(H)
lies below (on, above) D(p). O

The dual representation can be extended to convex polyhedra by associating each
polyhedron with a pair of functions. Let Vp be the set of vertices of a polyhedron P.
Such functions are defined as follows:

2 Actually, the proposed transformation can be extended to deal with vertical hyperplanes. We
refer the reader to [67] for some further details.
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TOPY(Xy, .., Xq_1) = mazyev,{ Fp(u) (X1, ..., Xg_1)}
BOTY (X4, .., Xq_1) = minyev,{ Fp() (X1, ..., X4-1)}.

These functions are piecewise linear and continuous. TOPY is convex whereas
BOT?Y is concave [124]. Moreover, they map any slope (by, ..., bg_1) of a non-vertical
hyperplane into the maximum (TOPF) or the minimum (BOTT) value b, such that
the hyperplane X4 = byxy + ... + bg_1 Xy4_1 + by intersects P. It can be shown that
this representation is non-ambiguous, i.e., each polyhedron is associated with exactly
one pair of functions and vice versa. Such functions satisfy the following property.

Proposition 8.1 For any point (p1,...,pa—1), TOPF(p1,....,pa_1) >

BOTP(ph...,pd_l). O

If the polyhedron is not bounded (this case is very common in constraint data-
bases), the definition of functions TO P¥ and BOTT does not work and have to be ex-
tended in order to deal with some virtual vertex at infinity. In order to deal with such
vertices, let C'p denote a d-dimensional cube with edge length £/(C'p) that contains all
vertices of P. The bounded polyhedron PNC'p has a set of vertices Vpnc, = Vp uv,
where V contains those vertices that are formed by the intersections of C'p with
edges of P. As E(Cp) goes to infinity, so do the vertices in V. The dual D(v) of

any vertex © € V goes towards a vertical hyperplane with a corresponding function
Fp@) Fi=1 — 4/ — co. Functions TOPY, BOTY : Fi=1 — E' U {+00, —} can
be defined as follows:

/‘TO]DP()(l7 cey Xd—l) = limE((;P)_}OOmaxveVPUV{FD(U) (Xh ceey Xd—l)}
BOTP (X1, ., Xa-1) = limp(cpy—oomint, ey v A F D) (X1 s Xa-1) -

From [32], it follows that there exists an isomorphism between the upper hull of a
polyhedron P and the graph of TOPF. Each k-dimensional face f of the upper hull
of P corresponds to exactly one (d — k — 1)-dimensional face D(f) of TOPY graph
and vice versa. Moreover, if two faces f; and fy of the P upper hull are adjacent,
then so are D(f1) and D(f;). The same isomorphism exists between the P lower hull
and the graph of BOTY. From this consideration it follows that, if the number of
vertices of P is n,, the graphs of TOP? and of BOTY are polyhedral surfaces in
E? consisting of no more than n, convex (d — 1)-dimensional faces and no more than
O(n?) (d — 2)-dimensional faces. Such surfaces can be constructed as follows (this

v

algorithm has not been presented in [67]).
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Dual Transformation Algorithm

1.

Let a polyhedron P be represented by the intersection of half-planes Hy, ..., H,.
Let Hy, ..., H,, be 1-half-planes and H,,41, ..., H,; be 0-half-planes. Let Vp be the
set of vertices of P.? Let P,, be the polyhedron represented by the intersection
of Hy,...,H,. Let Py,,, be the polyhedron represented by the intersection of
Hpy1, ..., H,. Note that, if both Py, and Pyoy, exist, V = (Vp\Vp,, )\ Vr, ... #
0.

. Let UP(P) be the polyhedron represented by the intersection of the 1-half-

planes K; such that p(K;) = D(v;), v; € Vp,, U V.

. Let DOW N (P) be the polyhedron represented by the intersection of the 0-half-

planes K; such that p(K;) = D(v;), v; € Vp,,, UV.

Consider the unbound hyperplanes belonging to P,,. Let V; be the set of vertices
defined by such hyperplanes. It can be proved that each such vertex is defined
by the intersection of at least (d — 1) unbound hyperplanes. For each such set
of hyperplanes, generate the vertical hyperplane H, passing through the points
corresponding to these hyperplanes in the dual plane.

Generate the half-plane supported by H, and containing the vertices of P,,, and
add it to UP(P).

. Consider the unbound hyperplanes belonging to Py,.,. Let Vi be the set of

vertices defined by such hyperplanes. It can be proved that each such vertex is
defined by the intersection of at least (d — 1) unbound hyperplanes. For each
such set of hyperplanes, generate the vertical hyperplane H, passing through
the points corresponding to these hyperplanes in the dual plane.

Generate the half-plane supported by H, and containing the vertices of Py,
and add it to DOW N (P).

The previous algorithm can be better understood in the 2-dimensional case. In
those case, a hyperplane is a line.

1.

2.

Step 2 generates, for each vertex in Vp, UV, the corresponding dual line.
UP(P) is the convex polygon obtained by the intersection of the 1-half-planes
supported by such lines.

Step 3 performs a similar construction for verticesin Vp, ~UV.

FNote that faces of dimensions greater than 0 can always be seen as an infinite number of vertices.
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3. Step 4 and Step 5 can be better understood as follows. In the 2-dimensional
case, some hyperplanes are unbound if P, and Py, do not intersect either on
the left or on the right. Consider an unbound line Y = a1 X + b belonging to
P,,. In Step 4, the half-plane X 8 ay, § € {<, >}, containing V,,, is added to
UP(P).

4. A similar reasoning is done for DOW N (P) in Step 5.

Note that the graph of TOP” coincides with the boundary of U/ P(P) from which
the vertical hyperplanes, added in Steps 4 and 5 of the algorithm, have been removed.
A similar condition holds for BOTY and DOW N (P).

The following results hold (see Appendix C for proofs).

Lemma 8.2 Let P be a polyhedron. Let H be a hyperplane. Then, D(H) belongs to
the TOPY graph or to the BOTY graph iff H is a supporting hyperplane for P.

Proof: It directly depends on the characterization of the graphs of TOPY and BOTY .
Indeed, these two functions map any slope (b1, ...,b4-1) of a non-vertical hyperplane
into the maximum (T7OPT) or the minimum (BOTT) intercept by such that the
hyperplane given by Xy = b2y + ... + bg_1 Xq_1 + bg intersects the polyhedron. O

Lemma 8.3 Let UP~(P) = A{(p1,.., pa)l(p1s-spa) €  UP(P) and
pi = min{pl(propipl) € UP(P)). Let DOWN=(P) = {(py,-pi
(p1,-.,pd) € UP(P) and pg = max{p)|(p1,....pi-1,7);) € DOWN(P)}. Then,

(P1y-spa) € UPT(P) iff TOPP(p1,eipa—1) = pa and (pi,...,pd) €
DOW N~ (P) iff BOTY (p1, ..., Pa_1) = pa- a
Lemma 8.4 Let P be a polyhedron. The following facts hold:

1. All points contained in UP(P) U DOW N (P) represent in the primal plane
hyperplanes that do not intersect P or are supporting with respect to P.

2. All points not contained in UP(P)U DOW N (P) represent in the primal plane
hyperplanes that intersect P but are not supporting with respect to P. O

By using the previous results, it is possible to prove the following theorem.

Theorem 8.1 For all points (X1,..., Xq_1) € F%:

Xg  if (Xq,....,Xq) e UP(P)
400 otherwise

Xy if (X1,.... X4) € DOWN-(P)

—oo0  otherwise O

TOPY (X1, .., X4_1) = {

BOTY (X1,..,X4_1) = {
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P
BOT graph

@ (b)

Figure 8.1: An upward open polyhedron: (a) in the primal plane; (b) in the dual
plane.

The following examples show the dual construction for open and closed polyhedra
in B2,

Example 8.2 Figures 8.1, 8.2, 8.3, and 8./ present some examples of dual repres-
entations. In each figure, the polyhedron is represented in (a) and the corresponding
dual representation is represented in (b). Note that:

o In Figure 8.1 only DOW N(P) is generated, since no 0-half-plane is used in
defining P.

e In Figure 8.2 only UP(P) is generated, since no 1-half-planes is used in defining
P.

e In Figure 8.3, both U P(P) and DOW N (P) are generated. Since the polyhedron
is closed, no vertical hyperplanes have been added.

o In Figure 8.4, both U P(P) and DOW N (P) are generated. Since the polyhedron
s open, two vertical hyperplanes have been added. <&

In [67], it has been shown how TOPP(I)17 ceeybg—1) and BOTP(I)17 ey bg—1) can be
computed without constructing UP(P) and DOW N (P). Consider the computation
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P
TOP graph

@ (b)

Figure 8.2: A downward open polyhedron: (a) in the primal plane; (b) in the dual
plane.

of TOPF (by,...,bq_1) (BOTT (by,...,b4_1) can be similarly generated). The projec-
tion of the TOPY graph on the (d —1)- dimensional hyperplane .J : by = 0 subdivides
J into no more than n,* convex (d — 1)-dimensional polyhedral partitions with no
more than O(n?) (d — 2)-dimensional boundary segments. Any given partition £ C .J
corresponds to a vertex v(FE) of P upper hull, such that for any point (p1, ..., ps—1) € F
TOPY (py,...,pa—1) = Fpu(m))(P1y s pa-1). Hence, TOPY (by,...,bq_1) can be ob-
tained by a (d—1)-dimensional point location in J to find the partition £ that contains
the point (by, ..., bs—1), followed by a computation of Fpy(g)) (b1, .-+, ba—1). The com-
plexity of this operation depends on the complexity of computing Fip(y()) (b1, .eey ba—1)
and the complexity to perform point location (see Section 8.3).

4We recall that n, denotes the number of vertices of P.
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P
TOP graph

P
BOT graph

@ (b)

Figure 8.3: A closed polyhedron: (a) in the primal plane; (b) in the dual plane.

8.3 Intersection and containment with respect to a half-
plane

As we have seen, functions TOPY and BOT* map any slope (b1, ...,b4-1) of a non-
vertical hyperplane into the maximum (TOPF) or the minimum (BOT?T) intercept
by such that the hyperplane Xy = byx1+...+by_1X4_1 + by intersects the polyhedron.
The following result is a direct consequence of this fact.

Theorem 8.2 Let P be a polyhedron in E°.

e A hyperplane Xy = bixqx + ... + b1 Xg_1 + by intersects P iff
BOTY (by, ..., bg_1) < by <TOPY (by, ... by_1).

o A half-plane Xy > Xy + ... + bg_1Xg_1 + by intersects P iff
by < TOPY (by,....041).

o A  half-plane Xy < /Xy + ... + bg_1Xgq_1 + by intersects P iff
by > BOTY (by,...,04_1).
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y
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RRE! TOP graph

P
BOT graph

@ (b)
Figure 8.4: An open polyhedron: (a) in the primal plane; (b) in the dual plane.
o A half-plane Xy > 01Xy + ... + b1 Xg1 + by contains P iff
by < BOTT (by,....bq_y).

o A half-plane Xy < 01Xy + ... + b1 Xg1 + by contains P iff
by > /‘TO]DP(()l7 ...7bd_1). O

By considering generalized tuples instead of polyhedra, from Theorem 8.2, we
obtain the following result.

Corollary 8.1 Let tp be a generalized tuple. Let q(0) be the query generalized tuple
Xg 00Xy + ... +byg_1 Xg_1 + by, where § € {>,<}. Then:

.
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‘ d ‘ Preprocessing ‘ Space ‘ Time ‘
d=2 | O(log n,) O(ny) | O(ny)
d=3 | O(log n,) O(ny) | O(ny)
d> 3| 0@2%og n,) 02" | 0(n2"

Table 8.1: Summary of the complexity results for the intersection and the containment
problems between a polyhedron and a half-plane. In the table, n, identifies the number
of vertices of the considered polyhedron.

o Exist.(q(>),tp) iff BOTT (by,...,bq_1) < bg < TOPY (b, ..., bg_1);

o Exist.(q(<),tp) iff BOT (by,....bq—1) < by < TOPF(by,...;ba_1). m

The complexity of the previous problems is bound by the complexity of computing
TOPY (by,...,bq_1) and BOTT (by,...,by_1), thus of performing point location. The
point location problem has good in-memory algorithms for the 2-dimensional space
[53, 118]. However, solutions for higher d-dimensional space are not so efficient, espe-
cially for space complexity. Table 8.1, taken from [67], summarizes such complexity
results (see [67] for more details).

Example 8.3 Consider the polyhedron presented in Figure 8.1. Consider the 1-half-
planes g =Y > =X —1 and gz =Y > 5. Figure 8.1(b) shows that —1 < BOTP(—l)
and BOTT(0) < 5 < TOPFY(0). According to Corollary 8.1, it means that All(q,t)
and Ewxist.(qa,t) are satisfied. Figure 8.1(a) confirms the results. If we instead
consider the 0-half-planes ¢f =Y < =X —1 and ¢4 =Y < 5, we obtain from
Corollary 8.1 that only the selection Ewxist.(qh,t) is satisfied. The correctness of this
result can be observed in Figure 8.1(a).

Now consider the polyhedron presented in Figure 8.3. Given the 1-half-planes g1 =
Y>-X-1, =Y >25,¢=Y >45,q. =Y > X, we can see in Figure 8.3(b) that
—~1 < BOT?(~1), 5> TOPY(0), 4.5 = TOPY(0) and BOTY (1) < 0 < TOPP(1).
It follows from Corollary 8.1 that All(q1,t), Fzist.(qs,t), and Exist.(qs,t) are sat-
isfied. Figure 8.3(a) shows that this result is correct. If we consider the up-queries
Q=Y < -X-1,¢=Y<5¢=Y<45and g4 =Y < z, from Corollary
8.1 it follows that All(¢y,t), All(¢5,t), and Exist.(qy,t) are satisfied. Figure 8.3(a)
confirms the results. <&



8.4. Intersection and containment between two polyhedra 139

y

p(a2) = p(a2’) D(p(42))=(0.5)

p(a1) = p(al’)

\ D(p(aD)F(-1-1)

@ (b)

Figure 8.5: A downward open polyhedron and some query half-planes: (a) in the
primal plane P; (b) in the dual plane D.

8.4 Intersection and containment between two polyhedra

Two convex polyhedra P and @ do not intersect if and only if there is a separating
non-vertical hyperplane between them. Any such hyperplane H does not intersect
either P or () but there are hyperplanes H' and H", parallel to H, such that H’
is above H, H" is below H, H' intersects P, and H" intersects ) (see Figure 8.7
for a 2-dimensional example). The formal definition of separating hyperplane is the
following.

Definition 8.1 [67] A non-vertical hyperplane Xq = byxy + ... + bg_1Xgq_1 + by
separates two polyhedra P and ) if and only if

TOPP (byy..eybg—1) < bg < BOT? (by, ..., bg_1) or
/‘TO]DQ(()l7 ...7bd_1) < by < BOCTP(()l7 ...7bd_1). O

On the other hand, a polyhedron P is contained in a polyhedron @) if any hyper-
plane intersecting P also intersects (). From these considerations and Definition 8.1,
the following theorem holds.

Theorem 8.3 Let P and Q) be two polyhedra in E°.
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y
y +
D(p(e2)=(05)
P42 = p(a2) 2 D(p(a)=(0.45)
P(@3) = p(e3) :
D(a4) = p(a4)
p(qD) = p(at’)
) | | De@)=(10)
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Figure 8.6: A closed polyhedron and some query half-planes: (a) in the primal plane
P; (b) in the dual plane D.

o P intersects Q) iff
mingy, . x,_eri-{TOPY (X1, ..., Xa_1)— BOT®(by,...,ba—1)} > 0 and
mm(Xl,...,Xd_l)eEd—l{TOPQ (Xl, ceey Xd—l) - BOTP(I)l7 ceey bd—l)} Z 0.

o P is contained in Q iff for all (Xy,..., Xq_1) € B9, TOP?(Xy, ..., X4_1) >
TOPY (X4, ..., Xq_1) and BOT®? (X, ..., Xq_1) < BOTT (X4, ..., X4_1). O

From the previous theorem it also follow that P is contained in @ iff UP(Q) C
UP(P) and DOWN (Q) C DOWN(P) (see Figure 8.8). Moreover, P intersects )
iff UP(P)N DOWN(Q) =0 and DOWN(P)NUP(Q) = 0.

Corollary 8.2 Let P and QQ be two polyhedra. Then:
. All(tp,tQ) iff for all (X4, ..., Xq-1),

TOP?(Xy,....Xq-1) > TOPY (X4, ..., X4_1) and
BOT®(Xy, ..., X41) < BOTP(Xy, ..., Xq_1).
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Figure 8.7: An example of separating hyperplane.

<

BOT%raph

BOT graph

@ (b)

Figure 8.8: Containment between two polyhedra: (a) in the primal plane; (b) in the
dual plane.
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‘ d ‘ Preprocessing ‘ Space ‘ Time ‘
d=2 | O(log n,) O(ny) | O(ny)
d=31]O(log® n,) O(n?%) | O(n?)
d> 3| 0(@d)og? " n,) | 02"y | O(n2")

Table 8.2: Summary of the complexity results for the intersection and the containment
problems between two polyhedra. In the table, n, identifies the number of vertices of
the considered polyhedron.

. Em'st(tp,tQ) iff
min(Xl,...,Xd_l)eEd—l{TOPP(le ceey Xd—l) - BOTQ (bl, ceey bd—l)

}>0
mingy, . x,_epi-{TOP?(X1, ..., Xa_1) = BOTF (b1, ... b4—1)} > 0 O

Table 8.2 summarizes the complexity bounds for the problems introduced above.

8.5 Secondary storage solutions for half-plane queries

In the previous section, we have introduced the basic dual transformation for poly-
hedra (and therefore for generalized tuples) and shown its main properties. In the
following, we show how indexing techniques supporting ALL and EXIST selections
with respect to a half-plane can be defined, based on this representation. In par-
ticular, we first consider a restriction of this problem, then we relax the considered
hypothesis and we discuss the general case.

8.5.1 A secondary storage solution for a weaker problem

In the following, we consider a restricted type of ALL and EXIST selections. We as-
sume that, given a query half-plane X 6 by X1+...4+b4_1 X4_1+bg, point (b1, ...,b4-1)
belongs to a predefined set S (note that point (by, ...,b4—1) is the normal vector of
Xg 0 01Xy + ...+ bg_1X4-1 + by [118]). This assumption allows us to precompute
TOPY and BOTY values for specific points.

Under the previous hypothesis, due to Corollary 8.1, in order to check intersection
and containment between a set of polyhedra and X4 8 61X + ... + bg_1 Xq_1 + by, it
is sufficient to maintain two sets of values. Given a generalized relation r, for each
generalized tuple tp € r, the first set contains value TOPP(I)17 weeybg—1) whereas the
second set contains value BOTY (b, ...,b4_1). Since both sets of points are totally
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ordered, they can be organized in two lists, denoted by Lot and Lrop. We assume
that the lists are ordered with respect to their increasing values. Given a query
generalized tuple ¢(0) = X4 0 b1 X1+ ...+ bg_1X4-1 + by, it is easy to see that the
position of b, in the total order determines the result of the query. Indeed:

e ALL(q(>),r) is represented by all the generalized tuples associated with points
following or equal to by in Lpor.

e ALL(q(<),r)is represented by all the generalized tuples associated with points
preceding or equal to by in Lrop.

e EXIST(¢q(>),r) is represented by all the generalized tuples associated with
points following or equal to by in Lrop.

e EXIST(¢(<),r) is represented by all the generalized tuples associated with
points preceding or equal to by in Lpor.

Note that a similar solution cannot be applied to F X IST, queries.

From the previous discussion, it follows that, in order to perform selections against
a set of generalized tuples in secondary storage, it is sufficient to maintain, for each
point in S, two ordered sets of values. B*-trees can be used to this purpose.

Given the query F(Xy 6 b1 X1 + ...+ bg—1X4-1 + b4, ), where r is a generalized
relation and F € {ALL,EXIST}, the search algorithm first selects the BT-tree asso-
ciated with point (b1, ..., b4—1); then, value b, is searched in such a B¥-tree.

Another solution to the same problem can be provided by reducing ALL and
EXIST selection problems to the 1-dimensional interval management problem. This
solution homogeneously supports ALL, EXIST, and EXIST, selections.

The reduction is based on the following considerations. Given a half-plane ¢(8) =
X0 b1 X1+ ...4+by_1X4_1+ by, any tuple tp can be associated with three intervals
] — 00, BO/ZW’L(()l7 ceey bd_l)L]BOTt(bl, ceey bd_1)7 /‘TO]DLL(bl7 ceey bd—l)[7 and ]TOPt(bh ceey
by—1),4oo[. By Corollary 8.1, if (b1, ...,b4—1) € 5, we have the following cases:

e if value b, belongs to the interval |—oo, BOTT (by, ..., by_1)], predicate All(q(>),t)
is satisfied;

o if by € [TOPY (by,...,b4_1), +oc[, predicate All(q(<),t) is satisfied;

o if by € [BOTT (by,...,b4_1), TOPT (by,...,bq_1)[, predicate Ezist.(q(<),t) is
satisfied;

o if by €]BOTT (by,....;04_1), TOPY (by,...,b4_1)], predicate Fwxist.(q(>),t) is
satisfied;
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o if by €] — 00, TOPY (by,...,b4_1)], Exist(q(>),1) is satisfied;
o if by € [BOTY (by,...,b4_1), +oo[, Exist(q(<),t) is satisfied.

Thus, to perform selections against a set of generalized tuples, it is sufficient to
maintain three 1-dimensional interval sets for each value in set S. Management of
1-dimensional intervals is a classic problem from computational geometry [53, 118].
An optimal solution to the problem in secondary storage has been recently proposed
in [7]. It requires linear space and logarithmic time for query and update operations
applied on a set of N intervals.

The next result follows from the previous discussion.

Theorem 8.4 Let r be a generalized relation containing N generalized tuples. Let
g=Xg 0 by X1+ ...+ bg_1Xg_1 + by be a query half-plane. Let T be the cardinality
of the set ALL(q,r) (respectively EXI1ST.(q,r) and EXI1ST.(q,r)). If (b1, ..., b4-1)
is contained in a predefined set of cardinality k, there is an indexing structure for
storing r in O(k N/B) pages such that ALL(q,r), EX1ST.(q,r), and EX1ST (q,r)
selections are performed in O(loggN/B + T/B) time, and generalized tuple update
operations are performed in O(k loggN/B) time. O

8.5.2 Secondary storage solutions for the general problem

If (b1,....,04-1) ¢ S, as we have seen in Section 8.2, a d-dimensional point location
must be performed in order to compute TOPF(by,...,by_1) and
BOTY (by, ..., bq_1).

Consider for example the computation of TO PP (b1, ..., b4—1). A point location has
to be performed with respect to the partition of the (d—1)-dimensional hyperplane J :
by = 0, induced by the open polyhedra U P(P)’s. If the considered generalized relation
contains N generalized tuples and if each generalized tuple is composed of at most &
constraints (thus, the corresponding polyhedron has at most & vertices), J : by = 0 is
decomposed in at most N2k? partitions. Indeed, the projection of each polyhedron
divides J into no more than k convex (d — 1)-dimensional polyhedral partitions with
no more than O(k?) (d—2)-dimensional boundary segments. Therefore, by combining
together N different partitions, .J is divided in at most N2?k? partitions. Any given
partition E corresponds to a specific order of polyhedra. This means that, given
a partition, any line parallel to the d-th axis and passing through F, intersects the
N polyhedra in the same order. Moreover, any given partition I corresponds to a
specific vertex of the upper hull of each polyhedron.

From the previous discussion it follows that one obvious way to define a data struc-
ture to answer a general half-plane query requires maintaining one B*-tree for each
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+
For each line ==> one B-tree

Figure 8.9: The basic idea of the indexing technique in the general indexing case.

given partition of .J, induced by U P(P)’s, and one B¥-tree for each given partition of
J, induced by DOW N (P)’s. Then, given a half-plane X4 0 by X1 +...4+b4—1X4-1+bg,
a point location is performed to determine the partition containing point (b, ..., bq—1);
the corresponding BT-tree is then used to answer the query.

The previous solution, though very simple, cannot be considered satisfactory. In-
deed, N?k* data structures have to be maintained (see Figure 8.9 for a 2-dimensional
example). This also means that the use of the dual representation does not allow
the efficient indexing of generalized tuples to perform selections with respect to an
arbitrary half-plane.

A possible solution to this problem is to apply a filtering/refinement approach
when (by,...,b4-1) ¢ S. In the remainder of this chapter, we propose three different
solutions:

e The first technique, denoted by T1, (see Section 8.6) replaces the original half-
plane query with two new half-plane queries. The union of the results of the
two new queries is a superset of the generalized tuples belonging to the result
of the original query. This technique can always be applied but, besides the
generation of false hits, due to the fact that the results of the two queries may
not be disjoint, some generalized tuples may be returned twice.

T1 is based on the BT-tree data structure presented in Section 8.5.1.
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e The second technique, denoted by T2, (see Section 8.7) replaces the original
half-plane query with a new half-plane query. This technique can be applied
only if the database satisfies some specific properties but, since only one new
query is executed, no duplicates are generated.

T2 is based on the BT-tree data structure presented in Section 8.5.1.

e The third technique, denoted by T3, (see Section 8.8) reduces the original prob-
lem to a new problem. Specific solutions to the new problem are presented and
used to answer the original query. No duplicates are generated, however new
data structures have to be used.

In the following, these solutions will be described. To simplify the notation, each
solution is presented for the 2-dimensional case and then extended to deal with ar-
bitrary dimensions. Moreover, we denote with S a set of angular coeflicients and we
assume that, given a query half-plane Xy 6 by X1+...4+b4_1Xq—1+ba, (b1,...,04-1) € S.
We call up-query a query with respect to a 0-half-plane and down-query a query with
respect to a 1-half-plane.

8.6 Approximating the query with two new queries

Consider the query F(Y 6 aX + b,r), such that ¥ € {ALL,EXIST}. The simplest
way to approximate an arbitrary half-plane query is to replace the query with two new
queries such that the angular coefficients associated with the new query half-planes
are contained in S. The evaluation of the new queries must retrieve at least all the
generalized tuples that would be generated by the evaluation of Y 8 aX + b. This
is achieved by replacing the original query half-plane with two new query half-planes
such that the region of space totally covered by the two new half-planes contains the
region of space covered by the original half-plane. This guarantees that each tuple
belonging to the result of the original query also belongs to the result of at least one
new query, ensuring the safety of the approximation (see Figure 8.10).
There are two main issues in applying such an approach:

e The results returned by the two new queries may not be disjoint. Thus, some
generalized tuples may be returned twice (see Figure 8.10); this means that
some duplicates can be generated.

e Not all the generalized tuples returned by the evaluation of the two queries
satisfy the original query, thus some false hits can be generated (see Figure
8.10) and a refinement step should be applied in order to remove them from the
result.
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new query half-plane

common area Y=aX +b

new query half-plane /

false hits area

false hits area

Figure 8.10: An example of safe approximation.

The number of duplicates and false hits depends on the choice of the new queries.

Indeed, there exist infinite pairs of new queries (a finite number for each point of line
Y = aX +b) retrieving a superset of the result. However different pairs may generate
more or less duplicates and false hits.

The determination of the new queries depends on the following choices:

1. Choice of the angular coefficients. First, the angular coefficients a’ and a” of

the lines associated with the new query half-planes must be determined in order
to reduce duplicates or false hits. We choose to reduce the number of false hits.

. Choice of the line. The equation of the line associated with the new query

half-plane must be determined. This is possible by choosing a point PP on the
line associated with the original query half-plane and then determining the lines
passing through P and having ¢’ and «” as angular coefficients.

Choice of the half-plane. Each line must be transformed in a half-plane, partially
covering the original one.

Choice of the type of the query. A type (ALL or EXIST) for the new queries
must be specified, ensuring the safety of the approximation.

In the following, we present solutions to all these problems.

Choice of the angular coefficients. We assume that S contains the angular coef-
ficients of k lines, dividing the two-dimensional space in 2k sectors (no vertical line
is permitted — see Section 8.2 — ). Different choices may lead to the generation of
different sets of false hits and duplicates.



148 Chapter 8. A dual representation for indexing constraint databases

Y=a'X+b"
\ Y=aX+b ad<a<a’

Y=axX+b
f

ad<aad' <a

a>aad >a

Figure 8.11: Choice of the new query half-planes, for an original down-query.

In order to reduce the number of generated false hits, the coefficients a’ and a” of
the lines associated with the new query half-planes must be the angular coefficients
of the lines representing the border of the sector in which the line Y = aX + b is
contained. Note that this heuristic allows minimizing the area corresponding to the
difference between the space covered by the new queries and the space covered by
the original one (also called false hits area). In most cases, this choice results in the
generation of a higher number of duplicates and a lower number of false hits. This
approach seems to be more reliable for large databases. Indeed, the generation of
fewer duplicates results in a greater number of false hits, and all the database objects
may be selected.

We denote by a’ the angular coefficient of the first line which is encountered by
performing a clockwise rotation of line Y = a X +b and with «” the angular coefficient
of the first line which is encountered by performing an anti-clockwise rotation of line
Y =aX +0b.

Choice of the lines. Given the angular coefficients ¢’ and ", the lines can be

determined by choosing a point P on line Y = aX +b. If P = (7,7), the lines have
the following equations:

o Y =dX+ (7—d7)
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| Conditions on a,a’, a” | Values for 8" and 8"
a <a<ad’ 0=0,0"=9
a <aad <a 9 =60"=-
a<a,a<a" 0 =-0,0"=96

Table 8.3: Choice of the query half-planes.

o Y =d"X + (7 - d'"7).

Different choices of P may lead to different distributions of false hits.

Choice of the half-planes. Given the lines constructed as above, we should decide
which half-plane queries must be considered. The union of the points belonging to the
two new half-planes must cover the space already covered by the original half-plane.
The new query half-planes are given by:

o Y0 X+ (T-d7y)
e V0 d'X + (y-—d'7)

where 8 and 6" are presented in Table 8.3, for each combination of a,a’ and a”.
In the tables, -8 corresponds to ‘<’ if # is ‘>" and to * > if § is ‘<’. Figure 8.11
graphically explains these choices for an original down-query.

Choice of the type of the new queries. A type must be assigned to each half-plane
query constructed as above. The choice is the following:

o The original query is EXIST. If the original query is approximated with two
new EXIST queries, the approximation is safe, because each generalized tuple
satisfying the original query is returned by at least one new query.

o The original query is ALL. If we substitute the original ALL query with two
new ALL queries, some generalized tuples satisfying the original query may
not be returned by the union of the results of the two queries; this happens,
for example, if at least one generalized tuple exists such that its extension is
contained in the original half-plane but it is not contained in any of the new
half-planes (see Figure 8.12). A possible solution is to approximate the ALL
query with an EXIST and an ALL query. In such a case, the approximation
is safe. Indeed, if a generalized tuple does not satisfy an EXIST query with
respect to the half-plane ¥ > a”X 4 b” (see Figure 8.12), it must be contained
in the opposite half-plane Y < «”X + b”. Due to the original query, we are
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Y=ax+b’
N Y=ax+b

/ Y=axX+b

Figure 8.12: An example of unsafe approximation.

interested only in generalized tuples whose extension is contained in the sector
on the right of the intersection point of lines ¥ = aX + b and Y = "X +b".
This set of generalized tuples can be approximated by evaluating an ALL query
with respect to the half-plane Y > o/ X + 0.

From the previous considerations, the following result holds.

Proposition 8.2 Let E(q) be a query, such that £ € {ALL,EXIST}. Let P be a
point of line p(q). Let F1(q1), Fa(q2) be the two new queries constructed as above
with respect to P, such that Fy, Ey € {ALL EXIST}. Then, for each generalized
relation r, F(q,r) C E1(q,r) U Ez(qa, 7). O

The previous result ensures that the proposed approximation is safe. Since the
angular coefficients of the new query half-planes belong to S, the technique presented
in Subsection 8.5.1 can be used to execute the corresponding queries. Thus, we obtain
the following result.

Theorem 8.5 Let r be a generalized relation containing N generalized tuples. Let ¢
be a query half-plane. Let T be the cardinality of the set ALL(q,r) (EXI1ST(q,r)).
If the angular coefficient of p(q) is not contained in a predefined set of cardinality k,
there is an indexing structure for storing r in O(k N/B) pages such that ALL(q,r)
and EX1ST(q,r) selections are performed in O(loggN/B + T1/B + T3/ B) time,
where Ty and Ty represent the number of generalized tuples returned by the two new
queries generated as above, and generalized tuple update operations are performed in

O(k loggN/B) time. ]

In the following, the technique introduced in this section is denoted by T1.

8.6.1 Extension to an arbitrary d-dimensional space

The proposed technique can be extended to deal with an arbitrary d-dimensional
space as follows:
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1. Choice of the angular coefficients. In this case, the ordering between angu-
lar coefficients (which are real numbers) has to be replaced with the ordering
between the angle formed by two hyperplanes [118]. In particular, for each
point (by,...,bq—1) € S, we maintain the angle formed by the normal vector
represented by this point and the normal vector of the hyperplane X; = 0.
We denote this order by <. Also in this case we assume that S contains k
points corresponding to hyperplanes that divide the space in 2k sectors of equal
dimension.

2. Choice of the hyperplanes. In order to determine the hyperplanes supporting the
new query half-plane, given their normal vectors, a (d — 1)-hyperplane lying on
the original query half-plane have to be chosen and the hyperplanes having the
chosen normal vectors and passing through that hyperplane must be determined.

By assuming that points in S characterize hyperplanes dividing the d-dimen-
sional space in k equal sectors, all such hyperplanes intersect a given (d — 1)-
hyperplane [. Therefore, the technique can be applied only when the original
query hyperplane is parallel to [. If this condition is not satisfied, the approx-
imation cannot be applied. This is not true for the 2-dimensional case, where,
given a (2 — 1)-hyperplane (thus, a point) and an angular coefficient in S, it is
always possible to find the 2-dimensional hyperplane (thus, a line) characterized
by such a coeflicient and passing through that point.

3. Choice of the half-plane. Rules proposed for the 2-dimensional cases are still
valid by replacing < with <.

4. Choice of the type of the query. Rules proposed for the 2-dimensional cases are
still valid.

8.7 Approximating the query with a single new query

The technique proposed in Section 8.6 may generate duplicates and false hits. Duplic-
ates are generated since the original query is approximated by two new queries, whose
results may not be disjoint. In the following we give sufficient conditions to safely
approximate the original query with a single new query. This approach eliminates
duplicates. The new query has the same type of the original query. For this reason,
in the following, we do not further specify the type of the query. We also show how
point P should be chosen in order to reduce the number of generated false hits.
From Figure 8.10 we can see that, for an arbitrary choice of point P, each new
half-plane does not completely cover the original half-plane, even if it has a non-empty
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Figure 8.13: The extension of a generalized relation r and a direction line for r.

intersection with it. Moreover, each new half-plane covers the part of the original half-
plane not covered by the other half-plane. From this consideration, it follows that the
query can be approximated by using a single new query if it is possible to replace the
original half-plane with a new half-plane such that the part of the original half-plane
not covered by the new one does not contain the extension of any generalized tuple.
This approximation can be applied if we know something about the distribution of the
extensions of the generalized tuples in the plane. The notion of direction half-plane,
introduced by the following definition, gives this kind of information, specifying that
none is present in a given region of space (see Figure 8.13).

Definition 8.2 Let r be a generalized relation. A line [ is a direction line for r if
ext(r) is contained in a single half-plane with respect to 1. Such half-plane is called
direction half-plane for r. a

Given a query F(q), such that £¥ € {ALL,EXIST}, if at least one direction half-
plane ¢; exists such that p(¢q1) and p(q) are not parallel lines, at least one query E(¢’)
exists approximating the given one, such that p(¢) and p(¢’) are not parallel lines.
Note that if the original query line and the direction line are parallel, the direction
line does not give enough information to find a new query approximating the original
one, excluding queries whose query half-plane contains the direction half-plane (thus,
retrieving all database objects). If p(q) and p(q1) are not parallel lines, we say that
q1 is approzimating for q.

Proposition 8.3 Let r be a generalized relation. Let F(q) be a query, such that
E € {ALLEXIST}. Assume that there exists a direction half-plane ¢, for r, which
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Y=ax+b N, YT&+b
Y =alX +bl Y=alX+bl
Y=ax+b
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Y=aX+b
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Figure 8.14: Choice of the new query half-plane, for an original down-query.

is approximating for q. Then, there exists at least one other query E(q') such that
p(q") and p(q) are not parallel lines and E(q,r) C E(q¢',r). O

Given a query F/(Y 6 aX+b) and an approximating direction half-plane Y 6y a1 X+
by, in order to construct the new query Y 6" a’X + ', as we have done in Subsection
8.6, the following choices must be taken:

1. Choice of the point. Since we assume that @y # «a, the direction line and the
query line Y 8 a X + b intersect. We choose their intersection point to construct
the new query. The reason for this choice is due to the fact that for each query
half-plane, whose associated line passes through this point, it is immediate to
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| Conditions on a, a; | (2] | a’ | 9’ |
ar >a < | maz{d’|a’ € S,a’ < a} >
min{a’la’ € S,a’ > a;} <
ar < a < | min{d'|a’ € S,a’ > a} >
maz{a’|la’ € S,a’ < a1} <
a >a > | maz{d'|a’ € S,a<ad <ar} | >
a; < a > | min{d'|la’ € S,a1 <a' <a} | >

Table 8.4: Choice of the new queries, for an original down query (in the first two
cases, there are two alternative solutions).

establish if the part of the original query half-plane not covered by the new one
contains the extension of some generalized tuple.

2. Choice of the half-plane query. Conditions on the angular coeflicient of the new
query line and on the direction of the new half-plane must be given with respect
to the position of line Y = ¢ X 4 b and the direction line. Table 8.4 summarizes
the various cases for an original down-query. Similar conditions can be given for
an up-query. Note that the proposed conditions also depend on set S. Figure
8.14 graphically represents the various cases for an original down-query.

If, given a, ay, 8, 61 and a set of angular coefficients .S, at least one angular coeffi-
cient a’ can be found satisfying the previous conditions, we say that Y 6; aq X +b;
is acceptable for S and Y 8 a X + b.

Given a relation r and a query F/(q), if no acceptable direction half-plane exists,
the new query cannot be found. Thus, with respect to the technique presented in
Subsection 8.6, this technique can be applied in fewer cases.

The following result holds.

Proposition 8.4 Let S be a set of angular coefficients. Let r be a generalized re-
lation. Let E(q) be a query, such that ¥ € {ALL EXIST}. Let ¢; be a direction
half-plane for r, which is acceptable for ¢ and S. Then, the previous algorithm en-
sures to find a new query E(q') such that E(q,r) C E(¢,r). O

Of course, acceptable direction lines with different angular coefficient may exist.
However, not all direction half-planes have the same behavior with respect to the
generation of false-hits. We distinguish three main cases:

1. If only one acceptable direction half-plane Y 6; a1 X 4+ by is known, a good
measure to associate with the selected new query Y € o’X + V' is the angle
formed by lines ¥ = aX + b and y = «'X + V/, external to the half-plane
Y 0 aX +b.
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2. If two acceptable direction half-plane Y 81 a1 X +b1 and Y 05 as X +b, exist, and
the new query is constructed with respect to the direction half-plane Y 6; a1 X +
by, the previously defined measure can be refined by considering the area of
the triangle obtained by cutting the sector formed by lines ¥ = aX + b and
Y =’ X 4+ b with line Y = a2 X + bs. If no triangle is generated (either ¢ = az
or @' = ay), the area is associate with co. In both cases, the new measure
is the pair (4;, ), where o is the angle defined as before and A; is the area
constructed as before for the direction half-plane Y 6; a; X 4 b; (see Figure 8.15).

3. The previous case can be generalized to the existence of n acceptable direction
half-planes Y 0; ;X + b;, i = 1,...,n. In this case, the (open) polygon defined
by the direction lines must be constructed. A query line can intersect such a
polygon in at most two points. The two points lay on (at least) two direction
lines. A new query is constructed for each direction line. The query corres-
ponding to the lowest measure, with respect to the lexicographic ordering, is
then chosen. Note that if all areas are infinite, the new query is selected with
respect to the generated angles. However, if the area of at least one measure is
finite, the query generating the lowest false hits area is selected.

Note that the previous algorithm does not guarantee that the query generating
the lowest number of false hits is always found. Rather, it only applies a good
heuristic to select the new query, assuming that direction half-planes are the only
known information on the extension of the considered generalized relation.

query line
Y=aX+b

direction line
&{ Y=a2X+h2

‘ approximation
w.rt Y =alX + bl

approximation
Y =a2X + b2

direction line
Y=alX+bl

Figure 8.15: Choice of the direction line.
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The final problem to solve is how direction lines are determined. The general
approach is to maintain a (possibly open) minimum bounding polybox of the entire
extension of the relation. If such a polybox does not exist, this means that the
generalized relation does not admit any direction line. Otherwise, the lines on which
the edges of the polybox lay represent direction lines for the relation.

Since the angular coefficient of the new query belongs to .S, the following result

holds.

Theorem 8.6 Let S be a set of angular coefficients. Let r be a generalized relation
containing N generalized tuples. Let q be a query half-plane. Let T be the cardinality
of the set ALL(q,r) (EXIST(q,r)). Assume that there exists at least one direction
half-plane for r, which is acceptable for ¢ and S. If the angular coefficient of p(q) is
not contained in S, there is an indexing structure for storing r in O(k N/B) pages
such that ALL(q,r) and EXIST(q,r) selections are performed in O(loggN/B +
Ty/B) time, where Ty represents the number of generalized tuples returned by the new
query constructed as before, and generalized tuple update operations are performed in

O(k loggN/B) time. ]

In the following, the technique presented in this section is denoted by T2.

When compared with the technique presented in Subsection 8.6, T2 does not gen-
erate duplicates, since only one new query is selected. However, no clear relationship
exists between the number of false hits generated by the two techniques. It essentially
depends on the choice of point P for the first technique and on the choice of direction
lines for the second one.

8.7.1 Extension to an arbitrary d-dimensional space

In a d-dimensional space, a direction line becomes a direction hyperplane. The pro-
posed technique can be extended to deal with such a space as follows:

1. Choice of the new hyperplane. As in the 2-dimensional case, we assume that the
direction hyperplane and the query hyperplane intersect. The new hyperplane
must pass through the (d — 1)-hyperplane defined by this intersection.

As for T1, the extension of this approximation technique to a d-dimensional
space, with d > 2 does not allow the approximation of a generic half-plane
query. The set of queries that can be approximated depends, in this case, by
the direction hyperplane.

2. Choice of the half-plane query. The cases presented in Table 8.4 can still be
used by replacing < with < in order to determine the normal vector and the
half-plane direction of the new query.
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8.8 Using sector queries to approximate half-plane quer-
ies

The solutions proposed in Section 8.6 and Section 8.7 to answer half-plane queries are
based on data structures proposed for the weaker problem (see Subsection 8.5.1). A
different solution is based on the following consideration. From Figure 8.10 it follows
that, in order to approximate an EXIST half-plane query, all generalized tuples which
are not contained in a specific (depending on the chosen approximation lines) sector
must be determined. In a similar way, to approximate an ALL selection all generalized
tuples which do not intersect a given sector must be determined.

Starting from this consideration, the result of an EXIST or ALL selection with
respect to a half-plane is equivalent to the difference between the input generalized
relation and the generalized tuples satisfying respectively the ALL or the EXIST
selection with respect to a specific sector.

In the following we first introduce sector queries and then we show how they can
be used to approximated half-plane queries. The proposed technique, denoted by T3,
can be applied when, given a query half-plane ¢, the new query half-planes ¢; and ¢
are both 0-half-planes or both 1-half-planes.

8.8.1 Sector queries

An ALL (EXIST) sector query is defined as an ALL (EXIST) query with respect
to a space sector, defined by the intersection of two d-dimensional half-planes. It is
simple to show that the dual representation of a sector is a subset of a 2-dimensional
half-plane H. In particular, let H; and Hy be the half-planes defining the sector. Let
Py = D(p(Hy)) and P, = D(p(H3)). Let H be the vertical 2-dimensional half-plane
intersecting P, and P,. The points of H lying over the segment connecting P, and
P; belong to the dual representation of the sector.

In the following we propose some external-memory solutions for ALL and EXIST
sector queries. The technique proposed for ALL sector queries allows the exact
detection of all and only those generalized tuples which are contained in the sector
whereas the solution proposed for the EXIST sector query retrieves a superset of the
generalized tuples which intersect the sector.

8.8.1.1 ALL sector queries

For simplicity we consider only downward oriented ALL sector queries. In this case,
the query generalized tuple has the form:

tgr =Y <aX+bAY <X +d.
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Figure 8.16: The representation of an ALL sector query problem with respect to
Y <aX +bAY <cX +din the dual plan.

Suppose that a € S,¢c € 5. Without leading the generality of the discussion, we
assume that ¢ < c¢. Each generalized tuple of this kind is represented in the dual
plane as shown in Figure 8.16.

From the results presented in Section 8.4, it follows that a generalized tuple tp
satisfies an ALL sector query with respect to tg+ if UP(Q1) C UP(P). This condi-
tion is verified if the intersection of U P(P) with slab @ < X < ¢ is under the segment
connecting points (a,b) and (¢, d) (see Figure 8.16). This condition is also equivalent
to establishing whether, being e and f the intersections of UP~(P) with X = a and
X=c,e<band f<d.

Proposition 8.5 Let tp be a generalized relational tuple. Let e be the intersection
of UP~(P) with X = a and let f be the intersection of UP~ (P) with X = ¢. Then,
All(tg+,tp) is true iff e < b and f < d. O

Checking the previous condition for all the generalized tuples contained in a gen-
eralized relation corresponds to a 2-dimensional 2-sided range searching problem,
introduced in Chapter 6 (see Figure 8.17). Among the techniques that have been
proposed, path caching [120] allows us to perform 2-sided queries in O(loggn), with
O(n logy B logs logz B) space. Assuming we use this technique, the following result
holds.

Theorem 8.7 Let r be a generalized relation containing N generalized tuples. Let
tgr =Y < aX+bANY < cX+d. LetT be the cardinality of the set ALL(tg+,7). If a
and ¢ are contained in a predefined set of cardinality k, there is an indexing structure
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(ef)

Figure 8.17: Reduction of the ALL sector query problem to a point location problem.

for storing r in O(k n loglogB) pages such that ALL(tg+,r) selection is performed
in O(loggn +t) time. Updates are executed in O(k loggn), amortized. o

Note that the k factor in space and update complexity is due to the fact that
2k data structures has to be maintained, one for each pair of adjacent values in the
increasing order of 5.

8.8.1.1.1 Extension to an arbitrary d-dimensional space The extension of
the solution proposed for ALL sector queries to a d-dimensional space is immediate.
In a d-dimensional space, a sector query is defined by the intersection of two d-
dimensional half-planes. Assuming that the normal vectors corresponding to such
half-planes belong to the predefined set 5, as required by Theorem 8.7, the reasoning
done for the 2-dimensional case still holds for the generic d-dimensional case. The
number of BT-trees can be reduced by maintaining only values for “adjacent” normal
vectors, i.e., normal vectors whose angles formed with plane Xy = 0 are consecutive
in the total order of such angles.

8.8.1.2 EXIST sector queries

For simplicity we consider only downward oriented EXIST sector queries. In this
case, the query generalized tuple has the form:

tgr =Y <aX+bAY <X +d.

Suppose that a € S,¢c € 5. Without leading the generality of the discussion, we
assume that @ < ¢. Thus, each query generalized tuple of this kind is represented in
the dual plane as shown in Figure 8.18.
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From the results presented in Section 8.4, it follows that a generalized tuple tp
satisfies an EXIST sector query with respect to tg+ if UP(QT) N DOWN(P) = .
This condition is verified if the intersection of DOW N~ (P) with this slab is under
the segment connecting points (a,b) and (¢, d) (see Figure 8.18). The intersection of
DOW N~ (P) with this slab is a chain of segments, downward oriented. This means
that the previous condition cannot be reduced, as for the case of ALL sector queries,
to check the position of the segment, connecting the intersections of DOW N (P) with
X = aand X = ¢, with respect to the position of the segment connecting points (a, b)
and (c,d). As an example, consider chains (1) and (2) in Figure 8.18. The highest Y
coordinate of chain (1) is over segment (a, b) — (¢, d), thus the corresponding general-
ized tuple does not satisfy the EXIST selection, whereas the highest ¥ coordinate of
(2) is under segment (a,b) — (¢, d), thus the corresponding generalized tuple satisfies
the EXIST selection. However, the extreme points of both chains in slab e < X < ¢
are under segment (a, b) — (¢, d).

Condition UP(QT) N DOW N (P) = () can however be checked by considering the
maximum Y coordinate of DOW N (P) in slab a < X < ¢, as the following result
shows.

Proposition 8.6 Let tp be a generalized relational tuple. Let tgr =Y < aX +bA
Y <X +d. Let e be the intersection of DOW N~ (P) with X = a and let f be the
intersection of DOWN~(P) with X = c. Let (m;, my) € DOWN (P) such that m,
is the maximum Y value of DOW N (P) in slab a < X < c. Then, Fxist(tg+,tp) is
satisfied iff e < b, f < d, and mxb;i—l—b—ab_c > my. a

a— a—

Proof: It follows from the previous considerations and results presented in Section
8.4. O

Differently from the ALL case, the condition proposed by Proposition 8.6 does
not correspond to any well-known geometric problem. Therefore, in order to execute
an EXIST sector query, only approximated solutions can be proposed. In particular,
from Figure 8.18 we can observe that:

e If the maximum Y-coordinate of a tuple ¢{p is over segment connecting (a,b)
and (c,b), then Exist(tg+,tp) is not satisfied.

e If the maximum Y-coordinate of a tuple tp is under segment connecting (a, d)
and (c,d), then Exist(tg+,tp) is satisfied.

e If the maximum Y-coordinate of a tuple tp is between segment connecting (a, b)
and (c, b) and segment connecting (a, d) and (c, d), then Ewist(tg+,tp) may or
may not be satisfied.
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Figure 8.18: The representation of an EXIST sector query problem with respect to
Y <aX+bAY <cX +din the dual plane.

Thus, all generalized tuples tp whose maximum y coordinate of DOW N (P) in
slab @ < X < ¢ is not greater than b, represent a superset of the generalized tuples
satisfying the EXIST sector query. A Bt-tree, storing the maximum Y value of each
generalized tuple in the considered slab, can be used to determine this superset.

Theorem 8.8 Let S be a set of angular coefficients. Let r be a generalized relation
containing N generalized tuples. Let tgr =Y < aX +0AY < cX +d. Leta €5,
c € S. Let T be the cardinality of the set EXIST(tg+,r). There is an indexing
structure for storing v in O(k N/B) pages such that EXIST (tg+,r) selection is
performed in O(logg N/B+11/B) time, where Ty represents the number of generalized
tuples returned by the new query constructed as before, and generalized tuple update
operations are performed in O(k logg N/ B) time. O

Also in this case, the k factor in space and update complexity is due to the fact
that 2k data structures has to be maintained, one for each pair of adjacent values in
the increasing order of S.

8.8.1.2.1 Extension to an arbitrary d-dimensional space The technique
proposed for 2-dimensional EXIST sector queries can be extended to a d-dimensional
space by maintaining for each pair of normal vectors in S and for each generalized
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Figure 8.19: A sector domain and its complement in the 2-dimensional space.

tuple tp the maximum X, coordinate of DOW N (P) in the slab represented by the
considered normal vectors. These values can then be indexed by using a B*-tree. The
number of BT-trees can be reduced by maintaining only values for “adjacent” normal
vectors, i.e., normal vectors whose angles formed with plane X; = 0 are consecutive
in the total order of such angles.

Given a query sector, the value to search in such a Bt-tree is given by the max-
imum between the d-th coordinates of the two points representing the hyperplanes
supporting the given sector query in the dual plane.

8.8.2 Approximating half-plane queries by sector queries

In the following, we show how sector queries can be used to execute half-plane queries.
Given a half-plane query, the basic approach is to replace the original query with two
new queries, constructed as described in Section 8.6. using the constructed query
half-planes, a sector query is constructed and solutions proposed for sector queries
are also used, by complementation of the obtained results, to answer the original
half-plane query.

8.8.2.1 EXIST half-plane queries

Let ¢ be a query half-plane. Suppose that, by applying the technique presented
in Section 8.6, ¢ is approximated by two new half-planes ¢; = Y > aX + b and
g2 =Y > c¢X 4+ d such that @ € 5, ¢ € S (a similar discussion holds if ¢ =Y <
aX +band ¢g =Y < cX+4d). Lettg =Y < aX+bAY < cX +d. Let
tgr =Y <aX +b0AY < cX +d. Further, given a domain @), let Q° represent the
set of points not contained in @) (see Figure 8.19).

It is trivial to prove that EXIST (tge,r) = r \ ALL(tg,r). This means that the
result of an EXIST selection with respect to a domain (¢, coincides with the set of
generalized tuples not satisfying the ALL selection with respect to Q.
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Figure 8.20: The two 2-sided range queries corresponding to the original EXIST
half-plane query.

Proposition 8.7 Let r be a generalized relation. Let () be a domain contained in
the Fuclidean plan and let Q¢ be the complementary region. Then, r\ ALL(tg,r) =
EXIST(tge,r). O

By Proposition 8.5, the execution schema proposed for ALL sector queries can be
used to answer EXIST half-plane queries as follows.

Theorem 8.9 Lettig =Y <aX+bAY <cX+d. Lettp be a generalized relational
tuple. Let e be the intersection of UP(P) with X = a and let f be the intersection
of UP(P) with X = c. Then, Exist(tge,tp) is true iff e > b or f > d, i.e., iff e > b
ore<bAf>d.

Proof: This result follows from Proposition 8.5 and from the fact that if € = b then
Y = aX +bis asupporting hyperplane for P and if f = d, Y = c¢X 4 dis a supporting
hyperplane for P. a

Conditions stated by Theorem 8.9 correspond to two 2-dimensional 2-sided range
searching problems, as shown in Figure 8.20. Therefore, due to results about path
caching presented in [120], the following result holds.

Theorem 8.10 Let S be a set of angular coefficients. Let r be a generalized relation
containing N generalized tuples. Let q be a query half-plane. Let T be the cardinality
of the set EX1ST (tge,r). There is an indexing structure for storing r in O(k N/B)
pages such that EX1ST (tge,r) selection is performed in O(logg N/B+T1,/B+1:/B)
time, where Ty and Ty represent the number of generalized tuples returned by the new
queries constructed as before, and generalized tuple update operations are performed
in O(k loggN/B) time. ]
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8.8.2.1.1 Extension to an arbitrary d-dimensional space The proposed
technique can be extended to any d-dimensional space. The same limitations existing

for T1 hold.

8.8.2.2 ALL half-plane queries

By using the notation introduced in Subsection 8.8.2.1, it is trivial to prove that a
generalized tuple is contained in ALL(tge,r) =1\ EXI1ST (g, r). This means that
the result of an ALL selection with respect to a domain (¢, coincides with the set of
generalized tuples not satisfying the EXIST selection with respect to Q.

Proposition 8.8 Let r be a generalized relation. Let () be a domain contained in
the Euclidean plan and let Q° be the complementary region. Then, r\ EXIST (tg,r)
= ALL(th7 7‘). a

By Proposition 8.6, the execution schema proposed for EXIST sector queries can
be used to answer ALL half-plane queries. In particular, the following result holds.

Theorem 8.11 Let tg = Y < aX +bAY < cX +d. Let tp be a generalized
relational tuple. Let e be the intersection of DOW N~(P) with X = a and let f be
the intersection of DOW N~ (P) with X = c¢. Let (my, my) € DOWN (P) such that
my is the mazimum Y value of DOW N (P) in slab a < X < c¢. Then, All(tge,t) is
satisfied iff one of the following conditions holds:

ec>b
o f>d
° mxg:i+b—a2:i<my.

Proof: The result follows from Proposition 8.6 and from the fact that if e = b,
Y = aX + b is a supporting hyperplane for P and if f = d, Y = cX +dis a
supporting hyperplane for P. a

The previous conditions cannot be reduced to a 2-dimensional 2-sided range
searching problem, as in the case of EXIST half-plane queries. However, follow-
ing the approach proposed for ALL sector queries, from Figure 8.18 we can observe
that:

e If a maximum Y-coordinate of a tuple tp is over segment connecting (a, b) and
(¢,b), then All(tge,tp) is satisfied.
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e If a maximum Y-coordinate of a tuple ¢ is under segment connecting (a, d) and
(¢,d), then All(tge,tp) is not satisfied.

e If the maximum Y-coordinate of a tuple tp is between segment connecting (a, b)
and (¢, b) and segment connecting (a,d) and (¢, d), ALL(tge,tp) may or may
not be satisfied.

Thus, the generalized tuples ¢tp whose maximum Y coordinate of DOW N (P) in
slab & < X < ¢ is not lower than d, represent a superset of the generalized tuples
satisfying the EXIST sector query. A Bt-tree, storing the maximum Y value of each
generalized tuple, can be used to determine this approximated set.

The following result holds.

Theorem 8.12 Let S be a set of angular coefficients. Let r be a generalized re-
lation containing N generalized tuples. Let q be a query half-plane. Let T be the
cardinality of the set ALL(tge,r). There is an indexing structure for storing r in
O(k N/B) pages such that ALL(tge, r) selection is performed in O(logg N/B+1,/B)
time, where T1 represents the number of generalized tuples returned by the new
query constructed as before, and generalized tuple update operations are performed

in O(k loggN/B) time. ]

8.8.2.2.1 Extension to an arbitrary d-dimensional space The same consid-
erations presented in Subsection 8.8.1.2 hold.

8.9 Theoretical comparison

In the following, the three proposed techniques are theoretically compared with re-
spect to several parameters:

e The type of the used data structures.
e The number of the used data structures.

e The freedom: with freedom we mean the available alternative choices to ap-
proximate a given half-plane query, given a predefined set S.

e The space complexity.
e The time complexity of searching in the index structure.

e The update complexity.
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\ \ T1 \ T2 \ T3 |
Used D.S. BT -trees BT -trees priority  search
trees
Number of used D.S. | 2k 2k 2k
False hits yes yes yes
Duplicates yes no no
Freedom any one for each | any point on the
point on the | direction query line
query line line
Space complexity O(2kn) O(2kn) O(2knloglogB)
Time complexity O(2loggn) | O(loggn) O(loggn)
Update complexity O(2kloggn) | O(2kloggn) | O(2kloggn)
amortized

Table 8.5: Comparison for EXIST selections.

e The number of generated false hits.
e The number of generated duplicates.

All the techniques are compared with respect to the 2-dimensional case. In order
to analyze the behavior of the techniques in an arbitrary d-dimensional space, we
consider a further parameter:

e The applicability to an arbitrary d-dimensional space: this parameter allows us
to determine which techniques better scale to higher dimensions.

The analysis is performed by considering first EXIST selections and then ALL
selections.

8.9.1 EXIST selections

In the following, we compare the performance of the three techniques we have pro-
posed to solve an EXIST selection with respect to a half-plane query whose angular
coeflicient does not belong to a predefined set. Table 8.5 summarizes this comparison.

o Used data structures. T1 and T2 are based on the data structure presented in
Subsection 8.5.1 to answer half-plane queries whose angular coefficient belongs
to a given set.
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T3 uses priority search trees, therefore different techniques must be used to
answer half-plane queries whose angular coefficient belongs to a given set .S and
half-plane queries whose angular coefficient does not belong to .

Therefore, with respect to the used data structure, T3 has the worst behavior.

o Number of used data structures. If k is the cardinality of the predefined set 5,
all techniques require 2k data structures, two (one for TOPY values and one
for BOTY values) for each value in S. Under this point of view, the techniques
are therefore equivalent.

o lalse hits. All techniques generate false hits when the angular coefficient of the
query half-plane does not belong to the predefined set. For the same set S, the
set of generated false hits depends on the chosen point in techniques T1 and
T3 on the considered direction line for technique T2. By considering the same
point, techniques T1 and T3 generate the same set of false hits.

e Duplicates. Duplicates can be generated only by technique T1. Since technique
T3 can be seen as an improvement of technique T1 removing the generation of
duplicates, from a theoretical point of view we can assess that the cost of T3 is
always lower than the cost of T1.

o lreedom. In technique T1, each point lying on the line supporting the query half-
plane can be chosen to generate the approximating queries. The same holds for
technique T3. In technique T2 different results can be obtained by considering
different direction lines. Moreover, T2 and T3 can be applied only in particular
cases.

o Space complexity. The space complexity is higher in T3, since the number of
pages required to store a priority search tree is higher than the number of pages
required to store a BT-tree containing the same number of elements.

e Time complezity. All time complexities are in O(loggn). However, technique
T1 requires two index scans whereas all other techniques require only one index
scan.

o Update complexity. T1 and T2 have the same update complexity; technique T3
has the same update bound than T1 and T2 but amortized.

e Lxtension to a d-dimensional space. The proposed techniques can be used to
approximate half-plane queries in an arbitrary d-dimensional space (d > 2) only
in some specific cases. Detection of techniques that can always be applied to
answer half-plane queries in a d-dimensional space is a topic left to future work.
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\ \ T1 \ T2 \ T3 |
Used D.S. BT-trees BT-trees BT-trees
Number of used D.S. | 2k 2k 2k
False hits yes yes yes
Duplicates yes no no
Freedom any one for each | no freedom

point on the | direction

query line line
Space complexity O(2kn) O(2kn) O(2kn)
Time complexity O(2loggn) | O(loggn) O(loggn)
Update complexity O(2kloggn) | O(2kloggn) | O(2k loggn)

amortized

Table 8.6: Comparison for ALL selections.

8.9.2 ALL selections

Table 8.6 summarizes the characteristics of T1, T2, and T3 with respect to ALL
selections. In general, considerations similar to those presented for EXIST queries
hold. The only difference is related to the used data structures. Indeed, for answering
ALL selections, technique T3 uses BT-trees which however contain different inform-
ation with respect to the BT-trees used to answer half-plane queries whose angular
coeflicient belongs to a given set. Thus, with respect to the used data structure, T3
has the worst behavior.

8.10 Preliminary experimental results

Some preliminary experiments have been carried out in order to compare the per-
formance of the proposed techniques in the 2-dimensional space. In particular, we
have performed two different groups of experiments. The aim of the first group of
experiments is to compare techniques T1, T2, and T3 with respect to the number of
page accesses and the number of generated false hits. The aim of the second group is
to compare T1 and T2 with respect to the R-tree, a well known spatial data structure
[71].

In all the considered techniques, the refinement step has been applied directly on
UP(P) and DOW N (P) polygons. In particular, each B¥-tree is associated with a
file (called UP-file) containing ¢;7p(py and another file (called DOWN-file) containing
tpown(p), for each generalized tuple {p belonging to the input generalized relation.
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Such generalized tuples are ordered following the ordering induced by the correspond-
ing B*-tree. By assuming that a € S, each half-plane query F(Y 8 aX +b,r) can be
answered by first looking for b in a BT-tree corresponding to «; this value is associ-
ated with a specific offset either in the corresponding UP- or DOWN- file. Starting
from this offset, all tuples contained in the file and preceding or following this offset,
depending on the specific query, have to be checked for refinement. Thus, only one
leaf node per search is accessed in the BT-tree structure. A similar approach has
been taken for implementing refinement in the R-tree. Note that, even if this ap-
proach increases the redundancy of the data representation, since generalized tuples
are replicated k times, it improves the query time, since only one leaf node per search
is accessed. As a final remark note that, even if this solution could be not feasible
from the point of view of the space occupancy, it does not alter the results of the
comparison.

The experiments have been performed on a PC Pentium 100, with 16 Mb RAM.
The page size is 1k. The program has been written in C++. The considered gen-
eralized relations contain respectively 500, 2000, 4000, 8000, and 12000 generalized
tuples; each generalized tuple contains at most 30 constraints.

8.10.1 Comparing the performance of T1, T2, and T3

The first group of experiments concerns techniques T1, T2, and T3. Such techniques
have been applied to two different groups of generalized relations, the first contain-
ing closed generalized tuples (closed relations) and the second containing also open
generalized tuples (open relations). In the first case, direction lines for the considered
relation have been assumed to define the minimum bounding box containing the whole
relation extension. For technique T1 and T3, point P has been chosen inside such
rectangle. In the second case, open generalized tuples have been constructed in such
a way to guarantee the existence of at least one direction line. In particular, the
extension of the generalized tuples contained in the considered generalized relation is
represented in Figure 8.21.

The aim of the experiments is to analyze the trade-off existing among T1, T2,
and T3, in order to assess the impact of duplicate and false hits on the search. In
doing that, we have mainly focused on the influence of the cardinality of the set
of angular coeflicients S. In particular, we have assumed that the set S contains
angular coefficients of lines dividing the space in 2k equal sectors. In the performed
experiments we have chosen k = 2,4, 8.

Several experiments have been performed by considering different object sets and
different queries. We have observed that the trade-off between the techniques does
not change by changing the selectivity of the query. For this reason, all results we
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Figure 8.21: Shapes of the open generalized tuples contained in the considered gen-
eralized relation.

report here are related to a single query. Moreover, similar results have been obtained
for generalized relations containing closed or open objects. Since closed relations will
be considered in Subsection 8.10.2, here we report results obtained for open relations,
i.e., relations containing at least one open generalized tuple. Both ALL and EXIST
selections have been investigated, with respect to the same query half-plane.

In the following, experimental results are presented in three groups:

e The first group of results shows how the number of duplicates generated by
technique T1 changes by changing k.

e The second group of results shows how the number of false hits generated by
techniques T1, T2, and T3 changes by changing k.

e The third group of results shows the behavior of the three techniques with
respect to the number of page accesses.

8.10.1.1 Duplicates

We have compared the number of duplicates generated by T1 for different cardinalities
of set S on data sets containing open generalized tuples. Similar results have been
obtained for closed and open generalized relations. Figure 8.22 shows that the number
of duplicates increases for increasing values of k. Indeed, for higher values of k, the
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Figure 8.22: Duplicates generated by T1 (a) for an EXIST selection, (b) for an ALL
selection.

common area of the two new half-planes increases. Therefore, more generalized tuples
are returned twice.

8.10.1.2 False hits

Figures 8.23 and 8.24 show that the number of false hits generated by T1, T2, and T3
decreases for increasing values of k. This behavior is reasonable since higher values for
k correspond to smaller false hits areas. A similar result has been obtained for closed
relations. Note that T2 generates the lowest number of false hits. This is mainly
due to the particular type of generalized relations we used in these experiments (in
Subsection 8.10.2 we will see that, for closed relations, this difference is not so clear).

The number of false hits generated by the three techniques can also be used to
compare their degree of filtering. From Figures 8.25 and 8.26 we can see that the
number of generated false hits is higher for techniques T1 and T3. This is mainly
due to the chosen generalized relation and therefore to the shape of the extension of
open generalized tuples (see Figure 8.21) and to the choice of point P. Moreover,
T1 and T3 have a similar behavior. Indeed, T3 can be seen as an optimization of
T1, not generating duplicates. However, T3 usually generates more false hits than
T1. For EXIST selections, this is mainly due to the path caching implementation
(see Section 8.8.2.1). Indeed, not all tuples associated with the pages accessed in
the corresponding data structure belong to the sector result. These tuples represent
additional false hits for technique T3. For ALL selections, this is due to the fact
that T3 approximates a half-plane query by further approximating the corresponding
sector query (see Section 8.8.2.2). The great difference between T2 and T1, T3 is
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mainly due to the choice of point P. By choosing point P on the direction line, the
number of false hits would have been almost equal.

8.10.1.3 Comparison with respect to page accesses

T1, T2, and T3 have been compared with respect to the number of pages accessed
in the BT-tree and in refining the retrieved generalized tuples. Similar results have
been obtained for all k-values. Figure reports results obtained for £ = 2. It can be
observed that technique T2 performs better than techniques T1 and T3, in almost all
cases. This is mainly due to the choice of point P. From the same figures, we can
also see that the number of page accessed by T1 is always lower than the number of
page accessed by T3, even if higher than the number of page accessed by T2.
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8.10.2 Comparing the performance of T1, T2, and R-trees

In order to establish the practical applicability of the proposed techniques, we have
compared their performance with respect to the performance of the R-tree [71], a well
known spatial data structure for closed objects. The R-tree has been compared with
respect to T1 and T2, i.e., with the techniques guaranteeing the worst and the best
performance among those we have proposed. T3 has not been considered since its
behavior on closed relations is very similar to the behavior of T2 and since, on closed
relations, T2 can always be applied.

The R-tree is a direct extension of B-trees in k-dimensions. The data structure
is a height-balanced tree which consists of intermediate and leaf nodes. Data objects
are stored in leaf nodes. Each data object is approximated by its minimum bounding
rectangle and intermediate nodes are built by grouping rectangles at the lower level.
Thus, each intermediate node is associated with some rectangle which completely
encloses all rectangles that correspond to lower level nodes.

The R-tree can be used to answer EXIST and ALL queries. The search starts
from the root. If the rectangle associated with the root satisfies the query, the query
is checked against rectangles corresponding to the root sons. This approach is then
recursively applied to all nodes whose associated rectangle satisfies the query until
leaf nodes are reached and data objects are directly checked. Note that, differently
from BT-trees, more than one path may be accessed during a single search.

This approach is safe for EXIST queries. However, for ALL queries, it is safe only
if the query object is a rectangle. If it is not, the search may not be safe. Indeed,
since data objects are approximated by rectangles, some rectangles may not satisfy
the ALL query even if the original object does. Therefore, some (sub)-paths of the
tree may not be accessed, even if they are associated with some generalized tuples
belonging to the result. In order to safely execute an ALL selection, the selection
has to be replaced by the corresponding EXIST selection; the result has then to be
refined with respect to the original ALL query. Since in our case the query object is
a half-plane, this is the method to be applied.

Based on the previous assumption, several experiments have been performed, by
varying the following parameters:

e The average size of the considered objects.

Three different groups of relations have been considered. The first group con-
tains large rectangles, i.e., rectangles intersecting almost all other rectangles;
the second group deals with medium rectangles, i.e., rectangles whose area does
not exceed half the area of the bounding rectangle containing all stored ones;
finally, the third group deals small rectangles, i.e., rectangles with a very small
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area with respect to the bounding rectangle containing all stored ones. All
objects are uniformly distributed in the space.

Since spatial databases typically deal with small objects, the size of the con-
sidered objects is a good parameter to analyze how the performance of R-trees
change by changing the average size of the considered objects.

e The cardinality of the indexed generalized relation.

We have considered five different groups of relations, containing 500, 2000, 4000,
8000, and 12000 generalized tuples, respectively.

e The selectivity of the considered queries.

We have considered six ALL queries and six EXIST queries with different se-
lectivity. The considered selectivity are:1-3%, 3-10%, 30-40%, 40-60%, 60-80%,
90-100%. Note that in comparing the proposed techniques with R-trees, se-
lectivity is very important since different selectivities correspond to a different
number of internal tree nodes accesses in the R-tree.

Experiments have been performed by combining in all possible ways the parameter
values described above. In performing these experiments, we have taken k = 2. This
assumption allows us to compare R-trees with respect to the proposed techniques in
the case when they have the worst performance (see Subsection 8.10.1).

In the following, we discuss the obtained results with respect to the number of
generated false hits and the number of page accesses. The technique supported by
the R-tree data structure will be denoted by R.

8.10.2.1 EXIST selections

False hits. We have first analyzed the number of false hits generated by T1, T2,
and R. From the performed experiments, it follows that R almost always generates
the lowest number of false hits. For selectivity very low (< 10%), the number of false
hits generated by T2 is very close to the number of false hits generated by R. Often
T2 generates less false hits than T1, but this mainly depends on the chosen relation
and on the choice of point P. These results can be observed from Figure 8.28 and
Figure 8.29.

From the same figures, we can see that, by increasing the selectivity, the number
of false hits generated by T1 decreases whereas the number of false hits generated by
T2 and R increases. In R, the number of false hits increases because, by augmenting
the selectivity, the number of tree paths to be searched increases. In T1, the number
of false hits decreases since the false hits area decreases whereas in T2 increases, thus
increasing the number of generated false hits (see Figure 8.30).
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From Figure 8.28 and Figure 8.29, we can also observe that R generates the
lowest number of false hits when rectangles are small. This is the typical case in
spatial databases. This number increases by increasing the area of the rectangles and
therefore the number of their intersections. Indeed, it can be shown that in such a case
the number of R-tree paths to be analyzed increases. A similar situation arises for
T1 and T2. However, in this case, the reason is different. In particular, in those cases
the number of false hits increases because, by augmenting the area of the objects, the
probability that one of such objects intersects or is contained in the false hits area
determined by the new queries increases.

These considerations point out an important difference between R-trees and the
proposed data structures: the performance of a search based on R-trees depends on
the size of the query object. On the other hand, the performance of T1 and T2 de-
pends on the size of the false hits area generated by the approximation. Thus, by
choosing a good approximation, similar performance can be obtained when executing
queries with different selectivity.

Page accesses. Different results have been obtained by considering the number of
page accesses. In this case, T2 almost always performs better than R. This is in
contrast with the result deriving from the analysis of false hits and is mainly due to
the number of tree paths that have to be analyzed in the R-tree. Indeed, in T2, always
a single path of a BT-tree has to be analyzed. In the performed experiments, this
corresponds to at most 3 page accesses. On the other hand, each single query may
require the analysis of several paths in the R-tree, depending on the query selectivity.
From the experimental results, it follows that the number of additional page accesses
required to search the R-tree is higher than the number of additional pages that have
to be analyzed in T2 for the additional false hits. These results can be observed
from Figure 8.31 and Figure 8.32. From the same figures it also follows that R is
better than T1 for low selectivity (< 10%) or for very small relations. Finally, in the
performed experiments, T2 is better than T1. T1 and T2 have a similar behavior for
very high selectivity. This, as already explained, is due to the choice of point P.

The reported results show that, similarly to the analysis of false hits, by augment-
ing the selectivity, the number of pages accessed by T2 and R increases. However,
differently from the result obtained by the analysis of false hits, the number of pages
accessed by T1 increases by increasing the selectivity. This is mainly due to the fact
that T1, besides the generation of false hits, also generates duplicates. This aspect,
together with the fact that the number of tuples belonging to the result increases by
increasing the selectivity, increments the number of page accesses.
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8.10.2.2 ALL selections

False hits. By analyzing the number of false hits generated by T1, T2, and R with
respect to ALL selections, we can see that T2 almost always generates the lowest
number of false hits. On the other hand, the performance of R is much worst for ALL
selections than for EXIST selections, with the same selectivity. This is due to the fact
that the search in the tree for an ALL selection coincides with a search in the tree
for a corresponding EXIST selection and therefore the degree of filtering is lower. As
a particular case, for large rectangles and low selectivity, R is much more close to
T1 than in the corresponding EXIST case. For high selectivity and large generalized
relations, T1 is better than R. These results can be observed from Figure 8.33 and
Figure 8.34.

Page accesses. Considerations presented for the analysis of false hits still holds for
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the analysis of page accesses. Also in this case, R performs better with respect to
EXIST selections. These results can be observed from Figure 8.35 and Figure 8.36.

8.11 Concluding remarks

In this chapter, we have analyzed the use of a dual representation for spatial objects
to index constraint databases. The main advantage of such an approach is that
the dual representation is defined whatever the space dimension is. Based on this
representation, we have shown how EXIST and ALL selections can be performed in
optimal time and space with respect to a half-plane having a fixed direction. When
this condition is not satisfied, we have presented three approximation techniques,
approximating the original query by applying a filtering-refinement approach.
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The proposed techniques have been implemented and compared. They have also
been compared with respect to R-trees, a well-known spatial data structures. The
obtained results show that, on relations containing unbound objects, where R-trees
cannot always be applied, T2 has the better performance.

On closed generalized relations, T2 has the better time performance. However,
on relations containing objects with small size, R-tree performs very well and its per-
formance is very close to that of T2. Note that this is the typical assumption in spatial
databases. However, in a general constraint database setting, this is not a reasonable
assumption. In this case, T2 guarantees the better performance independently of the
object size.

The performed experiments also point out an important difference between R-
trees and the proposed data structures: the performance of a search based on R-trees
depends on the size of the query object. On the other hand, the performance of
the proposed techniques depend on the size of the false hits area generated by the
approximation.

It is important to remark that, since experiments have been performed by consid-
ering k = 2, only two BT-trees are constructed and the space overhead of using T2
instead of R is not remarkable. Better results for T2 can be obtained by increasing
the number of sectors, for example by considering £ = 4. On the other hand, R-tree
performance can be improved by considering some R-tree variant such as RT-trees
or R*-trees [130].



Chapter 9

An indexing technique for segment
databases

As we have seen in Chapter 6, sometimes spatial objects are internally represented
as the set of their boundary segments. Often, segments are not crossing but possibly
touching (also called NCT segments). NCT segments find several applications in
geographical information systems, since they often represent the basic representation
for geographical data. Since, as we have seen in Chapter 2, each generalized tuple
with d variables can be seen as the symbolic representation of a d-dimensional spatial
object, an interesting issue is to analyze how indexing data structures defined for
segment databases can be applied to constraint databases.

Few approaches have been proposed to index segment databases with good worst-
case complexities. In particular, as we have seen in Chapter 6, the stabbing query
problem, related to the detection of all segments intersecting a given vertical line, has
been deeply investigated and an optimal dynamic solution has been recently proposed
[7]. The aim of this chapter is to propose a close to optimal complexity solution for a
more general problem for segment databases. The investigated problem concerns the
detection of all NCT segments intersecting a given segment, having a fixed direction.
Two solutions are proposed to solve this problem. The second solution uses the
fractional cascading technique to improve the time complexity of the first proposed
approach. The obtained complexity bounds are very close to the optimal ones.

Since the proposed approach relies on a segment representation of spatial ob-
jects representing the extension of generalized tuples, before introducing the proposed
techniques, we analyze how indexing techniques for NCT segments can be applied to
constraint databases, retaining good complexity results in the number of generalized
tuples stored in the database.

189
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The chapter is organized as follows. In Section 9.1, the relationships between
segment and constraint databases are investigated. In Section 9.2 the new considered
problem is introduced, together with some motivations, and the basic idea of our ap-
proach is outlined. In Section 9.3, a preliminary data structure is developed, whereas
in Sections 9.4 and 9.5 two different solutions to the considered problem are presented.
Finally, Section 9.6 presents some preliminary experimental results.

9.1 Segment and constraint databases

As we have already pointed out, the extension of each generalized tuple with d vari-
ables on LPOLY represents a, possibly open, polyhedra in a d-dimensional space. In
the following, we assume that the considered generalized database contains only gener-
alized tuples with two variables, thus representing 2-dimensional object, representing
convex objects (i.e., disjunction is not used).

Each generalized tuple of the previous type can be represented as a set of seg-
ments, constituting the boundary of the generalized tuple extensions. The number
of edges of such polygon corresponds to the number of non-redundant constraints’
in the generalized tuple. In particular, it has been observed in [66] that for each
generalized tuple ¢, expressed by using LPOLY and containing k variables, there exists
a generalized tuple ¢’ such that ¢t =, t' and ' contains at most (k4 1) constraints.
Thus, ¢’ has been generated from ¢ by removing redundant constraints.

By assuming this representation, if the generalized relation contains N general-
ized tuples and each generalized tuple contains at most k constraints, the generalized
database can be seen as a segment database containing O(kN) segments. Such seg-
ments are not necessarily NCT segments, since they may intersect. We can, however,
generate NCT segments by creating four new segments for each pair of intersecting
segments, corresponding to the non-intersecting parts of the two segments. After this
process, the number of segments (denoted by T'I(D), for a relational constraint data-
base D) is O(N?). Indexing techniques for segment databases can then be used for
indexing spatial objects and therefore constraint databases. This approach, even if
appealing, introduces two main problems:

e each generalized tuple is represented at most k times inside the indexing struc-
ture;

e in the worst case, the number of indexed segments is quadratic in the number
of generalized tuples. This means that, for example, indexing techniques that

'Let t be a generalized tuple and C a constraint. C is redundant with respect to tif t =t A C
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Figure 9.1: Example of O(N) databases: a) SCP database: b) DG database.

guarantee a linear space with respect to the number of segments contained in
the database require a quadratic space in the number of generalized tuples. In
spatial and constraint databases this often cannot be considered acceptable.

From the previous discussion it follows that indexing techniques defined for seg-
ment databases can be safely and efficiently applied to constraint databases only in
some particular cases, for example, when the number of intersections among the NCT
segments is O(N). In this case, we retain a linear space complexity in the number of
the generalized tuples, i.e., in the number of spatial objects.

In general, TI(D) varies between O(1) and O(N?). TI(D) is O(1) when most
tuples are disjoint, whereas is O(IN?) if each tuple intersects most of the other tuples.
However, in many applications T/ (D) is far from the extreme cases. For example, if
the objects associated with generalized tuples are partitioned into disjoint groups, or
they are closed and of small size, the number of intersection is very likely to be O(N).
This leads to the definition of an interesting class of O(N)-databases. In particular,
a O(N)-database is a database where the number of intersections among tuples is
O(N).

Table 9.1 lists two classes of constraint O(NV)-databases. In the table K repres-
ents the length of the database field side. Given a constraint relational database D,
the database field of D is a rectangular domain in the plane which contains all the
intersections among the generalized tuples in D. For the sake of simplicity, we as-
sume that the field is a square K X K. A graphical representation of each class is
presented in Figure 9.1. The class of small closed polygons (SCP for short) charac-
terizes generalized relations in which generalized tuple extensions have a small size.
On the other hand, the class of disjoint group generalized relations (DJ for short)
characterizes generalized relations in which tuple extensions can be partitioned into
non intersecting groups, containing a fixed number of generalized tuples.

The following theorem holds.
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| Relation type | Conditions |
SCP (Small Closed Polygons) | 1. K is fixed

2. Each tuple fits into a rectangle of size
O((K/NY%) x O((K[N)'/*)

3. Tuples are uniformly distributed in the
database field

DG (Disjoint Groups) 1. The database field K x K can be split
into some regions such that each tuple is
completely contained into a single region
2. Each region contains up to a fixed num-
ber m of elements

Table 9.1: Characterization of some O(N)-databases.

Theorem 9.1 Any SCP and DG generalized relation has O(N) tuple intersections.

Proof:

o SCP databases. Under the hypothesis, the probability that two polygons, cor-
responding to the extension of two generalized tuples, intersect is equal to the
probability that their projections on the X-axis intersect and the projections
on the Y-axis intersect. The probability that their projections on the X-axis
intersect is equal to the probability that their projections on the Y-axis inter-
sect and it is equal to O((K/N)l/z). Thus, the probability that two polygons
intersect is O (K /N). This means that each polygon intersects O(K) polygons
and therefore, since K is fixed, the total number of intersections is O(N).

e DG databases. Since m is a constant not depending on N, each region generates
O(m?) intersections and the total number is O(m?) x O(N/m) = O(Nm) =
O(N). ]

Several applications can be represented by using the classes of O(/N)-databases in-
troduced above. For example, all applications modeled by planar subdivisions (typical
of GIS) can be represented by SCP O(N)-databases. For such classes of databases,
indexing techniques proposed for segment databases can be efficiently applied. In
particular, if the considered technique guarantees a linear space complexity in the
number of NCT segments, the application of the same technique on the segment data-
base, corresponding to the original constraint database, requires a linear space in the
number of generalized tuples; it can therefore be considered efficient from a space
complexity point of view.
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R =l

stabbing query a) vertical segment query b)

Figure 9.2: Vertical line queries vs vertical segment queries.

9.2 Towards optimal indexing of segment databases

As we have seen in Chapter 6, only few approaches have been proposed to answer
queries on segment databases with optimal worst-case complexity. The most inter-
esting problem for which an optimal worst-case complexity data structure has been
proposed [7] is the stabbing query problem. Given a vertical line, a stabbing query
determines all segments which are intersected by this line.

A more general and relevant problem in segment databases (especially for GIS) is
to determine all segments intersecting a given query segment. In the following we go
one step towards the solution of this problem by investigating a weaker problem, con-
sisting in determining all segments intersected by a given generalized query segment
(a line, a ray, a segment), having a fixed angular coefficient. Without leading the
generality of the discussion, we consider vertical query segments.? The corresponding
query is called VS query (see Figure 9.2).

There exists a difference in the optimal time complexity between VS and stabbing
queries even in internal memory. A space optimal solution for solving VS queries
in internal memory has O(log? N + T) query complexity, uses O(N) space and per-
forms updates in O(log N) time [42] (with update we mean the insertion/deletion
of a segment non-crossing, but possibly touching, the already stored ones). On the
other hand, the optimal solution for solving stabbing queries in internal memory has
O(log N +T) query complexity, uses O(N) space and performs updates in O(log N)
time [43]. VS queries are therefore inherently more expensive than stabbing queries.
In the following, we propose a O(n log, B) space solution having query /O complex-
ity very close to O(loghn +t). The solution is proposed for static and semi-dynamic
(thus, allowing insertion) cases.

The data structures we propose to solve VS queries are organized according to
two levels. At the top level, we use a primary data structure (called first-level data

21f the query segment is not vertical, coordinate axes can be appropriately rotated.



194 Chapter 9. An indexing technique for segment databases

structure). One or more auxiliary data structures (called second-level data structures)
are associated with each node of the first-level data structure. The second-level data
structures are tailored to efficiently execute queries on a special type of segments,
called line-based segments. A set of segments is line-based if all segments have an
endpoint lying on a given line and all segments are positioned in the same half-plane
with respect to such line. Thus, our main contributions can be summarized as follows:

1. We propose a data structure to store and query line-based segments, based on
priority search trees (PST for short) [43, 76], similar to the internal memory
data structure proposed in [42]. The proposed data structure is then extended
with the P-range technique presented in [136], to reduce time complexity.

2. We propose two approaches to the problem of VS queries:

e In the first approach, the first-level structure is a binary tree, whereas the
second-level structure, associated with each node of the first-level structure,
is a pair of priority search trees, storing line-based segments in secondary
storage. This solution uses O(n) blocks of secondary storage and answers
queries in O(log n(loggn+I1L*(B))+t) 1/O’s. We also show how updates
on the proposed structures can be performed in O(log n+ lo%%n) amortized
time.?

e In the second approach, to improve the query time complexity of the first
solution, we replace the binary tree at the top level with a secondary storage
interval tree [7]. The second-level structures are based on priority search
trees for line-based segments and segment trees, enhanced with fractional
cascading [40]. This solution uses O(n log, B) space and answers queries
in O(loggn(loggn + log,B + IL*(B)) + t) time. We also show how the
proposed structure can be made semi-dynamic, performing insertions in

O(loggn + log, B + IO%n) amortized time.

9.3 Data structures for line-based segments

Let S be a set of segments. S is line-based if there exists a line [ (called base line)
such that each segment in S has (at least) one endpoint on [ and all the segments in
S having only one end-point on [ are located in the same half-plane with respect to [.

In the following, we construct a data structure for storing line-based segments in
secondary storage and retrieving all segments intersected by a query segment ¢ which

*If a sequence of m operations takes total time ¢, the amortized time complexity of a single
operation is ¢/m.
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is parallel to the base line. More precisely, the query object ¢ may be a segment,
a ray, or a line.*
following we focus only on such a type of queries. Moreover, without loss of generality,
through out Section 9.3, we restrict the presentation to horizontal base lines. This
choice simplifies the description of our data structure making it consistent with the
traditional way of drawing data structures. The query thus becomes a horizontal

Since a segment query represents the most complex case, in the

segment as well.

The solution we propose for storing a set of line-based segments is based on the
fact that there exists an obvious relationship between a segment query against a
set of line-based segments on the plane and a 3-sided query against a set of points
(see Figure 9.3). Given a set of points in the plane and a rectangular region open
in one of its sides, the corresponding 3-sided query returns all points contained in
the (open) rectangle. A segment query defines in a unique way a 3-sided query
on the point database corresponding to all segment endpoints not belonging to the
base line. On the other hand, the bottom segment of a 3-sided query on such point
database corresponds to a segment query on the segment database. However, these
corresponding queries do not necessarily return the same answers. Indeed, although
both queries often retrieve the same data (segment 1 in Figure 9.3), this is not always
true. The intersection of a segment with the query segment ¢ does not imply that
the segment endpoint is contained in the 3-sided region (segment 2 in Figure 9.3).
Also, the presence of a segment endpoint in the 3-sided region does not imply that
the query segment ¢ intersects the segment (segment 3 in Figure 9.3). Despite these
differences, solutions developed for 3-sided queries can be successfully applied to
line-based segments as well.

In internal memory, priority search trees [101] are used to answer 3-sided queries
in optimal space, query, and update time. All proposals to extend priority search trees,
for use in secondary storage, do not provide both query and space optimal complexities
[76, 120, 136]. In [76], a solution with O(n) storage and O(log n +t) query time was
developed. Two techniques have been defined to improve these results. Path-caching
[120] allows us to perform 3-sided queries in O(loggn), with O(n log, B logs logs B)
space. A space optimal solution to implement secondary storage priority search trees
is based on the P-range tree [136] and uses O(n) blocks, performing 3-sided queries
in O(loggn + 1L*(B) +t) and updates in O(loggn + logg3n), where IL*(B) is a small
constant, representing the number of times we must repeatedly apply the log™ function
to B before the result becomes < 2.7

*We assume that the query object belongs to the same half-plane where segment endpoints belong.
Otherwise, no segment intersects the query.
5Unless otherwise stated all logarithms are given with respect to base 2.
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3-sided query
related to the segment q

Figure 9.3: A segment query on a set of line-based segments vs a 3-sided query on
the endpoint set of the same segments.

As in the approach presented in [120, 136] for point databases, in order to define

priority search trees for a set of line-based segments, a binary decomposition is first
used and algorithms for retrieving all segments intersected by the query segment are
developed. As a result, we obtain a binary tree structure in secondary storage of
height O(log n), which meets all conditions required in [120, 136] for applying any
advanced technique between path-caching and P-range tree.
Data structure. Let S be a set of N line-based segments. We first select a number
B of segments from S with the topmost y-value endpoints and store them in the root
r of the tree T'r under construction, ordered with respect to their intersections with
the base line.® The set containing all other segments is partitioned into two subsets
containing an equal number of elements. The top segment in each subset is then
copied into the root. These segments are denoted respectively by le ft and right. A
separator low is also inserted in the root, which is a horizontal line separating the
selected segments from the others. Line [ow for a generic node v is denoted by v.low.
A similar notation is used for left and right (see Figure 9.4). If v.left.y (v.right.y)
denotes the top y-value of segment v.left (v.right) and v.low.y denotes the y-value
of line v.low, then v.left.y < v.low.y and v.right.y < v.low.y.

The decomposition process is recursively repeated for each of the two subsets. Like
external priority search trees in point databases, the resulting tree T'r is a balanced
binary tree of height O(log n), occupying O(n) blocks in external storage. The
difference, however, is that no subtree in T'r defines a rectangular region in the plane.
Indeed, in a point database, a vertical line is used as a separator between points
stored in left and right subtrees. Instead, in a segment database, the line separating
segments stored in left and right subtrees is often biased (see Figure 9.4).

Search algorithm. Let ¢ be a horizontal query segment. We want to find all
segments intersecting g. The search algorithm is based on the comparison of ¢ with
stored segments.” The search is based on two functions Find and Report. Function

5Note that the construction guarantees that each node is contained in exactly one block.
"Note that this is different from the approach usually used in PST for point databases. In that



9.3. Data structures for line-based segments 197

-
-
S DITID

a) b)

Figure 9.4: External PST for line-based segments (a) and corresponding binary tree
(b), assuming B = 2. Non-horizontal dashed lines do not exist in the real data
structure and are given only for convenience. Moreover segments v.le ft and v.right,
as well as line v.low, are shown only for the root r.

Find is to locate the deepest-leftmost (deepest-rightmost) segment intersected by
the query ¢, with respect to its storage position in T'r, and the node in T'r where
the segment is located. Function Report then uses the result of function Find to
retrieve all segments in T'r intersected by ¢, starting from the deepest-leftmost and
deepest-rightmost segments intersecting the query. The algorithms for such functions
are presented in Figures 9.5 and 9.6. Figure 9.7 illustrates some different cases, con-
sidered in function Find. Figure 9.8 shows all nodes visited by the Report algorithm.
The algorithms are similar to those presented in [42] for the internal memory inter-
section problem, and satisfy the following properties:

e Function Find maintains in a queue () the nodes that should be analyzed to
find the deepest-leftmost (the deepest-rightmost) segment intersecting the query
segment. It can be shown that () contains at most two nodes for each level of
Tr, thereby assuring that the answer is found in O(log n) steps. Moreover, a
constant space O(1) is sufficient to store Q) [42].

e Function Report determines the deepest-leftmost and the deepest-rightmost seg-
ments intersecting the query, using function Find. Then, it visits the subtree
rooted at the common ancestor of the nodes containing such segments and the
path from such ancestor to the root of the tree. It can be proved that the num-
ber of nodes of such subtree, containing at least one segment non-intersecting
¢, is O(log n +t) [42].

The following lemma follows from the previous considerations.

case, the comparison is performed against region boundaries. Such an approach is not possible for
line-based segments, since no rectangular region is related to any subtree of T'r.
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Algorithm 9.1
input : @ PST T for a set of N line-based segments
a query segment g
output : the deepest-leftmost segment intersected by the query segment g,
with respect to tts storage position tn T
the node in T where the segment ts located
begin
let g be the segment gl <z < qr,y=qy
let (v.left.z,v.left.y) be the upper endpoint of segment v.left
let (v.right.z, v.right.y) be the upper endpoint of segment v.right
let Q be the empty queue
Initialize Q with the tree root
answery 4 CO; Answers 4 oo,
repeat
Ezxtract a block v from the front of Q
if some segments in v intersect ¢ then
select the leftmost segment in v and answerg and assign it to answersg
select the block of Tr containing answers and assign tt to answery
Q is updated according to the following cases:
if q.y > v.low then
no segments tn the blocks having v as ancestor in Tr can intersect ¢ and the queue
rematins unchanged
else

a) if q.y > v.left.y and gy > v.right.y then Q remains unchanged (Figure 9.7.a)
endif

b) if qy < v.left.y and q.l is on the left of v.left then the left son of v is added
at the end of Q (Figure 9.7.b). In symmetric case if gy < v.right.y and gl
is on the right of v.right, the right son of v is added at the end of @ endif

c) if gy <w.lefty, qu > v.right.y and gl lies between v.left and v.right then the
left son of v is added at the end of Q (Figure 9.7.c). Symmetric case is
treated similarly endif

d) if qy < wleft, qy < v.right and q.l lies between v.left and v.right then we
empty queue @ and then insert both sons in it (Figure 9.7.d) endif

endif
until @ is empty
return answers and answery
end

Figure 9.5: Function Find.

Lemma 9.1 [/2] Let S be a set of line-based segments. Let q be a query segment.
Let Tr be the priority search tree for S, constructed as above. Then:

1. Function Find returns the deepest-leftmost (the deepest-rightmost) segment bl
(bl,) in S intersected by q and the node it belongs to in O(log n) 1/0’s.

2. All'T segments in S intersected by q can be found from Tr, bl; and bl,., in
O(log n + %) 1/0’s. O

The following result summarizes the costs of the proposed data structure.

Lemma 9.2 [/2] N line-based segments can be stored in a secondary storage priority
search tree having the following costs: (i) storage cost is O(n); (ii) horizontal segment
query cost is O(log n +t), where t is the number of the detected intersections. O
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Algorithm 9.2
input : @ PST T for a set of N line-based segments
a segment query g
output : all segments stored in Tr and itntersected by g
begin
let g be the segment gl <z < qr,y=qy
Apply function Find to Tr and g
let s; and bl; be the segment and the block containing s; located by function Find, respectively
if bl; = co then g does not intersect any segment
else
Apply the symmetric version of function Find (Find’) to Tr and g,
retrieving the deepest-rightmost segment intersected by q and the node where it is contained
let s and bl be the segment and the block containing s; located by function Find', respectively
let lca be the lowest common ancestor of bl; and bly in Tr
let P, and Py be the paths from bl; to lca and from bly to lca, respectively
Walk up P
for each node v in P, do
retrieve all segments in v intersected by g
if (case 1) v = bl or (case 2) v # lca and the predecessor of v on P, is a left child of v then
if (case 1) then z = v else (case 2) z = v’s right child endif
perform a preorder traversal of the sub-tree rooted at z
for each visited node w do
retricve all segments in w which intersect ¢
if w.low < q.y or w does not contain any segment intersecting g then
do not proceed the traversal in w’s children endif
endfor
endif
endfor
The above steps are repeated also on Pr, with “left” and “right” interchanged
let P be the path from lca to the root of the tree
Walk up P
for each node v in P do
retrieve all segments in v intersected by g
endfor
endif
end

Figure 9.6: Function Report.

Despite the difference in the query results between a 3-sided query on a point
database and a segment query on a segment database (see Figure 2), either the path-
caching [120] or the P-range tree [136] methods can be applied for reducing the search
time in a segment database, using an external PST. Since we will use an external
PST on each level of the first-level data structure we are going to develop (see next
section), we choose a linear memory solution based on P-range trees, obtaining an
optimal space complexity in the data structure for storing line-based segments.

The application of the P-range tree technique to an external PST for line-based
segments requires only one minor modification of the technique described in [136].
As for PST, the vertical line separator should be replaced by the queue () and several
procedures needed for the queue maintenance. Then, a comparison of a query point
against a vertical line separator in a point database is replaced by the check of at most
two nodes in queue (), during the search in a segment database. Since the detection
of the next-level node and the queue maintenance in a segment database takes O(1)
time, this substitution does not influence any properties of the P-range tree technique.
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Figure 9.7: Different cases in function Find.

nodes visited by Report

Figure 9.8: Search space visited by the Report algorithm.

This proves the following lemma.

Lemma 9.3 N line-based segments can be stored in a secondary storage data struc-

ture having the following costs: (i) storage cost is O(n); (ii) horizontal segment query
2

cost is O(loggn+1L*(B)+t) 1/0’s; (iii) update amortized cost is O(loggn+ IO%Bn).

O

9.4 External storage of NCT segments

In order to determine all NCT segments intersecting a vertical segment, we pro-
pose two secondary storage solutions, based on two-level data structures (denoted
by 2LDS). Second-level data structures are based on the organization for line-based
segments presented in Section 9.3. In the following, we introduce the first proposed
data structure; the second one will be presented in Section 9.5.

First-level data structure. The basic idea is to consider a binary tree as first-level
structure. With each node v of the tree, we associate a line bl(v) (standing for base
line of v) and the set of segments intersected by the line. More formally, let N be a
set of NCT segments. We order the set of endpoints corresponding to such segments
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in ascending order according to their z-values. Then, we determine a vertical line
partitioning such ordered set in two subsets of equal cardinality and we associate
such vertical line with the base line bl(r) of the root. All segments intersecting bl(r)
are associated with the root whereas all segments which are on the left (right) of
bl(r) and do not intersect it, are passed to the left (right) subtree of the root. The
decomposition recursively continues until each leaf node contains B segments and fits
as a whole in internal memory. The construction of base lines guarantees that the
segments in a node v are intersected by bl(v) but are not intersected by the base line
of the parent of v. The tree height is O(log n).

Second-level data structures. Because of the above construction, each segment
in an internal node v either lies on bl(v) or intersects it. The segments which lie on
the base line are stored in C'(v), an external interval tree [7] which requires a linear
number of storage blocks and performs a VS query in O(loggn + ¢) 1/O’s. Each
segment which is intersected by bl(v) has left and right parts. Left and right parts
of all the segments are collected into two sets, called L(v) and R(v), respectively.
Each of these sets contains line-based segments and can be efficiently maintained in
secondary storage using the technique proposed in Section 9.3. Totally, each segment
is represented at most twice inside the two-level data structure. Therefore, the tree
stores N segments in O(n) blocks in secondary storage. Figure 9.9 (b) illustrates the
organization and content of the proposed 2LDS, for the set of segments presented in
Figure 9.9 (a).

Search algorithm. Given a query segment of the form z = zg,a < y < b, the
search is performed on the first-level tree as follows. We scan the tree and visit
exactly one node v for each level. In each node v, we first verify if zg equals the
z-coordinate of the vertical line b/(v). In such a case, all segments in C'(v), L(v) and
R(v) intersected by ¢ are retrieved and the search stops. Otherwise, if zg is lower
than the z-coordinate of bl(v), we visit only L(v) and move to the left son of v. If
zo is greater than the z-coordinate of bl(v), we visit only R(v) and move to the right
son. The search for all segments 7"’ inside one node intersected by the query requires
O(loggn + 1L*(B) + %’) time. Since the height of the first-level data structure is
O(log n) and each segment is reported at most twice,® the 1/O complexity of the
total search is O(log n(loggn + IL*(B)) + ).

Updates. If updates are allowed, the binary tree should be replaced by a dynamic
search-tree, for which efficient rebalancing methods are known. To maintain insertions
and deletions of line-based segments in the data structure described above, we replace
the binary tree with a BB[a]-tree [42, 108], 0 < & < 1 — 1/4/2. We store balance

8 A segment is reported twice only if it intersects ¢ and it is contained in a node v such that o
equals the z-coordinate of bl(v).
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Figure 9.9: a) A set of 7 NCT segments; b) the corresponding data structure (B = 2,
PST stands for priority search tree, I'T stands for interval tree).

values in internal nodes of the BB[a]-tree and maintain the optimal O(log n) height
of the tree by performing O(log n) single or double rotations during an update. The
update cost consists of O(log n) operations for the search and balance maintenance
in the first-level tree and O(

data structures. Therefore, the total update cost is O(log n + loan). The cost is
O(log n) for all real values of n (more exactly, for n € O(25)).

2
86") operations for updating the second-level

Theorem 9.2 N NC'T segments can be stored in a secondary storage data struc-
ture having the following costs: (i) storage cost is O(n); (u) VS query time is
O(log n(loggn + 1L*(B)) + t); (iii) update time is O(log n + loan) a

9.5 An improved solution to query NCT segments
In order to improve the complexity results obtained in the previous section, a second-

ary storage interval tree, designed for solving stabbing queries [7], is used as first-level
data structure, instead of the binary tree. This modification, together with the use
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Figure 9.10: Partition of the segments by lines s;.

of the fractional cascading technique [40], improves the wasteful factor log n in the
complexity results presented in Theorem 9.2, but uses O(n log, B) space.

9.5.1 First-level data structure

The interval treeis a standard dynamic data structure for storing a set of 1-dimensional
segments [7, 52], tailored to support stabbing queries. The tree is balanced over the
segment endpoints, has a branching factor b, and requires O(n) blocks for storage.
Segments are stored in secondary structures associated with the internal nodes of the
tree.

As first level data structure, we use an external-memory interval tree and we
select b equal to B/4. The height of the first-level structure is therefore O(log,n) =
O(loggn). The first level of the tree partitions the data into b+ 1 slabs separated by
vertical lines sy, ..., sp. In Figure 9.10, such lines are represented as dashed lines. In
the example, b is equal to 5. Multislabs are defined as contiguous ranges of slabs such
as, for example, [1 : 4]. There are O(b?) multislabs in each internal node. Segments
stored in the root are those which intersect one or more dashed lines s;. Segments
that intersect no line are passed to the next level (segments 3, 4 and 7 in Figure 9.10).
All segments between lines s;_; and s; are passed to the node corresponding to the
t-th slab. The decomposition continues until each leaf represents B segments.

9.5.2 Second-level data structures

In each internal node of the first-level tree, we split all segments which do not lie on
dashed lines s; into long and short fragments. A long fragment spans one or more
slabs and has both its endpoints on dashed lines. A short fragment spans no complete
slab and has only one endpoint on the dashed line. Segments are split as follows (see
Figure 9.11). If a segment completely spans one or more slabs, we split it into one long
(central) fragment and at most two short fragments. The long fragment is obtained
by splitting the segment on the boundaries of the largest multislab it spans. After
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Figure 9.11: The splitting of segments: a) segments associated with a node; b) short
fragments; c) long fragments.

this splitting, at most two additional short segments are generated. If a segment in
the node intersects only one dashed line and spans no slab, it is simply split into
two short fragments. In total, if k£ segments are associated with a node, the splitting
process generates at most k long and 2k short fragments.

As before, segments lying on a dashed line s; are stored in an external interval
tree (5. Short ad long fragments are stored as follows.
Short fragments. All short fragments are naturally clustered according to the
dashed line they touch. Note that short fragments having one endpoint on line s;
are line-based segments and can be maintained in an external priority search tree as
described in Section 9.3. Short line-based fragments which are located on the left of
s; are stored in an external PST L;. Symmetrically, short fragments on the right side
of s; are stored in an external PST R;. Totally, an internal node of the first-level
structure contains 2b external PSTs for short fragments.
Long fragments. We store all long segments in an additional structure G' which

is essentially a segment tree [5, 43] based on dashed lines s;, i = 1,...,b. G is a
balanced binary tree with b — 2 internal nodes and b — 1 leaves. Thus, in total it has
O(B) nodes.

Each leaf of the segment tree G corresponds to a single slab and each internal node
v is associated with the multislab /(v) formed by the union of the slabs associated
with the leaves of the subtree of v. The root of GG is associated with the multislab
[1 :b]. Given a long fragment [ which spans many slabs, the allocation nodes of |
are the nodes v; of G such that [ spans I(v;) but not I(par(v;)), where par(v) is the
parent of v in G. There are at most two allocation nodes of [ at any level of GG, so
that, since the height of the segment tree is logy, B, [ has O(log,B) allocation nodes
[43].

Each internal node v of (7 is associated with a multislab [¢ : j] and is associated
with the ordered list (called multislab list [i : j]) of long fragments having v as
allocation node, cut on the boundaries of I(v). A B*-tree is maintained on the list
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for fast retrieval and update.

Since the segment tree (G contains O(B) nodes, each containing a pointer to a

Bt-tree in addition to standard node information, it can be stored in O(1) blocks. In
total, each segment may be stored in at most three external-memory structures. That
is, if a segment spans the multislab [¢ : j], the segment is stored in data structures
L;, R;, and in O(log,B) allocation nodes of G. Since b = B/4, an internal node
of the first-level structure has enough space to store all references to b structures
C, b structures L;, b structures R; and one structure G. Thus, in total, the space
utilization is O(n log,B).
Search algorithm. Given a query segment z = zg,a7 < y < as, a lookup is
performed on the first-level tree from the root, searching for a leaf containing zq. For
each node, if zg equals the z-coordinate of any s;, the interval tree C; is searched
together with the second-level structures R; and L; to retrieve the segments lying on
s; and short fragments intersected by the query segment. Otherwise, if zg hits the
-th slab, that is s; < ¢ < s;41, then we check second-level structures R; and L; 4.

In both cases, we have to check also the second-level structures G which contain
multislabs spanning the query value zg and retrieve all the long fragments intersected
by the query. When visiting G, we scan from the root of G to a leaf containing the
value zg. In each visited node, we search the ordered list associated with the node.
Finally, if 29 does not coincide with any s; in the node, the search continues on the
next level, in the node associated with the slab containing z.

Although any segment may be stored in three different external structures, it
is clear that each segment intersected by the query ¢ is retrieved at most twice.
Moreover, for each internal node, during the search we visit exactly two structures
for short fragments and structure GG for long ones. This proves the following lemma.

Lemma 9.4 N NCT segments can be stored in a secondary storage data structure
having the following costs: (i) storage cost is O(n logyB); (ii) VS query time is
O(loggn(loggnlog, B+ IL*(B)) +t). 0

To further reduce the search time, we extend this approach with fractional cas-
cading [40] between lists stored on neighbor levels of structures G.

9.5.3 Fractional cascading

Fractional cascading [40] is a technique supporting the execution of a sequence of
searches at a constant cost (in both internal memory and secondary storage) per
search, except for the first one. The main idea is to construct a number of “bridges”
among lists. Once an element is found in one list, the location of the element in
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other lists is quickly determined by traversing the bridges rather than applying the
general search. Fractional cascading has been extensively used in internal-memory
algorithms [40, 43, 102]. Recently, the technique has been also applied to off-line
external-memory algorithms [6]. Our approach can be summarized as follows.
Data structure supporting fractional cascading. The idea is to create bridges
between nodes on neighbor levels of the G structure, stored in one node of the first-
level data structure. In particular, for an internal node of GG associated with a multis-
lab [7 : 7], two sets of bridges are created between the node and its two sons associated
with multislabs [¢ : %] and [% : 7] (see Figure 9.12). Each fragment in the multislab
list [ : j] keeps two references to the nearest fragments in the list, which are bridges
to left and right sons.
For multislabs [i : j] and [i : %] (and similarly for multislabs [¢ : j] and [% 270,
the bridges are created in such a way that the following d-property is satisfied: the
number s of fragments in both multislab lists [i : j] and [i : %] between two sequential
bridges is such that d < s < 2d, where d is a constant > 2.

The bridges between two multislab lists [i : j] and [7 : %] are generated as follows.
First we merge the two lists in one. All fragments in the joined list do not intersect

each other and either touch or intersect line s:4; . We scan the joined list given by the

2
order of segment intersections with line si+; and select each d 4 1-th fragment from

2
the list as a bridge. If the fragment is from [z : j] (like fragment 7 in Figure 9.12), we

cut it on line s:4; and copy it in the multislab list [i : %] Otherwise, if the fragment
2

is from [¢ : %] (like fragment 4 in Figure 9.12), we copy it in the multislab list [7 : j].
Such a copy of the bridge is called augmented bridge fragment; in Figure 9.12 these
fragments are marked with “*”. ® The position of the augmented bridge fragment in

[7 : j] is determined by its intersection with line s:1;. Analogously, the bridges are
2

created between multislabs [i : j] and [% : j]. Bridge fragments from a multislab

list [¢ : j] are copied (after the cutting) in the multislab list [% : j] while bridge
fragments from the multislab list [% : 7] are copied to [i : j].

After bridges from the multislab list [ : j] to both lists [é : %] and [% : j] are
generated, the list [ : j] contains original fragments (some of them are bridges to left
or right son) and augmented bridge fragments copied from lists [7 : %] and [% 2 7]
In Figure 9.12, the list [i : j] contains three augmented bridge fragments, respectively
fragments 3, 4, and 9. All the fragments in [i : j] are ordered by the points in which

they intersect or touch line s:+;. Each non augmented bridge fragment maintains a

2
pointer to the next and to the previous non augmented bridge fragment in the list as

?Note that augmented bridge fragments are only used to speed up the search, they are never
reported in the query reply.
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li:l
[ 1,2 3% 4,6, 7, 9 ]

[i: (i+))/2] [(i+j)/2:]]
4,5 7%, 8, 11 3,9 10

'S ‘ S(i+j)/2 ‘ SJ' a) b)

Figure 9.12: “Bridges” in GG. a) Long fragments stored in the node associated with
multislab [¢ : j] and in its two sons, associated with multislabs [i : %] and [% : gl
b) Lists of fragments associated with nodes of the G structure. The lists are extended
with bridge segments (d=2). Bridges are shown by lines and new bridge fragments
inserted in the nodes are marked with “*’.

well as a pointer to the next and to the previous augmented bridge fragment. The
following result holds.

Proposition 9.1 Multislab lists [i : j], [i : %], and [% : j] satisfy the d-property.
Proof: Consider multislab lists [¢ : j] and [7 : %] Bridge fragments can be either

fragments from the multislab list [¢ : j], cut on line siy,, or fragments from the
2

multislab list [ : %] Consider the first case. These bridge fragments are already
contained, as fragments, in the multislab list [i : j] and are inserted as augmented

bridge fragments in the multislab list [7 : %] In the second case, bridge fragments
are already contained, as fragments, in the multislab list [7 : %] and are inserted

as augmented bridge fragments in the multislab list [ : j]. This means that bridge
fragments are contained both in the father and in the child node. By construction, in
the ordered multislab lists exactly d fragments appear between two bridges. These
fragments may be either from the multislab list [ : j] or from the multislab list
[P : %] Therefore the sum of the number of fragments in both multislab lists between
two bridges is at least d. A similar proof holds for multislab lists [ : j] and [% 2 7]

During insertion/deletions, the number of fragments between two sequential
bridges may change. To guarantee the satisfaction of the d-property after an update
is executed, specific rebalancing operators are applied to split or merge the nodes
in order to still satisfy the d-property. These operations origins from 2-4-trees and
B-trees [40, 102]. 0

Given an internal node v of G, associated with the multislab [7 : j], a B*-tree
is built from the multislab list [¢ : j], after bridges to both sons are generated and
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copied in the list. The following result holds.

Proposition 9.2 After including augmented bridge fragments in all nodes of G, the
space complexity is still O(n logyB).

Proof: Without bridges, the space complexity is O(nlog,B). Each insertion of a
bridge fragment in the structure results in inserting a copy of an existing fragment
into a list. Moreover, the insertion of pointers can only add a constant to the space.
Therefore, the insertion of augmented bridge fragments cannot alter the space com-
plexity. a

Search algorithm. Let ¢ be the vertical segment of the form x = xg,ay < y < ao.
The VS query ¢ is performed as described in Subsection 9.5.2, by modifying the search
in G as follows. First we search in the BT-tree associated with the root of G and detect
the leftmost segment fragment f;' intersected by ¢ and associated with the root. This
takes O(loggn) steps. Then, the leaves of the Bt-tree are traversed and all fragments
in the root of ¢ intersected by ¢ (except for the augmented bridge fragments) are
retrieved. As a second step, if zg is lower than Sits the bridge to the left son,

nearest to f!, is determined, otherwise the bridge to the right son, nearest to f!, is
determined. Following the appropriate bridge, a leaf node in the BT-tree associated
with a second level node of GG is reached. Because of the d-property of bridges, the
leftmost segment fragment f#, contained in the reached leaf node and intersected by
q, can be found in O(1) I/O’s. Then, the leaves of the BT-tree are traversed and all
fragments intersected by ¢ (except for the augmented bridge fragments) are retrieved.
The same procedure for bridge navigation and fragment retrieval is repeated on levels
3,...,logyb of G. The following result holds.

Proposition 9.3 Let ff be the leftmost fragment intersected by q and associated with
a node v stored at level v of G. Let b; be the bridge fragment to the left son, nearest
to f{. The leftmost fragment intersected by q and associated with a son of v can be

found from b; in O(1) 1/0".

Proof: Suppose that zq is lower than s:4;. We show that the number of fragments
2

in the left son between ff"'l and b; is at most 2d, thus ff"'l can be reached in O(1)
1/O. Let d! be the bridge fragment nearest to b;, and such that if b; is lower than f;,
then bl is greater than ff and vice versa. Suppose that b; is lower than ff (a similar
proof can be given if b; is greater than f}). There are several cases:
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o b < ff << ff"'l. Since bridge fragments are stored both in ‘phe father and
in the son and since f;"'l and f} intersect ¢, this means that ;"’1 is not the

leftmost fragment intersected by ¢ and this contradict the hypothesis.

o b < ff < ff"'l < bl. Since b} can be determined from b; in O(1), the same holds
for f;"'l.

o h; < f;"'l < fi < b Since bt can be determined from b; in O(1), the same holds
for f;"'l.

° f;"'l < b < ff < b!. Since bridge fragments are stored both in the father
and in the son and since f;"'l intersects ¢, this means that f; is not the left-
most fragment intersected by ¢ and associated with v and this contradicts the

hypothesis. a

With the use of bridges, searching for the leftmost fragment intersecting ¢ on

all levels of G takes O(loggn + log,B) steps. Together with searching in L; and
R;41 for short fragments, the search time for one internal node a of the first-level
structure is O(loggn + log, B + I L*(B) + %), where 1" is the number of segments
in node « intersected by the query. Since any segment is stored in only one node of
the first-level tree (whose height is O(loggn)) and each segment intersected by the
query is reported only once, reporting all segments intersected by the query takes
O(loggn(loggn + log, B+ I L*(B)) + t).
Insertions. The 2L.DS proposed above has been designed for the static case. To
extend the schema to the semi-dynamic case when segment insertions are allowed
together with queries, we have to extend both first- and second-level structures to
manage insertion of segments.

First, we replace a static interval tree, used as a first-level structure, with a
weighted-balanced B-tree [7] (see Chapter 6). Updates on such structure can be
performed in O(loggn) amortized time. The second-level structures C;, R; and L;
are dynamic and need not any extension. However, in order to store long fragments,
a BB[a]-tree [42, 108], 0 < o < 1 —1/4/2 can be used as the second-level structure &
for long fragments. The last issue is how to maintain bridges between neighbor levels
of the G structure, when a segment is inserted and the corresponding long fragment
may violate the d-property. To ensure O(1) I/O navigation complexity neighbor
levels of the G structure, we provide some additional operations on multislab lists
(similar to those presented in [102]). The linear bridge structure when each multislab
list [i : j] contains bridges to at most two multislabs [i : 2] and [“£L : j] allows us
to retain the O(1) 1/O amortized complexity of bridge navigation. Such extensions

2
allow the execution of insertions in O(loggn + log, B + IO%Bn) amortized time.
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Theorem 9.3 N NCT segments can be stored in a secondary storage data structure

having the following costs: (i) storage cost is O(n logyB); (ii) VS query time is

O(loggn(loggn +log, B+ I L*(B)) +t); (iii) insertion amortized time is O(loggn +
2

9.6 Preliminary experimental results

Some preliminary experiments have been carried out in order to investigate the per-
formance of the proposed technique. The performed experiments deal with a sim-
plified implementation of the technique presented in Section 9.4 (hereafter denoted
by T'). In particular, the P-range tree technique has not been applied to the data
structures supporting the search on a set of line-based segments (see Section 9.3).

The experiments have been performed on a PC Pentium 100, with 16 Mb RAM.
The page size is 1k. The program has been written in C++. The considered gen-
eralized relations contain respectively 5000, 10000, 15000, 20000, and 31000 NCT
segments, uniformly distributed in the Fuclidean plane. Segments are assumed to be
ordered in the data file with respect their leftmost X-coordinate. The query segment
is assumed to be vertical.

The aim of the performed experiments is to compare the number of page accessed
by T during the execution of VS queries having different selectivity. This number has
been compared with the number of page accessed in executing the same queries by
applying a particular type of sequential search, that we call clever sequential search
(hereafter denoted by CS). Since segments are orderly stored with respect to their
leftmost X-coordinate, a sequential search can be interrupted as soon as a segment
is retrieved such that its leftmost X-coordinate is greater than the X-coordinate of
the query segment. This approach greatly reduces the number of segments that have
to be analyzed in a sequential scan. Since the performance of CS depends on the
distance of the query segment from the leftmost border of the minimum bounding
box containing the stored segments, we have considered query segments differing
not only in their length but also in this additional parameter. In particular, the
reported experiments deal with three different query segments, Q1, Q2, and Q3; they
are graphically represented in Figure 9.14. Q1 is the lowest selective query object
whereas Q3 is the highest selective query object.

From the performed experiments, we have observed that the number of page ac-
cesses for T increases by decreasing the selectivity. This is due to the fact that
queries with lower selectivity retrieve more segments and therefore require the ana-
lysis of more tree nodes. This result can be observed from Figure 9.15. Note that
the considered selectivities are very low. Indeed, due to the form of the query ob-
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Q2
° AQ/
Figure 9.13: Position of the query segment with respect to the minimum bounding
box containing all stored segments.

ject, selectivity greater than 10% can only be achieved by considering specific data
distributions. On the other hand, experiments have been performed by assuming an
uniform distribution of segments in the space.

From Figure 9.15 it also follows that the number of page accessed by CS does
not depend on the query selectivity. In the case of the reported experiments, such
number decreases by decreasing the selectivity. However, from Figure 9.13 we can
see that CS has very good performance when the X-coordinate of the query segment
is close to the leftmost border of the minimum bounding box containing the stored
segments. In particular, the number of page accessed by CS decreases by decreasing
such distance. On the other hand, T performance does not depend on this parameter.

9.7 Concluding remarks

In this chapter we have proposed two techniques to solve a vertical (or having any
other fixed direction) segment query on segment databases. The more efficient tech-
nique has O(n log, B) space complexity and time complexity very close to O(loghn +
t). These are the optimal bounds that can be achieved by using the (non-optimal)
solution for the secondary storage implementation of priority search trees we have
developed. The hypothesis under which the proposed techniques can be efficiently
applied to constraint databases have also been pointed out, introducing the class of

O(N)-databases.
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Figure 9.14: Number of page accesses with respect to the database size, by considering
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Conclusions

In this dissertation, we have investigated modeling and optimization topics in the
context of constraint databases. In particular, after a brief introduction to constraint
databases (Chapter 1), the first part of the dissertation (Chapters 2-5) concerned
modeling aspects whereas the second part (Chapters 6-9) concerned optimization
issues. In this last chapter, we shortly summarize the contributions of this dissertation
and we outline some topics left to future work.

10.1 Summary of the contributions

Data modeling. Contributions with respect to data modeling can be summarized as
follows. After a brief survey of the main results that have been proposed in the context
of constraint database modeling (Chapter 2), we have investigated the definition of
new data manipulation languages for relational constraint databases. In particular,
in Chapter 3 we have introduced an extended generalized algebra (EGRA) and an
extended generalized calculus (ECAL) for relational constraint databases; in Chapter
4 an update language has also been proposed to complete the definition of a data
manipulation language for relational constraint databases.

The main difference between the proposed languages and the classical languages
proposed for relational constraint databases can be summarized as follows:

e Algebraic operators deal with generalized relations as they were finite sets of
possibly infinite sets. By considering this semantics, which is slightly different
from the standard one, two different groups of operators have been proposed.
The first group includes the standard generalized relational algebra operators;
the second group includes operators treating each generalized tuple as a single

213
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object. The proposed algebra is equivalent to the standard one when general-
ized tuple identifiers are introduced, but it allows typical user requests to be
expressed in a more convenient way.

e The calculus, similarly to the algebra, is defined by using two different types of
variables, those representing generalized tuples and those representing atomic
values. The calculus has been defined by following Klug’s approach [88].

e Both the algebra and the calculus have been extended to deal with external
functions. As far as we know, this is the first approach to integrate constraint
database languages with external primitives.

The algebra and the calculus have been proved to be equivalent. The proof, which
is very technical, follows the approach taken by Klug [88] to prove the equivalence
between the relational algebra and the relational calculus extended with aggregate
functions.

As a second contribution with respect to data modeling, in Chapter 5 we have
introduced a formal model and a query language for nested relational constraint data-
bases, overcoming some limitations of the previous proposals. Indeed, the proposed
model is characterized by a clear formal foundation, a low data complexity, and the
ability to model any degree of nesting. The proposed language is obtained by extend-
ing N'RC [148] to deal with possibly infinite relations, finitely representable by using
pPoLY. Its definition is based on structural recursion and on monads. We would like to
recall that the proposed language is not a new language. Rather, it represents a new
formal definition of already existing languages. We claim that this formalism could
be useful to investigate further properties of relational constraint query languages.

Optimization issues. The contributions with respect to optimization issues can
be summarized as follows. After a brief survey of the main results that have been
proposed in the context of constraint database optimization (Chapter 6), in Chapter
7 we have investigated the definition of rewriting rules for EGRA expressions. In
particular, following the approach taken in [61], simplification and optimization rules
for EGRA expressions have been proposed, pointing out the differences with respect
to the typical rules used in the relational context. The proposed rules can be used
not only to optimize EGRA expressions but, due to the equivalence between GRA
and EGRA, they can also be used to improve the efficiency of GRA optimizers. The
basic issues in designing such an optimizer have also been discussed.

In Chapter 8 we have investigated the use of a dual representation for polyhedra to
index constraint databases. Under this representation, each generalized tuple is trans-
formed into two unbound polyhedra in a dual plane. We have shown that intersection
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and containment problems with respect to a half-plane query with a predefined dir-
ection can be solved in logarithmic time and linear space. When the query half-plane
does not satisfy this condition, some approximated solutions have also be proposed.
Experimental results show that such techniques often perform better than R-trees, a
well-known spatial data structure [71, 130].

In Chapter 9, we have proposed a close to optimal technique for segment data-
bases, allowing the detection of all segments which are intersected by a given vertical
segment. This result is an improvement with respect to the classical stabbing query
problem, determining all segments intersecting a given line. We have also discussed
how techniques proposed for segment databases can be applied to constraint and
spatial databases and we have introduced some classes of databases in which such
techniques can be efficiently used.

10.2 Topics for further research

The research described in this dissertation can be extended along several directions.

Data modeling. With respect to data modeling, we feel that it may be interesting
to continue in the investigation of models for complex objects. In particular, a quite
interesting topic is the definition of a complex object model for the representation of
planning reasoning and partial information. Planning reasoning refers to the support
of decision activities with respect to non yet existing entities. A typical example is
the analysis of the impact that some buildings will have on the environment. Partial
information refers to the ability of representing incomplete information with respect
to complex objects. Note that this topic is different from the use of generalized tuples
to model imprecise values [91, 133]. In this case, we would like to express partial
information not only with respect to atomic objects, but also with respect to complex
ones, represented by using constraints.

Optimization issues. With respect to the investigated optimization issues, we feel
that it may be interesting to investigate the following topics:

o With respect to the logical optimization, the development of a prototype is
required in order to establish if the logical optimization of relational constraint
query languages can really benefit from the use of the new introduced rules.
The design of a logical optimizer for the generalized relational algebra, based
on the guidelines we have proposed, is another interesting issue.

o With respect to the indexing techniques based on the dual representation, an
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important issue is the definition of indexing techniques with optimal complexity
for arbitrary half-plane queries. The use of the dual representation as the basis
for the development of further indexing techniques is another topic of great
interest. Finally, the definition of more general techniques for arbitrary d-
dimensional tuples is another issue that should be investigated.

With respect to the indexing technique based on the segment representation, a
first aspect requiring further investigation is the comparison, in terms of per-
formance, of the proposed technique with R-trees and their variants, in order
to establish the real applicability of the proposed approach. Further, a funda-
mental issue is the development of indexing techniques to retrieve all segments
intersecting a given segment having an arbitrary direction.
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Appendix A

Selected proofs of results
presented in Chapter 3

Proposition 3.2 Let Ly and Ly be two constraint query languages. Let ®© be a
decidable theory admitting variable elimination and closed under complementation.
Let t € {r,n}. The following facts hold:

1. If L;(®) is t-based, then for all S(®,%;), S(P,X;), S(P,%) S S(P, %) iff
LZ(¢7 21) - LZ(¢7 22)

2. ]f Ll(q)7 21) = L2(¢7 22) then S(@, 21) = S(@, 22)
Proof:

1. We only prove the case t = r. The case t = n trivially follows from ¢ = r, using
function nested instead of function rel.

= Suppose that S(®,¥;) C; S(P, 33). Consider ¢ € L;(P). Consider ry, ..., 7, €

S(®,3). By hypothesis, there exist r],...,rl, € S(®, Xy) such that r; =,
rt, i = 1,...,n. Since L;(®) is r-based, there exists a relational algebra
query ¢’ such that:

rel(q(ri,...,rn)) = ¢ (rel(r1), ..., rel(ry))

rel(q(ri,...,rh)) = ¢ (rel(ry), ...,rel(rl)).
But, since rel(r;) = rel(r}), then ¢'(rel(r1), ...,rel(r,)) = ¢’ (rel(ry),
worel(rl)).  Therefore, rel(q(ri,....rn)) = rel(q(ry,...,rl)), thus
q(r1y ey ) =0 q(ry, o 1h).

< Directly from Definition 3.6.

9
9

!
n
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2. Directly from Definition 3.6. a

Proposition 3.3 Let L be a constraint query language. Let ® be a decidable theory
admitting variable elimination and closed under complementation. Lett € {r,n}. Let
S(P, %) and S(P,Xs) be two FGR supports. If L(®) is t-based, for all ¢ € L(P),
for all vy, ...,r, € S(®,%y) and for all ¥y, ....rl, € S(®,%), such that r = r,
q(riy ey o) =¢ q(ry, ..y rl) holds.
Proof: We only prove the case t = r. The case t = n trivially follows from t = r,
using function nested instead of function rel.

Consider r; € S(®,%4), ¢ = 1,...,n and r; € S(P,%,), i = 1,...,n, such that
ri = i, i = 1,..,n. Since L(®) is r-based, for each query ¢ € L(®) there ex-
ists a relational algebra query ¢’ such that rel(q(r1,...,rn)) = ¢ (rel(r1), ..., rel(r,))

and rel(q(ry,...,r0)) = ¢ (rel(r}), ..., rel(r])). Moreover, since r; =, ri, i = 1,...,n,
q (rel(ry),...rel(r,)) = ¢ (rel(ry),...,rel(r)))). Therefore, rel(q(ri,...,rn)) =
rel(q(ry,...,r})) and this concludes the proof. ]

Theorem 3.1 EFGRA(®) is n-based.

Proof: In order to show that EGRA(®) is n-based, we construct, for each EGRA
expression a nested-relational algebra expression for which the condition of Definition
3.5 holds..

Let D be a domain of values. The nested-relational model deals with objects of
type:

Tu=D | (A7, ATy | {7}

where Ay, ..., A, are attributes names. A basic nested-relational algebra consists of
the following operators:

1. the classical relational operators extended to nested-relations: union (U), differ-
ence (\), selection (o), projection (I1), and join (X);

2. two restructuring operators: nest and unnest.

The unnest operator transforms a relation into one which is less deeply nes-
ted by concatenating each element in the set attribute being unnested to the
remaining attributes in the relation. Thus, if R is a nested-relation of type

{(A1:71,.. A, 1) }:

unnesty, = {(A1 21, Aj 1 @1, Briyn, e Byt Y, Ajrr f T4,
o Agran) | (At Aptay) € Ry (Br i yr, e Byt ym) € 25}
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The nest operator creates partitions based on the formation of equivalence
classes. Two tuples are equivalent if they have the same values for the at-
tributes which are not being nested. For each equivalence class, a single tuple
is placed into the result. The attributes being nested are used to generate a
nested-relation containing all tuples in the equivalence class for those attributes.
Thus, if R is a nested-relation of type {(41:71,..., A, : 7)) }:

NEStE—(Aypy,An) = WAL 121, s Ao, B =) |
{(Akg1 t g1y ey An s ) | (At 2y, o Ap tay) € RY =y # 0}

Let ® be a decidable logical theory, admitting elimination of quantifier and closed
under complementation. Let D be the domain of ®. Table A.1 shows for each EGRA
expression the corresponding nested-relational algebra expression. In the table:

For all name of generalized relation R;, R represents the name of a nested-
relation. If the generalized relation associated with R; during the evaluation is
r, then the nested-relation associated with R} is nested(r).

If the generalized relation R; has schema {X7,..., X,,}, then R! has type {(A; :
{<X1 : D7 s Xn : D>}>}

Given a generalized tuple P with schema { X1, ..., X,,}, 7(P) denotes the nested-
relation {(Ap : (X1 1 a1,... X, tan) | Xi = a1 N o AN X, = @, € ext(P)}.
Note that the type of r(P) is {(Ap : (X1 : D, ..., X, : D))}

Given a generalized tuple P with schema { X1, ..., X,,}, n(P) denotes the nested-
relation containing only one element, represented by the set ext(P). Thus, n(P)
coincides with the set {(Ap : {(X1 a1 A .. A Xy ta) ) | Xi=ar AN X, =
a, € ext(P)}. The type of n(P) is {(Ap : {(X1: D, ..., X,,: D)})}.

t_tot(a(R)) represents the generalized tuple whose extension contains all pos-
sible relational tuples with schema a(R) that can be constructed on ®. For
example, if a(R) = {X,Y}, in PoLY one possible {_tot(a(R)) is X +Y <
2VX+Y >2

When a Cartesian product is used, we assume to rename the attributes names
A;, Xy, ..., X, of the relation appearing in the i-th position of the product (i > 1)
as A, X1, ..., X}

It is simple to show that the proposed expressions satisfy Definition 3.5. a
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| EGRA expression | NRA expression
R R
RiUR, RIUR)
Ri\* Ry Ri\ Ry
7ire) (R) Mo (@4 (R n(P)) where
OApca, is defined in [1]
(pe mzg) (111) Hpaj(0apea (R x r(P)))
—|SR1 H[B](n€5tB=(X12,...,X,%)(RS \ RQ)) where

Ry = unnest  2(R] x RY)

Rs; = unnesta,_,,. (R} x n(t_-tot(a(R1)))
o1a1m (1) see [1]

H[X,I,...,X,m](Rl) ;5 (Ra) where

Ry = H[Al,xfl,...,Xfm](U""€5tA2 (R} x R1))
Rs = "€5tB=<Xf1,...,Xfm )(R2)

- R nestp(x,,.. x,)(f \ Ra2) where

R, = unnesta, (R})

Rs = unnesta,_,,,(n(t-tot(a(R1))))
op(R1) H[B]("%tB:(Xf,...,Xg)(R4)) where

Ry = unnest  2(R] x RY)

Rs = unnesta, (R x n(P))

Ry = H[Al,xl,...,xn,Xf,...,x,%](Uxf=xf/\.../\x,%=xf; (RS))
Ri M Ry ;5 (Rs) where

Rs =R} x R, x R}

Ry =R} x R, x R},

Rs = unnest 43(Rs)

Res = unnest 43(Ra4)

R7 = Rs M Rg

Rs = "65tB=<Xf,...,X§;)(R7)

Table A.1: Nested-relational algebra expressions corresponding to EGRA expressions.
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Theorem A.1 Let F be a set of admissible functions. Any FGRA expression can
be translated into an equivalent FCAL expression.

Proof: In the following we prove only the translations that are different from those
presented in [88] and [111].

1. Tac(Ri) = R,.
See [88].

2. Tac(op(e)) = ((z : g(x),tp(z) 1) : a(g) 2)
where tp is the target alpha representing the generalized tuple P.

Suppose that u € op(e)(f). This means that there exists a generalized tuple
uy € e([) such that w = uy A P and ext(u) = ext(uy) Next(P). By induction
uy € a(l) and ext(P) = tp. Therefore, ext(u) = (z : g(z),tp(x) :)(I) when g
is bound to u; and this concludes the proof.

3. Tac(Uixy(e)) = @[X] 71y ey 7t (3rngr)ee-(Frm) )

where t[X] contains free variables vy, ..., v ranging over ry, ..., r,. Variables of
« that are not included in the projection list range over rp41, ..., ;.

If o is a target alpha, t[X] is well defined. If a is a general alpha, ¢ is either

a target alpha or a set term. In the first case, if t = (¢t : r,...,r : V),

t[X] is defined as (£1[X] : r{,...,r) = ), in the second case t[X] is defined as
(v[X]: t(v) 2).

The proof follows from [88] by extending the projection on target alphas and
set terms.

4. Tac(€1 X 62) = (((U17U3) : 91(?11)792(?12) : /\kzl,nvl[Xik] = U2[Xj ]) : 041(91)7
az(g2) ©)

where each pair (X;,, X;,) represents a pair of variables on which natural join
is performed. and vs is the tuple formed by all column of vy except X , ..., X, .

Suppose that uce; X ez(I). This means that there exists a generalized tuple
uy € e1(I) and a generalized tuple ug € e3(/) and u = uy A uz. Moreover,
ext(u) = ext(uy) M ext(uz). By inductive hypothesis, u; € ay([) and uy €
az(I). Moreover, it is simple to show that ext(u) = ((vi,v3) : g1(v1), g2(ve) :
Nk=1,..,v1[Xi,] = v2[X;,])({) when g; is bound to uy and g3 is bound to us
and this concludes the proof.
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10.

 Tael=e) = (v: D"(v) = (Balg)) g(v) : 2.

Suppose that v = (—e) (/). This means that u = —u; A ... A =, and e(I) =
{u1, ..., un}. By induction, u; € a([),i=1,...,n, and ext(u) = DP \ (ext(uq)U
..U ext(uy,), where D} represents the generalized tuple whose extension con-
tains all possible relational tuples with n arguments, constructed on domain D.

Therefore, ext(u) = (v: D™(v) : (Aa(g)) g(v))(I) and this concludes the proof.

» Tac(=7(€)) = ((v: D™ (v) s g (v)) = alg) 2).-

Suppose that u € (—e)(I). This means that there exists a generalized tuple uy €
e(l) such that v = —uy and ext(u) = ext(D}) \ ext(uy) where D} represents
the generalized tuple whose extension contains all possible relational tuples
with n arguments, constructed on domain D. By induction, u; € «(l) and
ext(D}) = D". Therefore, ext(u) = (v : D"(v) : =g(v))(I) when ¢ is bound to
uq and this concludes the proof.

TaclerUez) = (g :01(g) V az(g) 2).

See [88].

- Tacler \* €2) = (g cau(g) = ~aa(g))-

See [88].

cTacler \ez) = ((v:gr(v) 1 =Faz(g2)g2(v)) r ar(g1) :).

Suppose that u € (e; \* e2)(I). This means that there exists a generalized
tuple uy € e1(I) such that u = uy A —ug A ... A =y, ea(I) = {ug,...,u,} and
ext(u) = ext(uy) \ (ext(uz) U ...U ext(u,). By induction, u; € aq(I) and
w; € ag(l), ¢ = 2,...,n. Therefore, ext(u) = (v : g1(v) : =g (g2)t2(v))({)
when ¢y is bound to wu; and this concludes the proof.

Tac(olg0u0(@) = (95 al9) s (B 90)Tacl @) (91))

(3 92) Tae(Mio(,))(Q2)) (92)) 91692))
where @ is obtained from @Q; by replacing constant ¢ with relation {t}. Note
that Toe(QF) = {g:}-

Suppose that u € (U (01,0,0) ())(I) This means that u

€
ext(Qu(u))fext (Il gy (Q2(u))) is true,ie., (Q1({u})) = w1, (Mo (@
uy and ext(ul)Oext(UQ) By induction u € «o(I), {u1} = T,.(Q1({u})), and

{ur} = Toe(Il@r(@Q5(w))). Therefore
(05 ala) : (O 90 o)) (3 12 ooy (@) 02) 510551

and this concludes the proof.
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1. Tuc(ATy(e)) = (f(g) : alg) 2)-
Suppose that w € (ATy(e))(I). This means that there exists a generalized
tuple u; € e(l) such that u = f(u1). By induction u; € «(l) and therefore
uw € (f(g): alg) :)(I) and this concludes the proof.

12. Tuo(ATH (€)) =

((((U)z[?( \los()]v1) = (F(9))(v1) g(v2) = vaX O los(f)] = ni[X N los(f)]) -
a(g) ).

Suppose that u € (AT?(@))(I). This means that there exists a generalized
tuple uy € e(l) such that u = Hix)(u1) X f(uy) and ext(u) = ext(Ilx)(u1)) M

ewt(f(ul)).NBy induction uy € a([), and ext(u) = (v2[X],v1) : (f(g9))(v1), g(v2) :
vo[v] = n1[X Nlos(f)])(I) when g is bound to uy and this concludes the proof.

a

Theorem A.2 Let F be a set of admissible functions. Any ECAL expression can be
translated into an equivalent FGRA expression.

Proof: As in [88], we define several notational conventions using free attribute lists.
In the following, Ly, L}, LY are simple free attribute lists, Lo, L}, LY are set free
attribute lists, e is an expression, and z is a valuation. Let (1,5, X,) be a model.

1. Ly = X.
If (v;[A],¢) € Ly, then ¢ = x;[A]' is a component of L; = X.

2. Ly=X.
If (gi, sc) € La, then (2, Ilj,,(t), =) belongs to Ly = X.
3. L.

If (vi[A],c) € L1, then ¢ = A is a component of Lj. Note that in ¢ = A4, A
symbolically represents the column number corresponding to A in the resulting
expression.

4. L5

If (g;,sc) € Lz, then (Il;q(t), {4y, =) is a component of Lj. Note that in
(M) (1) Hia(ga) =) @(gi) symbolically represents the set of column numbers
corresponding to g; attributes in the resulting expressions.

1We recall that we assume that (v1,2:) € X.
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5. Li. If (v;[A],¢) € Ly, then ¢ € L7.
6. L3. If (g;,sc) € Lo, then sc C L3.
7. Ly (1) = {{vi[A], O (vi[A], ¢) € L1}
8. Ly (i) = {(gi, s6)[(gi, s¢) € La}.
Ly (=) = {{v;[A], ) [(vilA], ) € L, j # i}
10. Ly(=i) = {(gj; se)|(gj, s¢) € Lo, # 1}
11. L) =Ly u LY.
12. LLLY =L, U LY.

In the following we prove only translations that are different from those presented
in [88] and [111]. Moreover, if D is an expression of degree n, we denote with D* the
expression ({1}\ ({1} x D)[1]) x {1}"7*U D. Note that D* is never empty and, given
an instance I, D*(I) = D(I) if D(I) is not empty.

Simple terms

1. Constants. Let ¢ € D. Then, T,,(c) = (e, Z, L) where

e ={c}
Z =1
L=0.

Proof: see [88].

2. Simple variables. Suppose that v; ranges over the closed alpha r, and D is the
equivalent algebraic expression, i.e., r(I) = D(I). Then, T.,(v[A]) = (e, Z, L)

where
e = D[A]
7 =1

L = {(vilA], 1)}
Proof: see [88].
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Set terms

1. Set variables. Suppose that g; € T ranges over the closed alpha r and T,,(r) =
D;. Then, T..(g;) = (e, Z, L) where

e=D;
Z ={1,...,deg(r)}
L = sc, where sc = {(g;, {1, ...,deg(r)}) }.

Proof: Tl (o]_x ()(1) = o7, 1y o)D) = {51} = {t:(1,5, X)}.

2. Constants. T.,(D") = (e, Z, L) where

e={D"}
Z =A1l,...n}
L=90

Proof: lljz(0}_x(e))(I) = {D"}(I) ={D"} = {D"(I, 5, 2)}.

3. External functions. Let Tpq(g;) = (h,Y,J). Then, Too(f(gi)) = (e, Z, L) where

¢ = AT5(h x h)

7z ={1,...,deg(h)}

L=J

Proof:
Min(oj—x(e)U) = oj_, (ATF(h x R))(I)

= 05 (AT} g, ki) (R X R))(T) (1)
= o (L (Mg, gy (8) | € € B W)})(T)
= (Mg, o) () [ £ € 2 x ) H(T)
={f(zi)}
={f(g:(1,5,X))}

= {flg:)1, s. X))

Expression in (1) is obtained due to the hypothesis on the validity of the uni-
formity property.

Simple formulas

1. Simple range formulas. Suppose that T.,(¢g) = (h, Y, J). Suppose that v; ranges
over r, corresponding to expression D;. Teo(g(vi)) = (e, Z, L) where
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e=nh
F =D
L = {(ui1],1), ..., (viln], n)}
Proof: o;—x (6) (I) = Ul:ac,‘[l]/\.../\n:aci[n](h) (I) = Ul:l’,‘[l]/\.../\n:w,‘[n](Di)(l)-
( ) If t(vl)(l S, X) =1, then z; € D; and O1=x; [I]AAn:w,[n](Dz) (I) = {xl} =
or=x (E)(1).
(b) If t(vl)( S X) - 0 then L € D; and T1=z1 ]/\/\n:acl[n](Dl) (I) = @
(C) OL= X(E)( ) = Ul:xi[l]/\.../\n:x,‘[n]( 2)( ) = {xl} 7£ @
2. Simple constraints. Let Toq(s;) = (e;, Zi, Li), i =1,.,n
Then, T.q(p(s1, ..., 5,)) = (e, £, L) where
e = Uu(Zl,...,Zn)(el X .. X €p)
F=e xX..xXe,
L=1I110Ls..L,.
Proof: see the proof in [88].
3. Negation. Suppose that T, (v) = (e1, F1, L1). Then, Too (=) = (e, £/, L) where
€ = E1 \ €1
F=F
L=1.
Proof: see [88].
4. Disjunction. Suppose that T., () = (e;, Eiy L), t = 1,...,2. Then, T,, (1) =
(e, F, L) where
€= (61 X EQ) U (El X 62)
F=F xF;
L =1L,
Proof: see [88].
5. Fzistential quantification. Suppose that the translation of range r (i.e., the

closed alpha) produces the algebra expression D and T.,(v) = (e1, £, L1).
Then, T,.((3ry,)0) = (e, E, L) where
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¢ = s iplor (e x D))
B =Ty (F1)
L=1IL11Ls.

Proof: see [88].

Set formulas

1. Set range formulas. Suppose that T.,(a) = (h,Y,J). Suppose that ¢; ranges
(

over r, corresponding to an expression D;. Teo(a(g;)) = (e, F/, L) where

e=nh
EF =D
L= {<gi7 {17 ...7d€g(7‘)}>}

Proof: j_y(e)(1) = oty _,(h)(1) = o, _,(D)(I).

(a) Ifa(g;)(1,5,X)=1, thenz; € Dand Tt o= (DZ)( )=Az;} =o5_x (E£)(I).
(b) If a(gi)(1,5,X) =0, then z; ¢ D; and o(, , _\(Di)(I) = 0.

(©) @y (Y1) = . (D)) = {2} £0.

2. Set constraints. Let T.o(t1) = (e1, Z1, L1) and T,.(t2) = (ea, Z2, L2). Then,
Teo(t16t3) = (e, F, L) where

€= U(SH[zl](f)ﬂ[zz)](f)ﬁ)(61 X €3)
FEF=¢€; X ey
L=1L{L,.

Proof: see [111].

3. Negation. Suppose that T, (v) = (e1, F1, L1). Then, Teo (=) = (e, £/, L) where

€IE1\5€1
E=F
L=1,.

Proof: oj_y(e)(I) = o, (F1\* e))(I) = o, . (E) (1) \* 0}, . (e1) (T).

(a) If =1, 5,2) = 1, then ¥(1, 5, 2) = 0and o} _ (E1)(I)\*0f _ (e1)(]) =
01,= (E1)(1) = 0, o (E) ().

(b) If =(I, S, z) =0, then ¥({,
o1 = (B \* 0, (e1) (1) = 0.

\_/\_/ \_/\-/
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(c) Moreover, o7 _ (E)(1) =07 _, (E1)(I) # 0.

4. Disjunction. Suppose that T,.,(1;) = (e;, Fi, L), i = 1,...,2. Then, T., (11 V
o) = (e, E/, L) where

€= (61 X EQ)U (El X 62)
EIEl X E2
L =1L,

Proof: See [88].

5. Fzistential quantification. Suppose that the translation of range r (i.e., the
closed set alpha) produces the algebra expression D and T.,(v) = (e1, £1, L1).
Then, T,.((3ry,)0) = (e, E, L) where

e =z -ip(onyiylen x D))
E =1z -y (Er)
L =1L,

Proof: See [88].

Simple alphas

1. Target alpha. Consider a target alpha aq = (t1,...,t,) 1 71, eey 'y ¢ 3. Suppose
that T..(t;) = (e, Z;, L;). Let simple range formulas rq,...,r,, produce the
equivalent algebra expressions Dy, ..., D, and let T, (1)) = (e3, E2, Lg). Then,
Teo(on) = (e, 7, L) where

e= O'L{Lg(17...7m)(€1 X Xep X Dy X ..o X D)
VAN AV /S
L= Lz(ﬁlm)

Proof: See [88].
Set alphas

1. Atomic alpha. Teo(R;) = (e, Z, L) where

e=R;
Z ={1,...,n}, where n = deg(R;)
L=10
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2. General alpha. Consider a general alpha a; = (1) : r1,...,7m @ . Sup-
pose that T.,(t1) = (e1, 71, L1). Suppose that the translation of range formu-
las 7y, ..., 7, produce the equivalent algebraic expressions Dy, ..., D, and let

Teo () = (€3, F2,La). Let o = Tty = 1)) = <€,7,f>. Tea(on) = (e, Z, L)

where
. S 7
e = UL{LQ(L...,m)(el X €3 X Dy X ... X D,,) where

o H[ﬁs](é) if 1 is a target alpha
! €1 if ¢; is a set term

Z =7
L= Lz(ﬁlm)

Proof: We consider two cases:

(a) (t1) is a set term: the proof follows from the proof proposed in [88].

(b) t; is a target alpha: We assume that m = 1 and ¢; has only one free
variable v;, ranging over T4 (r1) = D.

Mz (o7=x(e))(I)
- H[ZZz](Uzz(ﬂi)m’(g%%g(i)(H[_L 1(€) X e2 x D))
- H[Zzﬂ(gzz(—'i):w UtGD(t)(U%Lz(Z)Zt(H[ZL ](e) X €2))))
=7 7,1 (Viepy(07_ ., M7z (€) X 07 12y (€2)))
= Uiz 7,)(Vten),w(1,5,x)=1(0F_ v, U7z (€))))
= Uten()p(1,5,x)=1Ul 7 (07_ o, (774 (€))))
= Uten()p(1,5,x =1z (g (07 _ ., (€))))
= UeD(t),0(1,8,X ):1(H[_ (H[Z(U%:X/ €))))
= UeD(t),0(1,8,X ):1(H[7](U%:X/(€) )
= Uren(t)(1,5,xn=1(a(l, 5, X))
= Uren()p(1,5,x=11t1 (1,5, X')}
=a1(/,5,X)

where X' = X U {(v;,8) }.
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Appendix B

Selected proofs of results
presented in Chapter 5

Proposition 5.4 For every function [ : sy — sy in gN'RC, there is a function
(f) : sy — sb such that

id f id
S1 S1 52 52
p51 (]51 (]52 p52
! ! ! !

51 = 51 (f)' 59 = 59

Proof. We note that the left and right squares commute by definitions of p;, ¢5, and
~. We now construct (f)" by induction on the structure of the gAVRC expression that
defines f and we argue that the middle square and thus the entire diagram commutes.
To simplify notations, we omit the subscript s from ps and g in the proof below. We
also omit the argument for the more obvious cases.

o Case f(Z) = z;. Set (/)'(O) ={srai | (x1,...,2,) €4 O}

For this case, suppose ¢(O) = &. Thus O ~ p(Z). Then (f)'(O) ~ p(;). Since
qop=id, we have ¢((f)'(O)) = ;. So the middle square commutes.

e Case f(Z) =c. Set (f)'(O) = {sc}
e Case f(Z) = mie. Let g(Z) = e. Set () (O) = {ra; | (x1,...,2,) €4 (9)'(O)}.

243



244

Appendix B. Selected proofs of results presented in Chapter 5

For this case, suppose ¢(O) = #. Thus O ~ p(¥). By hypothesis, ¢((¢)'(O)) =
e. Thus (¢)'(O) ~ p(e). By definition

p(mie) = {prwi | (@1, @0) €57 ple) -

Then (f)'(O) ~ p(me). Hence ¢((f)'(O)) = me. So the middle square com-
mutes.

Case f(Z) = (e1,...,€,). Let g;(Z) = e;. Set

(N'O) =A{sr(@rs - swn) | w1 €5r (91)(O); oo Tn €4 (90)'(0)
For this case, suppose ¢(O) = &. Thus O ~ p(Z). By hypothesis, ¢((¢;)'(O)) =
ei. Thus (g:)"(O) ~ p(ei).

By definition, p((e1,...,€,)) = {sr(21,...,2,) | 21 €4 pler), ...,z Eyr
plen)}. Then (f)'(O) ~ p((e1,...,€e,)). Hence ¢((f)(O)) = (e1,...,€,). So

the middle square commutes.
Case f(7) = {}. Set (F(0) = {1,(0,0,0)}.

Case f(7) = {e}. Let g(7) = . Set (£)(0) = {5+(1,1,2) | & €5r (9)(O)}.
For this case, suppose ¢(O) = Z. Thus O ~ p(&). By hypothesis, ¢((¢9)'(O)) =
e. Thus (¢)'(O) ~ p(e).

By definition, p({e}) = {se(L,1,#) | @ €5, ple)}. Then (Y(0) ~ p({e}).
Hence ¢((f)'(O)) = {e}. So the middle square commutes.

Case f(Z) = emptypre. Let g(F) = e. Set (f)(O) = {;1 ] (0,0) &,
(9)(O)} Upr {50 [ (1,2) €47 (9)"(O) }-

For this case, suppose ¢(O) = #. Thus O ~ p(¥). By hypothesis, ¢((¢)'(O)) =

=,

e. Thus (¢)'(O) ~ p(e). Thus e is empty iff (¢)'(O) = {;-(0,0)}. Thus
q((f)(O)) = emptygre. So the middle square commutes.

The following variations of the emptiness test are used in subsequent cases:
myempty(X) = empty ;{70 | 0 €, (emptys,) (X)}
myempty' (X) = empty {41 | (1,2) €7 X}
Case f(Z) = eq Uey. Let ¢;(Z) = ¢;. Set
(N)(O) =if myempty((g1)'(O))then

(if mgempty((gg)’ (O))then
{0}
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16186 (92)"(0))
(if myempty((g2)'(O))then
(91)"(0)
else (g1)'(0) Uy, A(O))

where

AO) ={s(Li+k+1,2) | (1,i,2) €5 (92)'(0),

ke =max{sj | (1,5,9) € (91)"(O)}.
For this case, suppose ¢(O) = &. Thus O ~ p(%).
By hypothesis, ¢((¢;)'(O)) = e;. There are four subcases. The subcases where
either e; or ey is empty are trivial. So suppose e; and ey are both not empty.
First note that A(O) ~ (g2)(O) and thus ¢(A(O)) = ez. Next observe that for
any (1,4,2) in (¢1)"(O) and (1,7,y) in A(O), it is the case that i < j. Thus
for any h so that one of the set X = {;.(1,4,2) | (1,4,2) €4 (f)'(O), i = h},
Y =A{p(Ld2) | (Li2) €4 (91)(O)i = b}, Z = {5 (1,4,2) | (1,4,2) €fr
A(O), i = h} is not empty, it is the case that X =Y or X = Z. Consequently,
for any o in (f)’(O), we have o in e U ey and vice versa. That is, ¢((f)'(0)) =
€1 U ez. So the middle square commutes.

Case f(Z) =U{e1 | y € ea}. Let ¢1(Z,y) = ey and ¢;(Z) = e. Set

(H)(O) =if myemptg((gg)’ (O))then
{ff’ (07 0, 0)}
else if myempty'(A(O))then

{ff’ (07 0, 6>}
else A(O)

where A(O) = U{s» B(O,7) | (1,¢,y) €4 (92)'"(O)}, where B(O, 1) = {;,.(1, k*
i+h+1,w)]| (1, hw)€s CO,1), k=max{sh | (1,],u) € (92)(0), j <
i, (1,h,v) €4, C(O,7)}}, where C(O, 1) = (¢1) ({5 (2,u) | 2 €4 O, (1,4,u) €4,
(92)'(0), 1=7}).

This is the most complex case. Suppose ¢(O) = p(&). Thus O ~ p(Z). By
hypothesis, ¢((g2)'(0)) = ez. Thus (g2)'(O) ~ p(ez). Now there are two
subcases. For the first subcase, suppose ey is empty. Then myempty((g2)'(O))
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is true. Then ¢((f)(O)) = {;+} = f(&). So the middle square commutes in
this subcase.

For the second subcase, we assume that ey is not empty. Then
myempty((g2)’(0)) is false. By the hypothesis on g3, we know that for each @
such that the set y; = {su | (1,7,u) €5, (92)'(0), 7= j} is not empty, we have
q(y;) is an element o; of e3. Moreover, there is one such 7 for each element of 3.
Then by hypothesis on g1, we have ¢(C(O, 1)) = ¢1(Z, 0;) for each such 7. It is
also obvious that ¢(B(O, ¢)) = ¢1(Z, 0;) for each such ¢, provided g;(Z, 0;) is not
empty. Note that if g1(Z, 0;) is empty, then B(O,7) is also empty, as opposed
to being a singleton zero tuple.

However, B(O, ¢) has an advantage over C'(O, ¢) because the numbers it uses to
identify the elements of g1 (Z, 0;) are distinct from those of B(O, j) whenever i #
J. To see this, suppose k = max{s.h | (1,7, u) € (92)'(0), j < i, (1,h,v) €y,
C(O,j)}. Then k is the maximum identifier that is used to identify elements in
g1(%, 0;), for j < i. This k exists because ¢1(Z, 0;) is finite for each o; in ey.
Then k * i+ 1 is greater than the cardinality of the union of ¢1(Z, 0;) for j < ¢.

We now have two subsubcases. For the first subsubcase, suppose ¢1(Z, 0;) is
empty for each o; in ez. Then B(O,7) is empty for all such o;. Then A(O) is
also empty. Then myempty'(A(O)) is true. Then ¢((f)'(0)) = {s-} = f(&).
So the middle square commutes in this subsubcase.

For the second subsubcase, we assume that there are o, ..., 0, in ey such
that ¢1(Z, 0;) is not empty and f(Z) = ¢1(Z,01) Ug, -+ - Uy, g1(7, 0,). Then
(/)(0) = A(O) = B(O,01) Uy, -+ Uge B(O,0,). Then ¢((f)(0)) = (7).
This finishes the final subsubcase.

Case f(Z) = (e1 = e3). Let ¢;(Z) = ¢;. Set

(N)(O) = if emptys{s1 | 2 € (91)'(O)sy €5r (92)'(0)s & =y} then
{srfalse} else { true}.

For this case, suppose ¢(O) = &. Thus O ~ p(&). By hypothesis, ¢((¢:)'(O)) =
€. So (9))'(0O) ~ p(e;). Since ¢; : R, we have (¢;)'(O) = {;re;}. Then it is
obvious that ¢((f)'(O)) = (e1 = ez). So the middle square commutes.

Case f(Z) = empty e. Let g(7) = e.

Set (N)(O) = {yremptyseipr L] (1,4, 2) €50 (9)(O)}}-
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o Case f(Z) = if ey then ey else e3. Let g;(%) = e;.
Set (f)(O) = if emptys{s 1|0 €y (91)(O)} then (g2)'(O) else (g3)'(O).

—

For this case, suppose ¢(O) = &. Thus O ~ p(&)

By hypothesis, ¢((¢1)'(O)) = e;. Thus (g1)'(O) ~ p(eq). Since e; : B, we
have (g2)'(0) = {;,1} if €; is true and (g2)'(O) = {40} if e; is false. Then
empty s {110 €5, (91)'(0)} is trueiff g is true. Then it follows by hypothesis
on ey and ez that ¢((f)'(O)) = if ey then ey else e3. So the middle square
commutes.

e Case f(7) = {;}. Set (f)'(0O) = {;,0}.
o Case f(Z) = {jre}. Let g(&
For this case, suppose ¢(O) = &. Thus O ~ p(%).

By hypothesis, ¢((¢g)'(O)) = e. Thus (
know that (¢)"(O) = {re}. Thus ¢((

commutes.

"(O) ~ p(e). Since e : R X -+ X R, we
0)) = {sre}. So the middle square

o Case f(Z) = e1 Uy, eg. Let g;(Z) = ;. Set

(/)(0) = if myempty((g1)'(O))then
(if myempty ((g2)'(O))then
{fro}
16156 (92)'(0))
(if myempty((g2)'(O))then
(91)"(0)
else (g1)'(0) Uy, (92)'(0)).

o Case f(Z) =U{sre1 | y €5, e2}. Let ¢1(Z,y) = €1 and g(7) = es.
Set

(/)(0) = if myempty ((92)'(O)) then
{fro}

else
if myempty'(A(O)) then

{ff’ (07 0, 6>}
else A(O)
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where

A(O) = U{sr if myempty (B(O,y)) then {;,} else B(O,y) |
(L,y) €5 (92)'(0)}

and B(O,y) = (91)'({+(2,9) | z €4 O}).
For this case, suppose ¢(O) = &. Thus O ~ p(%).

By hypothesis, ¢((g2)'(0O)) = e3. Thus (g5)(O) ~ p(ez). Now there are two
subcases. For the first subcase, suppose e; is empty. Then myempty((g2)'(O))
is true. Then ¢((f)'(0)) = {sr} = U{sre1 | ¥y €5 €2}. So the middle square
commutes in this subcase.

For the second subcase, we assume that ey is not empty. Then
myempty((g2)'(0)) is false and (g2)'(0) = {s-(1,2) | @ €y, ez} is forced.
It is clear that ¢({;-(z,y) | 2 €5 O}) = (&,y) for each y in e;. By hypo-
thesis, ¢(B(O,y)) = ¢1(Z,y) for each y in e3. We now have two subsubcases.
For the first subsubcase, suppose ¢1(%,y) is empty for each y in e;. Then
myempty(B(O,y)) is true for each y in e3. Then myempty’(A(O)) is true.
Then ¢((f)'(0)) = {;+} = f(&). So the middle square commutes in this
subsubcase.

For the second subsubcase, we assume that there are yq, ..., ¥, in ey such
that g1 (7, y;) is not empty and f(Z) = ¢1(Z,y1) Uysr -+~ Uy 91(Z, yn). Then
(N)'(0) = A(O) = B(O,y1) Ugy -+~ Upr B(O, ). Then q((f)'(0)) = f(Z).

This finishes the final subsubcase. So the middle square commutes.

Case f(¥) = e1 @ eq, where & is either +, —, -, or +—. Let ¢;(¥) = ¢;. Set
(N'O)=A{prr & ylzecp (91)(0), y€pr (92)(0)}

—

For this case, suppose ¢(O) = &. Thus O ~ p(%).

By hypothesis, ¢((g:)'(O)) = ¢;. Thus (¢;)'(O) ~ p(e;). Since e; : R, we must
have (¢;)'(O) = {sre:}. Then ¢((f)'(O)) = q({sre1 & e2}) = €1 & ez3. So the

middle square commutes.
Case f(7) = R. Set ()/(0) = {1,(1,2) | = €5, R).

Case f(Z) = U{srer | v € ez} Let ¢1(Z,y) =€ and ¢2(%) = e3. Set
(N)(O) = if myempty((g2)' (O)) then {7(0,0)} else if myempty'(A(O))
then {7,(0,0)} else A(O), where A(O) = U{y, if myempty (B(O,1)) then {;}
else B(O,1) | (1,4,y) €4 (g2)'(0)}, where
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B(O,i) = (91)'({-(z,u) [ 2 €4, O, (1,],u) €0 (92)'(0), 1= j}).
For this case, suppose ¢(O) = &.

Thus O ~ p(&). By hypothesis, ¢((g2)'(O)) = e3. Thus (g2)'(O) ~ p(ez). We
have two subcases. The first is when e, is empty. Then (g2)'(O) is a singleton
zero tuple. Then myempty((g2)’ (O)) is true. Then (f)"(0) = {;,(0,0)}. Thus
q((N)(0)) ={s} = f(&). So the middle square commutes in this subcase.

For the second subcase, we assume that ey is not empty. Then
myempty((g2) (0)) is false. By the hypothesis on g2, we know that for each
i such that the set y; = {y.u | (1,7,u) €5 (g2)/(0),i = j} is not empty, we
have ¢(y;) is an element o; of e;. Moreover, there is one such ¢ for each element
of e;. Then by hypothesis on g1, we have ¢(B(O,1)) = ¢1(%, 0;) for each such
i. We now have two subsubcases. For the first subsubcase, suppose g1 (%, 0;) is
empty for each such . Then myempty(B(O,1)) is true for each such 7. Then
myempty’ (A(O)) is true. Then ¢((f) (O)) = {;r} = f(Z). So the middle

square commutes in this subsubcase.

For the second subsubcase, we assume that there are o, ..., 0, in ey such
that ¢1(Z, 0;) is not empty and f(Z) = ¢1(Z,01) Up - - Uy, g1(7, 0,). Then
(f)(0O) = A(O) = B(O,01) Ugy - -- Uy, B(O,0,). Then ¢((f)'(0)) = f(Z).

This finishes the final subsubcase. So the middle square commutes. a
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Appendix C

Selected proofs of results
presented in Chapter 8

Lemma 8.3 Let UP~ (P = A1,y pd)l(p1yspa) €  UP(P) and
pa = min{pj|(p1,...,pa-1,py) € UP(P)}. Let DOWN=(P) = {(p1,..,pa)
(p1y..spa) € UP(P) and pg = max{p}|(p1,...,pi-1,7};) € DOWN(P)}. Then,

~—

(p1yospa) € UPT(P) iff TOPY(p1,.pi—1) = pa and (p1,....pa) €
DOW N~ (P) iff BOTY (p1, ..., Pa_1) = pa-
Proof:

= Suppose that (p1,...,pqs) € UP~(P). There are two different cases:

e (p1,...,p4) belongs to a line which is the dual representation of a vertex,
say v, of P (thus, it has been added in Steps 1 or 2 of the transformation
algorithm). Since (p1,...,ps) € UP™(P), and all hyperplanes in UP(P)
are transformed in 1-half-planes, this also mean that there does not exist
another hyperplane H' supporting U P(P) such that (p1, ..., pa—1,0};) € H'
and p/, > pq. But, since H' would correspond to another vertex v’ of P,
this means that pg = maz,evp{Fp@)(P1s oy Pa-1)} = TOPY (p1, .., pa_1)-

e (p1,...,pq) belongs to a line which has been added in Steps 3 or 4 of the
transformation algorithm. Since this line connects d — 1 points representing
in the primal plane d — 1 unbound hyperplanes, (pi, ..., pq) in the primal
plane represents a hyperplane passing through the vertex defined by the
intersection of such hyperplanes. Since (p1,...,ps) € UP~(P), and all
hyperplanes in UP(P) are transformed in 1-half-planes, this also mean
that there does not exist another hyperplane H’, besides the one on which
(p1s ...y pa) lies, supporting UP(P) such that (py,...,p4—1,p)) € H' and

251
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Pl > p4. But, since H' would correspond to another vertex v’ of P, this
means that pg = maz,eve{Fpy(p1, -y pa-1)} = TOPY (py,y ey Pa—1)-

A similar reasoning can be done for BOTY.

< Suppose that TOPY (py,...,ps) = pa (thus, for Lemma 8.2, D((py, ..., pa)) is a
supporting hyperplane for P) and assume that (p1,...,pq) € UP~(P). There
are several cases:

L. (p1,..espq) € UP(P) U DOW N (P). Three different situations may arise:

(a)

There exist two points (pi, ..., p}}) and (pi, ..., pl)) such that pf] < pg <
p, and  such  that  (pi,...,p}) € UP~(P) and
(p1s .., pl)) € DOWN~(P). For the proof of = and Lemma 8.2, it
follows that in the primal plane these points represent hyperplane
which are supporting with respect to P. But this also means that
D((p1, ..., pa)) intersects P and is not supporting. But this leads to a
contradiction, since D((p1, ..., p4)) is supported by hypothesis.

There exists a point (pi, ..., p;) such that pg < p/, and (p1,...,p)) €
UP~(P) but there does not exist a point (py, ..., p}j) such that p/] < py
and (p1,...,p})) € DOWN~(P).

For the proof of = and Lemma 8.2 it follows that in the primal plane
point (py, ..., ;) represents a hyperplane which is supporting with re-
spect to P. However, for any real number ¢4 < pl;, D((p1,...,qq)) is
not a supporting hyperplane for P. Thus, (p1,...,ps) in the primal
plane is a hyperplane intersecting P but is not supporting. This leads
to a contradiction.

There exists a point (p,...,p}) such that p/, < p; and such that
(p1, ..., p}}) € DOWN™(P) but there does not exist a point (py, ..., p)
such that pg < p/] and such that (p1,...,p}}) € UP~(P).

The proof is similar to item (1.c).

2. (p1y..ypa) € UP(P)\ UP~(P). This means that a point (p1,...,p})
exists such that p/, < p; and such that (py,...,p)) € UP~(P). Thus,
D((p1,...,p};)) is supporting with respect to P. Moreover, by hypothesis,
TOPY (p1,...,pa—1) = pa; this means that there does not exist p/j < py
such that D((p1, ..., p])) is a supporting hyperplane for P and this leads to
a contradiction.

3. (p1,-... pa) € DOWN(P)\ DOWN~(P).

The proof is similar to item (2).



253

4. (p1y...,pa) € DOWNT(P). In this case, for the proof of =, this means
that BOTY (p1,...,p4—1) = pa. Since (p1,...,pq) € UP~(P), this means
that either there exists p/, > py such that (py,...,p}) € UP~(P) or there
does not exist any p/, such that (p1,...,p,;) € UP~(P). In the first case,
for the proof of =, D((p1,...,p})) is a supporting hyperplane for P; in
the second case, for any real number ¢ > pf), D((p1,...,¢4)) is not a
supporting hyperplane for P. In both cases, (p1, ..., p4) in the primal plane
is a hyperplane intersecting P but is not supporting. This leads to a
contradiction. a

Lemma 8.4 The following facts hold:

1. All points contained in UP(P) U DOW N (P) represent in the primal plane
hyperplanes that do not intersect P or are supporting with respect to P.

2. All points not contained in UP(P)U DOW N (P) represent in the primal plane
hyperplanes that intersect P but are not supporting with respect to P.

Proof:

1. Suppose that (p1, ..., ps) € UP™(P).

In this case, by Lemma 8.3, py = TOPF (py, ..., ps) and therefore hyperplane
D((p1, ..., p4)) is supporting with respect to P.

Now suppose that (pi,...,ps) € UP(P)\ UP~(P). In this case, there exists a
point (pi, ..., p})) such that p/, < pg and D((pu, ..., p}})) is supporting with respect
to P. This means that D(py, ..., p4s) does not intersect P.

A similar proof holds for points (p1, ..., ps) € DOWN™(P).

2. Suppose that (p1, ..., ps) € UP(P) U DOW N (P). For the proof of Lemma 8.3,
case (1.b), D((p1, ..., pd)) is not a supporting hyperplane. a

Theorem 8.1 For all points (X1, ..., X4-1):

Xg  if (Xq,....,Xq) e UP(P)
400 otherwise

Xy if (X1,.... X4) € DOWN-(P)

—oo0  otherwise

TOPY (X4, ..., Xq 1) =

BOTY (X4, ..., X4_1) = {

Proof: We present the proof for TOPY. A similar proof holds for BOTY .
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< Suppose that (21, ..., 24) € UP™(P). In this case the theorem follows from Lemma

8.3.
Now suppose that for all z4, (21,...,24) ¢ UP™(P). By Lemma 8.4, this
means that for each value x4, hyperplane D((zy,...,24)) intersects P but is

not supporting with respect to it. Due to the definition of TOPF, this means
that TOPY (X1, ..., X4_1) = +oc.

= Suppose that TOPF (21, ..., 24) = +0c0. From Lemma 8.3 it follows that there does
not exists x4 such that (21, ...,24) € UP~(P) and this concludes the proof.

Now suppose that TOPF (21, ...,24) = z4. In this case, the result follows from
Lemma 8.3. a



