
Universit�a degli Studi di MilanoDipartimento di Scienze dell'InformazionePh.D in Computer SciencePh.D. Thesis
Constraint Databases:Data Models and Architectural AspectsBarbara Catania

Internal Advisor: Prof. Elisa BertinoExternal Advisor: Dr. Gabriel Kuper

AbstractApplications requiring the support of database technology have been increasing inthe last few years. The need for sophisticated functionalities has also lead to theevolution of database theory, requiring the development of appropriate data modelsand optimization techniques.The need of representing composite data has lead to the de�nition of object-oriented and nested relational data models. Such models extend the traditional re-lational model to represent not only at data, modeled as sets of tuples, but alsocomplex data, obtained by arbitrary combinations of set and tuple constructors.More recently, other applications have required the use of database technology tomanage not only �nite data but also in�nite ones. This is the case of spatial andtemporal databases (i.e., databases representing spatial and temporal information).Starting from the observation that often in�nite information can be �nitely rep-resented by using mathematical constraints, constraint databases have been proposedwith the aim of inserting mathematical constraints both at the data and at the lan-guage level. At the data level, constraints allow the �nite representation of in�niteobjects. At the language level, constraints increase the expressive power of speci�cquery languages, by allowing mathematical computations. Di�erent mathematicaltheories can be chosen to represent and query di�erent types of information in di�er-ent database models.At least two di�erent issues should be addressed in order to make constraintdatabases a practical technology. First of all, advanced models have to be de�nedcombining the constraint formalism with the support for sophisticated functionalities.The de�nition of constraint data models for complex objects and the integration ofconstraint query languages with external primitives are only some of the topics thatshould be addressed. As a second aspect, architectures supporting the e�cient ma-nipulation of constraints have to be designed. In particular, optimization techniqueshave to be de�ned in order to e�ciently access constraint objects.In this dissertation, we investigate the extension of the relational model and thenested relational model with constraints, both from the point of view of data modelsI

IIand optimization techniques. Results about data modeling are presented in the �rstpart of the thesis, whereas results about optimization issues are presented in thesecond one.With respect to data modeling, we propose a new semantics for relational con-straint databases and we introduce data manipulation languages for this model. Inparticular, we propose an algebraic language and a calculus-based language, extendedwith external functions, and we prove their equivalence. As far as we know, this isthe �rst approach to integrate external functions in constraint query languages. Anupdate language is also proposed. As a second contribution, we formally present anested constraint relational model. This model overcomes most of the limitationsof the already proposed nested models by relying on a formal background based onstructural recursion and monads.With respect to optimization, we �rst discuss logical optimization for the proposedalgebraic language. Then, we introduce two new indexing techniques. The �rst isbased on a dual representation for multidimensional spatial objects and allows thee�cient detection of all objects that intersect or are contained in a given half-plane.The second technique is based on a segment representation of constraint databasesand e�ciently detects all segments intersecting a given segment, with a �xed direction.This result is an improvement with respect to the classical stabbing query problem,determining all segments intersecting a given line. The proposed techniques are alsotheoretically and experimentally compared with respect to other existing techniques,such as R-trees.

AbstractSempre pi�u frequentemente nuove applicazioni richiedono l'uso della tecnologia dellebasi di dati. Allo stesso tempo, la necessit�a di funzionalit�a sempre pi�u so�sticate hadeterminato un'evoluzione della teoria delle basi di dati, richiedendo lo sviluppo dimodelli dei dati e tecniche di ottimizzazione adeguati alle nuove esigenze.Il bisogno di rappresentare dati complessi ha portato, ad esempio, alla de�ni-zione delle basi di dati orientate ad oggetti e delle basi di dati relazionali annidate.Questi modelli estendono il tradizionale modello relazionale alla rappresentazione didati complessi, ottenuti dalla combinazione arbitraria di costruttori tupla e costruttoriinsieme. Pi�u, recentemente, altre applicazioni hanno richiesto l'uso delle basi di datiper rappresentare e manipolare non solo informazione �nita ma anche informazionein�nita. Questo �e il caso tipico delle basi di dati spaziali e temporali, che richiedonola manipolazione di aspetti spazio-temporali, tipicamente di natura in�nita (si pensiall'insieme dei punti che compongono un oggetto spaziale o ad un evento che si ripeteperiodicamente nel tempo).Partendo dall'osservazione che spesso l'informazione in�nita pu�o essere �nita-mente rappresentata utilizzando teorie logiche matematiche, le basi di dati con vincolisono state proposte come un nuovo modello che estende i modelli esistenti alla mo-dellazione e alla manipolazione di informazione in�nita tramite l'utilizzo di adeguateteorie logiche. I vincoli, cio�e le formule atomiche della teoria prescelta, possono essereutilizzati sotto due distinti punti di vista. Da un punto di vista della rappresentazionedei dati, essi permettono di rappresentare �nitamente oggetti di natura in�nita. Dalpunto di vista del linguaggio di interrogazione, essi estendono i tipici linguaggi allarappresentazione di computazioni matematiche. La scelta della teoria logica dipendeovviamente dal tipo di applicazione che si intende rappresentare.A�nch�e le basi di dati con vincoli diventino una tecnologia praticamente utilizza-bile, almeno due aspetti devono essere presi in considerazione. In primo luogo, �enecessario de�nire nuovi modelli dei dati in grado di sopperire ad esigenze applicativesempre pi�u complesse. La de�nizione di modelli in grado di integrare vincoli edoggetti complessi nonch�e l'introduzione di primitive esterne nei linguaggi con vincoliIII

IVsono alcuni esempi di problematiche che devono essere risolte. In secondo luogo, �enecessario de�nire nuove architetture che garantiscano una e�ciente manipolazionedei vincoli. In particolare, la de�nizione di tecniche di ottimizzazione si pone comeuna esigenza primaria.L'argomento centrale di questo lavoro di tesi �e l'introduzione del concetto di vin-colo nel contesto del modello relazionale e del modello relazionale annidato, sia dalpunto di vista dei modelli dei dati sia dal punto di vista dell'ottimizzazione del sis-tema. I risultati relativi alla modellazione verranno presentati nella prima parte dellatesi, mentre i risultati relativi all'ottimizzazione verranno presentati nella secondaparte.Per quanto riguarda la parte relativa alla modellazione, la tesi propone una nuovasemantica di riferimento per basi di dati relazionali con vincoli e introduce adeguatilinguaggi di manipolazione. In particolare, in analogia con il modello relazionale,verranno introdotti rispettivamente un linguaggio algebrico ed un linguaggio logico.Tali linguaggi, a di�erenza di altri linguaggi de�niti in letteratura, prevedono l'utilizzodi funzioni esterne per aumentare la capacit�a espressiva del linguaggio di base. L'equi-valenza tra i linguaggi proposti, in presenza di funzioni esterne, verr�a inoltre provataformalmente. Accanto alla de�nizione di opportuni linguaggi di interrogazione, la tesipropone inoltre un linguaggio per l'aggiornamento della base di dati, rappresentatasecondo il modello introdotto. Come secondo contributo, la tesi presenta un modelloformale per basi di dati relazionali annidate con vincoli. Questo modello estende imodelli di precedente de�nizione, utilizzando come base formale concetti relativi allaricorsione strutturale.Per quanto riguarda la parte relativa all'ottimizzazione, come primo contributo latesi introduce un sistema di regole di riscrittura per il linguaggio algebrico proposto.Quindi, verranno introdotte due nuove tecniche di indice per basi di dati con vincoli.La prima tecnica si basa su una rappresentazione duale de�nita per oggetti spazialimultidimensionali e permette di determinare in modo e�ciente tutti gli oggetti conten-uti o intersecanti un dato semipiano. La seconda tecnica assume una rappresentazionebasata su insiemi di segmenti e permette di determinare l'insieme dei segmenti cheintersecano un certo segmento dato, avente una direzione pre�ssata, con complessit�amolto vicina a quella ottima. Questo problema estende una classica problematicaanalizzata in letteratura, relativa alla determinaazione di tutti i segmenti che inter-secano una certa retta verticale. Le tecniche proposte saranno inoltre confrontate,teoricamente e sperimentamente, con altre tecniche esistenti.

VIII

Contents1 Introduction 11.1 A short introduction to constraint databases : : : : : : : : : : : : : : 21.2 Research problems and objectives : 31.3 Overview of this dissertation : 6I Data modeling in constraint databases 72 Introducing constraints in database systems 92.1 Constraints and database systems : 102.2 Using constraints to represent data : : : : : : : : : : : : : : : : : : : 122.2.1 Additional topics : 152.3 Using constraints to query data : 152.3.1 The generalized relational calculus : : : : : : : : : : : : : : : 162.3.2 The generalized relational algebra : : : : : : : : : : : : : : : : 182.3.3 Complexity of relational constraint languages : : : : : : : : : 222.3.4 Additional topics : 232.4 Modeling complex objects in constraint databases : : : : : : : : : : : 242.4.1 Introducing constraints in the nested relational model : : : : : 242.4.2 Introducing constraints in the object-oriented model : : : : : : 252.5 Applications of constraint databases : : : : : : : : : : : : : : : : : : : 262.5.1 Spatial applications : 262.5.2 Temporal applications : 292.6 Concluding remarks : 313 New languages for relational constraint databases 333.1 The extended generalized relational model : : : : : : : : : : : : : : : 343.1.1 Nested semantics for EGR supports : : : : : : : : : : : : : : : 35IX

X Contents3.1.2 Equivalence between EGR supports : : : : : : : : : : : : : : : 363.2 Extended generalized relational languages : : : : : : : : : : : : : : : 373.2.1 Relationship between languages and EGR supports : : : : : : 403.3 EGRA: a n-based generalized relational algebra : : : : : : : : : : : : 413.3.1 Properties of EGRA(�; f^;_g) : : : : : : : : : : : : : : : : : 443.4 ECAL: a n-based generalized relational calculus : : : : : : : : : : : : 553.4.1 Syntax of the extended generalized relational calculus : : : : : 563.4.2 Interpretation of ECAL objects : : : : : : : : : : : : : : : : : 603.5 External functions : 623.5.1 Introducing external functions in EGRA : : : : : : : : : : : : 653.5.2 Introducing external functions in ECAL : : : : : : : : : : : : 663.6 Equivalence between EGRA(�;F) and ECAL(�;F) : : : : : : : : : : 683.6.1 Translating EGRA(�;F) to ECAL(�;F) : : : : : : : : : : : : 693.6.2 Translating ECAL(�;F) to EGRA(�;F) : : : : : : : : : : : : 703.7 Concluding remarks : 734 An update language for relational constraint databases 754.1 Insert operators : 764.2 Delete operation : 784.3 Modify operators : 794.4 Concluding remarks : 825 A formal model for nested relational constraint databases 835.1 The generalized nested relational model : : : : : : : : : : : : : : : : : 845.2 The generalized nested relational calculus : : : : : : : : : : : : : : : : 865.3 Conservative extension property : 905.4 E�ective computability : 935.5 Data complexity : 955.6 Concluding remarks : 96II Optimization issues in constraint databases 976 Optimization techniques for constraint databases 996.1 Indexing : 1006.1.1 Data structures with good worst-case complexities : : : : : : : 1026.1.2 Approximation-based query processing : : : : : : : : : : : : : 1066.2 Query optimization : 1076.3 Concluding remarks : 109

Contents XI7 Logical rewriting rules for EGRA expressions 1117.1 Rewriting rules for GRA expressions : : : : : : : : : : : : : : : : : : 1117.2 Rewriting rules for EGRA expressions : : : : : : : : : : : : : : : : : 1137.2.1 Simpli�cation rules : 1157.2.2 Optimization rules : 1197.3 Issues in designing GRA and EGRA optimizers : : : : : : : : : : : : 1217.3.1 Basic issues in designing a GRA optimizer : : : : : : : : : : : 1227.3.2 Extending GRA optimizers to deal with set operators : : : : : 1237.4 Concluding remarks : 1258 A dual representation for indexing constraint databases 1278.1 Motivations and basic notation : 1288.2 The dual transformation : 1308.3 Intersection and containment with respect to a half-plane : : : : : : : 1368.4 Intersection and containment between two polyhedra : : : : : : : : : 1398.5 Secondary storage solutions for half-plane queries : : : : : : : : : : : 1428.5.1 A secondary storage solution for a weaker problem : : : : : : 1428.5.2 Secondary storage solutions for the general problem : : : : : : 1448.6 Approximating the query with two new queries : : : : : : : : : : : : : 1468.6.1 Extension to an arbitrary d-dimensional space : : : : : : : : : 1508.7 Approximating the query with a single new query : : : : : : : : : : : 1518.7.1 Extension to an arbitrary d-dimensional space : : : : : : : : : 1568.8 Using sector queries to approximate half-plane queries : : : : : : : : : 1578.8.1 Sector queries : 1578.8.2 Approximating half-plane queries by sector queries : : : : : : 1628.9 Theoretical comparison : 1658.9.1 EXIST selections : 1668.9.2 ALL selections : 1688.10 Preliminary experimental results : 1688.10.1 Comparing the performance of T1, T2, and T3 : : : : : : : : : 1698.10.2 Comparing the performance of T1, T2, and R-trees : : : : : : 1768.11 Concluding remarks : 1869 An indexing technique for segment databases 1899.1 Segment and constraint databases : 1909.2 Towards optimal indexing of segment databases : : : : : : : : : : : : 1939.3 Data structures for line-based segments : : : : : : : : : : : : : : : : : 1949.4 External storage of NCT segments : : : : : : : : : : : : : : : : : : : 2009.5 An improved solution to query NCT segments : : : : : : : : : : : : : 202

XII Contents9.5.1 First-level data structure : 2039.5.2 Second-level data structures : : : : : : : : : : : : : : : : : : : 2039.5.3 Fractional cascading : 2059.6 Preliminary experimental results : 2109.7 Concluding remarks : 21110 Conclusions 21310.1 Summary of the contributions : 21310.2 Topics for further research : 215Bibliography 217A Selected proofs of results presented in Chapter 3 229B Selected proofs of results presented in Chapter 5 243C Selected proofs of results presented in Chapter 8 251

Chapter 1IntroductionInformation is a crucial resource of any organization. Information must be acquired,processed, transmitted, and stored in order to be adequately used by the organizationitself. All these tasks are performed by the information system, which usually consistsof human resources and automatized tools and procedures to manage information. Aninformation system represents information in form of data. Each datum representsthe registration of the description of any characteristic of the reality to be modeled,on a persistent support (for example, a disk), by using a given set of symbols withan intended meaning for the users.The component of the information system providing facilities for maintaining largeamounts of data is called database system. A database system therefore consists ofa, typically large, set of logically integrated data stored on a persistent support (thedatabase) and a database management system (DBMS), providing several facilitiesfor storing and e�ciently manipulating data in the database.One of the main goals of a DBMS is to make available a non-ambiguous formalismto represent and manipulate information. Such a formalism is called data model. Datamanipulation is usually performed by providing a query language, to specify data tobe accessed, and an update language, to specify data modi�cations.Since databases are often very large and must be accessed and manipulated ac-cording to very strict time constraints, a basic requirement for data access and ma-nipulation is e�ciency. E�ciency is usually measured in terms of number of accessesof secondary storage. For these reasons, techniques have to be developed in orderto reduce the number of accesses during data access and manipulation. The speci�ctechniques to be used depend on the particular data representation, i.e., they dependon the chosen data model.The aim of this dissertation is the investigation of data models and optimization1

2 Chapter 1. Introductiontechniques for constraint databases, a new approach to represent and manipulatedata based on the use of mathematical constraints. In the following, after a briefintroduction to constraint databases, we introduce in Section 1.2 research problemsand objectives of this dissertation whereas Section 1.3 presents an overview of thedissertation.1.1 A short introduction to constraint databasesConstraint databases represent a recent area of research that extends traditional data-base systems by enriching both the data model and the query primitives with con-straints.The idea of programming with constraints is not new. This topic has been in-vestigated since the seventies in Arti�cial Intelligence [55, 99, 105, 134], GraphicalInterfaces [23], and Logic Programming [48, 51, 77, 143]. The constraint program-ming paradigm is fully declarative, in that it speci�es data and computations bystating how these data and computations are constrained.Due to the declarativity of the constraint programming paradigm, the introduc-tion of such a paradigm in database systems is very attractive. However, the �rstproposal to introduce constraints in database systems is relatively recent [83]. Con-straints, intended as atomic formulas of a decidable logical theory, can be inserted indatabase systems at two di�erent levels. At the data level, conjunctions of constraintsallow in�nite sets of objects (all tuples of values that make true the conjunction ofconstraints in the domain of the logical theory) to be �nitely represented. At the lan-guage level, constraints increase the expressive power of speci�c query languages byallowing mathematical computations to be expressed. Di�erent mathematical theoriescan be chosen to represent and query di�erent types of information.Due to their ability to �nitely represent in�nite information, constraint databasesrepresent a good framework for applications requiring the use of database technologyto manage not only �nite but also in�nite data. This is the case of spatial andtemporal databases. Spatial data are generally in�nite since spatial objects can beseen as composed of a possibly in�nite set of points. From a temporal perspective,in�nite information is very useful to represent situations that are repeated in time.The concept of constraint is orthogonal to the chosen data model. Approaches havebeen proposed to insert constraints in the relational model, in the nested relationalmodel, and in the object-oriented model. However, several issues, both related to thede�nition of advanced data models and to the design of e�cient architectures, havestill to be investigated in order to make constraint databases a practical technology.In this dissertation, we focus on the introduction of constraints in relational and

1.2. Research problems and objectives 3nested relational database systems, both from the point of view of data models andoptimization techniques.1.2 Research problems and objectivesThe main contributions of this dissertation can be summarized as follows.Data modeling. The integration of constraints in the relational model is possible byinterpreting a conjunction of constraints as a generalized tuple, �nitely representinga possibly in�nite set of relational tuples. In this model, a generalized relation isde�ned as a set of generalized tuples and �nitely represents a possibly in�nite setof relational tuples. The generalized relational calculus and the generalized relationalalgebra have been introduced as a natural extension of the relational calculus and therelational algebra to deal with in�nite, but �nitely representable, relations.Due to the semantics assigned to generalized relations, the user is forced to thinkin terms of single points (i.e., in terms of relational tuples) when specifying queries;as a consequence, the only way to manipulate generalized tuples as single objects isto assign to each generalized tuple an identi�er. This approach may be unsuitablewhen the constraint database is used to model spatial and temporal information, andin general, in all applications where it may be useful to manipulate generalized tuplesas single objects.The �rst contribution of this dissertation is the introduction of a new semanticsfor generalized relations, that overcomes the previous limitation. In the proposedsemantics (called nested semantics) each generalized relation is interpreted as a �niteset of possibly in�nite sets, each representing the extension (i.e., the set of solutions)of a generalized tuple in the domain of the chosen theory. Thus, the obtained modeladmits one level of nesting and represents a natural extension of the original relationalsemantics for constraint databases.By using this new semantics, we provide new manipulation languages for rela-tional constraint databases that allow the manipulation of generalized tuples as ifthey were single objects. In particular, we propose, and prove to be equivalent, anextended generalized algebra and an extended generalized calculus. One of the mostinteresting properties of these languages is that they contain operators dealing withexternal functions. The use of external functions is a very important topic in con-straint databases since the logical theory, chosen with respect to speci�c complexityand expressivity requirements, may not always support all the functionalities neededby the considered application. As an example, consider the use of the linear poly-nomial constraint theory in modeling a spatial application. This theory is usually

4 Chapter 1. Introductionchosen since it guarantees a good trade-o� between expressive power and compu-tational complexity. However, the computation of the Euclidean distance cannot berepresented by using this theory, even if this is a common operation in spatial data-bases [3]. This additional functionality can be provided by the constraint languagein the form of external functions.As we will see, the introduction of external functions complicates the proof of theequivalence of the proposed languages. In particular, the same technique used in [88]to prove the equivalence of the relational calculus and the relational algebra extendedwith aggregate functions (such as MAX, MIN, COUNT) has to be applied. As far aswe know, this is the �rst approach to integrate external functions in constraint querylanguages.Since a database system should provide languages to both query and modify thedatabase, an update language based on the nested semantics is also proposed.As we have already stated, the proposed model admits only one level of nesting.Some proposals exist in the literature to introduce constraints in the nested relationalmodel, thus admitting any level of nesting. However, most of them are de�ned onlyfor speci�c theories or model sets up to a given depth of nesting. Others do not havethis restriction, but the de�nition of a formal basis, that supports the de�nition andthe analysis of relevant language properties, has not been addressed.The second contribution of this dissertation, with respect to data modeling, is thepresentation of a formal nested constraint relational model, overcoming the limita-tions of other proposals. The de�nition of this model is based on structural recursionand monads.Some results about data modeling have already been published. In particular, res-ults about the extended generalized algebra can be found in [12, 13] whereas resultsabout the update language can be found in [14].Optimization issues. Each conjunction of constraints can be seen as the symbolicrepresentation of the extension of a spatial object. For this reason, optimization tech-niques proposed in the context of spatial databases can also be applied to constraintdatabases. However, constraint databases di�er from spatial databases in at least twoaspects:� typically, only 2- or 3-dimensional spatial objects are considered whereas con-straint databases generally represent arbitrary d-dimensional objects (this isuseful for example in Operations Research applications);� spatial objects are typically closed whereas constraint objects may be unbound.

1.2. Research problems and objectives 5For the previous reasons, optimization techniques developed in the context of spatialdatabases cannot always be e�ciently applied to constraint databases.The �rst contribution of the dissertation with respect to optimization is thepresentation of logical rewriting rules for the proposed extended generalized relationalalgebra. Logical rewriting rules allow rewriting algebraic expressions into equivalentexpressions that guarantee a more e�cient execution of the query they represent.Such rules are based on speci�c heuristics, such as performing selections as soon aspossible, in order to reduce the size of the intermediate results. The heuristics of thealgebraic approach are based on the assumption that selection conditions are readilyavailable. As it has been pointed out in [27], extracting such conditions from theconstraints of a query involves mathematical programming techniques which are ingeneral expensive. Therefore, rules presented for the relational algebra have to beextended and modi�ed in order to be applied to the proposed extended generalizedalgebra.The second group of contributions is related to the de�nition of indexing tech-niques for constraint databases. In particular, two new approaches are presented.The �rst approach introduces indexing techniques for constraint databases, repres-enting d-dimensional objects, based on the dual transformation for spatial objectspresented in [67]. These techniques allow the e�cient detection of all generalizedtuples that intersect or are contained in a given half-plane. The proposed techniquesare also experimentally compared with respect to R-trees, a well known spatial datastructure [71, 130]. The obtained results show that the proposed techniques performvery well in almost all situations. The second approach is based on a segment repres-entation for constraint databases. A technique is introduced to e�ciently determineall segments intersecting a given segment, with a �xed direction. Preliminary exper-imental results are also reported.Some results about the proposed indexing techniques have already been published.In particular, results about the indexing technique based on the dual representationcan be found in [19] whereas results about the technique based on the segment rep-resentation can be found in [20].The interested reader is referred to [18, 16] for some results, not discussed in thisdissertation, about the application of constraint databases to model and manipulateshapes in multimedia databases.

6 Chapter 1. Introduction1.3 Overview of this dissertationSince the dissertation covers two distinct but complementary topics { data modelingand query optimization { the dissertation has been organized in two parts, the �rstpresenting results about data modeling and the second presenting results about op-timization techniques. The �rst chapter of each part surveys the basic concepts andthe main results proposed in the context of constraint data modeling and constraintoptimization, respectively. More precisely, the thesis is organized as follows.Part I is dedicated to data modeling in constraint databases. Chapter 2 formallyintroduces relational constraint databases and surveys the existing proposals for in-troducing constraints in the nested relational model and in the object-oriented model.Examples of applications of constraints to model spatial and temporal data are alsopresented.In Chapter 3, the new reference model for relational constraint databases is in-troduced. The general properties of languages based on such a model are formallystated. Then, an algebra and a calculus based on this model and extended withexternal functions are introduced and proved to be equivalent.Chapter 4 presents an update language based on the same principles on whichlanguages introduced in Chapter 3 are based.In Chapter 5, a formal nested constraint relational model is introduced, over-coming the limitations of other proposals. The de�nition of this model is based onstructural recursion and monads.Part II deals with optimization techniques in constraint databases. Chapter 6 sur-veys the state of the art with respect to indexing techniques and query optimization.In Chapter 7, optimization rules for the algebraic language, introduced in Chapter3, are presented, pointing out the di�erences existing with respect to classical rela-tional optimization rules.In Chapter 8, an indexing technique for constraint databases representing objectsin an arbitrary d-dimensional space is introduced. This technique is based on a dualrepresentation for spatial objects, �rst proposed in [67].In Chapter 9, another indexing technique, based on a segment representation forconstraint databases is formally introduced.In Chapter 10 the contributions of this dissertation are summarized and futurework is outlined.Finally, three appendices are also included. They present the proofs of the mainresults introduced in Chapters 3, 5, and 8, respectively.

Part IData modeling in constraintdatabases

7

Chapter 2Introducing constraints indatabase systemsThe constraint programming paradigm has been successfully used in several areas,such as Arti�cial Intelligence [55, 99, 105, 134], Graphical Interfaces [23], and LogicProgramming [48, 51, 77, 143]. The main idea of constraint languages is to statea set of relations (constraints) among a set of objects in a given domain. It is atask of the constraint satisfaction system (or constraint solver) to �nd a solutionsatisfying these relations. An example of a constraint is F = 1:8 � C + 32, whereC and F are respectively the Celsius and Fahrenheit temperature. The constraintde�nes the relation existing between F and C. Thus, the constraint programmingparadigm is fully declarative, in that it speci�es computations by specifying howthese computations are constrained.Constraints have been used in several contexts. For example they have beensuccessfully integrated with Logic Programming, leading to the development of Con-straint Logic Programming (CLP) as a general-purpose framework for computation[77]. One reason for this success is that the operation of �rst-order term uni�cation isa form of e�cient constraint solving (for equality constraints only). More expressivepower can therefore be obtained by replacing uni�cation with more general constraintsolving techniques and allowing constraints in logic programs [48, 51, 77, 143]. Thisextension of logic programming has found applications in several contexts, includingOperations Research and Scienti�c Problem Solving.Even though constraints have been used in several �elds, only recently this para-digm has been introduced in database systems. The delay in developing this integra-tion has been due to the fact that for some time it was not clear how the bottom-up andset-at-a-time style of database query evaluation would be integrated with a top-down,9

10 Chapter 2. Introducing constraints in database systemsdepth-�rst evaluation typical of Constraint Logic Programming. The key intuition to�ll this gap is due to Kuper, Kanellakis and Revesz [83]:a tuple in traditional databases can be interpreted as a conjunction ofequality constraints between attributes of the tuple and values on a givendomain.The introduction of new logical theories to express relationships (i.e., constraints)between the attributes of a database item leads to the de�nition of Constraint Data-bases as a new research area, lying at the intersection of Database Management,Constraint Programming, Mathematical Logic, Computational Geometry, and Oper-ations Research.Note that this approach is di�erent from the traditional use of constraints indatabase systems to express conditions on the semantic correctness of data. Thoseconstraints are usually referred to as semantic integrity constraints. Integrity con-straints have no computational implications. Indeed, they are not used to executequeries (even if they can be used to improve execution performance [69]) but only tocheck database validity.The aim of this chapter is to introduce constraint databases from the point ofview of data modeling. Issues related to optimization of constraint databases willbe discussed in Chapter 6. The chapter is organized as follows. The basic aspectsrelated to the introduction of constraints in database systems are discussed in Section2.1. Section 2.2 deals with the use of constraints to model data whereas Section 2.3introduces constraint query languages. Section 2.4 surveys some approaches to modelcomplex objects in constraint databases. Finally, Section 2.5 discusses some relevantapplications of constraint databases and Section 2.6 presents some conclusions.2.1 Constraints and database systemsFormally, a constraint represents an atomic formula of a decidable logical theory [38].Each �rst order formula � with constraints (also called constraint formula), withfree variables X1; :::; Xn, is interpreted as a set of tuples (a1; :::; an) over the schemaX1; :::; Xn that satisfy �.By taking this point of view, constraints can be added to database systems atdi�erent levels:� At the data level, each constraint formula �nitely represents a possibly in�niteset of points (i.e., relational tuples). For example, the conjunction of constraintsX < 2^ Y > 3, where X and Y are real variables, represents the in�nite set oftuples having the X attribute less than 2 and the Y attribute greater than 3.

2.1. Constraints and database systems 11Thus, constraints are a powerful mechanism that can �nitely model in�niteinformation, such as spatial and temporal data. Indeed, spatial objects canbe seen as in�nite sets of points, corresponding to the solutions of particulararithmetic constraints. For example, the constraint X2 + Y 2 � 9 represents acircle with center in the point (0; 0) and with radius equal to 3. From a temporalperspective, constraints are very useful to represent situations that are in�nitelyrepeated in time. For example, we may think of a train leaving each day at thesame time.� At the query language level, constraints increase the expressive power of existingquery languages by allowing mathematical computations to be speci�ed. Thisintegration raises several issues. Constraint query languages should preserveall the nice features of relational languages. For example, they should be closed(i.e., the result of each query execution should be representable by using theunderlying data model) and bottom-up evaluable.In the following, we assume that each theory � is associated with a speci�c struc-ture of interpretation D, having D has domain [38]. To simplify the notation, we useD to denote both the interpretation structure and its domain [38]. Among the theoriesthat can be used to model and query data, we recall the following:� Real polynomial inequality constraints (poly): all the formulas of the formp(X1; :::; Xn) � 0, where p is a polynomial with real coe�cients in variablesX1; :::; Xn and � 2 f=; 6=;�; <;�; >g. The domainD is the set of real numbersand function symbols +, �, predicate symbols � and constants are interpretedin the standard way over D.� Dense linear order inequality constraints (dense): all the formulas of the formX�Y and X�c, where X; Y are variables, c is a constant and � 2 f=; 6=;�; <;�; >g. The domain D is a countably in�nite set (e.g. the rational numbers)with a binary relation which is a dense linear order. Constants and predicatesymbols � are interpreted in the standard way over D.� Equality constraints over an in�nite domain (eq): all the formulas of the formX�Y and X�c, where X; Y are variables, c is a constant and � 2 f=; 6=g. Thedomain D is a countably in�nite set (e.g. the integer numbers) but withoutorder. Constants and predicate symbols � are interpreted in the standard wayover D.When polynomials are linear, the corresponding class of constraints (lpoly) is ofparticular interest. Indeed, a wide range of applications (Geographic Information Sys-tems, Operations Research applications) use linear polynomials. Linear polynomials

12 Chapter 2. Introducing constraints in database systemshave been studied in various �elds (Linear Programming, Computational Geometry)and therefore several e�cient techniques have been developed to deal with them [94].In the logical theories listed above, variables range among elements of a certainnumerical domain (for example reals or rationals). Other classes of constraints havebeen considered, in which variables range among sets of elements of a certain domain[35, 122]. Such constraints are useful to represent and query complex objects (seeSection 2.4).As stated by Kanellakis, Kuper and Revesz, the integration of constraints in tra-ditional databases must not compromise the e�ciency of the system [83]. This meansthat the resulting languages must have a reasonable complexity and that optimizationtechniques already developed for traditional databases have to be extended to dealwith constraints. The second part of this dissertation deals with this topic.2.2 Using constraints to represent dataThe use of constraints to model data is based on the consideration that a relationaltuple is a particular type of constraint [83]. For example, the tuple (3; 4), contained ina relation r with two real attributes X and Y , can be interpreted as the conjunctionof equality constraints X = 3 ^ Y = 4.By adopting more general theories to represent constraints, the concept of re-lational tuple can be generalized to be a conjunction of constraints on the chosentheory. For example, the formula X < 2^ Y > 5, where X and Y are real variables,can be interpreted as a generalized tuple, representing the set of relational tuplesfX = a ^ Y = b j a < 2; b > 5; a 2 R; b 2 Rg. From the previous example, it followsthat the introduction of constraints at the data level allows us to �nitely representin�nite sets of relational tuples, all those representing solutions of the generalizedtuple in the domain associated with the chosen theory. In this framework, relationalattributes can still be represented by simple equality constraints.1Formally, the relational model can be extended to deal with constraints as follows.De�nition 2.1 (Generalized relational model) Let � be a decidable logical the-ory.� A generalized tuple t over variables X1; :::; Xk and on the logical theory � is a�nite conjunction '1 ^ :::^'N , where each 'i, 1 � i � N , is a constraint over�. The variables in each 'i are among X1; :::; Xk. The schema of t, denotedby �(t), is the set fX1; :::; Xkg.1This is a convenient simpli�cation from a theoretical point of view. However, from a practicalpoint of view, separately handling regular data and constraint data may have certain advantages.

2.2. Using constraints to represent data 13� A generalized relation r2 of arity k on � is a �nite set r = ft1; :::; tMg whereeach ti, 1 � i � M , is a generalized tuple over variables X1; :::; Xk and on �.The schema of r, denoted by �(r), is the set fX1; :::; Xkg. The degree of r,denoted by deg(r), is k.� A generalized database is a �nite set of generalized relations. The schema of ageneralized database is a set of relation names R1; :::; Rn, each with the corres-ponding schema. 2Generalized relations are interpreted as the �nite representation of a possiblyin�nite set of relational tuples.De�nition 2.2 (Relational semantics) Let � be a decidable logical theory. Let Dbe the domain of �. Let r = ft1; :::; tng be a generalized relation on �. Let ext(ti) =f�j� : �(ti) ! D;D j=� tig.3 A generalized tuple ti is inconsistent if ext(ti) = ;,i.e., if 6 9� such that D j=� ti. The relational semantics of r, denoted by rel(r), isext(t1) [::: [ext(tn). Two generalized tuples ti and tj, such that �(ti) = �(tj), areequivalent (denoted by ti �r tj) i� ext(ti) = ext(tj). Two generalized relations r1and r2 are r-equivalent (denoted by r1 �r r2) i� rel(r1) = rel(r2). 2The set ext(t) for a generalized tuple t, and the set rel(r) for a generalized relationr = ft1; :::; tng, are sets of assignments, making t or the formula t1 _ ::: _ tn true inthe considered domain. However, each assignment can be seen as a relational tuple.Therefore, in the following the elements of ext(t) or rel(r) are called either assignmentsor relational tuples, depending from the context.From the relational semantics of relational constraint databases it follows thatthere exists a strong connection between generalized tuples and spatial objects. Inparticular, a generalized tuple with d variables can always be interpreted as a d-dimensional spatial object.Example 2.1 Consider a spatial database consisting of a set of rectangles in theplane. A possible representation of this database in the relational model is with arelation containing a tuple of the form (n; a; b; c; d) for each rectangle. In such atuple, n is the name of the rectangle with corners (a; b), (a; d), (c; b) and (c; d). Inthe generalized relational model, rectangles can be represented by generalized tuples ofthe form (ID = n) ^ (a � X � c) ^ (b � Y � d). Figure 2.1 shows the rectanglescorresponding to the generalized tuples contained in relation r1 (white) and relationr2 (shadow). r1 contains the following generalized tuples:2In the following, we use lowercase letters to denote generalized relations and uppercase lettersto denote generalized relation names.3j= denotes the logical consequence symbol. Thus, D j=� ti means that ti� is true in D [38].

14 Chapter 2. Introducing constraints in database systems
1

1

r2,1

r1,1

r1,2

r1,3

r2,2

y=x-1

Figure 2.1: Relation r1 (white) and r2 (shadow).r1;1 : ID = 1 ^ 1 � X � 4 ^ 1 � Y � 2r1;2 : ID = 2 ^ 2 � X � 7 ^ 2 � Y � 3r1;3 : ID = 3 ^ 3 � X � 6 ^ �1 � Y � 1:5r2 contains the following generalized tuples:r2;1 : ID = 1 ^ �3 � X � �1 ^ 1 � Y � 4r2;2 : ID = 2^5 � X � 6^�3 � Y � 0. 3When dealing with the generalized relational model, a signi�cant problem is howgeneralized tuples are represented inside the database. A speci�c representation forgeneralized tuples is often called canonical form. The use of canonical forms shouldreduce tuple storage space and query execution time. In particular, as pointed out in[58], canonical forms should satisfy the following properties:� E�ciency. Canonical forms should be e�ciently computed and e�ciently stored.� Succinctness. By using canonical forms, the detection of inconsistent general-ized tuples should be e�ciently performed, possibly in constant time. Indeed,inconsistent generalized tuples do not contribute to the de�nition of the gen-eralized relation semantics but increase the storage occupied by the relation.Therefore, they should be removed from the database.

2.3. Using constraints to query data 15� Redundancy. Canonical forms are usually obtained by removing redundantconstraints from the original generalized tuples, since they not add any newinformation. In general, this is an expensive operation. Therefore, often, onlya partial removal of redundant constraints is performed.At the generalized relation level, redundancy corresponds to the presence ofgeneralized tuples whose extension have a non empty intersection. Canonicalforms for generalized relations should avoid this situation.� Updates. In a database system, it is highly desirable to perform insertions andupdates in time depending only on the size of the individual generalized tuple tobe inserted or updated. Since generalized tuples have to be converted into theircanonical form before being inserted or updated, the generation of the canonicalform must not require a scan of the entire relation.A canonical form for dense-order constraints, based on tableaux, has been pro-posed by Kanellakis and Goldin [82] whereas a canonical form for linear polynomialconstraints has been proposed in [61].2.2.1 Additional topicsAs we have seen, each generalized tuple represents a possibly in�nite set of relationaltuples, one for each assignment that makes the generalized tuple true in the domainof the chosen theory. Thus, an universal quanti�cation is assumed when assigning thesemantics to a generalized tuple.A di�erent approach has been taken in [91] and [133], where each generalizedtuple is interpreted in an existential way. This means that only one assignment thatmakes the generalized tuple true is taken as semantics of the generalized tuple. Thus,a generalized tuple is interpreted as a set of possible values for schema variables.In [133], several semantics with respect to di�erent understandings of incompleteinformation are also proposed.2.3 Using constraints to query dataFrom the language point of view, it is important to develop declarative, powerful,closed, and, at the same time, e�cient and bottom-up evaluable constraint querylanguages.A constraint language is closed if each query that can be expressed in the language,when applied to any input generalized database on a certain theory �, returns a newgeneralized relation that can be represented by using �. A constraint language is

16 Chapter 2. Introducing constraints in database systemsbottom-up evaluable if it is possible to assign a bottom-up semantics to any expressionof the language, i.e., the semantics is assigned by induction on the structure of theexpressions.The basic idea in de�ning a constraint query language is to extend an alreadyexisting query language to deal with constraints. Such integration should preserve the\philosophy" of the host language and add only a few new concepts. In de�ning suchlanguages, a careful balance between expressive power, computational complexity,and e�cient representation should be achieved. This is in general possible by usingMathematical Programming (e.g. [129]), Computational Geometry (e.g. [118]) andOperations Research (e.g. [147]) techniques.One of the �rst approaches in this direction has been proposed by Hansen, Hansen,Lucas and van Emde Boas [72]. In their proposal, constraints modeling in�nite rela-tions are used to increase the expressive power of relational languages. However, theydo not introduce constraints at the data level. The �rst general principle underlyingthe design of constraint database languages has been proposed by Kanellakis, Kuperand Revesz [83]. In their paper, the syntax of a constraint query language is de�nedas the union of an existing database query language and a decidable logical theory.Another fundamental property of data manipulation languages is declarativity.By using a declarative language, a user can specify what he/she wants to retrievewithout specifying how the items of interest have to be retrieved. However, to makepossible query optimization and e�cient evaluation, declarative user queries have tobe translated into equivalent procedural expressions before they are optimized andevaluated. In the relational model, the relational algebra represents the procedurallanguage corresponding to the declarative relational calculus. Similarly to the rela-tional model, two languages, the generalized relational calculus and the generalizedrelational algebra, for the generalized relational model are proposed and proved to beequivalent.In the following we survey both the generalized relational calculus and the general-ized relational algebra. Then, we briey introduce complexity of constraint languagesand survey some further topics related to constraint query languages, such as the in-troduction of aggregate functions and recursion.2.3.1 The generalized relational calculusThe syntax of a calculus-based constraint query language can be de�ned as the unionof an existing calculus-based query language and a decidable logical theory. In therelational model, the relational calculus is de�ned as �rst order logic extended with anadditional predicate symbol for each relation name [47]. By extending the relationalmodel with a logical theory, each constraint of the theory becomes a new atomic

2.3. Using constraints to query data 17formula for the considered query language.Example 2.2 Consider a generalized relation name R, having as schema fID;X;Y g, with the meaning introduced in Example 2.1. In order to express the queryretrieving all the pairs of intersecting rectangles, using the relational approach, wehave to write:4f(n1; n2) j n1 6= n2 ^ (9 a1; a2; b1; b2; c1; c2; d1; d2)(R(n1; a1; b1; c1; d1) ^R(n2; a2; b2; c2; d2)^(9x; y 2 fa1; a2; b1; b2; c1; c2; d1; d2g)(a1 � x � c1 ^ b1 � y � d1 ^ a2 � x � c2 ^ b2 � y � d2))gIn the generalized relational calculus, the above query is expressed as follows:f(n1; n2) j n1 6= n2 ^ (9x; y)(R(n1; x; y)^R(n2; x; y))g.Note that the use of constraint query languages supports more compact and clearerquery representation.A query to retrieve all rectangles intersecting the half-plane Y � X+2 is expressedas follows:f(n1) j (9x; y) (R(n1; x; y)^ y � x+ 2)g.In the previous expression, constraint y � x + 2 is used to express a condition ondata. 3In order to formally de�ne the semantics of generalized relational calculus ex-pressions, predicate symbols and constraints have to be interpreted. The meaningof predicate symbols depends on the input generalized relations, whereas the mean-ing of the constraint symbols depends on the particular constraint theory. Thus, thesemantics of the language is based on the semantics of the chosen decidable logical the-ory, by interpreting database atoms as shorthand for formulas of the theory. Formally,let � = �(x1; :::; xn) be a calculus expression using free variables x1; :::; xn. Let pre-dicate symbols R1; :::; Rm in � name the input generalized relations and let r1; :::; rmbe the corresponding input generalized relations. Let �[r1=R1; ::::; rm=Rm] be theformula of the theory obtained by replacing each database atom Ri(z1; :::; zk) in �with the formula corresponding to the input generalized relation ri, with its variablesappropriately renamed to z1; :::; zk. The output is the possibly in�nite set of points inthe n-dimensional space Dn, such that the instantiation of the free variables x1; :::; xmof formula �[r1=R1; ::::; rm=Rm] to any one of these points makes the formula true.4We use uppercase letters to denote variables belonging to the relation schema and lowercaseletters to denote variables inside calculus expressions.

18 Chapter 2. Introducing constraints in database systemsExample 2.3 Consider a generalized relation r containing the generalized tuplesID = 1 ^ X � 2 ^ Y � 1 and ID = 2 ^ X = 3 ^ Y � 4. Let �(n1; n2) be the�rst query presented in Example 2.2. The result of the query, when applied to r, canbe represented as follows:f(a1; a2) j �[R=r][a1=n1; a2=n2] is truegwhere �[R=r] denotes the formula obtained by replacing R(n1; x; y) in � with theformula (n1 = 1^x � 2^ y � 1)_ (n1 = 2^x = 3^ y � 4) and R(n2; x; y) in � withthe formula (n2 = 1 ^ x � 2 ^ y � 1) _ (n2 = 2 ^ x = 3 ^ y � 4). The result of thisquery is the set of all the pairs (a1; a2) such that, when n1 is replaced with a1 and n2is replaced with a2, �[R=r] is evaluated to true. 3In the following, the set of generalized calculus expressions is denoted by GCAL.From a formal point of view, each query language L is associated with a semanticfunction �. Such function takes an expression e of the language and returns a newfunction, called query, representing the semantics of e. Thus, �(e) is a function thattakes a database, represented by using the considered data model, and returns a newdatabase.5 In the following, the set of queries, represented by the language obtainedby extending the relational calculus with a logical theory �, is denoted by GCAL(�).Not all combinations of the relational calculus with decidable logical theories leadto a closed constraint query language, as the following example shows.Example 2.4 Consider the theory of real polynomial equalities. These are con-straints of the form p(x1; :::; xn) � 0, where � is = or 6=. Let R(X; Y) be a bin-ary predicate symbol for the input generalized relation fY = X2g. The result of9x:R(x; y) is the set fY j Y � 0g, which cannot be represented by polynomial equalityconstraints. 3A fundamental property of the relational calculus is safety [140]. Safety guaranteesthat the result of any calculus expression is a �nite relation. This assumption issuperuous for the generalized relational calculus; indeed, if the language is closed,the result of any query can be �nitely represented by using the chosen theory �.2.3.2 The generalized relational algebraThe algebraic approach represents the correct formalism to obtain both a formalspeci�cation of the language and a suitable basis for implementation.5Actually, �(e) is a query if it is a partial mapping between database instances, invariant withrespect to permutations of the domain [36].

2.3. Using constraints to query data 19The class of algebras (one for each decidable theory) we present in the following isa direct extension of the relational algebra and is derived from the algebra presentedin [59, 82, 115]. Since we do not consider any particular theory, no assumption aboutthe constraint representation is used in de�ning such algebra.Table 2.1 presents the operators of the algebra.6 Following the approach proposedin [81], each operator of Table 2.1 is described by using two kinds of clauses: thosepresenting the schema restrictions required by the argument relations and by theresult relation, and those introducing the operator semantics. R1; :::; Rn are relationnames and e represents the syntactic expression under analysis. The semantics ofexpressions is described by using an interpretation function � that takes an expressione and returns the corresponding query. The query takes a set of generalized relationson a theory � and computes a new generalized relation as result.Finally, note that Table 2.1, together with the resulting relation, also presents therelational semantics of such relation.7 Table 2.1 thus de�nes a class of algebras, onefor each logical theory �.From the de�nition of operators, it follows that the algebra is closed if projectionand complement operators guarantee closure. Since projecting out some variableslogically corresponds to existentially quantifying a formula and then removing thequanti�er, closure of the projection operator is guaranteed if the chosen logical theoryadmits variable elimination [38]. A theory admits variable elimination if each formula9XF (X) of the theory is equivalent to a formula G, where X does not appear. Onthe other hand, the complement operator is closed if the logical theory is closed undercomplementation, i.e., if, when c is a constraint of �, then :c is equivalent to anotherconstraint c0 of �.Given a constraint theory �, admitting variable elimination and closed under com-plementation, we denote by GRA(�) the set of all the queries that can be expressedin the algebra on theory � and with GRA the set of corresponding expressions.GRA(�) satis�es an important property: the result of the application of a GRA(�)query to a generalized database corresponds to the application of the correspondingrelational algebra query to the relational database, represented by the relational se-mantics of the input generalized relations. This property is stated by the following6Complement has been included to prove the equivalence of the generalized relational algebrawith the generalized relational calculus. Actually, the algebra proposed in [82] does not include thecomplement operator. This operator can be simulated if a relation representing all possible relationaltuples on the given domain is provided. In our setting, we assume that algebraic operators can onlybe applied to relations belonging to the database schema. Therefore, we need to explicitly includethis operator.7Other interpretations could have been de�ned, maintaining the same semantics for resultingrelations.

20 Chapter 2. Introducing constraints in database systemsOp. name Syntax e Semantics r = �(e)(r1 ; :::; rn)an 2 f1; 2gRestrictionsatomic relation R1 rel(r) = rel(r1)r = r1�(e)b = �(R)selection �P (R1) rel(r) = ft j t 2 rel(r1); t 2 ext(P)gr = ft ^ P j t 2 r1; ext(t^ P) 6= ;g�(P) � �(R1)�(e) = �(R1)renaming %[AjB](R1) rel(r) = ft[A j B]c: t 2 rel(r1)gr = ft[A j B] : t 2 r1 gA 2 �(R1);B 62 �(R1)�(e) = (�(R1) n fAg) [fBgunion R1 [R2 rel(r) = rel(r1) [rel(r2)r = ft j t 2 r1 or t 2 r2g�(e) = �(R1) = �(R2)projection �[Xi1 ;:::;Xip](R1) rel(r) = f�[Xi1 ;:::;Xip](t)d: t 2 rel(r1)gr = St2r1 �[Xi1 ;:::;Xip](t)e�(R1) = fX1; :::;Xmg�(e) = fXi1 ; :::;Xipg�(e) � �(R)natural join R1 1 R2 rel(r) = ft1 1 t2 : t1 2 rel(r1); t2 2 rel(r2)gr = ft1 ^ t2 j t1 2 r1; t2 2 r2; ext(t1 ^ t2) 6= ;g�(e) = �(R1) [�(R2)complement :R1 rel(r) = ft j t 62 rel(r1)gr = ft1; :::; tm j t1 _ ::: _ tm is the disjunctivenormal form of :t1 ^ :::^ :tn;r1 = ft1; :::; tng;ext(ti) 6= ;; i = 1; :::;mg�(e) = �(R1)aWe assume that ri does not contain inconsistent generalized tuples, i = 1; :::;n.bWe denote by �(e) the schema of the relation obtained by evaluating the query correspondingto expression e.cGiven an expression F , F [A j B] replace variable A in F with variable B.dThis is the relational projection operator.eGiven a generalized tuple t, the expression �[Xi1 ;:::;Xip](t) represents the set of generalized tuplesobtained by applying a quanti�er elimination algorithm to the formula 9�(R1) n fXi1 ; :::;Xipg t.Table 2.1: GRA operators.

2.3. Using constraints to query data 21Op. name Syntax e Restrictions Derived expressiondi�erence R1 nR2 �(e) = �(R1) = �(R2) R1 1 :R2Cartesian product R1 �R2 �(r1) \ �(r2) = ; R1 1 R2�(e) = �(R1) [�(R2)intersection R1 \R2 �(e) = �(R1) = �(R2) R1 1 R2Table 2.2: GRA derived operators.proposition.Proposition 2.1 (Closure property) [82] Let OP be a GRA operator and letOP rel be the corresponding relational algebra operator. Let ri, i = 1; :::; n, be gener-alized relations on theory �. Thenrel(�(OP)(r1; :::; rn)) = �(OP rel) (rel(r1); :::; rel(rn)). 2By using the operators of Table 2.1, some useful derived operators can be de�ned,whose semantics is described in Table 2.2.It has been proved that, given a theory � admitting variable elimination and closedunder complementation, GRA(�) and GCAL(�) are equivalent [82].2.3.2.1 Operation e�ciencyFrom a formal point of view, generalized algebraic operators are a direct extension ofrelational algebraic operators dealing with in�nite relations. The same does not holdfor their implementation. Indeed, algorithms for implementing generalized relationalalgebra operators are signi�cantly di�erent from those for the relational algebra, sincethey rely on approaches developed in mathematical programming, computational geo-metry, and operations research.A minimal requirement for practical constraint databases is that each algebraicoperation must be \e�ciently implementable". This means that the additional op-erations that must be performed to evaluate algebraic operators, with respect to thecorresponding relational ones, must have a \reasonable cost". In general, for general-ized tuples containingm constraints and k variables, algorithms should be polynomialin m and k (also called strongly polynomial algorithms). The main algorithms thathave to be applied in evaluating algebraic operators can be summarized as follows:� Projection. One of the most critical issue in designing a \good" algebra is tomake projection simple and cheap. Indeed, projection is a very trivial operationin relational databases; however, in constraint databases, this operation concep-tually corresponds to the application of an existential quanti�er elimination

22 Chapter 2. Introducing constraints in database systemsalgorithm (for example, the Fourier-Motzkin algorithm [129]) to a generalizedtuple. In general, for a set of m linear constraints with k variables, eliminationof some variables has a worst case complexity bound exponential in m and k.This complexity is too high when these algorithms are applied in query exe-cution. Strongly polynomial algorithms for dense-order constraints and for aspeci�c class of linear constraints have been proposed [58, 59, 26].In order to reduce the overhead deriving from the application of the projectionoperator, it may be useful to delay projection until the relation has to be re-turned to the user [58]. Under this approach, existentially quanti�ed variablesare maintained inside generalized tuples contained in a generalized relation,leading to a lazy representation of the relation itself.� Satis�ability check. As we have already stated, inconsistent generalized tuplesshould be removed, in order to reduce the occupancy of the relation and thequery execution time. In order to detect inconsistent generalized tuples, a sat-is�ability check must be performed. The satis�ability check is usually performedby eliminating all variables and establishing if the obtained formula is alwaystrue in the considered domain. Such algorithms have worst-case polynomialtime complexity in k and m [74].� Redundancy elimination. Algebraic operators often introduce redundant con-straints inside the generalized tuples. For example, projection of a generalizedtuple often contains more constraints than the original tuple, most of them be-ing redundant. A similar situation arises for selection, join, and complementthat, by conjuncting di�erent generalized tuples, may introduce redundant con-straints in the generalized tuples. Finally, when performing the union of tworelations, redundant tuples, corresponding to the presence of duplicates in therelation, should be removed.Redundancy elimination is a very expensive operation. For example, by as-suming we deal with lpoly, removing redundant generalized tuples from ageneralized relation is a co-NP complete problem [131].2.3.3 Complexity of relational constraint languagesConstraint query languages can be used in practice only if the data complexity ofthe queries they represent is low. The data complexity of a query Q is the timecomplexity, measured with respect to the size of the database, of a Turing machinethat, given an input database d, produces a new databaseQ(d) as output, assuming a

2.3. Using constraints to query data 23standard encoding of the database [83, 144] (see [8] for an introduction to structuralcomplexity).The data complexity of a language is considered acceptable if it is in PTIME, i.e.,if all queries that can be expressed in the language can be executed in polynomialtime in the size of the input database.Data complexity is a common tool for analyzing expressibility in �nite modeltheory. The complexity parameter in data complexity is the number of items containedin the database. Therefore, in constraint databases, this corresponds to the number ofgeneralized tuples contained in the input generalized relations. Under this approach,the number of variables k contained in the generalized tuples is treated as a constant[37, 144]. This use of data complexity distinguishes the constraint database frameworkfrom arbitrary, and inherently exponential, theorem proving.Under the hypothesis of data complexity, many combinations of database querylanguages and decidable theories have PTIME data complexity [3, 65, 92, 121]. Forexample, the relational calculus extended with poly is in NC whereas the relationalcalculus extended with dense or eq is in LOGSPACE. Note however that this doesnot necessarily means that the algorithms used are e�cient. Indeed, data complex-ity often hides parameters in which algorithms are exponential (this is the case ofparameter k for projection) in a large constant [113].2.3.4 Additional topicsIn order to be practically usable, constraint query languages should support all func-tionalities of typical relational languages, such as SQL.In this respect, an interesting issue is related to the integration of aggregate func-tions inside constraint query languages. Aggregate operators in the relational contextallow the expression of statistical operations such as AVG, MIN, COUNT [88]. Whendealing with constraint databases, some aggregate operators, such as COUNT, are notapplicable, since relations are in�nite. However, other operators, such as length, areaand volume, have to be considered [93].The introduction of such aggregate functions in constraint query languages mayresult in new languages that are not closed. This is true for any of the interesting classof constraints, i.e., dense-order, linear, or polynomial constraints [93]. In [45], someaggregate operators under which constraint query languages are closed are presented.In [44] a restriction on the schema of constraint databases is proposed to guaranteeclosure of languages dealing with aggregate functions.Another operation which is nowadays essential for expressing practical queriesis recursion. It is well known that recursion cannot be expressed by using �rstorder logic. Constraint query languages dealing with recursion can be obtained by

24 Chapter 2. Introducing constraints in database systemsintroducing constraints in logic-based query languages, such as Datalog [83]. As foraggregate functions, the main problem is to de�ne query languages having a tractable,i.e., polynomial data complexity and guaranteeing closure. We refer the reader to[60, 83] for some work on this topic.Finally, as with any other database system, constraint database systems shouldinclude update languages. This is an essential aspect in order to de�ne a completedata manipulation language for constraint databases. The only work on this topic weare aware of has been developed by Revesz [123]. Starting from the consideration thatusers should specify which kind on information has to be inserted in the database,without specifying how this can be achieved, Revesz introduces the concept of model-theoretical minimal change [85] for relational constraint databases, based on poly.2.4 Modeling complex objects in constraint databasesThe generalized relational model extends the relational model to deal with possiblyin�nite, but �nitely representable, relations. Thus, it inherits all its modeling limit-ations. For example, it cannot model complex entities nor support modular schemade�nitions. The need to represent composite data has lead to the de�nition of object-oriented data models [22] and nested relational data models [1]. Such models extendthe traditional relational model to model not only at data, represented by set oftuples, but also complex data, obtained by arbitrary combinations of set and tupleconstructors.An interesting topic is how the object-oriented data model and the nested rela-tional data model can be extended to deal with constraints. In the following, wesurvey the approaches proposed in the literature for both kinds of extensions. Table2.3 classi�es these approaches according to four criteria: the underlying data model;the chosen theory and the underlying query language; the maximal allowed set depth;the data complexity.2.4.1 Introducing constraints in the nested relational modelThe simplest idea for introducing constraints in the nested relational model is to usegeneralized tuples to �nitely represent in�nite sets of tuples. As for the generalizedrelational model, it is necessary to provide a framework for extending the nestedrelational model with an arbitrary decidable logical theory. This allows the model tobe used in di�erent types of applications.The �rst approach towards the de�nition of such a model has been proposedby Grumbach and Su [65]. The proposed language, called C-CALC, is obtained

2.4. Modeling complex objects in constraint databases 25Language Theory Max. ComplexityUnderlying nestingquery languageLyriC lpoly n � 0 � PTIMEXSQL [87]Datalog�P(Z) set constraints on in-teger numbers 2 � EXPTIMEDatalogC-CALC dense n � 0 � H-EXPTIMErelational calculus forcomplex objects [75]FO(Region; Region0) - 2 it depends on Regionand Region0FOTable 2.3: Language comparison.by extending the nested relational calculus [75] to deal with in�nite sets, �nitelyrepresentable with dense.The main limitation of C-CALC is that its semantics is well de�ned only fordense. Thus, the language cannot be used for real-life spatial applications, whereat least linear polynomial constraints are needed. Moreover, the data complexity ofC-CALC is hyper-exponential (denoted by H-EXPTIME in Table 2.3) in the size ofthe database. The high complexity is mainly due to the fact that variables may rangeover sets.Another proposal to introduce complex objects into the relational model is dueto Revesz, which proposed the Datalog�P(Z) language. This language allows therepresentation of possibly in�nite sets of integers by extending Datalog to deal with setconstraints [35, 122]. The data complexity of this language is exponential. Moreover,it does not allow arbitrarily complex objects to be represented but only a speci�ctype of sets.Finally, we also recall the languages proposed in [112], where �rst-order logic(FO) is extended to deal with quanti�ers ranging over speci�c regions (i.e., sets ofpoints) and not over points, as usual.2.4.2 Introducing constraints in the object-oriented modelBrodsky and Kornatsky [28] introduce constraints as �rst-class objects in an object-oriented framework. To guarantee a low data complexity, lpoly is considered. How-ever, the framework can be extended to deal with any other logical theory.In this approach, constraint formulas (usually represented by existentially quanti-

26 Chapter 2. Introducing constraints in database systems�ed disjunctions of conjunctions of constraints) are interpreted as objects, in the usualobject-oriented terminology [22]. Object identi�ers are represented by object canon-ical forms. Thus, equivalent constraints with di�erent canonical forms are considereddi�erent objects. Constraint objects are organized in classes. The class CST (k)identi�es all constraints with k variables. Methods are in this case represented bythe usual operations on constraints, such as union and intersection. An inheritancehierarchy exists between constraint classes. In particular, CST (k+ 1) is considereda subclass of CST (k).To query the object-oriented database, a language, called LyriC, has been pro-posed, extending a typical object-oriented query language [87] to the new constraintframework. This language is equivalent to the usual generalized relational calculus,extended with linear polynomial constraints.As a �nal consideration it is important to note the main di�erence between theintroduction of constraints in the relational or the nested relational model, and inthe object-oriented model. In the latter case, the model is extended to deal with anew type of object. In the former case, a speci�c type of constraint formulas, thegeneralized relations, represents the model itself [25].2.5 Applications of constraint databasesFrom an application point of view, at least two main characteristics make constraintdatabases attractive:� Constraints are characterized by a high modeling power and can serve as auniform data type for conceptual representation of heterogeneous data, includingspatial and temporal data and complex design requirements.� Constraint query languages use the same formalism to represent typical datamanipulation operators, instead of using a separate operator for each type oftransformation, as it is typically done in spatial and temporal databases.For these characteristics, constraint databases are suitable to model spatio-tempo-ral applications, including multidimensional design [28], resource allocation, data fu-sion and sensor control, shape manipulation in multimedia databases [18, 16]. In thefollowing we survey some of the speci�c topics arising when using constraints to modelspatial and temporal applications.2.5.1 Spatial applicationsSpatial applications require both relational query features, arithmetic computationand extensibility to de�ne new spatial data. Both the relational and the object-

2.5. Applications of constraint databases 27oriented model fail to model spatial data. Indeed, extensions of database systemswith spatial operators typically are: (i) limited to low (typically 2- or 3-) dimensionalspaces; (ii) have query languages restricted to prede�ned spatio-temporal operators;(iii) lack global �ltering and optimization. Moreover, spatial and non-spatial data areoften not homogeneously integrated.The previous drawbacks can be overcome by constraint databases because:� They support a homogeneous description of spatial data together with simplerelational data.� The geometry of point sets is implicit in the concept of constraint.� Constraint theories often support a direct implementation of spatial operators,simplifying query optimization.Kanellakis claims that by generalizing the relational formalism to the constraintformalism, it is in principle possible to generalize all the key features of the relationaldata model to spatial data models [80]. A �rst step in this direction is representedby the constraint relational algebra proposed for spatial databases by Paredaens etal. [114, 115].According to the de�nition of spatial data given in [70], lpoly has the su�cientexpressive power to describe the geometric component of spatial data in geographicalapplications [94]. In order to represent geometry of geographical objects by usingconstraints, the approach is to use a generalized relation with n variables representingpoints of a n-dimensional space.Note that concave spatial objects cannot be represented by a single generalizedtuple. Rather, a set of generalized tuples is needed containing one generalized tuplerespectively for each convex object belonging to the convex decomposition of thecomposite spatial object. Moreover, an identi�er should be assigned to all generalizedtuples representing the same object.The types of point-sets of E2 which can be described by using generalized tupleson lpoly are shown in Table 2.4. The �rst three types, POINT, SEGMENT andCONVEX, correspond to conjunctions of constraints of the lpoly. The fourth type,COMPOSITE Spatial Object, corresponds to a set of generalized tuples. In thetable, we restrict our attention to the Euclidean Plane (E2) and we assume thatthe generalized relation schema is fID;X; Y g. Variable ID represents the objectidenti�er whereas variables X and Y represent the object points.Generalized relational languages introduced in Section 2.3 can be used to directlymodel typical spatial manipulations, as discussed in the following example.

28 Chapter 2. Introducing constraints in database systemsGraphical Analytical Representation in lpolyarepresentation representationPOINT(p)rp p = (x; y) Cp(p) � (ID = cid)b^(X � x = 0) ^(Y � y = 0)SEGMENT(s)����rqP1 q P2 s = (P1 = (x1; y1)P2 = (x2; y1)r : ax+ by + c = 0 Cs(s) �(ID = cid)^(x1 �X � 0) ^ (X � x2 � 0)^(aX + bY + c = 0)cCONVEX(c)��bb��r0 rirnP0 PiPn c = (Pi = (xi; yi)ri : aix+ bix+ ci = 0i = 0! n Ccx(c) �(ID = cid)^(sg(P1; P2)(a1X + b1Y + c1) � 0)^ :::: ^(sg(Pn�1; Pn)(anX + bnY + cn) � 0)dCOMPOSITE(csp)q q������QQQp p ppp��AA��AAp1 p2s1 s2s3c1 c2 csp = (p1 [::: [pn) [(s1 [:::[sm) [(c1 [:::[cl) Cct(csp) �(ID = cid)^fCp(p1) ^ ID = cid; :::;Cp(pn) ^ ID = cidg [fCs(s1) ^ ID = cid; :::;Cs(sm) ^ ID = cidg [fCcx(c1) ^ ID = cid; :::;Ccx(sl) ^ ID = cidgaIn all the presented tables, symbol � is used to denote syntactic equivalence.bcid is a numeric constant.cOne or both of the �rst two disjuncts of this formula can be removed if a semi straight line ora complete straight line has to be represented.dThe introduction of the function sg() is necessary in order to take into account that the polygonalregion represented by a simple polygon is always on the left side of the polygon itself. Thus, functionsg(P1; P2) returns 1 or �1 according to the direction of the line de�ned by P1 and P2.Table 2.4: Representation of point-sets of the Euclidean Plane in lpoly.

2.5. Applications of constraint databases 29Query GRA expression ConditionsRANGE ERASE QUERY:calculate all spatial objectsobtained as di�erence ofeach object in R with a rect-angle rt 2 E2 R n �P (R [:R)a P � Ccx(rt)b�(P) = fX;Y gRANGE QUERY ON PRO-JECTION: retrieve all spa-tial objects in R whose pro-jection on the X axis inter-sects the interval [x0; x1] �[ID](�P (�[ID;X](R))) 1 R P � (x0 � X) ^ (X � x1)SPATIAL INTER-SECTION: generate all spa-tial objects that are intersec-tion between one object in Rand one object in S R 1 %[IDjID0](S)aThe di�erence operator (n) is de�ned as derived operator in Table 2.2.bCcx() is de�ned in Table 2.4.Table 2.5: Examples of spatial queries in GRA(lpoly).Example 2.5 (GRA(�) for spatial applications) Table 2.5 shows some spatialqueries referring to a geographical application (the reader can refer to [50, 57, 70,128, 139] for some examples of spatial query languages and models). For each query,the table contains a textual description and the mapping to GRA. Queries refer totwo sets of spatial objects, which are represented by two generalized relations R and Son lpoly, where �(R) = �(S) = fID;X; Y g. ID is the generalized tuple identi�erwhereas X and Y represent points of the spatial objects. 32.5.2 Temporal applicationsThe management of temporal information is an important topic in current databaseresearch. Due to their ability to �nitely model in�nite sets of points, generalizeddatabases have been successfully used to represent in�nite temporal information [10,79, 109], arising when describing situations that are repeated in time. Linear repeatingpoints are a typical type of constraints used for these purposes. A linear repeatingpoint has the form c + kn, where c and k are integer numbers and variable n takesvalues from the set of all integer numbers. Thus, each linear repeating point representsan in�nite sequence of time points. A generalized tuple in most temporal modelsconsists of a set of linear repeating points and a set of non-temporal data values.

30 Chapter 2. Introducing constraints in database systemsAnalytical Representation in denseand graphical representationINSTANT (i) Cins(i) � (ID = cid)a ^ (X = k)-ikINTERVAL (int) Cint(int) � (ID = cid)^(X � k1) ^ (X � k2)-k1 k2intNON-CONTIGUOUS INTERVAL (intD)(i1 [::: [in) [(int1 [::: [intm) Cnci(intD) � fID = cid ^Cins(i1); :::;ID = cid ^Cins(in)g [fID = cid ^Cint(int1); :::;ID = cid ^Cint(intm)g-int1 i1 intm inacid is a numeric constant.Table 2.6: Representation of subsets of the axis of time in dense.Additional constraint on temporal attributes can be added to each tuple.The representation of time intervals is another interesting application for con-straint databases. An interval consists of a time duration which is bound by twoendpoints. These endpoints are instants on the time axis. An interval degenerates toan instant when its endpoints coincide. Moreover, an interval is non-contiguous if itdoes not contain all instants of the axis of time which lie between its endpoints. Thedense-order constraint theory is su�cient to represent the types INSTANT, INTER-VAL and NON-CONTIGUOUS INTERVAL, as shown in Table 2.6.Note that non-contiguous intervals, similarly to composite spatial objects, canonly be represented by using sets of generalized tuples.The generalized relational languages introduced in Section 2.3 can be used todirectly model typical temporal manipulations, as discussed in the following example.Example 2.6 (GRA(�) for temporal applications) Table 2.7 shows some quer-ies involving temporal data. The queries concern the trains arriving at a transitstation S and leaving from the same station S. The entire set of information isrepresented by a generalized relation A on dense with four variables (ID; F; I; T).

2.6. Concluding remarks 31Query GRA expression ConditionsINSTANT QUERY: selectall trains standing by at sta-tion S at time t �[ID](�P (A)) P � Cins(t)a�(P) = fIgINTERVAL QUERY: re-trieve all trains that leaveto station 3 after time t, to-gether with their departurestation �[ID;F](�P (�Q (A))) P � (T = 3)Q � QPost(Cins(t))b�(Q) = fIgTEMPORAL JOIN: re-trieve all trains with destin-ation station 3, standing byat station S together with atrain from station 4 �[ID;ID0](�P (A) 1 A0)A0 = %[IDjID0;FjF 0 ;TjT 0](�Q (A)) P � (T = 3)Q � (F = 4)aCins() is de�ned in Table 2.6.bQPost(t) is a short form for the set of instants that follow the intervals represented by t.Table 2.7: Examples of temporal queries GRA(dense).Variable I represents the interval during which the train stops at station S, variableF represents the numeric code of the departure station of the train, and variable Trepresents the numeric code of the destination station of the train. Finally, vari-able ID uniquely identi�es each group of information (thus, it is a generalized tupleidenti�er). The time is expressed in minutes from the beginning of the day. 32.6 Concluding remarksConstraint databases are a young research area. In this chapter we have investigatedthe main issues arising in the extension of existing data models with constraints andwe have surveyed several approaches.Three main constraint database system prototypes have already been developed.CCUBE [30] is a constraint object-oriented database system. It has been implemen-ted on top of a commercial object-oriented database system and supports standarddatabase features. The query language provided is LyriC. The database supportsextensible constraint families, aggregation, optimization and indexing.Another implementation e�ort is the DISCO system [35]. DISCO (Datalog withInteger and Set Order COnstraints) has a high expressive power, due to the class ofconstraints considered and the underlying query language (see Section 2.4). However,its data complexity is exponential in the size of the database and it does not support

32 Chapter 2. Introducing constraints in database systemsimportant database features such as persistent storage.Finally, DEDALE [62, 63] is a prototype of recent de�nition, introducing linearconstraints inside the generalized relational calculus. Like CCUBE, DEDALE hasalso been implemented on the top of an object-oriented database system. The mainissue in developing such a system has been the comparison of two di�erent data-base technology: constraint databases and spatial databases. For this reason, severaloptimization issues have also been considered in the development of such a system.As a �nal remark, it is useful to recall that an important direction of research isthe analysis of the expressive power of constraint query languages. In this respect,the main questions are whether and how some typical spatial and temporal queriescan be expressed in a constraint query language based on a given theory �. We referthe reader to [3, 15, 64, 66, 92, 142] for some results on this topic.Besides the work on constraint databases reported in this chapter, constraintshave also been considered in the database literature to optimize deductive queries, i.e.,queries expressed using logical rules [140]. In particular, the problem of manipulatingand repositioning constraints inside logical rules has been extensively investigated[86, 95, 100, 106, 132, 135].

Chapter 3New languages for relationalconstraint databasesThe languages presented in Section 2.3 handle a generalized relation as a (possiblyin�nite) set of relational tuples. This approach forces the user to think in term ofsingle points when specifying queries; as a consequence, the only way to manipulategeneralized tuples as single objects is to assign an identi�er to each generalized tuple.We believe that the relational semantics is not the only way to assign a meaningto generalized relations. In particular, a generalized relation can also be interpretedas a nested relation [1, 2], containing a �nite number of possibly in�nite sets, eachcorresponding to the extension of a generalized tuple.By assigning a nested semantics to generalized relations, the user has to thinkin term of sets. Therefore, new languages should be introduced in order to be ableto manipulate generalized relations under the new semantics. In particular, suchlanguages should manipulate generalized relations in two di�erent ways:� As a possibly in�nite set of points in a d-dimensional space: a typical exampleis the detection of the intersection of the extension of a set of generalized tupleswith a speci�c region of space. This type of manipulation is called point-based.� As a �nite set of objects, each represented by a possibly in�nite set of points:a typical example is the detection of all generalized tuples whose extensionis contained in the extension of a given generalized tuple. In this case, thesame computation is applied to all the points belonging to the extension of thegeneralized tuple. This type of manipulation is called object-based.The aim of this chapter is the introduction of the nested semantics and of somelanguages based on it. As a second contribution we investigate the issue of intro-33

34 Chapter 3. New languages for relational constraint databasesducing external functions in the proposed languages. This is a very important topicin constraint databases. Indeed, the chosen logical theory is often not adequate tosupport all the functionalities needed by the considered application. Such additionalfunctionalities can be made available in the constraint language in the form of externalfunctions.The chapter is organized as follows. We �rst extend the de�nition and the se-mantics of generalized tuples, by introducing the nested semantics (Section 3.1).Then, we propose a classi�cation of generalized relational languages for constraintdatabases (Section 3.2) with respect to the semantics on which they are based (eitherrelational or nested). An algebra and a calculus based on the nested semantics areintroduced in Section 3.3 and Section 3.4, respectively. The introduction of externalfunctions in the proposed languages is investigated in Section 3.5 whereas in Section3.6 we formally prove their equivalence. Finally, Section 3.7 presents some concludingremarks.3.1 The extended generalized relational modelAs we have seen, each generalized tuple represents a (possibly in�nite) set of rela-tional tuples. In Section 2.2, generalized tuples have been de�ned as conjunctions ofconstraints. Thus, an arbitrary set, which can be represented in FO extended withthe theory � without quanti�ers, cannot always be represented as the extension of ageneralized tuple. In particular, only convex sets of points can be represented by asingle generalized tuple. Non-convex sets of points can only be represented by usingseveral generalized tuples (see Section 2.5).In the following, we extend the de�nition of generalized tuple, in order to expressmore general sets in their extension. This is possible by using additional logicalconnectives. The basic requirement is that generalized tuples must be quanti�er-free, to guarantee an e�cient computation. As we will see in Section 3.2, the use ofmore expressive generalized tuples increases the expressive power of some classes ofconstraint languages.De�nition 3.1 (Extended generalized relational model) Let � be a decidablelogical theory and � a set of FO logical connectives without quanti�ers (� is called asignature). A generalized tuple on � and � over variables X1; :::; Xk is a FO formulawhose free variables belong to X1; :::; Xk, atoms are atomic formulas on �, and logicalconnectives belong to �. A generalized relation on � and � is a set of generalizedtuples over � and �; a generalized database on � and � is a set of generalizedrelations on � and �. 2

3.1. The extended generalized relational model 35Notice that, under the new de�nition, generalized tuples introduced in De�nition2.1 are generalized tuples on � and f^g.Since we have de�ned � to be a set of FO logical connectives without quanti�-ers, the only possible signatures are: f^g; f_g; f^;_g; f:;^g; f:;_g; f:;^;_g. Byconsidering only theories � closed under complementation, the sets of all general-ized tuples on � and one of the signatures f^;_g; f:;^g; f:;_g; f:;^;_g coincide.Therefore, in the following, to simplify the notation, we only consider the signaturesf^g; f_g, and f^;_g. Generalized tuples on � and f^;_g allow us to represent allthe sets that can be characterized in FO without quanti�ers and are called disjunctivegeneralized tuples or d-generalized tuples.For what we will discuss in the following, it is useful to denote in some way the setof generalized relations on � and �, leading to the de�nition of extended generalizedrelational support.De�nition 3.2 (EGR support) Let � be a decidable logical theory and � a signa-ture. The set of all generalized relations over � and � (denoted by S(�;�)) is calledextended generalized relational support (EGR support for short) over � and �. 2Note that the generalized relations introduced in De�nition 2.1 belong toS(�; f^g).Example 3.1 Tables 3.1 and 3.2 show how composite spatial objects and non-conti-guous intervals can be represented by using disjunctive generalized tuples. In such arepresentation, each disjunct represents, respectively, a convex polygon belonging tothe convex decomposition of the original object, or either an instant or an intervalbelonging to the representation of the non-contiguous interval. No generalized tupleidenti�er is needed in this case. 33.1.1 Nested semantics for EGR supportsThe relational semantics is not the only way to assign a meaning to generalizedrelations. In particular, generalized relations can be interpreted as nested-relations[1, 2]. A nested-relation is a relation in which attributes may contain sets as values. Ageneralized relation can be interpreted as a nested-relation containing a �nite numberof possibly in�nite sets, each representing the extension of a generalized tuple. Thisinterpretation leads to the de�nition of the following semantics.De�nition 3.3 (Nested semantics) Let r = ft1; :::; tmg be a generalized relation.The nested semantics of r, denoted by nested(r), is the set fext(t1); :::;

36 Chapter 3. New languages for relational constraint databasesGraphical Analytical Representation usingrepresentation representation d-gen. tuples in lpolyCOMPOSITE (csp)q q������QQQp p ppp��AA��AAp1 p2s1 s2s3c1 c2 csp = (p1 [:::[pn) [(s1 [::: [sm) [(c1 [::: [cl) Cct(csp) �(Cp(p1) _ :::_Cp(pn)) _(Cs(s1) _ :::_Cs(sm)) _(Ccx(c1) _ :::_Ccx(sl))Table 3.1: Representation of concave sets of points in the Euclidean Plane in lpoly.Analytical and Representation usinggraphical representation d-gen. tuples in denseNON-CONTIGUOUS INTERVAL (intD)(i1 [:::[in) [(int1 [::: [intm) Cnci(intD) � (Cins(i1) _ :::_Cins(in)) _(Cint(int1) _ :::_ Cint(intm))-int1 i1 intm inTable 3.2: Representation of non-contiguous subsets of the axis of time. in denseext(tm)g. Two generalized relations r1 and r2 are n-equivalent (denoted by r1 �n r2)i� nested(r1) = nested(r2). 2Note that distinct generalized tuples with the same extension represent the sameobject. From De�nition 3.3 it follows that, if two generalized relations are n-equivalent,they are also r-equivalent [13]. However, the converse does not hold, as shown by thefollowing example.Example 3.2 Consider a generalized relation r1 containing only the generalized tuple1 � X � 2 ^ 2 � Y � 4 and the generalized relation r2 containing the generalizedtuples 1 � X � 2^ 2 � Y � 3 and 1 � X � 2^ 3 � Y � 4. It is simple to show thatr1 �r r2. However, r1 6�n r2, since the sets represented inside r1; r2 are di�erent. 33.1.2 Equivalence between EGR supportsThe aim of this subsection is to compare the expressive power of di�erent EGRsupports with particular attention to S(�; f^;_g) and S(�; f^g). For this purpose,

3.2. Extended generalized relational languages 37we �rst introduce the concept of containment and equivalence for supports. Wepropose a general de�nition of these concepts, considering supports with arbitrarytheories and signatures.De�nition 3.4 (Equivalence of EGR supports) Let S(�;�1) andS(�;�2) be two EGR supports. Let t 2 fr; ng. S(�;�1) t-contains S(�;�2) (de-noted by S(�;�1) �t S(�;�2)) i� for each generalized relation r 2 S(�;�2) thereexists a generalized relation r0 2 S(�;�1) such that r �t r0. S(�;�1) and S(�;�2)are t-equivalent (denoted by S(�;�1) �t S(�;�2)) i� S(�;�1) t-contains S(�;�2)and S(�;�2) t-contains S(�;�1). 2From the properties of �rst-order logical connectives [38], the following resultholds.Proposition 3.1 Let S(�;�1) and S(�;�2) be two EGR supports.S(�;�1) �r S(�;�2) i� the signature �1[f_g is equivalent1 to �2[f_g. S(�;�1) �nS(�;�2) i� the signature �1 is equivalent to �2. 2From the previous proposition, it follows that S(�; f^;_g) is r-equivalent toS(�; f^g), but S(�; f^;_g) is not n-equivalent to S(�; f^g).3.2 Extended generalized relational languagesThe classes of algebraic and calculus-based languages (one for each decidable logicaltheory admitting variable elimination and closed under complementation) presentedin Subsection 2.3 are based on the relational semantics for generalized databases (seeTable 2.1 and Proposition 2.1).In general, when adopting the nested semantics for generalized relations, otheroperators can be de�ned, considering the extension of each generalized tuple as asingle object. The following example better clari�es which operations can be useful.Example 3.3 Consider a relation R, representing spatial objects contained in theEuclidean plane and having schema N;X; Y , where N is a generalized tuple identi�erand X and Y represent the object points. Consider the query \Find all objects in Rthat are contained in the object o". Let P be the generalized tuple representing \o"1Two sets of �rst-order logic operators A and B are equivalent i� for each formula that can beexpressed by using operators in A there exists an equivalent formula, expressed by using operatorsin B, and vice versa.

38 Chapter 3. New languages for relational constraint databasesin the Euclidean space. Let �(P) = fX; Y g. This query is expressed in GRA(�) asfollows: (�[ID](R) n (�[ID](R n �P (ID)))) 1 R:The previous expression has the following meaning:� �P (R) selects the points (X; Y) of R contained in P , together with the identi�erof the object to which they belong.� �[ID](R n �P (R)) selects the identi�ers of the objects having at least one pointnot contained in P . Thus, all the retrieved identi�ers correspond to objects notcontained in P .� �[ID](R) n (�[ID](R n �P (R))) selects the identi�ers of the objects contained inP .� (�[ID](R) n (�[ID](R n �P (R)))) 1 R selects the objects contained in P .The previous expression is not very simple to write and to understand, even ifthe query is one of the most common in spatial applications. The problem is that thequery deals with the extension of generalized tuples taken as a single object, whereas,in general, GRA operators deal with single relational tuples, belonging to the extensionof generalized tuples. 3In a general setting, we believe that at least two classes of languages to manipulategeneralized relations can be designed:� R-based languages. R-based languages are such that the relational semantics ofthe result of any query they can express is equivalent to the result of an equival-ent relational language query, when applied to a set of relations representing therelational semantics of the input generalized relations (as the algebras presentedin Subsection 2.3.2).� N-based languages. N-based algebras are such that the nested semantics of theresult of any query they can express is equivalent to the result of an equivalentnested-relational language query [1, 2], when applied to a set of nested relationsrepresenting the nested semantics of the input generalized relations.All relational algebra expressions can obviously be expressed in the nested rela-tional algebra. The same holds for the calculus. It has been proved that also theopposite result holds [116], when input and output relations are not nested objects.When input/output relations are nested objects, the equivalence is guaranteed by theuse of object identi�ers to code nested objects into at ones [141].

3.2. Extended generalized relational languages 39rel=nestedrel=nested ?? --q0q r0n+1rn+1r01; :::; r0nr1; :::; rnFigure 3.1: R-based and n-based languages.In the remainder of this paper, we use the following notation. Let L be a constraintrelational language.� L(�) is the set of all the queries that can be expressed in L (also called semanticlanguage). Thus, for each expression e 2 L, there exists a function �(e) 2 L(�)representing the semantics of e.Note that each query in L(�) is a function with polymorphic type, since it canbe applied to arbitrary supports. Moreover, there exists a one-to-one corres-pondence between expressions contained in L and queries contained in L(�).For this reason, in the following, when it is clear from the context, we use in-di�erently L and L(�) to denote both the syntactic and the semantic language.Similarly, an expression e is also used to denote the semantic function �(e).� L(�;�) is the set of all the queries contained in L(�) and having S(�;�) assupport.Note that, by using this notation, GRA(�), introduced in Subsection 2.3.2,corresponds to GRA(�; f^g). Thus, from now on, we use this notation.We can �nally introduce n-based and r-based languages.De�nition 3.5 (R-based and n-based languages) Let L be a constraint querylanguage. Let � be a logical theory admitting variable elimination and closed undercomplementation. Let Rel be the set of all relational queries. Let N Rel be the setof all nested-relational queries. Then:� L(�) is r-based i� there exists a query mapping h : L(�) ! Rel such thath(q) = q0 and for all supports S(�;�), for all generalized relations ri 2 S(�;�),i = 1; :::; n, rel(q(r1; :::; rn)) = q'(rel(r1); :::; rel(rn)) (see Figure 3.1).

40 Chapter 3. New languages for relational constraint databases� L(�) is n-based i� there exists a query mapping h : L(�) ! N Rel such thath(q) = q0 and for all supports S(�;�), for all generalized relations ri 2 S(�;�),i = 1; :::; n, nested(q(r1; :::; rn)) = q'(nested(r1); :::; nested(rn)) (see Figure3.1). 2Note that De�nition 3.5 implies that algebraic operators are independent of thechosen support, i.e., similar computations can be applied to di�erent supports.Moreover, from De�nition 3.5 and Proposition 2.1, it follows that GRA(�) andCAL(�) are r-based.Since relational operators are part of any nested-relational algebra, r-based al-gebras are also n-based. The same holds for the calculus. We call strict n-basedlanguages the languages that are n-based but are not r-based.3.2.1 Relationship between languages and EGR supportsGiven two semantic languages, the relationships existing between the supports onwhich they are based allow the detection of some relationships between the express-ive power of such languages. In order to formalize these notions, the concept ofequivalence between languages is introduced.De�nition 3.6 (Equivalence between languages) Let L1 and L2 be two con-straint query languages. Let � be a decidable theory, admitting variable eliminationand closed under complementation. Let S(�;�1) and S(�;�2) be two EGR sup-ports. Let t 2 fr; ng. L1(�;�1) is t-contained in L2(�;�2) (denoted by L1(�;�1) �tL2(�;�2)) i� for each query q 2 L1(�;�1) there exists a query q0 2 L2(�;�2) suchthat for each input generalized relation ri 2 S(�;�1), i = 1; :::; n, a generalized rela-tion r0i 2 S(�;�2) exists such that ri �t r0i and q(r1; :::; rn) �t q0(r01; :::; r0n). L1(�;�1)is t-equivalent to L2(�;�2) (denoted by L1(�;�1) �t L2(�;�2)) i� L2(�;�2) �tL1(�;�1) and L2(�;�2) �t L1(�;�1). 2In the following, if the queries associated with two expressions e1 and e2 aret-equivalent we write e1 �t e2.Note that in the previous de�nition of equivalence, equivalent expressions takeequivalent input relations. We now analyze the expressive power of a constraintlanguage L(�) with respect to di�erent EGR supports (proofs of the following resultsare presented in Appendix A).Proposition 3.2 Let L1 and L2 = L be two constraint query languages. Let � bea decidable theory admitting variable elimination and closed under complementation.Let t 2 fr; ng. The following facts hold:

3.3. EGRA: a n-based generalized relational algebra 411. If Li(�) is t-based, then for all S(�;�1); S(�;�2), S(�;�1) �t S(�;�2) i�Li(�;�1) �t Li(�;�2).2. If L1(�;�1) �t L2(�;�2) then S(�;�1) �t S(�;�2). 2Since GRA(�) is r-based and S(�; f^g) �r S(�; f^;_g), Proposition 3.2 impliesthat queries that can be expressed in GRA(�; f^g) can also be expressed by usingGRA(�; f^;_g).Another interesting property is stated by the following proposition.Proposition 3.3 Let L be a constraint query language. Let � be a decidable theoryadmitting variable elimination and closed under complementation. Let t 2 fr; ng. LetS(�;�1) and S(�;�2) be two EGR supports. If L(�) is t-based, for all q 2 L(�),for all r1; :::; rn 2 S(�;�1) and for all r01; :::; r0n 2 S(�;�2), such that r0i �t ri,q(r1; :::; rn) �t q(r01; :::; r0n) holds. 2Proposition 3.3 speci�es that queries expressed in a t-based language are inde-pendent of the particular representation given to t-equivalent generalized relations.Note that the previous propositions, as well as De�nition 3.5, imply that the semanticsof operators is independent of the chosen support.3.3 EGRA: a n-based generalized relational algebraIn the following, we present a n-based algebra for constraint databases that we callExtended Generalized Relational Algebra, since it is obtained by extending the gen-eralized relational algebra with new operators. In particular, it provides two sets ofoperators, representing two di�erent types of data manipulation:1. Set operators. They apply a certain object-based computation to groups ofrelational tuples, each represented by the extension of a generalized tuple.Consider a generalized relationR(X; Y) where each generalized tuple representsa rectangle. Each tuple has the form: X � a1^X � a2^Y � b1^Y � b2. If wewant to know which rectangles are contained in a given space, each generalizedtuple must be interpreted as a single object and a subset of the input rectanglesmust be returned as query answer.2. Tuple operators. They apply a certain point-based computation to generalizedrelations and assign a given nested representation to the result. As an exampleof an application, consider again a generalized relation R(X; Y) where eachgeneralized tuple represents a rectangle. The detection of the set of points

42 Chapter 3. New languages for relational constraint databasesrepresenting the intersection of each rectangle with a given spatial object is atypical tuple operation.Note that, under the nested semantics, tuple operators apply computations torelational tuples, nested inside sets and represented by generalized tuples.We believe that both types of operators are useful when dealing with constraint data-bases, since they correspond to two complementary types of generalized tuple manip-ulations.The new syntactic language is denoted by EGRA. EGRA operators are the fol-lowing:� Tuple operators, except complement, are exactly the operators introduced inTable 2.1.The EGRA complement operator always returns a generalized relation whichis relationally equivalent to the generalized relation returned by the GRA com-plement operator (when both operators are applied to the same generalizedrelation). However, such resulting relations are not nested equivalent.� Set operators are the following:1. Set di�erence. Given two generalized relations r1 and r2, this operatorreturns all generalized tuples contained in r1 for which there does notexist an equivalent generalized tuple contained in r2. This is the usualdi�erence operation in nested-relational databases [1, 2].2. Set complement. Given a generalized relation r, this operator returns ageneralized relation containing a generalized tuple t0 for each generalizedtuple t contained in r; t0 is the disjunctive normal form of the formula :t.3. Set selection. This operator selects from a generalized relation all thegeneralized tuples satisfying a certain condition. The condition is of theform (Q1; Q2; �), where � 2 f�; (16= ;)g and Q1 and Q2 are either:{ A generalized tuple P on the chosen support.{ Expressions generated by operators ft=0;�[X1;:::;Xn]=1g. t representsthe input generalized tuple whereas the interpretation of �[X1;:::;Xn] isa function taking a generalized tuple t0 and returning the projectionof t0 on variables X1; :::; Xn.In order to point out that Q1 and Q2 are applied on a single generalizedtuple t, in the following they will be denoted byQ1(t) andQ2(t). Moreover,for the sake of simplicity, they will be used to represent both the syntacticexpressions and their semantic function.

3.3. EGRA: a n-based generalized relational algebra 43Op. name Syntax e Semantics r = �(e)(r1; : : : ; rn); n 2 f1; 2gaRestrictionsTuple operatorsatomicrelation R1 rel(r) = rel(r1)r = r1selection �P (R1) r = ft ^ P : t 2 r1; ext(t ^ P) 6= ;g�(P) � �(R1)�(e) = �(R1)renaming %[AjB](R1) r = ft[A j B] : t 2 r1gA 2 �(e);B 62 �(e)�(e) = (�(R1) n fAg) [fBgprojection �[Xi1 ;:::;Xip](R1) r = f�[Xi1 ;:::;Xip](t) j t 2 r1g�(R1) = fX1; :::;Xmg�(e) = fXi1 ; :::;Xipg�(e) � �(R)natural join R1 1 R2 r = ft1 ^ t2 : t1 2 r1; t2 2 r2; ext(t1 ^ t2) 6= ;g�(e) = �(R1) [�(R2)complement :R r = ft1 _ :::_ tm j t1_ :::_ tm is the disjunctivenormal form of :t1^:::^:tn; r1 = ft1; :::; tng;ext(ti) 6= ;; i = 1; :::;mg�(e) = �(R)Set operatorsunion R1 [R2 r = ft : t 2 r1 or t 2 r2g�(R1) = �(R2) = �(e)set di�erence R1 ns R2 r = ft : t 2 r1; 6 9t0 2 r2 : ext(t) = ext(t0)g�(R1) = �(R2) = �(e)setcomplement :sR1 r = fnot tb: t 2 r1; ext(not t) 6= ;g�(e) = �(R1)set selection �s(Q1;Q2 ;�))(R1) r = ft : t 2 r1;ext(Q1(t)) � ext(�[�(Q1)](Q2(t)))g�(Q1) � �(Q2)�(e) = �(R1)�s(Q1;Q2 ;16=;))(R1) r = ft : t 2 r1; ext(Q1(t)) \ ext(Q2(t)) 6= ;g�(Q1) = �(Q2)�(e) = �(R1)aWe assume that ri does not contain inconsistent generalized tuples, i = 1; :::;n.bThe expression not t represents the disjunctive normal form of the formula :t.Table 3.3: EGRA operators.

44 Chapter 3. New languages for relational constraint databasesThe set selection operator with condition (Q1; Q2; �), applied on a general-ized relation r, selects from r only the generalized tuples t for which thereexists a relation � between ext(Q1(t)) and ext(Q2(t)). When a conditionC is satis�ed by a generalized tuple, we denote this fact by C(t).The possible meanings of � operators are the following:{ � = �: in this case, we require that �(Q1) � �(Q2). It selects allgeneralized tuples t in r such that ext(Q1(t)) � ext(�[�(Q1)](Q2(t))).{ � = 16= ;: in this case, we require that �(Q1) = �(Q2). It selects allgeneralized tuples t in r such that ext(Q1(t))\ ext(Q2(t)) 6= ;.Note that, since the considered theory � is decidable, set selection condi-tions are also decidable.Table 3.3 presents set and tuple operators, according to the notation introducedin Subsection 2.3.2. Note that, in order to guarantee operator closure, EGRA op-erators can only be applied to generalized relations belonging to the EGR supportS(�; f^;_g), where � is a logical theory admitting variable elimination and closedunder complementation. Thus, from now on, EGRA(�) should be interpreted as ashorthand for EGRA(�; f^;_g).It can be easily shown that EGRA(�) operators are independent, i.e., the semanticfunction of no operator can be expressed as the composition of the semantic functionsassociated with other operators [13].Example 3.4 Tables 3.4 and 3.5 show examples of spatial and temporal queries inEGRA(lpoly) and EGRA(dense) respectively. Generalized relations are interpretedas in Examples 2.5 and 2.6. 3Clearly, all GRA derived operators can also be seen as EGRA derived operators.However, by using set operators, other EGRA derived operators can be de�ned, whosesemantics is described in Table 3.6. For a more detailed description, see [13].3.3.1 Properties of EGRA(�; f^;_g)In the following we prove that:1. EGRA(�) is a n-based algebra.2. GRA(�;�1) 6�r EGRA(�; f^;_g), and therefore GRA(�;�1) 6�nEGRA(�; f^;_g), for all �1.However, we introduce a weaker notion of equivalence and we show thatGRA(�;�1) and EGRA(�; f^;_g), under speci�c conditions for �1, are equi-valent under this new de�nition.

3.3. EGRA: a n-based generalized relational algebra 45Query EGRA ConditionsaexpressionRANGE INTERSECTIONQUERY: select all spatialobjects in R that intersectthe region of space identi�edby a given rectangle rt 2 E2 �s(t;P;(16=;))(R) P � Ccx(rt)�(P) = fX;Y gRANGE CONTAINMENTQUERY: select all spatialobjects in R that are con-tained in the region of thespace identi�ed by a givenrectangle rt 2 E2 �s(t;P;�) (R) P � Ccx(rt)�(P) = fX;Y gADJACENT QUERY: se-lect all spatial objects in Rthat are adjacent to a spatialobject sp 2 E2 �sc1 (�sc2(R)) P � Ccp(sp)�(P) = fX;Y gc1 = (QInt(t);QInt(P); (1= ;))c2 = (QBnd(t);QBnd(P); (16= ;))SPATIAL JOIN(intersection based): gener-ate all pairs of spatial objects(r; s) r 2 R; s 2 S, such thatr intersects s �sc(R 1 %[XjX0 ;Y jY 0](S)) c = (Q1(t);Q2(t); (16= ;))Q1(t) = �[X;Y](t)Q2(t) = %[X0jX ;Y 0jY](�[X0;Y 0](t))SPATIAL JOIN (adjacencybased): generate all pairs ofspatial objects (r; s); r 2R; s 2 S, such that r is ad-jacent to s �sc1 (�sc2(R0))R0 = R 1%[XjX0 ;Y jY 0](S) c1 = (Q1;1(t);Q1;2(t); (1= ;)))Q1;1(t) = QInt(�[X;Y](t))Q1;2(t) = QInt(g(t))c2 = (Q2;1(t);Q2;2(t); (16= ;))Q2;1(t) = QBnd(�[X;Y](t))Q2;2(t) = QBnd(g(t))g(t) = %[X0jX ;Y 0jY](�[X0;Y 0](t))DIFFERENCE QUERY: se-lect all spatial objects in Rfor which there are no spatialobjects in S with the sameprojection on X �[X0;Y 0](�sc(R0 1 R00))R0 = �[X](R) ns �[X](S)R00 = %[XjX0 ;Y jY 0](R) c = (�[X](t); %[X0jX](�[X0](t));=)COMPLEMENT QUERY:compute the portions of E2that are the complement of aspatial object of R :s(R)aIn this column the following symbols are used:� Ccx() and Cct(): see Table 2.4;� QBnd and QInt represent a short form for queries retrieving the boundary and the interior ofa spatial object respectively [142].Table 3.4: Examples of spatial queries in EGRA(lpoly).

46 Chapter 3. New languages for relational constraint databasesQuery EGRA ConditionsaexpressionINSTANT SELECTION:select all trains that leaveafter time t (expressed inminutes from time 00 : 00)to station a �s(c1^c2) (A) P � QPost(Cins(t))P 0 � (T = a)Q(t) = QStP (�[I](t))�(P) = fIgc1 = (Q(t); P;�)c2 = (t;P 0; (16= ;))RANGE SELECTION:select all trains that arrivein the interval i �sc (A) P � Cint(i)�(P) = fIgc = (QStP (�[I](t)); P; (16= ;))TEMPORAL JOIN: se-lect all trains that arriveat the station S when an-other train to destination dis standing by at the samestation �sc2(A 1 A0)A0 = %C(�sc1(A))C � [IDjID0; F jF 0 ; I jI0; T jT 0] P � (T = d)Q(t) = %[IjI0](�[I0](t))c1 = (t;P; (16= ;))c2 = (QStP (�[I](t));Q(t);16= ;)aIn this column the following symbols are used:� Cins() and Cint(): see Table 2.6;� QStP (t): it is a short form for the query retrieving the set of instants that represent thestarting points of all contiguous intervals contained in t;� QPost(t): it is a short form for the query retrieving the set of instants that follow the intervalrepresented by t.Table 3.5: Examples of temporal queries in EGRA(dense).3. Under speci�c assumptions, the data complexity of EGRA(�; f^;_g) is equalto the data complexity of GRA(�; f^;_g).3.3.1.1 EGRA(�) is a n-based languageIn order to show that EGRA(�) is n-based, following De�nition 3.5, we present amapping from EGRA expressions to nested-relational algebra expressions, satisfyingDe�nition 3.5.Let D be a domain of values. The nested-relational model deals with objects oftype: � ::= D j hA1 : �; :::;An : �i j f�gwhere A1; :::; An are attribute names. In the literature, several nested-relational al-gebras have been proposed, most of which are equivalent (see [1] and [2] for some

3.3. EGRA: a n-based generalized relational algebra 47Op. name Syntax e Derived expressionRestrictionsset intersection R1 \s R2 R1 ns (R1 ns R2)�(e) = �(R1) = �(R2)derived set �s(Q1;Q2;�)(R) �s(Q2;Q1 ;�))(R)selection �(Q1) � �(Q2)�(e) = �(R)�s(Q1;Q2;6�)(R) R ns �s(Q1;Q2 ;�)(R)�(Q1) � �(Q2)�(e) = �(R)�s(Q1;Q2;6�)(R) R ns �s(Q2;Q1 ;�)(R)�(Q1) � �(Q2)�(e) = �(R)�s(Q1;Q2;1=;)(R) R ns �s(Q1;Q2 ;16=;)(R)�(Q1) = �(Q2)�(e) = �(R)�sC1^C2(R) �sC1(R) \ �sC2(R)�(e) = �(R)�sC1_C2(R) �sC1(R) [�sC2(R)�(e) = �(R)�s:C1(R) R ns �sC1(R)�(e) = �(R)�s(Q1;Q2;=)(R) �s(Q1;Q2 ;�)^(Q2;Q1 ;�)(R)�(Q1) = �(Q2)�(e) = �(R)�s(Q1;Q2;�)(R) �s(Q1;Q2 ;�)^:(Q1;Q2;=)(R)�(Q1) � �(Q2)�(e) = �(R)�s(Q1;Q2;�)(R) �s(Q2;Q1 ;�)^:(Q1;Q2;=)(R)�(Q1) � �(Q2)�(e) = �(R)�s(Q1;Q2;�)(R) %[X1j =Xj](�[X1j](�sC2(�sC1(Q01 1 Q02))))Q0i(r) = f%[Xj jXij](t) ^ %[Xj jXij](Qi(t))jt 2 rg; i = 1; 2C1 = (�[X1j](t); %[X2j jX1j](�[X2j](t));=)C2 = (�[X1j](t); %[X2j jX1j](�[X2j](t)); �)it depends on �Table 3.6: EGRA derived operators.

48 Chapter 3. New languages for relational constraint databasesexamples).Theorem 3.1 EGRA(�) is a n-based algebra.Proof: (Sketch) It is possible to show that for each EGRA(�) query there exists anequivalent nested-relational algebra query. Let D be the domain of �. The proof,presented in Appendix A, is based on the following translation of generalized relationsand generalized tuples into nested relations:� Each generalized relation R with schema fX1; :::; Xng can be seen as a nested-relation of type fhA : fhX1 : D; :::; Xn : Digig, where D is the domain of thechosen theory.� Given a generalized tuple P with schema fX1; :::; Xng, P can be interpreted asthe nested-relation r(P) de�ned as fhAP : hX1 : a1; :::; Xn : anii j X1 = a1^:::^Xn = an 2 ext(P)g. Note that the type of r(P) is fhAP : hX1 : D; :::; Xn : Diig.� Given a generalized tuple P with schema fX1; :::; Xng, P can also be interpretedas the nested-relation n(P) containing only one element, represented by the setext(P). Thus, n(P) coincides with the set fhAP : fhX1 : a1 ^ ::: ^Xn : anigi jX1 = a1 ^ ::: ^ Xn = an 2 ext(P)g. The type of n(P) is fhAP : fhX1 :D; :::; Xn : Digig.Using this representation, for each EGRA(�) query it is possible to construct anequivalent nested-relational algebra query. The complete proof is presented in Ap-pendix A. 23.3.1.2 Equivalence resultsIt is immediate to prove the following proposition.Proposition 3.4 GRA(�;�1) �r EGRA(�; f^;_g).Proof: It is simple to show that, given some generalized relations r1; :::; rn, EGRA(�)tuple operators, when applied to r1; :::; rn, return a generalized relation that is r-equivalent to the generalized relation that is obtained by applying the correspond-ing GRA(�) operator to r1; :::; rn. Thus, GRA(�; f^;_g) �r EGRA(�; f^;_g).

3.3. EGRA: a n-based generalized relational algebra 49Moreover, it can be shown that S(�;�1) �r S(�; f^;_g), for all �1.2 From Pro-position 3.2, it follows that GRA(�;�1) �r GRA(�; f^;_g). The proposition followsfrom the previous results by transitivity. 2Since the semantic function associated with the complement in GRA(�) alwaysreturns a generalized relation which is not n-equivalent to the generalized relationreturned by the semantic function associated with the complement in EGRA(�) (whenboth semantic functions are applied to the same input generalized relation), it followsthat GRA(�;�1) 6�n EGRA(�; f^;_g).Now we analyze the opposite containment. A necessary condition for expressingan EGRA(�; f^;_g) query in GRA(�;�2) is to modify the input database, codingin some way each generalized tuple as a set. The aim of this section is to prove that,due to this transformation, EGRA(�; f^;_g) and GRA(�;�1) are not r-equivalent,whatever �1 is.To prove this result, a weaker notion of equivalence is �rst introduced. This newequivalence relation is called weak, since it relaxes the conditions under which theusual equivalence is de�ned (see De�nition 3.6). The basic idea of weak equivalence isthat of coding in some way the input of an EGRA(�; f^;_g) query, before applying thecorresponding GRA(�;�2) query. After that, a decoding function should be appliedto the result, to remove the action of the encoding function. A similar approach hasbeen taken in [137] and in [149] to prove results about the nested-relational algebraand the relational algebra. Encoding and decoding functions can be formalized asfollows.De�nition 3.7 (Encoding and decoding functions) An encodingfunction of type (�;�1;�2) is a total computable function f from S(�;�1) to S(�;�2).A decoding function of type (�;�1;�2) is a partial computable function g from S(�;�2)to S(�;�1). 2Weak equivalence can be de�ned as follows.De�nition 3.8 (Weak equivalence) Let L1 and L2 be two constraint query lan-guage. Let S(�;�1) and S(�;�2) be two EGR supports. Let t 2 fr; ng. L1(�;�1)is weakly t-contained in L2(�;�2) (denoted by L1(�;�1) �wt L2(�;�2)) i� thereexist an encoding function f of type (�;�1;�2) and a decoding function g of type(�;�1;�2) such that for each query q 2 L1(�;�1) there exists a query q0 2 L2(�;�2)with the following property:for all relations ri 2 S(�;�1), i = 1; :::; n, q(r1; :::; rn) �t g(q0(f(r1); :::; f(rn))).2We recall that �1 2 ff^g; f_g; f^;_gg.

50 Chapter 3. New languages for relational constraint databases
gf

q

q’

r

r’ ,...,r’ r’1 n n+1

n+1r ,....,rn1Figure 3.2: Graphical representation of weak containment.L1(�;�1) is weakly t-equivalent to L2(�;�2) (denoted by L1(�;�1) �wt L2(�;�2))i� L1(�;�1) �wt L2(�;�2) and L1(�;�1) �wt L2(�;�2). 2Figure 3.2 graphically represents weak containment. It is simple to show that ifL1(�;�1) �t L2(�;�2), then L1(�;�1) �wt L2(�;�2). Moreover, if two languagesL1(�;�1) and L2(�;�2) are weak equivalent, they are also equivalent i� functions fand g can be represented in L2(�;�2).In the following we prove that EGRA(�; f^;_g) �wn GRA(�;�1), assuming that^ 2 �1 (thus, either �1 = f^g or �1 = f^;_g). However, to simplify the presenta-tion, we suppose that �1 = f^g. The other case derives from that.The chosen encoding and decoding functions of type (�;�1;�2) are presented inTable 3.7. Assuming we deal with a countable set of variables, without compromisingthe generality of the discussion, the de�nitions are given with respect to a countableset of variables ~N , only used to assign identi�ers to generalized tuples.The encoding function transforms a generalized relation r 2 S(�; f^;_g) into ageneralized relation r0 2 S(�; f^g), such that each generalized tuple of r is containedin r0 together with a new variable identi�er, represented by a constraint admittingonly one solution. Each generalized tuple of r containing disjunctions is divided in r0into several generalized tuples, all having the same identi�er.The decoding function projects the input relation on all variables, except thosecontained in ~N , if any. If more than one tuple in the input relation has the samevalues for variables in ~N , the disjunction of such tuples is taken.Table 3.8 shows, for each EGRA operation, the corresponding weak equivalentGRA expression. In the following, the query function associated with an EGRA(GRA) operator is called operator semantic function. The two lemmas, presentedbelow, are used in the proof of Theorem 3.2. See [13] for their complete proofs.Lemma 3.1 Let ri 2 S(�;�) such that �(ri)\ ~N 6= ;, i = 1; :::; n, n 2 f1; 2g. Let qbe the query associated with one of the GRA expressions listed in the second column

3.3. EGRA: a n-based generalized relational algebra 51Func. of type De�nition(�; f^; _g; f^g)Encoding f f(r) =St2r0 f 0(t)r0 = ftm11 ; :::; tmnn jr = ft1; :::; tng,for all i; j, 1 � i � n, 1 � j � n, i 6= j, ext(ti) 6= ext(tj)! mi 6=mj,mi 2 D, i = 1; :::;ngtm � N =m ^ t, N 2 ~N , N 62 �(r), t 2 r, m 2 Df 0(t) = fN =m ^ t1; :::;N = m ^ tn j t � N =m ^ (t1 _ :::_ tn)gD is the domain of the considered theory �Decoding g g(r) = f�[�(r)n ~N](t1) _ ::: _�[�(r)n ~N](tn) jt1; :::; tn 2 r, �[~N](t1) = ::: = �[~N](tn),6 9tn+1 2 r;�[~N](tn+1) = �[~N](t1), such thatext(tn+1) 6= ext(ti), i = 1; :::;n gTable 3.7: Encoding and decoding functions.of Table 3.8. Let f and g as de�ned in Table 3.7. Theng(q(f(g(r1)); :::; f(g(rn)))) �n g(q(r1; :::; rn)): 2Lemma 3.2 Let f and g as de�ned in Table 3.7. Let �1 and �2 be two signaturessuch that �1 = f^;_g and ^ 2 �2. For each EGRA(�;�1) operator semanticfunction fOP of arity n, n 2 f1; 2g, there exists a GRA(�;�2) query q such that forall r1; :::; rn; n 2 f1; 2g; ri 2 S(�;�1); fOP (r1; :::; rn) �n g(q(f(r1); :::; f(rn))).Proof: (Sketch) Let R1; :::; Rn be the names of the generalized relations belonging tothe schema we consider. Let �(R0i) = �(Ri)[fNg, i = 1; :::; n,N 2 ~N . Let D be thedomain of �. Let Q0i be the query obtained from query Qi by inserting variable N inall projection operators. Table 3.8 shows for each basic EGRA(�; f^;_g) query theweakly equivalent GRA(�;�2) query. See [13] for the complete proof. 2Theorem 3.2 Let �1 and �2 be two signatures such that �1 = f^;_g and ^ 2 �2.Then, EGRA(�;�1) �wn GRA(�;�2).Proof: We prove the theorem by induction on the structure of an EGRA(�; f^;_g)query q.Base case: q is an operator semantic function. The theorem follows from Lemma 3.2.

52 Chapter 3. New languages for relational constraint databasesEGRA GRARi R0i�P1_:::_Pn (R) �P1 (R0) i� n = 1�P1 (R0) [::: [�Pn (R0) otherwiseR1 1 R2 R01 1 %[N=N 0](R02), N 0 2 ~NR1 [R2 (R01 1 �[N 0](%[N=N 0](�N=n1 (R01 [:R01)))) [A whereA = (R02 1 �[N 0](%[N=N 0](�N=n2 (R02 [:R02))))N 0 2 ~N , n1 6= n2, n1; n2 2 D�[~Y](R) �[~Y [fNg](R0):R �[�(R0)nfNg](:R0) 1 �[N](�N=n1(R0 [:R0)), n1 2 DR1 ns R2 (�[N](R01) n �[N](Y 1 Z)) 1 R01 whereX = R01 � %R01R02, N 0 2 ~NY = �[N;N 0](X) n�[N;N 0](W)W = �[(�(R01)[fN 0g)](X) n %�1[R01]R02 a (�[(�(X)n�(R01))[fNg](X))Z = �[N;N 0](X) n (�[N;N 0](T)T = %�1[R01]R02 (�[(�(X)n�(R01))[fNg](X))) n �[(�(R01)[fN 0g)](X):s(R) �[N](R0) 1 :R0�s(Q1 ;Q2;�)(R) (�[N](R0) n �[N](Q01(R0)b nQ02(R0)) 1 R0�s(Q1 ;Q2;16=;)(R) �[N](Q01(R0) 1 Q02(R0)) 1 R0a%R01[R02] denotes the operation replacing each variable X of R02 also contained in the schema ofR01 by a new variable X 0 such that X 0 2 ~N i� X 2 ~N . Moreover, %�1[R01]R02 denotes the operationreplacing each variable X 0 62 ~N previously changed by %R01[R02] by its original symbol X.bIf Qi is a generalized tuple P , Q0i(R0) is the query that, for each generalized relation r, returnsa new generalized relation containing n generalized tuples, where n is the cardinality of r. Eachgeneralized tuple is equivalent to N = m ^ P , where m is the generalized tuple identi�er of a tuplein r. Table 3.8: Translation of EGRA expressions into GRA expressions.Inductive step: Let q � fOP (q1; q2) where fOP is an operator semantic function andq1 and q2 are queries (the proof assumes OP to be a binary operator; a similarproof holds also for unary operators). By inductive hypothesis we know thatq01; q02 2 GRA(�;�2) exist such that:8r1; :::; rn 2 S(�;�1) qi(r1; :::; rn) �n g(q0i(f(r1); :::; f(rn))); i= 1; 2g(q0i(f(r1); :::; f(rn))) 2 S(�;�1)From Theorem 3.1, we know that EGRA(�) is n-based. From Proposition 3.3and the inductive hypothesis, we obtain that

3.3. EGRA: a n-based generalized relational algebra 53q(r1; :::; rn) = fOP (q1(r1; :::; rn); q2(r1; :::; rn))is nested equivalent toS � fOP (g(q01(f(r1); :::; f(rn))); g(q02(f(r1); :::; f(rn)))).Let q0 be the GRA(�) query corresponding to fOP in Table 3.8. By Lemma 3.2,S is nested equivalent to g(q0(f(r01); f(r02))), where r0i = g(q0i(f(r1); :::; f(rn))),i 2 f1; 2g.From Lemma 3.1, we can replace f(r0i) with q0i(f(r1); :::; f(rn)), i = 1; 2, ob-taining that g(q0(f(r01); f(r02))) is nested equivalent tog(q0(q01(f(r1); :::; f(rn)); q02(f(r1); :::; f(rn)))).Note that Lemma 3.1 can be applied since q0i(f(r1); :::; f(rn)) satis�es the hy-pothesis of the lemma.The query q � q0(q01; q02) satis�es the theorem. 2Note that if ^ 62 �2, the equivalence does not hold. Indeed, in this case, theredoes not exist an encoding function of type (�; f^;_g;�2).The following corollary presents �nal equivalence results about EGRA(�;�1) andGRA(�;�2).Corollary 3.1 Let �1 and �2 be two signatures such that �1 = f^;_g and ^ 2 �2.The following facts hold:1. EGRA(�;�1) �wr GRA(�;�2).2. EGRA(�;�1) 6�r GRA(�;�2).Proof:1. It follows from Proposition 3.4 and Theorem 3.2.2. This result derives from the fact that the proposed encoding and decodingfunctions cannot be represented in GRA(�;�2). 2The presented equivalence results are similar to equivalence results that have beenpresented for relational and nested relational languages. Indeed, nested computationscan be embedded into FO, modulo the encoding of complex objects into at ones andthe corresponding decoding of output [117, 141].Finally, note that even if EGRA(�; f^;_g) �wr GRA(�; f^g), GRA expressionsare often very complex when compared with the equivalent EGRA expressions (seeTable 3.8), even those implementing simple user requests.

54 Chapter 3. New languages for relational constraint databasesExample 3.5 The query of Example 3.3, which in GRA is represented as(�[N](R) n (�[N](R n �P (R)))) 1 R:can be simply expressed in EGRA as �s(t;P;�)(R): 3From Theorem 3.1 and Theorem 3.2, it is simple to prove thatEGRA(�; f^;_g) is a strict n-based language.Corollary 3.2 EGRA(�) is a strict n-based algebra.Proof:� EGRA(�) is a n-based algebra: it follows from Theorem 3.1.� EGRA(�) is not r-based: suppose EGRA(�) be r-based. Since GRA(�) is r-based, this means that for each signature �2 and for �1 = f^;_g EGRA(�;�1)is r-equivalent to GRA(�;�2). But this is not true. Indeed:{ If ^ 2 �2, from item (2) of Corollary 3.1 it follows that EGRA(�;�1) isnot r-equivalent to GRA(�;�2).{ If ^ 62 �2, then S(�;�1) is not r-equivalent to S(�;�2). Therefore, byProposition 3.2, EGRA(�;�1) is not r-equivalent to GRA(�;�2).Since in both cases we obtain a contradiction, EGRA(�) is not r-based. 23.3.1.3 Data complexityThe analysis of data complexity of EGRA(�; f^;_g) queries follows from the factthat EGRA(�; f^;_g) �wr GRA(�;�2), assuming that ^ 2 �2, and results aboutdata complexity of GRA(�;�2).It is simple to show that the data complexity of the chosen encoding and decodingfunctions f and g is in class NC.3 Therefore, by considering Figure 3.2, we can deducethat, if the complexity of GRA(�;�2) is in a complexity class C containing or equalto NC, the data complexity of EGRA(�; f^;_g) is equal to the data complexity ofGRA(�;�2). Otherwise, it is at most in NC.For example, from [82, 83] it follows that GRA(poly; f^g) has NC data complex-ity. Therefore, EGRA(poly; f^;_g) has NC data complexity.3Thus, they can be executed in log-time, using a polynomial number of processors [8].

3.4. ECAL: a n-based generalized relational calculus 553.4 ECAL: a n-based generalized relational calculusThe relational algebra is a typical procedural language. This procedural language hasa very natural declarative counterpart, represented by the relational calculus [47].A similar situation arises in the generalized relational model where, as we haveseen in Chapter 2, the generalized relational algebra and the generalized relationalcalculus have been de�ned as a natural extension of the corresponding relationallanguages to deal with in�nite, but �nitely representable, relations. As a consequence,the de�nition of an extended relational calculus which is equivalent to the algebrapresented in Section 3.3, becomes an important issue.There are at least two approaches in the literature to de�ne a calculus and proveits equivalence with an algebra:� Codd's relational calculus [47]. The calculus is based on �rst-order formulas.The calculus may generate unsafe relations, i.e., relations containing an in�nitenumber of tuples. Safety is guaranteed by de�ning speci�c safety rules, thatsyntactically restrict the calculus expressions.In order to translate a calculus expression into the equivalent algebraic expres-sion, a Cartesian product is generated from the set of all symbols existing inthe database and then the answer is extracted from this set.This calculus has been extended in [125] to deal with relations having sets ofatomic values as tuple components.� Klug's relational calculus [88]. This calculus eliminates unsafe expressions byintroducing explicit range expressions for variables. This approach results ina much cleaner way of expressing a calculus query and removes the burden ofchecking for safe expressions from users. The calculus also deals with aggregatefunction. Thus, the calculus must also be able to quantify over relations thatare the result of an aggregate operation, and the only way to do this is toactually compute the result. For this reason, Klug's calculus is de�ned viamutual recursion on three types of expressions: terms, formulas, and alphas.Alphas are used to construct such intermediate relations.With aggregate functions, new aggregate values are created. Thus, in orderto translate a calculus expression into the equivalent algebra expression, theapproach based on the Cartesian product does not work. Therefore, a di�erentapproach is used. In particular, each object is translated into an algebraicexpression; these algebraic expressions are then combined to generate the �nalexpression.

56 Chapter 3. New languages for relational constraint databasesSuch a calculus has been extended in [111] to deal with relations containing setsof numbers as tuple components and in [93] to deal with constraints.In order to de�ne the extended generalized relational calculus, we take Klug'sapproach. The reason for this choice is motivated by the fact that, in Section 3.5, wewill extend the generalized relational algebra and the generalized relational calculus todeal with external functions. External functions have some similarities with aggregatefunctions, in that they generate new values. Thus, the use of Klug's calculus simpli�esthe proof of the equivalence between the algebra and the calculus.3.4.1 Syntax of the extended generalized relational calculusThe extended generalized relational calculus ECAL is de�ned via mutual recursion onthree types of expressions: terms, formulas, and alphas. Terms represent the objectson which computations are performed (in our case, atomic values and generalizedtuples). Formulas express properties about terms, and alphas are used to create newrelations, composed either of relational tuples (thus de�ning a new generalized tuple)or of generalized tuples (thus de�ning a new generalized relation).In de�ning the calculus, it is more convenient to use a positional notation. Thus,in the following, an attribute of a relational tuple is not identi�ed by its name but byits position inside the tuple.In de�ning the above objects, we assume we deal with two sets of variables:� a set V = fv; v1; v2; :::g of variables representing relational tuples;� a set G = fg; g1; g2; :::g of variables representing generalized tuples.By considering a logical theory �, having D as domain, calculus objects are form-ally de�ned as follows.Terms. Terms are used to represent the objects on which computations are per-formed. They can be either:� simple, if they represent values from a given domain, such as real numbers;� set, if they represent sets of relational tuples, whose attribute values are takenfrom the considered domain. Each set variable is a set term. Moreover, for eachnatural value n, we introduce a particular set term, representing the set of allpossible relational tuples on domain D having n attributes. The introductionof these terms allows us to prove the equivalence of the algebra and the calculuseven when queries generate new values with respect to those contained in thedatabase.

3.4. ECAL: a n-based generalized relational calculus 57No term is introduced to represent a single relational tuple since, due to the nestedsemantics, queries always manipulate (the extension of) generalized tuples.De�nition 3.9 (Terms) A term has one of the following forms:� c, such that c 2 D;� v[A], where v 2 V and A is a column number;� Dn, representing all relational tuples with degree n, with values from D;� g, such that g 2 G.The last two types of terms are set terms, whereas the �rst two are simple terms. 2Note that the considered set terms are di�erent from those presented in [111].Indeed, in that case, the available sets contain only atomic values whereas in ourcase, sets contain relational tuples.Formulas. Formulas are used to express properties about terms. Atomic formulasare used to specify on which relation a generalized tuple or a relational tuple ranges,and to specify the relationship existing between two generalized tuples or some simpleterms. Complex formulas are obtained by logically combining or quantifying otherformulas. Both atomic and complex formulas can be either simple or set formulas. Inthe �rst case, they specify conditions on simple terms; in the second case, they specifyconditions on set terms.De�nition 3.10 (Formulas) A formula has one of the following forms:� Atomic formula:{ Simple formulas:� t(v), where v 2 V and t is a closed target alpha (see below) or a setterm;� �(t1; :::; tn), where � is a constraint and t1; :::; tn are simple terms.{ Set formulas:� �(g), where � is a closed general alpha (see below) and g 2 G;� t1�t2, where t1; t2 are set terms and � 2 f�;�;=; 6=;1= ;;16= ;g.� Complex formulas:

58 Chapter 3. New languages for relational constraint databases{ 1 ^ 2, where 1 and 2 are either simple formulas or set formulas; inthe �rst case, 1 ^ 2 is a simple formula, in the second case, is a setformula;{ 1 _ 2, where 1 and 2 are either simple formulas or set formulas; inthe �rst case, 1 _ 2 is a simple formula, in the second case, is a setformula;{ : is a simple (set) formula if is a simple (set) formula;{ (9rx) is a simple (set) formula if is a simple (set) formula and rx isa range formula for x. The scope of (9rx) is . 2Since 1 ^ 2 is equivalent to :(: 1 _ : 2), in the following we do not furtherconsider symbol ^ [38].Range formulas. Range formulas specify a range for either a simple variable ora set variable. Ranges for simple variables are closed target alphas (see below) orset terms and are called simple range formulas. Ranges for set variables are closedgeneral alphas or atomic alphas (see below) and are called set range formulas.De�nition 3.11 (Range formulas) Let v 2 V and let �1; :::; �k be either closedtarget alphas or set terms. Then,�1(v)_ :::_ �k(v)is a simple range formula.Let g 2 G and let �1; :::; �k be closed general alphas or atomic alphas. Then,�1(g)_ :::_ �k(g)is a set range formula. 2Alphas. An alpha represents either a set of relational tuples, i.e., a new generalizedtuple, or a set of generalized tuples, i.e., a new generalized relation. Atomic alphasare a particular type of alphas, represented by generalized relation symbols.De�nition 3.12 (Alphas) An alpha has one of the following forms:� Atomic alpha: for each generalized relation symbol R, R is an alpha.� Target alpha: if t1; :::; tn are simple terms, r1; :::; rm are simple range formulasfor the free variables in t1; :::; tn, and is a simple formula, then((t1; :::; tn) : r1; :::; rm :)is a target alpha.

3.4. ECAL: a n-based generalized relational calculus 59� General alpha: if t is a target alpha or a set term, r1; :::; rm are set rangeformulas for the free variables in t, and is a formula, then((t) : r1; :::; rm :)is a general alpha.In the last two cases, is called the quali�er and (t1; :::; tn) and t are called thetarget. Moreover, we denote n by deg(�). 2When the target of a target alpha has the form (v[1]; :::; v[n]), v 2 V , and n is thearity of v, for the sake of simplicity we write v instead of (v[1]; :::; v[n]).The scope of a range formula in an alpha expression is the associated target andthe quali�er of the alpha. Occurrence of a variable x is free if it is not bound byquanti�ers or range formulas. A calculus object (term, formula, alpha) is closed if ithas no free occurrences of any variable.In the following, we denote with ECAL the language composed of all the closedset alphas generated by combining terms, formulas, and alphas, as explained before.Given a decidable logical theory �, admitting variable elimination and closed undercomplementation, we denote with ECAL(�) the set of queries represented by ECALexpressions. Note that, due to the fact that disjunction is allowed in formulas, theunderlying signature is f^;_g.ECAL(�) allows the representation computations on generalized relations in twosteps: �rst, conditions on generalized tuples are checked in the more external closedset alpha; then the more internal target alpha allows checking conditions on the ex-tension of the selected generalized tuples.The declarative nature of the calculus simpli�es the interaction between the userand the system. The following examples present ECAL(�) queries corresponding tosome of the EGRA(�) queries presented in Tables 2.5 and 3.4.Example 3.6 The following ECAL(�) expression represents the generalized tupleX + Y � 2 ^ Y � 7. (v : D2(v) : v[1] + v[2] � 2^ v[2]� 7):The range formula of the previous alpha speci�es that we are interested in all relationaltuples containing two attributes. The quali�er speci�es the relation that must holdbetween the attributes of v. We assume that X corresponds to the �rst attribute andY to the second one. Finally, the target speci�es that we want to return all relationaltuples v satisfying the quali�er. 3

60 Chapter 3. New languages for relational constraint databasesIn the following, to simplify notation, the target alpha representing a generalizedtuple P is denoted by tP .Example 3.7 Consider the temporal join query presented in Table 2.7. In order toselect all trains with destination station 3, standing by at a station S together witha train from station 4, the algebraic expression �rst selects all trains from station 4(relation A0) and all trains with destination station 3 and then performs a join ofthe two constructed generalized relations. Finally, it retrieves the identi�ers of theselected pairs of trains. By using the calculus, assuming that the column number ofID is 1, we can declaratively express the previous query as follows:(((v1[1]; v2[1]) : g1(v1); g2(v2); tP (v1); tQ(v2) :) : �(g1); �(g2) : g1 16= ; g2)where � = ((v[3] : g(v) :) : A(g) :) (position 3 identi�es variable I). The previ-ous alpha �rst checks for intersection all pairs of generalized tuples in A in order todetermine all trains standing by at a station S together with another train. Afterperforming this selection, some conditions are checked on the extension of the re-trieved generalized tuples. In particular, the identi�ers of the pairs of trains, the �rsthaving destination station 3 (speci�ed by the range tP (v1), where tP represents thetarget alpha corresponding to the generalized tuple P � (T = 3)) and the second be-ing from station 4 (speci�ed by the range tQ(v2), where tQ represents the target alphacorresponding to the generalized tuple P � (F = 4)) are returned to the user.As another example consider the spatial join, intersection based, presented inTable 3.4. The corresponding calculus expression is(((v1; v2) : g1(v1); g2(v2) :) : R(g1); R(g2) : g1 16= ; g2):In the previous expression, �rst the intersection between spatial objects (i.e., gen-eralized tuples) is checked and then the result is constructed starting from the ex-tensions of each pair of intersecting tuples. This second step is required since theresulting tuple has to be a new generalized tuple, obtained by joining the extensionsof the intersecting tuples. 33.4.2 Interpretation of ECAL objectsIn order to assign an interpretation to calculus objects introduced in the previoussection, we follow the approach presented in [88], extended to deal with set terms.The proposed translation di�ers from that presented in [111], since the set terms weconsider represent sets of relational tuples and not sets of atomic values, as in [111].The result of the interpretation varies according to the type of the object underconsideration:

3.4. ECAL: a n-based generalized relational calculus 61� the interpretation of a formula produces values true (1) or false (0);� the interpretation of a term is an atomic value or a set of relational tuples;� the interpretation of an alpha is a relation.In order to establish the association between variables in a calculus object andtuples in the current instances of the corresponding relations, the notion of model isintroduced. Formally, a model M for a calculus object q is a triple hI; S;Xi, where:� I is a database instance.� S (the free list for object q) is a list of ordered pairs hui; Sii, where ui 2 V [Gis a free variable occurring in q and Si is the domain (the relation) over whichvi ranges.� X (the valuation list for q and D) is a list of pairs hui; xii, where ui 2 V [G isa free variable in q and xi 2 Si such that hui; Sii 2 S.Interpretations are assigned as follows.Terms interpretation� c(M) = c� vi[A](M) = xi[A]� Dn(M) = Dn� gi(M) = xiFormula interpretation� �(gi)(M) = (1 if xi 2 �(M)0 otherwise� gi(vj)(M) = (1 if xj 2 xi0 otherwise� (t1�t2)(M) = (1 if t1(M)�t2(M) = 10 otherwise� (�(t1; :::; tn))(M) = (1 if �(t1(M); :::; tn(M)) = 10 otherwise

62 Chapter 3. New languages for relational constraint databases� (1 _ 2)(M) = (1 if 1(M) = 1 or 2(M) = 10 otherwise� (:)(M) = (1 if (M) = 00 otherwise� ((9rvi))(M) = (0 if rvi(M) is emptyMAXf (I; S0; X 0) j u 2 rvi(M)g otherwiseS0 is similar to S except that the pair hvi; Sii is replaced in S0 by hvi; rvi(M)i.X 0 is similar to X except that the pair hvi; ui replaces hvi; xii.Alpha interpretation� Ri(M) = ri and ri is the generalized relation named Ri in I .� ((t1; :::; tn) : r1; :::; rm :)(M) = f(t1(M 0); :::; tn(M 0)) j (M 0) = 1gwhere M 0 = hI 0; S0; X 0i. S0 is the same as S except that for those variablesvj ranging over rk, 1 � k � m, S0 contains hvj ; rk(M)i. X 0 is the same asX except that for those variables vj ranging over rk, 1 � k � m, S0 containshvj ; ui, u 2 rk(M).� ((t) : r1; :::; rm :)(M) = fs(M 0) j (M 0) = 1gwhere M 0 = hI 0; S0; X 0i. S0 is the same as S except that for those variables ujranging over rk, 1 � k � m, S0 contains huj ; rk(M)i (note that uj 2 V [G). X 0is the same as X except that for those variables uj ranging over rk, 1 � k � m,S0 contains huj ; ui, u 2 rk(M).3.5 External functionsThe introduction of external functions in database languages is an important topic.Functions increase the expressive power of database languages, relying on user de�nedprocedures. External functions can be considered as library functions, completing theknowledge about a certain application domain.In the context of constraint databases, external functions can be modeled as func-tions manipulating generalized tuples. Such manipulations must preserve the closureof the language. Thus, an external function f takes a generalized tuple t de�ned ona given theory � and a signature � and returns a new generalized tuple t0 on � and� (to guarantee closure), obtained by applying function f to t. We assume that eachfunction is total on the set of generalized tuples de�ned on � and �.

3.5. External functions 63Given a generalized tuple t, it is often useful to characterize an external functionf with respect to the following features:� The set of variables belonging to �(t) to which the manipulation is applied.Indeed, it may happen that function f only transforms a part of a generalizedtuple. Formally, this means that function f projects the generalized tuple onsuch variables before applying the transformation.This set is called input set of function f and it is denoted by is(f). Thus,is(f) � �(t).In order to make the function independent of �(t), we consider an ordering of�(t). Such ordering is a total function, from f1; :::; card(�(t))g4 to �(t). Usingsuch an ordering, is(f) can be characterized as a set of natural numbers. Weassume that each number i 2 is(f) identi�es a variable Xi and it is denoted byorder�(t)(i).� The set of variables, belonging to �(t), that are contained in �(f(t)). Thisset of variables is called local output set and it is denoted by los(f). Thus,los(f) � is(t)\ �(f(t)).Also los(f) can be represented as a set of natural numbers.If i 2 is(f) but i 62 los(f) this means that f uses variable Xi during its com-putation but it does not return any new value for Xi.� The cardinality of set �(f(t))n�(t), denoted by n(f). For simplicity, we assumethat, if card(�(f(t))n�(t)) = n, new variables are denoted by New1; :::; Newn.In summary, each function is associated with two sets of natural numbers is(f)and los(f) and an integer number n(f).By using the previous notation, an external function for constraint databaseswhich guarantees closure is called an admissible function and can be formalized asfollows (in the following, DOM(�;�; m) is the set of all the possible generalizedtuples t on � and �, such that card(�(t)) =m).De�nition 3.13 (Admissible functions) Let � be a decidable logical theory and �be a signature. An admissible function f for � and � is a function fromDOM(�;�; n1)to DOM(�;�; n2), such that n1 � maxfxjx 2 is(f)g and n2 = card(los(f))+n(f).For any generalized tuple t 2 DOM(�;�; n1), associated with a given orderingorder�(t), function f returns a new generalized tuple t0 2 DOM(�;�; n2) such that�(t0) = forder�(t)(i)ji 2 los(f)g [fNew1; :::; Newn(f)g. 24Given a set S, card(S) represents the cardinality of S.

64 Chapter 3. New languages for relational constraint databasesGiven a generalized tuple t and an external function f , function order�(f(t)) isderived as follows:order�(f(t))(i) = 8><>: order�(t)(j) if j is the i-th element of the increasingordering of los(f)Newk if card(los(f))< i and k = i� card(los(f)).The ordering induced by function f �rst lists variables in los(f) and then newvariables.Example 3.8 To show some examples of external functions, we consider metric re-lationships in spatial applications. Metric relationships are based on the concept ofEuclidean distance referred to the reference space E2. Since a quadratic expressionis needed to compute this type of distance, metric relationships can be represented inEGRA only if proper external functions are introduced. For example the followingtwo functions can be considered:� Distance: given a constraint c with four variables (X; Y;X 0; Y 0), representingtwo spatial objects, it generates a constraint Dis(c) obtained from c by addinga variable New1 which represents the minimum Euclidean distance betweenthe two spatial objects. Thus, assuming order�(c)(1) = X, order�(c)(2) = Y ,order�(c)(3) = X 0, and order�(c)(4) = Y 0, we have is(Dis) = f1; 2; 3; 4g,los(Dis) = f1; 2; 3; 4g, and n(Dis) = 1.A similar function, Dis0, can be de�ned such that given a constraint c withfour variables (X; Y;X 0; Y 0), representing two spatial objects, it generates aconstraint Dis0(c) representing the minimum Euclidean distance between thetwo spatial objects. In this case, is(Dis0) = f1; 2; 3; 4g, los(Dis0) = ;, andn(Dis0) = 1.� Bu�er: given a constraint c with two variables (X; Y), it generates the con-straint Buf�(c) which represents all points that have a distance from c lessthan or equal to �. Thus, assuming order�(c)(1) = X and order�(c)(2) = Y ,we have is(Buf�) = f1; 2g, los(Buf�) = f1; 2g, and n(Buf�) = 0. This meansthat the returned points are represented by using variables X and Y .In temporal applications, we believe that a \duration" function should also beincluded in the language. Note that the measure of the duration of an interval cannotbe represented by dense, since none of the mathematical operations are admitted inthis theory. Therefore, in order to take into account the duration of an interval, thefollowing external function has to be introduced:

3.5. External functions 65� Duration: given an interval t, �(t) = fXg, it produces the distance Dur(t) onthe axis of time between its starting point and its ending point (for example,the constraint (X � 6) ^ (X � 10) is transformed into (X = 4)). If t is anon-contiguous interval, the sum of the duration of all its intervals is produced.Thus, is(Dur) = f1g, los(Dur) = f1g, and n(Dur) = 0. This means that thereturned value is represented by variable X. 33.5.1 Introducing external functions in EGRAWhen using external functions, new algebraic operators, called application dependentoperators5 can be added to EGRA(�):� The family of Apply Transformation operators allows the application of an ad-missible function to all generalized tuples contained in a generalized relation.Two di�erent types of apply transformations can be de�ned:{ Unconditioned apply transformation.ATf(r) = ff(t) j t 2 rg.By using this operator, only the result of the function is maintained in thenew relation.{ Conditioned apply transformation.AT ~Xf (r) = f�[~X](t) 1 f(t) j t 2 rgwhere ~X � �(r). This transformation is called conditioned since the res-ult of the application of function f to a generalized tuple t is combinedwith some information already contained in t. By changing ~X , we obtaindi�erent types of transformations.Note that for each conditioned apply transformation AT ~Xf there exists anexternal functions f 0 such that, for any generalized relation r, AT ~Xf (r) =ATf 0(r). The main di�erence between the two approaches is that the con-ditioned approach is more exible and reasonable from a practical pointof view� The second operator (Application dependent set selection) is similar to the setselection of Table 3.3; the only di�erence is that now queries speci�ed in theselection condition Cf may contain apply transformation operators.5The term application dependent operators comes from the fact that functions reect the applic-ation requirements.

66 Chapter 3. New languages for relational constraint databasesOp. name Syntax e Restrictions Semanticsr = �(e)(r1)non-conditioned ATf (R) r = ff(t) j t 2 r1gapply transformationconditioned AT ~Xf (R) ~X � �(R) r = f�[~X](t) 1 f(t) j t 2 r1gset selection �sCf (R1) �(e) = �(R1) r = ft : t 2 r1; Cf (t) gTable 3.9: EGRA(�;F) application dependent operators.By using the previous operators, we can now de�ne the constraint algebraEGRA(�;F)De�nition 3.14 Let � be a decidable logical theory, admitting quanti�er eliminationand closed under complementation, and � be a signature. Let F be a set of admissiblefunctions for � and �. We denote by EGRA(�;F) the set of queries that can beexpressed by using EGRA operators and operators introduced in Table 3.9. Wedenote with EGRA(F) the corresponding syntactic language. 2Example 3.9 Consider the external functions introduced in Example 3.8. As a �rstconsideration, note that, given a generalized tuple t with four variables, expressionsATDis(R) and AT�(t)Dis0(R) are equivalent. Indeed, in the �rst case each generalizedtuple contained in the input generalized relation r is replaced by a new generalizedtuple representing the old generalized tuple and, by using a new variable, the distancebetween the objects represented in the considered generalized tuple. In the second case,the function, only returns a new variable representing the distance between the twoobjects. The old objects are maintained due to the join performed by the AT�(t)Dis0(R)operator.Some relevant spatial queries using external functions are shown inTable 3.10(A). An example of temporal query using the function Duration is re-ported in Table 3.10(B). 33.5.2 Introducing external functions in ECALIn order to introduce external functions in ECAL, a new set term must be introducedin the language, representing the application of an external function to a generalizedtuple. Given a set of admissible functions F , the set term isf(gi), where f 2 F and gi 2 G.Given a model M , the new set term is interpreted as follows:f(gi)(M) = f(gi(M)).

3.5. External functions 67Query EGRA expression Conditions(A) Spatial QueriesDISTANCE QUERY: se-lect all spatial objects inR that are within 50 Kmfrom the object in Sidenti�ed by the pointpt 2 E2 �sc(R 1 %[XjX0 ;Y jY 0](S0))S0 = ATBuf50Km (�P (S)) P � Cpoint(pt)�(P) = fX;Y gc = (�[X;Y](t);�[X0;Y 0](t);16= ;)SPATIAL JOIN: gener-ate all pairs (r; s) 2 R �S such that the distancebetween r and s is lessthan 40 Km, togetherwith the real distancebetween r and s �New1�40(ATDis(R 1 S0))S0 = %[XjX0 ;Y jY 0](S)(B) Temporal QueriesDURATION SELEC-TION: select all trainsstanding at station S formore than two minutes �sc (A) P � (I � 2)Q(t) = ATDur(�[I](t))c = (Q(t); P;16= ;)Table 3.10: Spatial and temporal queries in EGRA(lpoly;F) and EGRA(dense;F).This means that the interpretation of the application of a function to a generalizedtuple variable is equivalent to applying function f to the interpretation of the gener-alized tuple variable.Example 3.10 Consider the spatial join introduced in Table 3.10. All pairs of spatialobjects, the �rst contained in a generalized relation R and the second contained ina generalized relation S, have to be retrieved together with the distance among theobjects, if it is less than 40 Km. In order to express this query in the calculus,�rst the alpha representing all pairs of spatial objects is generated; then, the distanceis computed and, if it is lower than 40 Km, the pair is returned to the user. Theexpression is the following: (g : �1(g) : 9 g(v) v[5] � 40)where �1 = (Dis(g) : �2(g) :) and �2 = (((v1; v2) : g1(v1); g2(v2) :) : R(g1); R(g2) :).In the previous expression, �2 represents all pairs of spatial objects (correspondingto the algebraic Cartesian product), �1 applies function Dis to the pairs of objectsand the outer alpha checks the condition about the distance, represented by the �fth

68 Chapter 3. New languages for relational constraint databasescolumn of the generalized tuples contained in �1. As we can see, the previous ex-pression allows us to represent the result in a \bottom-up" way, layering the di�erentcomputations on di�erent, but nested, alphas. 3De�nition 3.15 Let � be a decidable logical theory, admitting quanti�er eliminationand closed under complementation and � be a signature. Let F be a set of admissiblefunctions for � and �. We denote by ECAL(�;F) the set of queries obtained by in-cluding term f(t) in the calculus presented in Section 3.4. We denote with ECAL(F)the corresponding syntactic language. 23.6 Equivalence between EGRA(�;F) and ECAL(�;F)For the generalized relational calculus and algebra to be equivalent, the set F cannotbe completely arbitrary, as the set of aggregate functions considered in [88] was notarbitrary. As in [88], we require that, if there is a function in F which operates ona given set of attributes, there must be similar functions which operate on all otherpossible sets of columns. This property, known as uniformness property, allows usto prove that each ECAL expression can be translated into an equivalent EGRAexpression. It can be formally stated as follows.De�nition 3.16 (Uniformness property) Let F be a set of admissible functions.Let f 2 F , f : DOM(�;�; n1)! DOM(�;�; n2). Let r 2 S(�;�) be a generalizedrelation such that deg(r) � n1. Let Z � �(r). Suppose that card(Z) � maxfxjx 2is(f)g. We de�ne ATf;Z(r) = ff(�[Z](t)) j t 2 rg.The uniformness property holds in F i� for all f 2 F ; for all r 2 S(�;�),for all Z � �(r) such that card(Z) � maxfxjx 2 is(f)g, there exists f such thatATf;Z(r) = ATf(r). 2Note that, due to the de�ned ordering on �[Z](t), the application of function f to�[Z](t) is well de�ned.The uniformness property prevents situations as the following one. Suppose thata function f is de�ned for lpoly. For example, f may count the number of edgesbelonging to the spatial object representing the extension of a given generalized tuple.Now consider a generalized relation r on poly. In general f cannot be applied togeneralized tuples of r. However, suppose that we know that the projection of eachgeneralized tuple in r on X and Y is linear. In this case, f can be applied to r,ensuring that only attributes X and Y are considered. This assumption violates theuniformness property, saying that f should be applied to all pairs of attributes.In the following, we formally prove that EGRA(�;F) and ECAL(�;F) are equi-valent if F satis�es the uniformness property.

3.6. Equivalence between EGRA(�;F) and ECAL(�;F) 693.6.1 Translating EGRA(�;F) to ECAL(�;F)In the following, for each algebraic expression e 2 EGRA(F), an equivalent closedalpha � 2 ECAL(F) is presented such that for all generalized relational databaseinstances I , e(I) = �(I). The notation Tac(e) = � denotes this transformation.To simplify the presentation, we use the following notation:Tac(e) = � = (t) : r1; :::; rm : Tac(e1) = �1 = (t1) : r11; :::; r1m : 1Tac(e) = �2 = (t2) : r21; :::; r2m : 2deg(e) = n.6Translation Tac is de�ned as follows. The proof of the equivalence between algebraand calculus expressions is presented in Appendix A.1. Tac(Ri) = Ri.2. Tac(�P (e)) = ((x : g(x); tP(x) :) : �(g) :)where tP is the target alpha representing the generalized tuple P .3. Tac(�[X](e)) = (t[X] : r1; :::; rh : (9rh+1):::(9rm))t[X] contains free variables v1; :::; vh ranging over r1; :::; rh. Variables of � thatare not included in the projection list range over rh+1; :::; rm.Since � is a general alpha, t is either a target alpha or a set term. In the �rstcase, if t = (t1 : r01; :::; r0n :), t[X] is de�ned as (t1[X] : r01; :::; r0n :), in thesecond case t[X] is de�ned as (v[X] : t(v) :).4. Tac(e1 1 e2) = (�3 : �1(g1); �2(g2) :)where �3 = ((v1; v3) : g1(v1); g2(v2) : ^k=1;nv1[Xik] = v2[Xjk]) and each pair(Xik ; Xjk) represents a pair of variables on which natural join is performed andv3 is the tuple formed by all columns of v2 except Xi1 ; :::; Xin.5. Tac(:e) = ((v : Dn(v) : (6 9�(g)) g(v)) : :)6. Tac(:s(e)) = ((v : Dn(v) : :g(v)) : �(g) :)7. Tac(e1 [e2) = (t : �1(g)_ �2(g) :)8. Tac(e1 ns e2) = (t : �1(g) : :�2(g))6Given an expression e, we denote with deg(e) the arity of any relation r0 obtained as result of�(e).

70 Chapter 3. New languages for relational constraint databases9. Tac(e1 n e2) = ((v : g1(v) : :9�2(g2)g2(v)) : �1(g1) :)10. Tac(�s(Q1;Q2;�)(e)) =(g : �(g) : (9Tac(Q01)(g1))((9Tac(�[�(Q1)](Q02))(g2)) g1�g2))whereQ0i is obtained fromQi by replacing constant t with relation ftg. Note thatTac(Q0i)(I) is always a generalized relation containing a single generalized tuple,that can be represented by using a target alpha ti. For the sake of simplicity,expression (9Tac(Q01)(g1))((9Tac(�[�(Q1)](Q02))(g2)) g1�g2) is denoted by t1�t2.11. Tac(ATf(e)) = (f(g) : �(g) :).12. Tac(AT ~Xf (e)) = (((v2[~X n los(f)]; v1) : (f(g))(v1); g(v2) : v2[~X \ los(f)] =v1[~X \ los(f)]) : �(g) :).73.6.2 Translating ECAL(�;F) to EGRA(�;F)Similarly to what has been done in [88, 111], a calculus object q is translated intoan algebraic expression by translating each individual component of q recursivelyand then combining these translations. The translation is based on the followingprinciples:� the translation of a simple term produces a relation containing only one (unary)relational tuple;� the translation of a set term produces a generalized relation containing only onegeneralized tuple;� a set formula is translated into a generalized relation containing those general-ized tuples for which the interpretation of the formula is 1;� a simple formula is translated into a relation containing those relational tuplesfor which the interpretation of the formula is 1;� a set alpha is translated into a set of generalized tuples that satisfy the rangeformulas as well as the quali�er;� a simple alpha is translated into a set of tuples that satisfy the range formulasas well as the quali�er.7In the previous expression, vi[~X \ los(f)] is a shorthand for the tuple (v2[i1]; :::; v2[is]), ij 2~X \ los(f), j = 1; :::; s.

3.6. Equivalence between EGRA(�;F) and ECAL(�;F) 71The problem of a recursive translation is the presence of free variables. Indeed,during the recursive translation, free variables must be represented in some way, sincea calculus object cannot have a well-de�ned value until values for the free variablesare given. To consider this aspect, the translation does not map a calculus objectinto just an algebraic expression. Rather, a list of pairs is associated with eachcalculus object and called free-attribute list. Each pair maintains information aboutthe relationship between variables (or variable attributes) and column numbers of thealgebraic expression associated with the calculus object.More formally, as in [88, 111], the input of the translation consists of a calculusobject q and a modelM . The output contains an algebraic expression e, a free attrib-ute list L and either a projection list Z (for terms and alphas) or another expressionE (for formulas), whose meaning is explained below:� Z contains the sequence of those columns numbers that are projected from e.� E is an algebraic expression that provides the domain where a formula is eval-uated.� L represents either a simple free attribute list or a set free attribute list.A simple free attribute list is a set of pairs hvi[A]; ci, where vi 2 V rangesover a relation e such that deg(e) � A and c is a column number of relation e0,associated with q. Such a pair says that column c in e0 \represents" column Aof the free variable vi.A set free attribute list is a set of pairs hgi; sci, where gi 2 G ranges over ageneralized relation e, and sc is a set of column numbers of relation e0 associatedwith q. Such a pair says that the projection of the generalized tuples containedin the resulting expression on sc \represents" variable gi.We denote with Tca(q) the translation function. To simplify the presentation, weassume that the quali�er of a set alpha is a set formula. This assumption does notreduce the expressivity of the calculus. Indeed, as we can observe from the translationpresented in Subsection 3.6.1, all calculus expressions equivalent to the algebraic onessatisfy this condition.In the following, if L1 is a simple free attribute list and L2 is a set attribute list,we use the following notation:1. L1 = X .If hvi[A]; ci 2 L1, then c = xi[A]8 is a component of L1 = X .8Recall that we assume that hvi; xii 2 X.

72 Chapter 3. New languages for relational constraint databases2. L2 = X .If hgi; sci 2 L2, then (xi;�[sc](t);=) belongs to L2 = X .Given a model M = hI; S;Xi and a calculus object q, the translation is de�nedas follows:� For every simple term t, we de�ne an expression e, a simple free attribute listL, and a projection list Z such that for all I , S, and x: �[Z](�L=x(e))(I) =ft(I; S; x)g.� For every set term t, we de�ne an expression e, a set free attribute list L, and aprojection list Z such that for all I , S, and x: �[Z](�sL=x(e))(I) = ft(I; S; x)g.� For every simple formula we de�ne an expression e, a simple free attributelist L, and another expression E such that for all I , S, and x:�L=x(E)(I) 6= ;�L=x(e)(I) = �L=x(E)(I) if (I; S; x) = 1�L=x(e)(I) = ; if (I; S; x) = 0� For every set formula , we de�ne an expression e, a set free attribute list L,and a another expression E such that for all I , S, and x:�sL=x(E)(I) 6= ;�sL=x(e)(I) = �sL=x(E)(I) if (I; S; x) = 1�sL=x(e)(I) = ; if (I; S; x) = 0� For every simple alpha �, we de�ne an expression e, a simple free attribute listL, and a projection list Z such that for all I , S, and x: �[Z](�L=x(e))(I) =�(I; S; x).� For every set alpha � de�ne an expression e, a set free attribute list L, and aprojection list Z such that for all I , S, and x: �[Z](�sL=x(e))(I) = �(I; S; x).Without assuming that the quali�er of a set alpha is a set formula, the translationof set alphas becomes more complicated since the set selection has to be replaced bya sequence of set and tuple selections. The formal proof of the equivalence is verytechnical, as the proofs presented in [88] and [111], and it is presented in AppendixA. As a �nal remark, it is important to note that, in order to guarantee that in thegiven translation selection operators are always well de�ned, it is necessary to provethe following result. The proof can be easily derived by induction on the structure ofcalculus objects.

3.7. Concluding remarks 73Lemma 3.3 Let q be a calculus object. Let Tca(q) = he; F; Li, where F may be anexpression or a projection list. If q is a set object, then L is a set free attribute list;if q is a simple object, then L is a simple free attribute list. 23.7 Concluding remarksIn this chapter we have introduced a new nested semantics for generalized relations.The new semantics is obtained by slightly modifying the relational semantics intro-duced in Chapter 2 and interpreting each generalized relation as a �nite set of pos-sibly in�nite sets, each representing the extension of a generalized tuple. We havealso characterized the properties of languages based on this semantics with respectto languages for generalized databases based on the relational semantics. An algebraand a calculus based on the nested semantics have then been proposed and extendedwith external functions. Finally, these two languages have been formally proved to beequivalent. As far as we know, this is the �rst approach introducing external functionsin constraint query languages.

74 Chapter 3. New languages for relational constraint databases

Chapter 4An update language for relationalconstraint databasesA data manipulation language must provide constructs to both retrieve and updatedata. The de�nition of an update language is a much harder issue in constraintdatabases, especially when used to represent spatial data. Indeed, spatial objectsare often subject to transformation with respect to either their shape (for example,in rescaling or adding a new object component) or their position in the space (forexample, translation or rotation).The aim of this chapter is to introduce an update language based on the sameprinciples on which the query languages presented in Chapter 3 are based. Followingthe relational approach, at least three update operators must be de�ned for constraintdatabases: insertion, deletion, and modi�cation of generalized tuples.The distinction between point-based and object-based manipulation, introducedin Chapter 3, can also be taken into account in the de�nition of update operators. Atthis level, they have the following meaning:� A point-based update modi�es a set of generalized tuples, seen as a possiblyin�nite set of points. Thus, it may add, delete, or modify some points, possiblychanging the extension of the already existing generalized tuples.� An object-based update modi�es a generalized relation by inserting, deleting,or modifying a generalized tuple, seen as a single value.The remainder of this chapter is organized as follows. In Section 4.1, insertoperators are presented, together with examples motivating their introduction. Deleteoperators are presented in Section 4.2 whereas update operators are introduced inSection 4.3. We show under which hypothesis the proposed update operator collapses75

76 Chapter 4. An update language for relational constraint databasesOperator Syntax e Restrictions Semantics r1 := �(e)(r1)Nametuple insert Inst(R1; C; u) �(u) � �(R1) r1 :=1 ft_u j t 2 r1^C(t)g [ft j t 2 r1 ^ :C(t)gset insert Inss(R1; u) �(u) � �(R1) r1 := r1 [fugtuple delete Delt(R1; C; u) �(u) � �(R1) r1 := ft^:u j t 2 r1^C(t)g [ft j t 2 r1 ^ :C(t)gset delete Dels(R1; C) �(C) � �(R1) r1 := ft j t 2 r1 ^ :C(t)gset update Upds(R1; C;Q) �(Q) � �(R1) r1 := ft j t 2 r1 ^ :C(t)g [�(C) � �(R1) fQ(t) j t 2 r1 ^ C(t)gTable 4.1: Update operators.to delete and insert operators and under which other hypothesis it corresponds tosome useful spatial operations, such as translation, rotation, etc.All the queries and conditions we consider in the de�nition of the update languageare expressed by using EGRA(F), for some set of admissible functions F . A similarde�nition can be proposed by using ECAL(F).4.1 Insert operatorsSpeci�c application requirements lead to the de�nition of tuple and set insert operat-ors. In particular:� The de�nition of a set insert operator is motivated by the fact that a typicalrequirement is the insertion of a new generalized tuple in a generalized relation.The set insert operator satis�es this requirement by taking a generalized relationr and a generalized tuple t as input, and adding t to r, thus increasing thecardinality of r. Since r is a set, the set insert operation is a no-operation ift is already contained in r. This operation can be reduced to an equivalencetest between generalized tuples. As generalized tuples are usually representedby using canonical forms [82], this test usually reduces to check whether twocanonical forms are identical.� Because a generalized relation contains sets of relational tuples, the user may beinterested in inserting a relational tuple or a set of relational tuples into someof the existing sets of relational tuples. Note that this requirement is di�erentfrom the previous one, since in this case we extend the extension of the alreadyexisting generalized tuples but we do not insert any new one.

4.1. Insert operators 77Given a generalized relation r, a boolean condition C (see the de�nition of setselection in Chapter 3) and a generalized tuple t, the tuple insert operator selectsall generalized tuples of r that satisfy C and adds to them the relational tuplescontained in ext(t). Notice that the tuple insert does not change the cardinalityof the target generalized relation.In Table 4.1, the syntax and the semantics of insert operations are presentedfollowing the style used in Table 2.1 in Chapter 2 and Table 3.3 in Chapter 3. Forupdate operations, � is a function that takes an update expression and returns afunction, representing the update semantics.Example 4.1 Figure 4.1 shows a possible geographical domain. The space is decom-posed in four districts. Districts may contain towns, railway sections, and stations.Districts, towns, and railway sections are concave objects, whereas stations are con-vex. A possible representation of this domain in the extended generalized relationalmodel is the following:� Districts can be stored in a generalized relation D. Each d-generalized tuplerepresents a single district.� Towns can be stored in a generalized relation T . Each d-generalized tuple rep-resents a single town.� Railway sections and stations can be stored in several ways. For example, eachrailway section, together with the stations located along the section, can be rep-resented by using a single d-generalized tuple. We assume that railway sectionsand stations are represented in this way inside a generalized relation R.We assume that the schema of generalized relations D, T , and R contains twovariables X and Y , representing points belonging to the object extension, and a vari-able ID, representing the generalized tuple identi�er. This identi�er is not inserted to\glue" together the extension of di�erent generalized tuples, as in the generalized re-lational model. Rather, it has been introduced to better identify the considered spatialobjects in query expressions.Figure 4.1 also shows a dashed line and an empty square, representing a newrailway section and a new station to be inserted in the database, respectively. Inparticular, the new railway section identi�ed by ID = 5 (in the �gure, represented byV) is added to the generalized relation R and the new station is added to the railwaysections identi�ed by ID 2 f1; 2; 4g, since it is an interchange node of the railwaynetwork. The �rst insertion is performed using the set insert operator, because anew spatial object has to be created. In order to perform the second insertion, the

78 Chapter 4. An update language for relational constraint databases
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

1 2

34

1

2
3

4

5

District
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

Towns Stations Railway

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

I
II

III

IV
V

New Station New RailwayFigure 4.1: The map shows the content of the generalized relations D, R and T ,together with the spatial objects to be inserted.tuple insert operator can be used, since, due to the chosen representation, only amodi�cation of the extent of existing spatial objects has to be performed. Table 4.2shows the expressions corresponding to the two insertions. 34.2 Delete operationFor the delete operations the discussion is similar to the one presented for the insertoperations. We therefore introduce two operators:� The set delete operator, given a generalized relation r and a boolean conditionC, deletes from r all generalized tuples that satisfy C.� The tuple delete operator, given a generalized relation r, a boolean conditionC, and a generalized tuple t, selects all the generalized tuples of r that satisfyC and removes from their extension the relational tuples contained in ext(t).

4.3. Modify operators 79In Table 4.1, the syntax and semantics of delete operations are presented. As anexample, referred to Example 4.1, Table 4.2 shows the expressions to delete respect-ively the town with ID = 1 and the station of the railway section with ID = 2.4.3 Modify operatorsTraditional database systems provide a modify operation to deal with updates thatare function of the old values of the tuples. In constraint database systems this caseis very common since operations of this kind, like rescaling, translation or rotation,are often applied to spatial objects, represented by generalized tuples. Therefore theintroduction of a modify operator (also called update operator) in a spatial orienteddata model is necessary.Note that, due to the nested semantics assigned to a generalized relation, point-based and object-based modify operations coincide. However, we choose to classifythe modify operator as a set operator, since it always modi�es a generalized tuple.In a traditional data manipulation language (for example, SQL), the modify op-eration allows computing the new value, to be assigned to the updated tuple, by adatabase query. Following the same approach we propose a set update operator withthe following semantics. Given a generalized relation r, a boolean condition C, and aquery Q(t), the set update operator selects all tuples t of r that satisfy C and substi-tutes each t with Q(t). The query Q(t) acts on a single generalized tuple, denoted byt, at a time, as in the de�nition of the set selection operator. The generalized tuplet is considered as a generalized relation containing only one generalized tuple. Thisimplies that all set operators of EGRA(�) are useless, since eventually they can onlydelete t. Note that, also the union operator cannot be used inside Q(t), because itwill necessary generate a relation with at least two generalized tuples. However, sincean operator that generates the disjunction of two generalized tuples could beuseful to express some spatial transformations, we introduce a tuple union operatorde�ned as R1 [t R2 = t1;1 _ : : :_ t1;n _ t2;1 _ : : :_ t2;massuming that R1 = ft1;1; : : : ; t1;ng and R2 = ft2;1; : : : ; t2;ng. Therefore, we restrictQ(t) to be an expression of (EGRA(F) n f[; �sC ; ns;:sg)[f[tg2. Table 4.1 presentsthe de�nition of the set update operation.Notice that, depending on the operators used in Q(t), a di�erent modi�cation oftuple t is obtained. In particular, the following proposition holds.2With (EGRA(F) n S) [S0 we denote the expressions of the language obtained from EGRA(F)by not using operators in S but possibly using new operators contained in S0.

80 Chapter 4. An update language for relational constraint databasesDescription EGRA update expressioninsertion of a new railwaysection in R, with ID = 5 Inss(R; hID = 5 ^ 105 � X � 137a ^Y = � 932X + 50i)insertion of a new station be-longing to the railway sec-tions of R with ID 2f1; 2; 4g Inst(R; (t; (ID = 1 _ ID = 2 _ ID = 4);16= ;);h53 � X � 55 ^ 40 � Y � 42i)deletion of the town withID = 1 contained in T Dels(T; (t; (ID = 1);16= ;))deletion of a speci�c stationfrom the railway section in Rwith ID = 2 Delt(R; (t; (ID = 2);16= ;);h65 � X � 67 ^ 83 � Y � 85i)aa � X � b is an abbreviation for X � a ^X � b.Table 4.2: Examples of EGRA(lpoly) insertions and deletions.DescriptionECAL EGRAProjection (QprjXi1 ;:::;Xim (u))it projects the n-dimensional generalized tuple u onto the Xi1 ; :::;Xim (m < n) coordinates(((v[i1]; :::; v[im]) : t(v) :) : R(t) :) �[Xi1 ;:::;Xim](u)Minimum Bounding Rectangle (Qmbr(u))it generates the Minimum Bounding Box of the extension of u(((v1[1]; v2[2]) : t(v1); t(v2) :) : R(t) :) �[X](u) 1 �[Y](u)Translation (Qtraa;b (u))it translates the extension of u according to the vector < a; b >(((v[1]; v[2]) : t(v); tc(v) :) : �1(t) :) where �[X;Y](�c(%[XjX0 ;Y jY 0](u) 1 (u [t :u)))�1 = (((v1; v2) : t1(v1); t2(v2) :) : R(t1);Dn(t2) :) c � X = X 0 + a ^ Y = Y 0 + bRotation (QrotX;Y ;a1;a2 ;b1;b2(u))it rotates the extension of u according to the rotation coe�cients < a1; a2; b1; b2 >a(((v[1]; v[2]) : t(v); tc(v) :) : �1(t) :) where �[X;Y](�c(%[XjX0 ;Y jY 0](u) 1 (u [t :u)))�1 = (((v1; v2) : t1(v1); t2(v2) :) : R(t1);Dn(t2) :) c � (X = a1(X 0 �X) + a2(Y 0 � Y))^(Y = b1(X 0 �X) + b2(Y 0 � Y))aThe coe�cients a1; a2; b1; b2 de�ne the rotation, however only 2 of them are independent, i.e.,a1;1 = a, a1;2 = b, a2;1 = �b and a2;2 = a, where a = cos �, b = sin�, and � is the rotation angle.Table 4.3: Examples of queries to be speci�ed in the modify operator. In the ECALcolumn, R represents the alpha (tu ::), where tu is the target alpha representing u(see Subsection 3.4.1).

4.3. Modify operators 81Proposition 4.1 Given a generalized relation identi�er R, a boolean condition Cand a query Q, expressed by using the operators of EGRAnf%;�;[; �sC;ns;:sg, a generalized tuple P exists such that:Upds(R;C;Q(t)) = Upds(R;C; �P(t)):Proof: Since t is a generalized tuple, �P (t) is equal to (t^P). Thus, the propositionis proved if we show that a generalized tuple P always exists, such that Q(t) = t^P .This is proved by induction on the structure of Q(t):� Base step: Q(t) = t. The generalized tuple P , representing the true formula onthe schema of R, satis�es the proposition.� Inductive step:{ Q(t) = �P (f(t)).By inductive hypothesis, f(t) = t ^ P 0. Thus, from the de�nition of theselection operator, Q(t) = t ^ P 0 ^ P , and therefore Q(t) = t ^ P , whereP = P 0 ^ P .{ Q(t) = f 0(t) n f 00(t).By inductive hypothesis, f 0(t) = t ^ P 0; f 00(t) = t ^ P 00 . Thus, from thede�nition of the di�erence operator,Q(t) = t^P 0^:(t^P 00), and thereforeQ(t) = t ^ P 0 ^ :P 00 = t ^ P , where P = P 0 ^ :P 00.{ Q(t) = f 0(t) 1 f 00(t).By inductive hypothesis f 0(t) = t ^ P 0; f 00(t) = t ^ P 00. Thus, from thede�nition of the natural join operator, Q(t) = t ^ P 0 ^ P 00, and thereforeQ(t) = t ^ P , where P = P 0 ^ P 00. 2The previous result does not hold if the query Q(t) contains a projection operator.Indeed, in this case, the query speci�ed in the update operator may generate relationaltuples that are not contained in ext(t) (consider for example, the query Q(t) =�[X](t) 1 �[Y](t) where t � (X = Y ^ 1 < Y < 10)). Thus, in general, a constraintP such that Q(t) = �P (t) cannot be found. A similar consideration holds if Q(t)contains the renaming operator.Some examples of queries that can be used inside the set update operator in orderto modify spatial data are shown in Table 4.3. For each query, together with thealgebraic expression, an equivalent expression in ECAL(F) is also proposed. Noticethat, since the translation and the rotation of a spatial object of E2 can be expressedin EGRA(�;F), all the movements of a spatial object in E2 can be described in thislanguage.

82 Chapter 4. An update language for relational constraint databasesSome relationships exist between the proposed set update operator and the pre-viously de�ned tuple operators, as stated by the following proposition. The prooftrivially follows from the de�nition of the operators.Proposition 4.2 Given a generalized relation identi�er R, a boolean condition C,and a generalized tuple P , the tuple insert and the tuple delete operators can beexpressed, respectively, as follows:Delt(r; C; P) = Upds(r; C; �:P(t)) Inst(r; C;P) = Upds(r; C; t[t �P (t [t :t)):32From the previous results it follows that the proposed set update operator issu�cient to model tuple insert and tuple delete operators, that therefore representsimpler syntactic forms to express data modi�cations.4.4 Concluding remarksIn this chapter we have introduced an update language for constraint databases, basedon the nested semantics. This language, together with the query languages introducedin Section 3, completes the de�nition of a data manipulation language for relationalconstraint databases based on a nested semantics.As we have already remarked, in this chapter we have assumed that queries andconditions are expressed using EGRA. However, due to the equivalence betweenEGRA(�;F) and ECAL(�;F), they can also be expressed by using ECAL(F). Inthis case: (i) a query is translated into the equivalent alpha (see Section 3.6); (ii) acondition is translated into a calculus formula (see Section 3.6).For some examples of alphas used in the de�nition of the update operator, seeTable 4.3.
3Notice, that P is generated by the query �P (t [t :t).

Chapter 5A formal model for nestedrelational constraint databasesIn Chapter 3 we have proposed an algebra and a calculus for relational constraintdatabases, based on a simple nested model. Though this model overcomes somelimitations of the generalized relational model, it still has some of the problems insupporting complex applications that standard relational database systems have. In-deed, in general, typical data modeled in constraint databases, such as spatial andtemporal data, are not at, as the relational model requires, but composite. On theother hand, neither the nested or the object-oriented models are suitable to modelsuch types of data, since they are not able to represent in�nite information. An in-tegration of both paradigms, nested relations and constraint relations, is thereforeneeded to overcome the limitations of both.As we have seen in Chapter 2, several approaches have been proposed to modelcomplex data in constraint databases. Most of them model sets up to a given heightof nesting [13, 122]. Thus, they do not allow the arbitrary combination of set andtuple constructors. Others do not have this restriction but are de�ned only for speci�ctheories. This is the case of C-CALC [65]. For others, as LyriC [28], the de�nitionof a formal basis, supporting the de�nition and the analysis of relevant languageproperties, has been left to future work.The aim of this chapter is the de�nition of a model and a query language fornested constraint relational databases overcoming some limitations of the previousproposals. The proposed language is obtained by extending NRC [148] to deal withpossibly in�nite relations, �nitely representable by using poly, and it is called gNRC(generalized NRC).NRC is similar to the well-known comprehension mechanism in functional pro-83

84 Chapter 5. A formal model for nested relational constraint databasesgramming and its formulation is based on structural recursion [34] and on monads[103, 145]. NRC has been proved equivalent to most nested relational languagespresented before. The choice of this language is motivated by the fact that the formalsemantics assigned to NRC and the structural recursion on which it is based allowus to prove several results about gNRC in a simple way. Moreover, even thoughgNRC has been de�ned for poly, other theories can be easily modeled by the sameformalism.The formal framework on which gNRC is based allows us to easily prove thatnested relational constraint languages have the conservative extension property. Thismeans that, when input and output are restricted to a speci�c degree of nesting, anyhigher degree of nesting generated by the computation is useless. In particular, wheninput and output relations represent at generalized relations, gNRC expressions canbe mapped into FO extended with poly. This property also holds for relational andnested relational languages [148]. Note that, even if this property may seem obvious,this is the �rst formal proof of its validity in the context of constraint databases.Giving a constructive proof, we also prove that gNRC is e�ectively computable.The same proof shows that the language has NC data complexity. In summary,gNRC is a real nested constraint language but it does not have extra computationalpower compared to the usual constraint query languages. However, it allows a morenatural representation of data, ensuring a low computational complexity and a highexibility with respect to the chosen theory, thus overcoming most limitations ofprevious proposals.The chapter is organized as follows. In Section 5.1, a slight modi�cation of thenested relational model is proposed, to deal with �nitely representable sets. The�nitely representable nested relational calculus gNRC is then presented in Section5.2. Section 5.3 proves that gNRC has the conservative extension property. Resultsabout e�ective computability are then presented in Section 5.4, whereas Section 5.5deals with complexity results. Finally, Section 5.6 presents some conclusions.5.1 The generalized nested relational modelIn the traditional generalized relational model, a relation can be an in�nite set oftuples taking values from a given domain, as long as the set is �nitely representable.We extend this paradigm to sets that can be nested to an arbitrary height. To thispurpose, we choose as an example the polynomial inequality constraint theory poly.1In particular, we allow such in�nite sets of tuples of reals to appear at any depth in1The proposed approach can be easily extended to deal with any other theory admitting variableselimination and closed under complementation.

5.1. The generalized nested relational model 85a nested relation. However, we do not allow a nested set to have an in�nite numberof such in�nite sets as its elements, to guarantee e�ective computability and low datacomplexity.To be precise, the types that we want to consider are:s ::= R j s1 � � � � � sn j fsg j ffrR� � � � �RgThe type R contains all the real numbers. The type s1 � � � � � sn contains n-arytuples whose components have types s1, ..., sn respectively. The type fsg are setsof �nite cardinality whose elements are objects of type s. The type ffrsg are sets of(possibly) in�nite cardinality whose elements are objects of type s, where s is a typeof the form R� � � ��R. We also require each set in ffrsg to be �nitely representablein the sense of [64, 83, 115].For convenience, we also introduce a `type' B to stand for Booleans. However, foreconomy, we use the number 0 to stand for false and the number 1 to stand for true.Example 5.1 Consider a spatial database, representing regions, cities, and rivers.Each region is characterized by a name, its geographical extension, the geographicalextension of its mountains, and the geographical extension of its at countries. Citiesand rivers are characterized by their name and their geographical extension. Regions,cities, and rivers can be represented using the proposed �nitely representable nestedtypes as follows:� Regions: Regions can be represented using a �nite set. Each element of the setrepresents a single region and is represented by a tuple. The tuple is composed offour elements: a real, representing the region identi�er; a �nitely representableset, representing the geographical extension of the region; a �nite set, containinga �nitely representable set for each group of mountains; a �nite set, containinga �nitely representable set for each at country inside the region. Geographicalextensions can be approximated by polygons and therefore each �nitely repres-entable set contains pairs of reals. Thus, regions can be represented by a complexobject of type REGIONS : fR� ffrR� Rg� fffrR�Rgg� fffrR�Rggg.� Cities and Rivers: Both cities and rivers can be represented by a �nite set. Eachelement of the set represents a single city (a single river) and it is representedby a tuple. The tuple is composed of two elements: a real, representing thecity identi�er (the river identi�er) and a �nitely representable set, representingthe geographical extension of the city (of the river). A city (a river) can beeither represented as a point or as a polygon. Therefore, also in this case, each�nitely representable set contains pairs of reals. Thus, cities and rivers can be

86 Chapter 5. A formal model for nested relational constraint databasesrepresented by complex objects respectively of types CITIES : fR�ffrR�Rggand RIVERS : fR� ffrR� Rgg: 25.2 The generalized nested relational calculusTo express queries over our �nitely representable nested relations, we extend thenested relational calculus NRC de�ned in [34, 148]. We call the extended calculusgNRC, standing for generalized NRC.We present the language incrementally. We start from NRC, which is equivalentto the usual nested relational algebra [2, 34]. The syntax and typing rules of NRCare given below. xs : s c : Re : s1 � � � � � sn�i e : si e1 : s1 � � � en : sn(e1; : : : ; en) : s1 � � � � � snfgs : fsg e : sfeg : fsg e1 : fsg e2 : fsge1 [e2 : fsg e1 : ftg e2 : fsgSfe1 j xs 2 e2g : ftge1 : R e2 : Re1 = e2 : B e1 : B e2 : s e3 : sif e1 then e2 else e3 : s e : fRgempty e : BWe often omit the type superscripts as they can be inferred. An expression e havingfree variables ~x is interpreted as a function f(~x) = e, which given input ~O producese[~O=~x] as its output. An expression e with no free variable can be regarded as aconstant function f(~x) = e that returns e on all input ~x.Let us briey recall the semantics (see also [34]). Variables xs are available foreach type s. Every real number c is available. The operations for tuples are standard.Namely, (e1; : : : ; en) forms an n-tuple whose i component is ei and �i e returns the icomponent of the n-tuple e.fg forms the empty set. feg forms the singleton set containing e. e1 [e2 unionsthe two sets e1 and e2. Sfe1 j x 2 e2g maps the function f(x) = e1 over all elementsin e2 and then returns their union; thus if e2 is the set fo1; : : : ; ong, the result ofthis operation would be f(o1) [� � � [f(on). For example, Sff(x; x)g j x 2 f1; 2ggevaluates to f(1; 1); (2; 2)g.The operations for Booleans are also typical, with the understanding that true isrepresented by 1 and false is represented by 0. e1 = e2 returns true if e1 and e2 have

5.2. The generalized nested relational calculus 87the same value and returns false otherwise. empty e returns true if e is an empty setand returns false otherwise. Finally, if e1 then e2 else e3 evaluates to e2 if e1 is trueand evaluates to e3 if e1 is false ; it is unde�ned otherwise.Now we deal with �nitely representable relations and constraints. We add con-structs analogous to the �nite set constructs of NRC to manipulate �nitely repres-entable sets and constructs for arithmetic to express real polynomial constraints.2ffrgs : ffrsg e : sffreg : ffrsg e1 : ffrsg e2 : ffrsge1 [fr e2 : ffrsge1 : ffrs1g e2 : ffrs2gSffre1 j xs2 2fr e2g : ffrs1ge1 : R e2 : Re1 + e2 : R e1 : R e2 : Re1 � e2 : R e1 : R e2 : Re1 � e2 : R e1 : R e2 : Re1 � e2 : RR : ffrRg e : ffrRgemptyfr e : BThe semantics of these constructs is analogous to those of �nite sets. ffrg forms theempty �nitely representable set. ffreg forms a singleton �nitely representable set.e1 [fr e2 produces a �nitely representable set that is the union of the two �nitelyrepresentable sets e1 and e2. Sffre1 j xs2 2fr e2g applies the function f(x) = e1 toeach element of e2 and returns their union as a �nitely representable set. For example,if the elements of e2 are o1, o2, ..., then the result is f(o1) [fr f(o2) [fr � � �.3The four arithmetic operations have the usual interpretation. emptyfr e tests if the�nitely representable set e of reals is empty. Finally, the symbolR denotes the in�nite(but �nitely representable) set of all real numbers. It is the presence of this symbol Rthat allows to express unbound quanti�cation. For example, given a polynomial f(x),we can express its set of roots easily: Sffr if f(x) = 0 then ffrxg else ffrg j x 2frRg. Similarly, we can express the usual linear order on the reals, because theformula 9z:(z 6= 0) ^ (y � x = z2), which holds i� x < y, is expressible asnot(emptyfr(Sffr if not(z = 0) then if y�x = z �z then ffr zg else ffrg else ffrg jz 2fr Rg)), with not implemented in the obvious way.The above constructs let us manipulate �nite sets and �nitely representable setsindependently. In order for these two kinds of sets to interact, we need one moreconstruct:2Note that di�erent sets of rules can be inserted to represent di�erent logical theories admittingvariable elimination and closed under complementation.3In Section 5.4 we prove that this operation is computable, even if at a �rst sight this is notobvious.

88 Chapter 5. A formal model for nested relational constraint databasese1 : ffrs1g e2 : fs2gSffre1 j xs2 2 e2g : ffrs1gThis construct let us convert a �nite set of real tuples into a �nitely representable one.The semantics of Sffre1 j x 2 e2g is to apply the function f(x) = e1 to each elementof e2 and then returns their union as a �nitely representable set. That is, if e2 is the setfo1; : : : ; ong, then it produces the �nitely representable set f(o1) [fr � � � [fr f(on).For example, the conversion of a �nite set e of real tuples to a �nitely representableone can be expressed as Sffrffrxg j x 2 eg.The above constructs constitute the language gNRC. Before we study gNRCproperties, let us briey introduce a nice shorthand, based on the comprehensionnotation [33, 145], for writing gNRC queries. Recall from [33, 34, 148] that thecomprehension fe j A1; : : : ; Ang, where each Ai either has the form xi 2 ei or is anexpression ei of type B , has a direct correspondent in NRC that is given by recursivelyapplying the following equations:� fe j xi 2 ei; : : :g = Sffe j : : :g j xi 2 eig� fe j ei; : : :g = if ei then fe j : : :g else fgThe comprehension notation is very user-friendly. For example, it allows us to writef(x; y) j x 2 e1; y 2 e2g for the Cartesian product of e1 and e2 instead of the clumsierSfSff(x; y)g j y 2 e2g j x 2 e1g.The comprehension notation can be extended naturally to all gNRC expressions.We can interpret the comprehension ffre j A1; : : : ; Ang, where each Ai either hasthe form xi 2 ei or has the form xi 2fr ei or is an expression ei of type B, as anexpression of gNRC by recursively applying the following equations:� ffre j xi 2 ei; : : :g = Sffrffre j : : :g j xi 2 eig� ffre j xi 2fr ei; : : :g = Sffrffre j : : :g j xi 2fr eig� ffre j ei; : : :g = if ei then ffre j : : :g else ffrgFor example, the query to �nd the roots of f(x) becomes ffrx j x 2fr R; f(x) = 0g.Similarly, the query to test if x < y becomesnot(emptyfr(ffrz j z 2fr R; not(z = 0); y � x = z � zg)).In addition to comprehension, we also �nd it convenient to use some patternmatching, which can be eliminated in a straightforward manner. For example, wewrite f(x; z) j (x; y) 2 e1; (y0; z) 2 e2; y = y0g for relational composition instead ofthe more formal f(�1 xy; �2 yz) j xy 2 e1; yz 2 e2; �2 xy = �1 yzg.

5.2. The generalized nested relational calculus 89We should also remark that while gNRC provides only equality test on R andemptiness tests on fRg and ffrRg, these operations can be lifted to every type s usinggNRC as the ambient language; see [148]. Similarly, commonly used operations suchas set membership, set subset tests, set di�erence, and set intersection are expressibleat all types in gNRC. Thus, under the proposed framework, generalized relations onpoly, as de�ned in [83], are easily de�ned.Example 5.2 Consider the types introduced in Example 5.1. Suppose we want torepresent a city, identi�ed by number 10, whose extension, in some reference space,is approximated by the constraint 50 � X � 60 ^ 20 � Y � 25.4 Using thecomprehension syntax, this city is represented in gNRC as (10; ffr(x; y) j x 2frR; y 2fr R; x � 50; x � 60; y � 20; y � 25g), where x � y is de�ned as before:if not(emptyfr(ffrz j z 2fr R; not(z = 0); y � x = z � zg)) then 1 else x = y.Now consider three expressions regions: REGIONS, cities: CITIES,rivers: RIVERS, respectively representing a set of regions, a set of cities, and aset of rivers, and a further expression reg: R, representing a region identi�er. Usingthe comprehension notation and pattern matching, gNRC can be used to formulateseveral interesting queries:� \Find all rivers owing in region reg". This query can be expressed in gNRCas follows:fnriv j (reg; ereg; mreg; freg) 2 regions; (nriv; eriv) 2 rivers, not(ereg \eriv =;)g.� \Find all cities whose extension contains some mountains". This query can beexpressed in gNRC as follows:fncity j (nreg; ereg;Mreg; freg) 2 regions;mreg 2 Mreg; (ncity; ecity) 2 cities;not(ecity \mreg = ;)g.� \Find all rivers owing in at least two di�erent regions". This query can beexpressed in gNRC as follows:fnriv j (n1reg ; e1reg; m1reg; f1reg) 2 regions; (n2reg; e2reg; m2reg; f2reg) 2 regions,(nriv; eriv) 2 rivers, not(e1reg \ eriv = ;); not(e2reg \ eriv = ;); not(n1reg =n2reg)g. 24We use uppercase letters to denote variables belonging to the relation schema and lowercaseletters to denote variables inside calculus expressions.

90 Chapter 5. A formal model for nested relational constraint databases5.3 Conservative extension propertyThe conservative extension property basically says that the expressive power of aquery language is independent of the height of set nesting in the intermediate dataproduced during the evaluation of a query. In the following, we give a precise de�nitionand then prove that gNRC possesses it.Given a type s, the height of s is de�ned as the depth of nesting of set bracketsf�g and ffr�g in s. Given an expression e of gNRC, the height of e is de�ned as themaximum height of all the types that appear in e's typing derivation. For example,f(x; y) j x 2 e1; y 2 e2g has height 1 if both e1 and e2 have height 1. On the otherhand, f(x; ffrz j z 2fr R; z < xg) j x 2 eg have height 2 if e has height 1.De�nition 5.1 (Conservative extension property) A language L is said to havethe conservative extension property if every function f : s1 ! s2 that is expressiblein L can be expressed using an expression of height no more than the maximum ofthe heights of s1 and s2. 2We now prove that gNRC has the conservative extension property, just like NRC[148]. As in [148], a set of strongly normalizing rewriting rules that reduces set heightis given. Then we show that the induced normal forms have height no more than thatof their free variables (i.e., their input variables).Table 5.1 shows the rewriting rules that we want to use. Those forNRC are takenfrom [148]. As usual, we assume that bound variables are renamed to avoid captureand that e1[e2=x] denotes the expression obtained by replacing all free occurrences ofx in e1 by e2.It is readily veri�ed that the proposed rewriting rules are sound. That is, expres-sions obtained from e1 by rewriting are semantically equivalent to e1. Furthermore,using a straightforward adaptation of the termination measure given in [148], we canprove the following result.Proposition 5.1 If e1 ; e2, then e1 = e2.5 Moreover, the rewriting system presen-ted in Table 5.1 is guaranteed to stop no matter in what order these rules are applied(it is strongly normalizing). 2The following result follows from the application of a simple induction on thestructure of expressions.Proposition 5.2 Let e : s be an expression of gNRC having free variables x1 : s1,..., xn : sn such that e is a normal form with respect to the above rewriting system.Then the height of e is at most the maximum of the heights of s, s1, ..., sn. 25The symbol = denotes semantic equivalence.

5.3. Conservative extension property 91�i(e1; : : : ; en); eiif true then e1 else e2 ; e1if false then e1 else e2 ; e2fg [e; ee [fg; eempty(e1 [� � � [en); false, if some ei has the form fegempty(e1 [� � � [en); true, if every ei has the form fgemptyfr(e1 [fr � � � [fr en); false, if some ei has the form ffregemptyfr(e1 [fr � � � [fr en); true, if every ei has the form ffrgSfe j x 2 fgg; fgSfe1 j x 2 fe2gg; e1[e2=x]Sfe1 j x 2 e2 [e3g; Sfe1 j x 2 e2g [Sfe1 j x 2 e3gSfe1 j x 2 Sfe2 j y 2 e3g; SfSfe1 j x 2 e2g j y 2 e3gSfe1 j x 2 if e2 then e3 else e4g; if e2 then Sfe1 j x 2 e3g elseSfe1 j x 2 e4gSffre j x 2fr ffrgg; ffrgSffre1 j x 2fr ffre2gg; e1[e2=x]Sffre1 j x 2fr e2 [fr e3g; Sffre1 j x 2fr e2g [fr Sffre1 j x 2fr e3gSffre1 j x 2fr Sffre2 j y 2fr e3gg; SffrSffre1 j x 2fr e2g j y 2fr e3gSffre1 j x 2fr if e2 then e3 else e4 g ; if e2 then Sffre1 j x 2fr e3g elseSffre1 j x 2fr e4gSffre j x 2 fgg; fgSffre1 j x 2 fe2gg; e1[e2=x]Sffre1 j x 2 e1 [e2g; Sffre1 j x 2 e2g [Sffre1 j x 2 e3gSffre1 j x 2 Sfe2 j y 2 e3gg; SffrSffre1 j x 2 e2g j y 2 e3gSffre1 j x 2fr Sffre2 j y 2 e3gg; SffrSffre1 j x 2fr e2g j y 2 e3gSffr e1 j x 2 if e2 then e3 else e4g; if e1 then Sffre1 j x 2 e3g elseSffre1 j x 2 e4gTable 5.1: Rewriting rules.

92 Chapter 5. A formal model for nested relational constraint databasesCombining Propositions 5.1 and 5.2, we conclude the following.Theorem 5.1 gNRC has the conservative extension property. 2Note that the previous result implies that when the set height of a gNRC ex-pression e is higher than the set height of input and output expressions, then e canbe optimized, reducing the height of intermediate results, gaining in space and timeoverhead.Paredaens and Van Gucht gave a translation for mapping nested relational algebraexpressions having at relations as input to an equivalent FO expression with boundquanti�cation [117]. This translation can be easily adapted to provide a translationfor mapping gNRC expressions of height 1 to FO extended with poly. The nextresult follows from this and Theorem 5.1.Corollary 5.1 If f : s1 ! s2 is a function expressible in gNRC and s1 and s2 haveheight 1, then f is expressible in FO with poly. 2Thus, all functions f : s1 ! s2 in gNRC, with s1 and s2 of height 1, are e�ectivelycomputable by compiling into constraint query languages such as those proposed in[64, 83, 115].As a consequence, we can make use of well-known results [15, 66, etc.] on con-straint query languages to analyze the expressiveness of gNRC with respect to suchfunctions. It is therefore simple to prove the following result.Corollary 5.2 gNRC cannot express parity test, connectivity test, transitive closure,etc. 2We can also use the above \compilation procedure" to study the expressive powerof gNRC on functions whose types have heights exceeding 1. We borrow an examplefrom [97] for illustration. A set of sets O = fO1; : : : ; Ong : ffRgg is said to have afamily of distinct representatives i� it is possible to pick an element xi from each Oisuch that xi 6= xj whenever i 6= j. It is known from [97] that NRC cannot test if aset has distinct representatives. We now show that it cannot be expressed in gNRCeither.Corollary 5.3 gNRC cannot test if a set of sets has distinct representatives.Proof: By Corollary 5.2, gNRC cannot express parity test. It follows that it cannottest if a chain has an even number of nodes. Let a setXm = f(x1; x2); : : : ; (xm�1; xm)gbe given, where m > 2. Then we can construct in gNRC the set

5.4. E�ective computability 93Sm = ffx1g; fxmg; fx1; x3g; fx2; x4g; : : : ; fxm�2; xmgg.According to [97], Sm has distinct representatives i� m is even. It follows that gNRCcannot test for distinct representatives. 25.4 E�ective computabilityRecall that expressions in gNRC can iterate over in�nite sets. An important questionthat arises is whether every function expressible in gNRC is computable. In theprevious section, we saw that if a function in gNRC has input and output of height1, then it is computable. In this section, we lift this result to functions of all heights.Our strategy is as follows. We �nd a total computable function ps : s� > s0 toencode nested �nitely representable sets into at �nitely representable sets. We also�nd a partial computable decoding function qs : s0 ! s so that qs � ps = id. Finally,we �nd a translation (�)0 that maps f : s1 ! s2 in gNRC to (f)0 : s01 ! s02 in gNRCsuch that qs2 � (f)0 � ps1 = f . Note that (f)0 has height 1 and is thus computable.Before we de�ne p and q, let us �rst de�ne s0, the type to which s is encoded.Notice that s0 always has the form ffrR� � � � �Rg.� R0 = ffrRg� (s1 � � � � � sn)0 = ffrt1 � � � � � tng, where s0i = ffrtig.� ffrsg0 = ffrR� sg� fsg0 = ffrR�R� tg, where s0 = ffrtgThe encoding function ps : s ! s0 is de�ned by induction on s. In what follows,~0 stands for a tuple of zeros (0; : : : ; 0) having the appropriate arity. A �nitely repres-entable set is coded by tagging each element by 1 if the set is nonempty and is codedby a tuple of zeros if it is empty. A �nite set is coded by tagging each element by 1and by a unique identi�er if the set is nonempty and is coded by a tuple of zeros if itis empty. More precisely,� pR(o) = ffrog� ps1�����sn((o1; : : : ; on)) = ffr(x1; : : : ; xn) j x1 2fr ps1(o1); : : : ; xn 2fr psn(on)g� pffrsg(O) = ffr(0;~0)g, if O is empty. Otherwise, pffrsg(O) = ffr(1; x) jx 2fr Og.

94 Chapter 5. A formal model for nested relational constraint databases� pfsg(O) = ffr(0; 0;~0)g, if O is empty. Otherwise, pfsg(O) = O1 [fr � � � [fr On,if O = fo1; : : : ; ong and Oi = ffr(1; i; x) j x 2fr ps(oi)g. Note that we allow thei's above to be any numbers, so long as they are distinct positive integers.We use Sfe1 j x 2fr e2g to stand for the application of f(x) = e1 to eachelement of e2, provided the �nitely representable set e2 has a �nite number of ele-ments, and then return the �nite union of the results. Then the comprehension nota-tion fe j A1; : : : ; Ang is extended to allow Ai to be of the form xi 2fr ei and thetranslation equations are augmented to include the equation: fe j xi 2fr ei; : : :g =Sffe j : : :g j xi 2fr eig.The decoding function qs : s0 ! s, which strips tags and identi�ers introduced byps, can be de�ned as follows:� qR(O) = o, if O = ffrog.� qs1�����sn(O) = (o1; : : : ; on), if oi = qsi(ffrxi j (x1; : : : ; xn) 2fr Og).� qffrsg(O) = ffrx j (1; x) 2fr Og.� qfsg(O) = fqs(ffry j (1; j; y)2fr O; i = jg) j (1; i; x)2fr Og.It is clear that ps and qs are both computable, even though they cannot be ex-pressed in gNRC. Moreover, using the fact that ps(O) is never empty, by inductionon the structure of s we can show that qs is inverse of ps.Proposition 5.3 qs � ps = id. 2Note that ps is not deterministic. Let O1 : s0 and O2 : s0. Then we say O1 � O2if qs(O1) = qs(O2). That is, O1 and O2 are equivalent encodings of an object O : s.It is clear that whenever O1 � O01, ..., and On � O0n, then ffr(x1; : : : ; xn) j x1 2frO1; : : : ; xn 2fr Ong � ffr(x1; : : : ; xn) j x1 2fr O01; : : : ; xn 2fr O0ng. It is also obviousthat whenever O � O0, then ffrxi j (x1; : : : ; xn) 2fr Og � ffrxi j (x1; : : : ; xn)2fr O0g. We can now state the following key proposition.Proposition 5.4 For every function f : s1 ! s2 in gNRC, there is a function(f)0 : s01 ! s02 such thats1 id - s1 f - s2 id - s2s01ps1 ? � - s01qs1 6 (f)0 - s02qs26 � - s02ps2?

5.5. Data complexity 95Proof: (Sketch) Left and right squares commute by de�nitions of ps, qs, and �. It isthen possible to construct (f)0 by induction on the structure of the gNRC expressionthat de�nes f such that the middle square and thus the entire diagram commutes. 2Now let f : s1 ! s2 be a function in gNRC, where s1 and s2 have arbitrarynesting depths. Proposition 5.4 implies that there is a function (f)0 : s01 ! s02 ingNRC such that qs2 �(f)0�ps1 = f . Since s01 and s02 are both of height 1, by Theorem5.1, we can assume that (f)0 has height 1. Then by Corollary 5.1, we conclude that(f)0 is e�ectively computable. Since qs and ps are also computable, we have the verydesirable result below.Theorem 5.2 All functions expressible in gNRC are e�ectively computable. 2The \compilation procedure" above essentially shows that the whole of gNRCcan be embedded in FO extended with poly, modulo the encodings ps and qs (thus,gNRC is closed). We should remark that the converse is also true. For example, aformula 9x:�(x) can be expressed in gNRC as not(emptyfrffr1 j x 2fr R; �(x)g).So gNRC does not gain us extra expressive or computational power, compared tothe usual constraint query languages. However, it gives a more natural data modeland a more convenient query language, since it is no longer necessary to model ourspatial databases as a set of at tables.5.5 Data complexityA constraint query Q has data complexity in the complexity class C if there is aTuring machine that, given an input generalized database d, produces some general-ized relation representing the output Q(d) and uses time in class C, assuming somestandard encoding of generalized relations [83].Results about data complexity of gNRC can be obtained from results presented inSection 5.4 and from [83]. Consider the diagram introduced in Proposition 5.4. As f 0is expressed in FO extended with poly, it follows from [83] that its data complexityis in NC. Moreover, it is simple to show that encoding and decoding functions ps andqs are also in NC. The following result follows from these considerations.Proposition 5.5 gNRC has data complexity in NC. 2From the previous considerations, it follows that gNRC overcomes some limita-tions of the previous proposals to model complex objects in constraint databases.Indeed, no maximum degree of nesting is assumed and di�erent theories can be

96 Chapter 5. A formal model for nested relational constraint databasesused to �nitely represent relations, ensuring at the same time a low data complexity.Moreover, the formal semantics on which it is based allows us to easily analyze sev-eral interesting properties (as conservative extensions) of nested constraint relationallanguages.5.6 Concluding remarksWe have proposed a formal model and a query language for constraint nested rela-tions, overcoming some limitations of the previous approaches. The proposed lan-guage, gNRC, has been obtained by extending NRC [148]. It is characterized by aclear formal foundation, a low data complexity, and the ability to model any degreeof nesting. Moreover, even if the language has been de�ned for a speci�c theory, theframework can be easily extended to deal with di�erent theories, closed under comple-mentation and admitting variable elimination. The idea is to replace rules introducedto specify arithmetic with rules describing properties of the chosen theory.

Part IIOptimization issues in constraintdatabases

97

Chapter 6Optimization techniques forconstraint databasesIn order to make constraint databases a practical technology, e�cient optimizationtechniques must be developed. In traditional databases, at least two di�erent ap-proaches are adopted in order to achieve good performance:� Indexing. In this case, speci�c data structures are used to more e�cientlysupport retrieval and update operations of items stored in the database. Typicalrelational index structures are B-trees and their variant B+-trees [11, 49].� Query optimization. Di�erent execution strategies can in general be appliedto execute the same query. However, the cost of applying such strategies maybe di�erent. The aim of query optimization is to determine the execution planwith the optimal cost. In general, two di�erent, but complementary, approachescan be used. First, the expression representing the query to be executed isrewritten as another expression, equivalent to the original one but more e�cientto execute. This step, called algebraic optimization, is mainly based on theapplication of speci�c heuristics. After that, the available cost parameters andinformation about the available index data structures are used to determine themost e�cient execution plan (cost-based optimization).The aim of this chapter is to illustrate which indexing and query optimizationapproaches have been proposed for constraint databases, pointing out the di�erencewith respect to traditional and spatial databases. The chapter is organized as follows.In Section 6.1, we survey indexing techniques for constraint databases whereas Section6.2 surveys the few approaches that have been proposed to perform query optimizationin constraint databases. Some conclusions are then pointed out in Section 6.3.99

100 Chapter 6. Optimization techniques for constraint databases6.1 IndexingData structures for querying and updating constraint databases must be developed,with time and space complexities comparable to those of data structures for relationaldatabases. Complexity of the various operations is usually expressed in terms of input-output (I/O) operations. An I/O operation is the operation of reading or writing oneblock of data from or to a disk. Thus, space complexity corresponds to the numberof disk blocks used to store data structures; time complexity of query and updateoperations corresponds to the number of blocks that have to be read or written inorder to execute the query or the update operation.Typical parameters, used to compute complexity bounds, are:� B, representing the number of items (generalized tuples) that can be stored inone page;� n, representing the number of pages to store N generalized tuples (thus, n =N=B);� t, representing the number of pages to store T generalized tuples, representingthe result of a query evaluation (thus, t = T=B).Complexity can be analyzed with respect to either the worst-case or the averagecase.1 E�cient data structures are usually required to process queries in O(logBn+t)I/O operations, perform insertions and deletions in O(logBn) I/O operations (this isthe case of B-trees and B+-trees), and use O(n) blocks of secondary storage. Allcomplexities are worst-case.In the following we say that a data structure has optimal complexity bounds ifits space complexity is O(n), its query complexity is O(logBn + t), and its updatecomplexity is O(logBn).At least two constraint language features should be supported by index structures:� ALL selection. It retrieves all generalized tuples contained in a speci�ed gen-eralized relation whose extension is contained in the extension of a given gen-eralized tuple, speci�ed in the query (called query generalized tuple).If the extension of a generalized tuple t is contained in the extension of aquery generalized tuple q, we denote this fact by All(q; t). Given a general-ized relation r and a query generalized tuple q, we denote by ALL(q; r) the setftjt 2 r; All(q; t)g.An example of ALL selection is represented by the EGRA set operator �s(P;t;�).1For the basic notions about complexity functions, see [8].

6.1. Indexing 101
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
�� �

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

diagonal corner query 2-sided query 3-sided query general 2-dimensional queryFigure 6.1: Various 2-dimensional range queries.� EXIST selection. It retrieves all generalized tuples contained in a speci�edgeneralized relation whose extension has a non-empty intersection with the ex-tension of a query generalized tuple.If the extensions of t and q have a non-empty intersection, we denote this factby Exist(q; t). Given a generalized relation r and a query generalized tuple q,we denote by EXIST (q; r) the set ftjt 2 r; Exist(q; t)g.Since ALL(q; r) � EXIST (q; r), it is more convenient to de�ne the queryEXISTe(q; r) = EXIST (q; r) nALL(q; r).Therefore EXISTe(q; r) \ ALL(q; r) = ;. In a similar way, we denote byExiste(q; t) the fact Exist(q; t)^ :All(q; t).Examples of EXIST selections are represented by the EGRA set operator�s(P;t;16=;) and the EGRA tuple operator �P .Due to the analogies between constraint and spatial databases, e�cient indexingtechniques developed for spatial databases can often be applied to (linear) constraintdatabases.For spatial problems, data structures with good worst-case complexity have beenproposed only for some speci�c problems, in general for dealing with 1- or 2-dimensionalspatial objects. In particular, several data structures, characterized by an I/O com-plexity for search and update operations comparable to the internal memory res-ults, have been proposed for the so-called point databases, storing a set of (multi-dimensional) points [76, 84, 120, 136], and for segment databases, storing a set of2-dimensional segments [7, 84, 119]. In point databases, the most intensively in-vestigated problem is the 2-dimensional range searching for which several e�cientalgorithms have been proposed (see Figure 6.1) [76, 84, 120, 136].Nevertheless, several data structures proposed for managing spatial data behavequite well in average. Examples of such data structures are grid �les [107], variousquad-trees [127], z-orders [110], hB-trees [98], cell-trees [68], and various R-trees [71,130]. In general, these techniques are applied after objects are approximated in some

102 Chapter 6. Optimization techniques for constraint databasesway. A typical approximation is the one that replaces each object by its minimumbounding box (MBB). In 2-dimensional space, the MBB of a given object is thesmallest rectangle that encloses the object and whose edges are parallel to the standardcoordinate axes. The previous de�nition can be generalized to higher dimensions ina straightforward manner. When approximations are used, the evaluation of a queryconsists of two steps, �ltering and re�nement. In the �ltering step, an index is usedto retrieve only relevant objects, with respect to a certain query. To this purpose,the approximated objects are used instead of the objects themselves. During there�nement step, the objects retrieved by the �ltering step are directly checked, todetermine the exact result.Similarly to the spatial case, in the context of constraint databases two di�er-ent classes of techniques have been proposed, the �rst consisting of techniques withgood worst-case complexity, and the second consisting of techniques with good av-erage bounds. Techniques belonging to the �rst class apply to (linear) generalizedtuples representing 1-dimensional spatial objects and mainly optimize EXIST selec-tion. Techniques belonging to the second class allow indexing more general generalizedtuples, by �rst applying some approximation.In the following, both approaches will be surveyed.6.1.1 Data structures with good worst-case complexitiesIn relational databases, the 1-dimensional searching problem on a relational attributeX is de�ned as follows:Find all tuples such that their X attribute satis�es the condition a1 �X � a2.The problem of 1-dimensional searching on a relational attribute x can be refor-mulated in constraint databases, de�ning the problem of 1-dimensional searching onthe generalized relational attribute X , as follows:Find a generalized relation that represents all tuples of the input general-ized relation such that their X attribute satis�es a1 � X � a2.A simple initial, but ine�cient, solution to the generalized 1-dimensional search-ing problem is to add the query range condition to each generalized tuple. In thiscase, the new generalized tuples represent all the points whoseX attribute is betweena1 and a2. This approach introduces a high level of redundancy in the constraint rep-resentation. Moreover, many inconsistent (with empty extension) generalized tuplescan be generated.

6.1. Indexing 103A better solution can be de�ned for convex theories. A theory � is convex ifthe projection on X of any generalized tuple over � is one interval b1 � X � b2.This is true when the extension of the generalized tuple represents a convex set.Theories dense and poly are examples of convex theories. The solution is based onthe de�nition of a generalized 1-dimensional index on X as a set of intervals, whereeach interval is associated with a set of generalized tuples and represents the valueof the search key for those tuples. Thus, each interval in the index is the projectionon the attribute X of a generalized tuple. By using the above index, the detectionof a generalized relation, representing all tuples from the input generalized relationsuch that their X attribute satis�es a given range condition a1 � X � a2, can beperformed by adding the condition to only those generalized tuples whose associatedinterval has a non-empty intersection with a1 � X � a2 i.e., to only those tuples tsatisfying Exist(a1 � X � a2; t). Insertion (deletion) of a given generalized tuple isperformed by computing its projection and inserting (deleting) the obtained intervalinto (from) a set of intervals.From the previous discussion it follows that generalized 1-dimensional indexingreduces to dynamic interval management on secondary storage. Dynamic intervalmanagement is a well-known problem in computational geometry, with many optimalsolutions in internal memory [43]. Secondary storage solutions for the same problemare, however, non-trivial, even for the static case. In the following, we survey someof the proposed solutions for secondary storage.Reduction to stabbing queries. A �rst class of proposals is based on the reductionof the interval intersection problem to the stabbing query problem[43], and therefore is based on solutions that have been proposed for point and seg-ment databases. Given a set of 1-dimensional intervals, to answer a stabbing querywith respect to a point x, all intervals that contain x must be reported.The main idea of the reduction is the following [84]. Intervals that intersect aquery interval fall into four categories (see Figure 6.2). Categories (1) and (2) canbe easily located by sorting all the intervals with respect to their left endpoint andusing a B+-tree to locate all intervals whose �rst endpoint lies in the query interval.Categories (3) and (4) can be located by �nding all data intervals which contain the�rst endpoint of the query interval. This search represents a stabbing query.By regarding an interval [x1; x2] as the point (x1; x2) in the plane, a stabbing queryreduces to a special case of 2-dimensional range searching. Indeed, all points (x1; x2),corresponding to intervals, lie above the line X = Y . An interval [x1; x2] belongs to astabbing query with respect to a point x if and only if the corresponding point (x1; x2)is contained in the region of space represented by the constraint X � x ^ Y � x.Such 2-sided queries have their corner on line X = Y . For this reason, they are called

104 Chapter 6. Optimization techniques for constraint databases
3

Query interval

1

4

Data intervals

2Figure 6.2: Categories of possible intersections of a query interval with a database ofintervals.
(x1,x2)

x1 x2

x

Y

XFigure 6.3: Reduction of the interval intersection problem to a diagonal-corner search-ing problem.diagonal corner queries (see Figure 6.3).The �rst data structure that has been proposed to solve diagonal-corner queriesis the meta-block tree which does not support deletions (it is semi-dynamic) [84]. Themeta-block tree is fairly complicated, has optimal worst-case space O(n) and optimalI/O query time O(logBn + t). Moreover, it has O(logBn + (log2Bn)=B) amortizedinsert I/O time.A dynamic (thus, also supporting deletions) optimal solution to the stabbing queryproblem [7] is based on the de�nition of an external memory version of the internalmemory interval tree. The interval tree for internal memory is a data structure toanswer stabbing queries and to store and update a set of intervals in optimal time [43].It consists of a binary tree over the interval endpoints. Intervals are stored in sec-ondary structures, associated with internal nodes of the binary tree. The extensionof such a data structure to secondary storage entails two issues. First, the fan-out ofnodes must be increased. The fan-out that has been chosen is pB [7]. This fan-outallows the storage of all the needed information in internal nodes, increasing only of2 the height of the tree. If interval endpoints belong to a �xed set E, the binary treeis replaced by a balanced tree, having pB as branching factor, over the endpoints

6.1. Indexing 105E. Each leaf represents B consecutive points from E. Segments are associated withnodes generalizing the idea of the internal memory data structure. However, since nowa node contains more endpoints, more than two secondary structures are required tostore segments associated with a node. The main problem of the previous structureis that it requires the interval endpoints to belong to a �xed set. In order to removesuch assumption, the weight-balanced B-tree has been introduced [7]. The main di�er-ence between a B-tree and a weight-balanced B-tree is that in the �rst case, for eachinternal node, the number of children is �xed; in the second case, only the weight,that is, the number of items stored under each node, is �xed. The weight-balancedB-tree allows the removal of the assumption on the interval endpoints, still retainingoptimal worst-case bounds for stabbing queries.Revisiting a Chazelle's algorithm. The solutions described above to solve stabbingqueries in secondary storage are fairly complex and rely on reducing the interval in-tersection problem to special cases of the 2-dimensional range searching problem. Adi�erent and much simpler approach to solve the static (thus, not supporting inser-tions and deletions) generalized 1-dimensional searching problem [119] is based on analgorithm developed by Chazelle [39] for interval intersection in main memory anduses only B+-trees, achieving optimal time and using linear space.The proposed technique relies on the following consideration. A straightforwardmethod to solve a stabbing query consists of identifying the set of unique endpointsof the set of input intervals. Each endpoint is associated with the set of intervalsthat contain such endpoint. These sets can then be indexed using a B+-tree, takingendpoints as key values. To answer a stabbing query it is su�cient to look for theendpoint nearest to the query point, on the right, and examine the intervals associatedwith it, reporting those intervals that intersect the query point.This method is able to answer stabbing queries in O(logBn). However, it requiresO(n2) space. It has been shown [119] that the space complexity can be reducedto O(n) by appropriately choosing the considered endpoints. More precisely, lete1; e2; :::; e2n be the ordered lists of all endpoints. A set of windows W1; :::;Wp shouldbe constructed over endpoints w1 = e1; :::; wp+1 = e2n such that Wj = [wj; wj+1],j = 1; :::; p. Thus, windows represent a partition of the interval between e1 and e2ninto p contiguous intervals. Each window Wj is associated with the list of intervalsthat intersect Wj .Window-lists can be stored in a B+-tree, using their starting points as key values.A stabbing query at point p can be answered by searching for the query point andretrieving the window-lists associated with the windows that it falls into. Each intervalcontained in such lists is then examined, reporting only those intervals intersecting thequery point. Some algorithms have been proposed [119] to appropriately construct

106 Chapter 6. Optimization techniques for constraint databaseswindows, in order to answer queries by applying the previous algorithm in O(logBn),using only O(n) pages.6.1.2 Approximation-based query processingTo facilitate the de�nition of indexing structures for arbitrary objects in spatial data-bases, a �ltering-re�nement approach is often used. The same approach can beused in constraint databases to index generalized tuples with complex extensions.However, there are some di�erences between the use of the �ltering approach in spa-tial databases and constraint databases. In the �rst case, only 2-dimensional and3-dimensional objects are typically considered; in the second case, each generalizedtuple may contain thousands of variables (for example, in Operations Research ap-plications). Moreover, spatial objects are typically closed whereas constraint objectsmay be open. Therefore, �ltering approaches can be applied to constraint databasesif only if they scale well to large dimensions and can be applied to open objects.The �ltering approach based on MBBs, when applied to constraint databases,even if appealing, has some drawbacks. In particular, it may be ine�ective if the setof objects returned by the �ltering step is too large. This means that there are toomany intersecting MBBs. Moreover, it does not scale well to large dimensions.In order to improve the selectivity of �ltering, an approach has been proposed,based on the notion ofminimum bounding polybox [29]. A minimum bounding polyboxis the minimum convex polyhedron that encloses the object and whose facets arenormal to preselected axes. These axes are not necessarily the standard coordinateaxes and, furthermore, their number is not determined by the dimension of the space.Algorithms for computing optimal axes (according to speci�c optimality criteria withrespect to storage overhead or �ltering rate) in a d-dimensional space have also beenproposed [29].If data structures for arbitrary dimensions are not available, a possible alternat-ive is the following. Given a generalized relation of degree m, a data structure for2-dimensional data has to be allocated for each pair of variables. Thus,m2 data struc-tures are needed, with a consequent increment of the space complexity. However, inthis way, indexes can be used to answer queries with respect to any 2-dimensionalspace.In any case, the constraint object is transformed in a simpler one, against whichindexing is performed. For example, if MBB are used, R-trees and their variant canbe used for indexing [71, 130]. If each object is approximated by a convex polyhed-ron, cell-trees may be used [67]. Sometimes it is more useful to decompose the spatialobjects in several more simple objects, and then index these new ones. This topic hasbeen considered in a very general way by Brodsky and Wang in [31], who have de-

6.2. Query optimization 107veloped an infrastructure for approximation-based query processing based on monoidcomprehension. Such infrastructure has then been tailored to constraint objects. Theproposed approach is based on the concepts of approximation grouping and inversegrouping. Approximation grouping is the association of each approximating objectwith the set of decomposed objects it approximates. Inverse grouping is the associ-ation between each decomposed object with the objects it belongs to. Using thesetwo concepts, approximation-based query processing strategies have been developed.Approximating objects can then be indexed by using techniques developed for spatialdatabases.6.2 Query optimizationBesides the use of speci�c data structures, there have traditionally been two major ap-proaches to query optimization. One is based on compile time algebraic simpli�cationof a query by using heuristics [72, 140]. We call this approach logical optimization.Logical optimization is intended to improve the cost of answering the query independ-ently of the actual data or the physical structure of data. A typical approach to logicaloptimization is to apply logical transformation to the query representation followingthree main steps:1. standardize the query (standardization), i.e., an internal query representation isdetermined, leaving the system all necessary freedom to optimize query evalu-ation;2. simplify the query to avoid duplication of e�ort, removing redundancy (simpli-�cation);3. construct expressions that are more e�cient with respect to query executionperformance (amelioration). Amelioration is based on rewriting rules and heur-istics, dictating when to apply these rules. A typical heuristic requires perform-ing selection as soon as possible [140].The second approach, here called cost-based optimization, is based on the costestimation of di�erent strategies [140]. This approach requires making assumptionsabout the distribution of data (like uniformity within attributes and independence ofattributes). Based on these assumptions, the possible query execution strategies aretypically represented as a tree and the cost of each of these strategies is estimated,starting from some basic parameters, assumed to be known.As discussed in [27], both approaches fail when applied to constraint databases.Indeed, the heuristics of the algebraic approach are based on the assumption that

108 Chapter 6. Optimization techniques for constraint databasesselection conditions are readily available. By contrast, extracting such conditionsfrom the constraints of a query involves linear programming techniques which arein general expensive. For the cost estimation approach, a similar problem exists,to extract explicit constraints which are needed for the estimation. Even if theseconstraints were readily available, there is a second problem; such approaches oftenrely on assumptions about the data distribution which do not always hold in constraintdatabases.From all those considerations it follows that traditional query optimization meth-ods are not adequate when applied to constraint databases. Therefore, new methods,tailored to constraint databases, have to be de�ned.Up to now, very little work has been carried out in this context. With respect tological optimization, since GRA is an extension of the relational algebra dealing within�nite relations, the rewriting rules that have been de�ned for the relational algebraexpressions can still be applied, at least from a theoretical point of view, to GRAexpressions. However, these rules not always are practically applicable since theyoften require the use of expensive algorithms (such as additional projections). Theonly work about logical optimization we are aware of has been proposed by Grumbachand Lacroix [61]. They investigated the problem of logical optimization for GRA whenlpoly is used. In particular, they proposed a canonical form for linear generalizedrelations and a list of primitive operations used in the evaluation of queries. Mostof such operations are similar to classical techniques for constraint solving [51, 118].Then, they analyze the complexity of applying relational rewriting rules to generalizedrelational algebra expressions, in terms of the proposed primitive operations. Finally,they propose various query evaluation schemes that re�ne the usual relational ones,by extending it with constraint solving techniques. This approach will be deeplydiscussed in Chapter 7, where it will be extended to deal with EGRA expressions.With respect to cost-based optimization techniques, the only work in this directionwe are aware of has been proposed by Brodsky, Ja�ar, and Maher [27]. The idea isto use statistical sampling for the cost estimation of speci�c plans, which has theadvantage of being independent of the data distribution. Since it is impracticable toconsider all possible plans when searching for the best one, trials of evaluation plansare performed, one at the time, reducing the work required for the estimation. Theamount of the avoided work is based on the best cost estimated so far. The algorithmis then used to optimize constraint queries, composed of selection, projection andjoin operators, by using statistical methods. This allows the detection of the optimalplan with reasonable costs.The main limitation of such an approach is the use of sampling. Though thesampling method often gives more accurate estimation than other methods (see [41]for a short survey), it can be considered successful only in estimating the cost of

6.3. Concluding remarks 109statistical queries, usually not involving complex selectivity estimation. On the otherhand, in the context of query optimization where selectivity estimation is much morefrequent, the cost of the sampling method is prohibitive and not of practical use.6.3 Concluding remarksOptimizing constraint databases is a fundamental issue in order to make constraintdatabases a practical technology. Little work has been done in this context. Inparticular, from our point of view, the following issues require further investigation:� De�nition of other optimal worst-case complexity data structures for constraintdatabases, possibly scaling to arbitrary dimensions.� Detection of the optimal execution plan, when �ltering approaches are used.� Since each generalized tuple with d variables can be seen as the symbolic rep-resentation of a spatial object in the d-dimensional space, and since each spatialobject can be represented as a set of bounding segments, an interesting re-search direction is to analyze how indexing data structures de�ned for segmentdatabases can be applied to constraint databases, retaining optimal worst-casecomplexity in the number of the generalized tuples.� The use of constraints might sometimes simplify the execution of some spatialqueries. For example, the intersection-based spatial join can be computed onconstraints by applying a satis�ability check, without using a computationalgeometry algorithm. This new approach to process spatial queries has to becompared with the classical one, based on the use of computational geometryalgorithms.

110 Chapter 6. Optimization techniques for constraint databases

Chapter 7Logical rewriting rules for EGRAexpressionsThe aim of this chapter is to investigate the logical optimization of EGRA and GRAexpressions. The basic issues in de�ning a logical optimizer for GRA have beeninvestigated in [61]. In this chapter, we review that already proposed approach andintroduce some additional considerations. We then introduce rewriting rules andheuristics for EGRA set operators and show under which conditions they can be usedto optimize GRA expressions. Set operators (especially set selection) allow thede�nition of new rewriting rules for GRA that cannot be derived from the relationalones. From this point of view, EGRA can be seen as a useful intermediate languageto optimize GRA expressions.The chapter is organized as follows. In Section 7.1, rewriting rules for GRA areintroduced. Simpli�cation and amelioration rules (also called optimization rules) forEGRA are presented in Section 7.2. A discussion about how such rules can be used aspart of an optimizer is then presented in Section 7.3. The analysis is performed withrespect to an arbitrary logical theory �, admitting variable elimination and closedunder complementation.7.1 Rewriting rules for GRA expressionsIn the following we discuss how simpli�cation and optimization relational rewritingrules can be applied to GRA expressions.Simpli�cation rules. In general, there may be several semantically equivalent ex-pressions representing the same query. One source of di�erences between two equival-111

112 Chapter 7. Logical rewriting rules for EGRA expressionsent expressions is their degree of redundancy. An operator is redundant if the resultof the execution of the associated query against a given generalized relation r is equalto r. A straightforward execution of a query would lead to the execution of a setof operations, some of which are redundant. The aim of the simpli�cation step is torewrite an expression into a more e�cient one, by reducing redundant subexpressions.A typical simpli�cation rule in relational databases removes redundant selectionoperators from a cascade of selections. Formally, if F is an EGRA expression, sim-pli�cation rules can be expressed as follows:1�P1(�P2(F)) �r ; if ext(P1 ^ P2) is empty�P1(�P2(F)) �r �P2(R) if ext(P1) � ext(P2).For other simpli�cation rules, see [78].Optimization rules. The application of rewriting rules does not necessarily producea unique expression. Syntactically di�erent but semantically equivalent expressionsmay greatly di�er with respect to some performance parameters. The aim of theoptimization is to rewrite an expression into an equivalent expression admitting amore e�cient execution. E�ciency is measured in terms of the dimension of theinput relations (i.e., the cardinality of their schema), the size of the relations (thenumber of generalized tuples) and the number of constraints per tuples. As it has beenproved in [61] for lpoly, the cost of any GRA expression can be expressed in termsof these parameters. In particular, all algebraic operations, except projection andcomplementation, are linear in the number of tuples. The cost of projection mainlydepends on the arity of the relation and the number of constraints per tuple. The costof complementation depends on the number of tuples and the number of constraintsper tuple. Moreover, as we have seen in Chapter 2, all algebraic operations maygenerate redundant constraints and inconsistent tuples.Rewriting is based on the application of a set of heuristics, aiming at reducing theparameters described above. In the relational context, the typical heuristics are thefollowing:1. Perform selection and projection as early as possible. This transformation al-lows the reduction of the dimension and the size of the intermediate relations,generated by the computation.2. Combine sequences of unary operations. A cascade of unary operations{ selections and projections { can be combined into a single operator. Thisallows us to access and analyze each tuple only once.1In this chapter, ; denotes an empty expression.

7.2. Rewriting rules for EGRA expressions 113When applying the relational rewriting rules to GRA expressions, two aspectshave to be taken into account:� A GRA operator may be costly for two di�erent reasons: (i) the algorithm toperform the algebraic operation is expensive; (ii) the computation increases oneof the parameters described above.� The heuristics of the algebraic approach are based on the assumption that selec-tion conditions are readily available. Thus, they can be easily checked, withoutadditional costs. By contrast, extracting such conditions from the constraintsof a query involves techniques which are in general expensive [27].From the previous considerations it follows that not all heuristics successfully ap-plied in the relational context can be applied to GRA expressions, since the trade-o�between costs of the expressions involved in the rewriting may be di�erent. An im-portant aspect is the redundancy introduced by algebraic operators. For example,each time the selection operator is applied, a new constraint is inserted in each gener-alized tuple. No relational operator generates redundancy. Therefore, relational ruleshave to be modi�ed in order to consider these additional aspects.Relational rewriting rules have been carefully investigated by Grumbach andLacroix in the context of GRA expressions, when applied to lpoly [61]. Such rulesare presented in Table 7.1. Besides the rules presented in [61], the table presents afurther rule (rule (13)) that allows the rewriting of the union of two selections into asingle selections with respect to a d-generalized tuple. For the sake of completeness,the table also presents the commutativity rule for tuple selections. The table, foreach typical relational rewriting rule, introduces a speci�c heuristic (i.e., a rewritingdirection, represented by an arrow) in order to e�ciently apply such a rule to GRAexpressions. Only heuristics for rules (8) and (11) are di�erent with respect to thecorresponding heuristics used in the relational context. The proof of the correctnessof these heuristics is presented in [61].7.2 Rewriting rules for EGRA expressionsIn the following we analyze which further rewriting rules can be de�ned for EGRAexpressions. Since GRA operators are a subset of EGRA operators, the additionalrules deal with set operators, in particular with the set selection operator.

114 Chapter 7. Logical rewriting rules for EGRA expressions(1) F1 1 F2 $ F2 1 F1(2) F1 1 (F2 1 F3)$ (F1 1 F2) 1 F3(3) �P1(�P2(F))$ �P2(�P1(F))(4) �P1(�P2(F))! �P1^P2(F)(5) �[X1;:::;Xn](�P (F))! �P (�[X1;:::;Xn](F))�(P) � fX1; :::; Xng(6) �[X1;:::;Xn](�P (F))!�[X1;:::;Xn](�P (�[X1;:::;Xn;Y1;:::;Ym](F)))�(F) = fX1; :::; Xn; Y1; :::; Ymg(7) �[X1;:::;Xn](�[Y1;:::;Ym](F))! �[X1;:::;Xn](F)fY1; :::; Ymg � fX1; :::; Xng(8) �P (F1 1 F2) �P (F1) 1 �P (F2)�(P) � �(F1)[�(F2)(9) �P (F1 1 F2)! �P (F1) 1 F2�(P) \ �(F2) = ;(10) �P1^P2(F1 1 F2)! �P1(F1) 1 �P2(F2)�(P1) \ �(F2) = ;�(P2) \ �(F1) = ;(11) �P1^P2(F1 1 F2) �P2(�P1(F1) 1 F2)�(P1) \ �(F2) = ;(12) �P (F1 [F2)$ �P (F1)[�P (F2)(13) �P1(F) [�P2(F)! �P1_P2(F)(14) �P (F1 n F2)! �P (F1) n F2(15) �[X1;:::;Xn](F1 1 F2)! �[Y1;:::;Yh](F1) 1 �[Z1;:::;Zk](F2)fY1; :::; Yhg � �(F1); fZ1; :::; Zkg � �(F1)fY1; :::; Yh; Z1; :::; Zkg = fX1; :::; Xng(16) �[X1;:::;Xn](F1 [F2)$ �[Y1;:::;Yh](F1)[�[Z1;:::;Zk](F2)fY1; :::; Yhg � �(F1); fZ1; :::; Zkg � �(F1)fY1; :::; Yh; Z1; :::; Zkg = fX1; :::; XngTable 7.1: Optimization rules for GRA operators.

7.2. Rewriting rules for EGRA expressions 1157.2.1 Simpli�cation rulesSimpli�cation rules for EGRA tuple operators correspond to simpli�cation rulespresented in Section 7.1. However, new rules can be devised dealing with set op-erators, as shown by the following example.Example 7.1 Consider a generalized relation R with schema fX; Y g, on lpoly.Suppose that each generalized tuple in R represents a given region of a map. Considerthe following query:\Select the part of regions contained in R that intersect a river P and arecontained in a given region G."If P and G are expressed by using lpoly, the previous query can be representedin EGRA as �s(G;t;�)(�P (R)): Now suppose that the river is totally contained in G(the user may not know this information). In this case, the previous expression isequivalent to �P (R).As another example consider the following query:\Select all regions contained in R that intersect a river P and are con-tained in a given region G."The previous query can be represented in EGRA as �s(G;t;�)(�s(P;t;16=;)(R)): If P and Ghave empty intersection, for any input generalized database, the result of the previousexpression is empty. 3Simpli�cation rules for set operators essentially involve cascades of selections. Inparticular, three types of expressions are manipulated by a simpli�cation rule:� tuple selection followed by a set selection(i.e., expressions like �P (�s(Q1;Q2;�)(F));� set selection followed by a tuple selection(i.e., expressions like �s(Q1;Q2;�)(�P (F)));� combination of set selections(i.e., expressions like �s(Q1;Q2;�)(�s(Q01;Q02;�0)(F))).A simpli�cation rule is composed of: an input expression e, a set of conditionsc on e, and a resulting expression e0 which is equivalent to e under the condition cand is structurally simpler than e (see Table 7.2). Based on the structure of e0,

116 Chapter 7. Logical rewriting rules for EGRA expressionsEGRA expression Simpli�ed EGRA expressionConditionCombination of set selections�s(Q1;Q2;�)(�s(Q01;Q02;�0)(F)) ;8t 2 F (:((Q1(t)�Q2(t))^ (Q01(t)�0Q02(t)))�s(Q1;Q2;�)(�s(Q01;Q02;�0)(F)) �s(Q01;Q02;�0)(F)8t 2 F ((Q1(t)�Q2(t)) (Q01(t)�0Q02(t)))A tuple selection followed by a set selection�P (�s(Q1;Q2;�)(F)) ;8t 2 F (Q1(t)�Q2(t)^ 6 9u u 2 ext(t) P (u))�P (�s(Q1;Q2;�)(F)) �s(Q1;Q2;�)(F)8t 2 F (Q1(t)�Q2(t)! 8u 2 ext(t) P (u))A set selection followed by a tuple selection�s(Q1;Q2;�)(�P (F)) ;8t 2 F : (Q1(t ^ P)�Q2(t ^ P))�s(Q1;Q2;�)(�P (F)) �P (F)8t 2 F (Q1(t ^ P)�Q2(t ^ P))Table 7.2: Simpli�cation rules for cascades of selections.two di�erent types of simpli�cation rules can be devised. The �rst group of rulesidenti�es cascade of selections leading to an empty result. the second group of rulesidenti�es redundant selections.In both cases, the simpli�ed expression contains less operators than the originalone. The proof of the correctness of these rules directly derives from the de�nitionof the selection operators. In the table, � 2 f�;�;16= ;;1= ;g. The condition isexpressed by �rst-order logic. Qi(t), i = 1; 2, is a term representing the generalizedtuple obtained by applying the query represented by Qi to t.The table presents rules that can be applied to two adjacent selection operatorsin cascade. However, the same rules can be applied to all pairs of (not necessarilyadjacent) selection operators belonging to a cascade of selections. Rules dealing withpairs of set selection operators can be applied independently of the order in which theyappears, since set selections commute. However, rules dealing with a set selectionand a tuple selection must be applied to selection operators appearing in the orderspeci�ed in the table, since set and tuple selections do not commute (see Subsection7.2.2).

7.2. Rewriting rules for EGRA expressions 117EGRA expression Simpli�ed EGRA expressionConditionaA tuple selection followed by a set selection�P1(�s(P2;Q;�)(F)) ;P1 ^ 9�(Q) P2 is satis�able�s(P2;Q;�)(F)P1 9�(Q) P2�P1(�s(P2;Q;1=;)(F)) ;P1 ! 9�(Q) P2aSee also the restrictions imposed by the selection operators (Table 3.3).Table 7.3: Simpli�cation rules with explicit conditions (A).From Table 7.2, it follows that, in order to check the conditions for the applicationof the simpli�cation rules, the state of the database must be taken into account. Thischeck is obviously very ine�cient. Therefore, simpli�cation rules can be e�cientlyapplied only if the conditions presented in Table 7.2 are replaced by equivalent con-ditions not requiring the analysis of the database state.This property holds only for some combinations of selections (see Tables 7.3, 7.4,and 7.5, and 7.6). Selection conditions used in the tables have the form (P;Q; �),where P is a generalized tuple and Q is a projection operator. Note that this is nota restriction in that:� due to the results presented in Section 3.3, all other types of set selection canbe reduced to an expression in which set selection contains conditions in whichonly generalized tuples and projections appear;� condition (Q;P;�) is equivalent to condition (P;Q;�);� condition (Q;P;�) is equivalent to condition (P;Q;�);� condition (Q;P;16= ;) is equivalent to condition (P;Q;16= ;);� condition (Q;P;1= ;) is equivalent to condition (P;Q;1= ;).Only two combinations of set selections do not appear in Tables 7.3, 7.4, 7.5, and7.6:� �P1(�s(P2;Q;�)(F));

118 Chapter 7. Logical rewriting rules for EGRA expressionsEGRA expression Simpli�ed EGRA expressionConditionaA set selection followed by a tuple selection�s(P1;Q;�)(�P2(F)) �P2(F)P2 ! 9�(Q) P1;P2 ^ 9�(Q) P1 is satis�able�s(P1;Q;�)(�P2(F)) ;:9�(Q) P1 ! P2�s(P1;Q;16=;)(�P2(F)) ;P2 ^ 9�(Q) P1 is satis�able�P2(F)P2 ! 9�(Q) P1�s(P1;Q;1=;)(�P2(F)) ;P2 ! 9�(Q) P1�P2(F)P2 ^ 9�(Q) P1 is satis�ableaSee also the restrictions imposed by the selection operators (Table 3.3).Table 7.4: Simpli�cation rules with explicit conditions (B).� �P1(�s(P2;Q;16=;)(F)).It is simple to prove that, in both cases, no check between P1 and P2 helps in simpli-fying the expression.As we can see from tables presenting simpli�cation rules, the new conditions arebased on containment (logically represented by implication) and intersection (logicallyrepresented by satis�ability) check between generalized tuples. As we have alreadyremarked, in a general case, the cost of projection is high.2 Therefore, the applicationof such rules is much more e�cient when the schema of the generalized tuples andthe queries appearing in set and tuple selection conditions coincide. When this is nottrue, the check of the condition is in general more expensive. However, we argue thatalso in this case the proposed optimization rules have to be applied. Indeed, even ifsome additional projection has to be executed at compile-time, rewriting rules mayavoid the execution of some selection operator at run-time, thus avoiding the execution2The cost of projection is not high when it is applied to non-constrained variables or to a limitedset of attributes.

7.2. Rewriting rules for EGRA expressions 119EGRA expression Simpli�ed EGRA expressionConditionaCascade of set selections�s(P1;Q1;�)(�s(P2;Q2;�)(F)) ;9�(Q1) P1 ^ 9�(Q2) P2 is satis�able�s(P2;Q2;�)(F)9�(Q1) P1 9�(Q2) P2�s(P1;Q1;�)(�s(P2;Q2;�)(F)) ;:9�(Q1) P1 ! 9�(Q2) P2�s(P1;Q1;�)(�s(P2;Q2;�)(F)) �s(P2;Q2;�)(F)9�(Q1) P1 ! 9�(Q2) P2 is satis�able�s(P1;Q1;16=;)(�s(P2;Q2;�)(F)) ;9�(Q1) P1 ^ 9�(Q2) P2 is satis�able�s(P2;Q2;�)(F)9�(Q1) P1 9�(Q2) P2aSee also the restrictions imposed by the selection operators (Table 3.3).Table 7.5: Simpli�cation rules with explicit conditions (C).of much more expensive projections.7.2.2 Optimization rulesOptimization rules for set EGRA operators can be derived from the optimizationrules presented for GRA expressions (see Table 7.7). Such rules are obtained fromthe corresponding ones presented in Table 7.1 by observing that the set selectioncannot increase the redundancy of generalized tuples. Indeed, it works exactly as arelational selection. This means that typical relational heuristics holds in this case(this is the case of rules (23) and (26)).Besides the rules derived from those presented in Table 7.1, other rules involvingset selections have been introduced. These rules combine two set conditions in orderto generate a new, non boolean, condition. In particular, they replace two containmenttests with a single containment test (rule (19)) and two empty-intersection tests witha single empty-intersection test (rule (20)).For the sake of completeness, the table also presents the commutativity rule forset selections. Note that tuple and set operators do not commute, as pointed out bythe following proposition.

120 Chapter 7. Logical rewriting rules for EGRA expressionsEGRA expression Simpli�ed EGRA expressionConditionaCascade of set selections�s(P1;Q1;1=;)(�s(P2;Q2;�)(F)) �s(P2;Q2;�)(F)9�(Q1) P1 ^ 9�(Q2) P2 is satis�able;9�(Q1) P1 9�(Q2) P2�s(P1;Q1;16=;)(�s(P2;Q2;�)(F)) �s(P2;Q2;�)(F)9�(Q1) P1 ^ 9�(Q2) P2 is satis�able�s(P1;Q1;1=;)(�s(P2;Q2;�)(F)) ;9�(Q1) P1 ^ 9�(Q2) P2 is satis�able�s(P1;Q1;16=;)(�s(P2;Q2;16=;)(F)) �s(P2;Q2;16=;)(F)9�(Q1) P1 9�(Q2) P2�s(P1;Q1;1=;)(�s(P2;Q2;16=;)(F)) ;9�(Q1) P1 9�(Q2) P2�s(P1;Q1;1=;)(�s(P2;Q2;1=;)(F)) �s(P2;Q2;1=;)(F)9�(Q1) P1 ! 9�(Q2) P2aSee also the restrictions imposed by the selection operators (Table 3.3).Table 7.6: Simpli�cation rules with explicit conditions (D).Proposition 7.1 �P (�s(Q1;Q2;�)(F)) 6= �s(Q1;Q2;�)(�P (F)).Proof: Suppose that set and tuple selection operators commute. This would meanthat if a generalized tuple t satis�es a condition (Q1; Q2; �), the same condition hasalways to be satis�ed by t^P and vice versa. But this is of course false. For example,consider the generalized relation r containing the generalized tuple 2 � X � 5 ^ 4 �Y � 8. Now consider the following queries:� �X�3(�s(t;X�4;16=;)(r)).It is simple to show that the resulting relation contains the generalized tuple2 � X � 3^ 4 � Y � 8.� �s(t;X�4;16=;)(�X�3(r)).The result of the previous query is an empty relation.

7.3. Issues in designing GRA and EGRA optimizers 121(17) �sC1(�sC2(F))$ �sC2(�sC1(F))a(18) �sC1(�sC2(F))! �sC1^C2(F)(19) �s(P1;�)(�s(P2;�)(F))! �s(P1^P2;�)(F)b(20) �s(P1;1=;)(�s(P2;1=;)(F))! �s(P1_P2;1=;)(F)(21) �[X1;:::;Xn](�sC(F))! �sC(�[X1;:::;Xn](F))�(C) � fX1; :::; Xng(22) �[X1;:::;Xn](�sC(F))!�[X1;:::;Xn](�sC(�[X1;:::;Xn;Y1;:::;Ym](F)))�(F) = fX1; :::; Xn; Y1; :::; Ymg(23) �sC1(F1 1 F2)! �sC1(F1) 1 �sC1(F2)�(C1) � �(F1) \ �(F2)(24) �sC(F1 1 F2)! �sC(F1) 1 F2�(C) \ �(F2) = ;(25) �sC1^C2(F1 1 F2)! �sC1(F1) 1 �sC2(F2)�(C1) \ �(F2) = ;�(C2) \ �(F1) = ;(26) �sC1^C2(F1 1 F2)! �sC2((�sC1(F1) 1 F2)�(C1) \ �(F2) = ;(27) �sC1(F1 [F2)$ �sC1(F1) [�sC1(F2)(28) �sC1(F) [�sC2(F)! �sC1_C2(F)(29) �sC1(F1 ns F2)! �sC1(F1) ns F2aC1 and C2 represent boolean conditions.bP1 and P2 represent (possibly disjunctive) generalized tuples.Table 7.7: Optimization rules for EGRA set operators.Since the results of the previous expressions do not coincide, it follows that setand tuple selections do not commute. 27.3 Issues in designing GRA and EGRA optimizersThe rules presented in the previous section can be used to design a logical optimizerfor EGRA and GRA expressions. The input of such an optimizer is an expressionand the result is another expression, equivalent to the original one, but guarantee-ing a more e�cient execution. In the following we briey discuss the issues arisingwhen de�ning such an optimizer. In particular, we �rst introduce the basic issues indesigning a GRA optimizer (see [61] for additional details). Then, we show how such

122 Chapter 7. Logical rewriting rules for EGRA expressionsan optimizer can be extended with rules for EGRA set operators.7.3.1 Basic issues in designing a GRA optimizerAs it has been �rst recognized in [61], relational query evaluation schemes have tobe re�ned when applied to GRA expressions. In particular, when dealing with suchexpressions, three di�erent aspects have to be considered:� syntactic computation: purely what the algebra does (see Table 2.1);� semantics computation: this step corresponds to the removal of empty tuplesand redundant constraints (see Section 2.3.2.1);� normalization: this step corresponds to the generation of normal forms for gen-eralized tuples.The evaluation of a query in constraint databases implies several syntactic com-putation and at least one semantics computation step. Starting from these consid-erations, Grumbach and Lacroix proposed three di�erent logical optimizers, whoseproperties can be summarized as follows:� Naive evaluation. A typical relational logical optimization algorithm is applied[140]. A semantic computation is then applied to the result.� Semantic evaluation. In this case, syntactic and semantic computations aremixed. In particular, semantic computations are applied in order to reduce thenumber of tuples and the number of constraint per tuples after costly operations,that is after intersection, projection, and selection.� Normalization strategy. This strategy can be used when dealing with lpoly. Inthat case, a speci�c normal form has been proposed in [61], in order to representeach generalized tuple by using a number of constraints which is bound by thearity of the relation. The normalization strategy consists in mixing syntacticsteps with steps normalizing the output generalized tuples, assuming that theinput generalized tuples are normalized.The application of these algorithms produces di�erent results. In particular, thesemantic evaluation and the normalization strategy guarantees to better optimizethe query. However, no experiment has been conducted in order to validate theseapproaches.

7.3. Issues in designing GRA and EGRA optimizers 1237.3.2 Extending GRA optimizers to deal with set operatorsIn the following, we discuss the issues arising in extending GRA optimizers withrewriting rules for set operators. In particular, we �rst discuss the basic conceptsunderlying the de�nition of a EGRA optimizer and then we show how it can beadapted to GRA expressions.7.3.2.1 Basic issues in de�ning an EGRA optimizerThe �rst problem arising when designing an EGRA logical optimizer is the choiceof the order by which EGRA and GRA simpli�cation and optimization rules are ap-plied. Since the proposed simpli�cation rules mainly apply to cascades of selections,and since the generation of cascades of selections is one of the goals of optimization,we claim that simpli�cation should be applied in two steps, before and after optimiz-ation. Indeed, the optimization may generate new subexpressions that can be furthersimpli�ed. On the other hand, the application of a simpli�cation step before optim-ization reduces the length of the expression to which optimization is applied. It issimple to show that no new simpli�cation step can further optimize the expression.The following example motivates this choice.Example 7.2 Consider the following simpli�ed expression:�sC1(�C2(R) 1 �sC3(R)):Now suppose that the condition for applying rule (24) of Table 7.7 is satis�ed; theexpression obtained is �sC1(�C2(R)) 1 �sC3(R): By applying the previous optimizationrule, a new cascade of selections has been generated. Now suppose that �sC1(�C2(R))can be rewritten in the empty expression ;. In this case, the original expression isrewritten in �sC3(R): This reduction would have not be possible if simpli�cation andoptimization rules were applied in a di�erent order. 3Another consideration is related to boolean conditions. Simpli�cation rules have tobe applied to non-boolean conditions. Therefore, as a �rst step before simpli�cation itcan be useful to remove boolean conditions by applying rules introduced in Chapter 3.After the last simpli�cation step, boolean conditions can be eventually reconstructed.Based on the previous considerations, typical logical optimization algorithms, pro-posed for the relational algebra, such as the one presented in [61, 140], can be easilyextended to deal with EGRA expressions.

124 Chapter 7. Logical rewriting rules for EGRA expressions7.3.2.2 Introducing set rewriting rules in the de�nition of a GRA optim-izerIn Sections 7.2.1 and 7.2.2, we have proposed new simpli�cation and optimization rulesfor EGRA expressions. From Chapter 3, we know that each set operator is equivalentto a tuple expression, when generalized tuple identi�ers are inserted inside generalizedrelations. Under this assumption, set optimization rules can also be interpreted asoptimization rules for GRA expressions.The use of the new rules to optimize GRA expressions is useful since it maygenerate optimized GRA expressions that would have not necessarily been generatedby applying GRA optimization rules. Indeed, by using GRA rules, we are not sureto generate the expression that is instead generated by applying EGRA optimizationrules. This is due to the fact that the equivalence of two relational expressions is ingeneral undecidable. [81]. The following example better clari�es this concept.Example 7.3 Consider the following expression:�s(P1;�)(�s(P2;�)(R)): (7.1)By applying rule (19) of Table 7.7, this expression is rewritten as follows:�s(P1^P2;�)(R): (7.2)The GRA expression equivalent to (7.1) is the following:(�[N](R1) n�[N](R n �(P1)(R1)) 1 R1) (7.3)where R1 � (�[N](R) n�[N](R n �(P2)(R)) 1 R):The GRA expression equivalent to (7.2) is the following:(�[N](R) n�[N](R n �(P1^P2)(R)) 1 R) (7.4)It can be shown that, in order to rewrite expression (7.3) into expression (7.4), therules presented in Table 7.1 are not su�cient. Indeed, information about containmentamong generalized relations generated as intermediate results of the evaluation arerequired in order to perform this rewriting. This is mainly due to the presence of thedi�erence operator. 3Three main issues have to be considered when using EGRA rules to optimizeGRA expressions:

7.4. Concluding remarks 1251. Since GRA expressions do not contain set operators, the query processor mustdecide when patterns corresponding to set operators have to be detected insideGRA expressions, according to Table 3.8.2. A decision must also be taken with respect to when simpli�cation and optimiz-ation rules should be applied.3. Since rewritingmay generate new subexpressions corresponding to set operators,a decision should be taken with respect to the number of times the optimizationis iterated.In order to design a GRA optimizer, we assume that there exists a GRA optimizer,as one of those presented in Section 7.3.1 and we suggest the following guidelines:1. Since in spatial and temporal contexts it is likely that users will insert setoperators directly in their queries, GRA subexpressions should be rewritteninto set operators as the �rst step of the optimization. Note that no booleancondition is generated by this step.2. Simpli�cation and optimization rules for set operators have to be �rst applied. Inparticular, as discussed in Subsection 7.3.2.1, �rst simpli�cation rules and thenoptimization rules have to be applied. Then, a new simpli�cation is applied inorder to simplify new cascades of selections generated by the optimization step.3. After this step, the obtained EGRA expression must be standardized and givenas input to GRA optimizer.4. The previous steps may be executed more than once, since each step may gen-erate new possible optimizable sub-expressions. In this case, a loop terminationcondition is required.Figure 7.1 illustrates the suggested heuristics to design a GRA optimizer.7.4 Concluding remarksIn this chapter, we have presented GRA and EGRA rewriting rules. GRA rules havebeen taken from [61]. Additional EGRA rules dealing with set operators have thenbeen proposed. Such rules can be used not only to optimize EGRA expressions but,due to the equivalence between GRA and EGRA, they can also be used to improvethe e�ciency of GRA optimizers. The basic issues in designing such an optimizerhave also been discussed.

126 Chapter 7. Logical rewriting rules for EGRA expressions
set rewriting

START

set amelioration

set simplification

set simplification

standardization

GRA optimizer

no

STOP

Repeat?
yesFigure 7.1: The suggested heuristics to design a GRA optimizer.

Chapter 8A dual representation for indexingconstraint databasesAs we have seen in Chapter 6, good worst-case complexity data structures have beende�ned only for 1-dimensional constraints. In this chapter, we analyze optimal worst-case data structures for supporting a speci�c type of ALL and EXIST selectionsapplied to 2-dimensional constraints. The proposed techniques rely on the use of aspeci�c dual representation for polyhedra, �rst presented in [67]. The main advantageof the dual representation is that it is de�ned for arbitrary d-dimensional objects; thisis particularly useful in constraint databases, where the dimension is usually notlimited a priori.The speci�c problem we consider concerns the detection of all generalized tupleswhose extension intersects or is contained in a given d-dimensional half-plane. Thisproblem is not relevant in spatial databases, where closed objects are usually con-sidered; however in constraint databases such queries are more signi�cant since openobjects are often represented. When optimal solutions to this problem are not found,techniques based on a �ltering-re�nement approach (see Chapter 6) are introduced.The main characteristic of these techniques is that, di�erently from data structuresproposed for spatial databases, the approximation is not applied to the polyhedrarepresented by generalized tuples but to the query half-plane. The proposed tech-niques are then compared both from a theoretical and experimental point of view. Acomparison with R-trees, a typical spatial data structure [71, 130], is also presented.The chapter is organized as follows. Section 8.1 motivates the investigation ofindexing techniques supporting half-plane queries. In Section 8.2, the dual represent-ation for generalized tuples is presented. The problem of detecting the intersectionbetween a polyhedron and a half-plane is considered in Section 8.3 whereas in Section127

128 Chapter 8. A dual representation for indexing constraint databases8.4 we investigate the problem of detecting the intersection between two polyhedra.External memory solutions for half-plane queries are considered in Section 8.5; anoptimal solution for a weaker problem is also presented. Sections 8.6, 8.7, and 8.8present three di�erent techniques approximating the solution of a half-plane querywhen the problem cannot be reduced to the weaker one. A theoretical comparison ofthe proposed approximated techniques is then presented in Section 8.9; experimentalresults are �nally discussed in Section 8.10.8.1 Motivations and basic notationAs we have seen in Chapter 6, the main di�erence between spatial and constraintdatabases is that spatial databases typically represent 2- or 3-dimensional closedspatial objects whereas constraint databases admit the representation of arbitraryd-dimensional, possibly open, objects. Spatial data structures have good perform-ance when the object speci�ed in the query is closed. Similar performance cannot beguaranteed when spatial objects are open1. The design of data structures support-ing selections based on open objects is therefore an important issue for constraintdatabases.Example 8.1 Consider a generalized relation Prod process containing, in each gen-eralized tuple, information about a speci�c production process. Each production pro-cess relates two products and three resources. Thus, each generalized tuple is a con-junction of linear constraints with �ve variables: P1 representing the quantity of the�rst product, P2, representing the quantity of the second product, Ri representing theavailable quantity of the i-th resource, i = 1; :::; 3. The following is an example of apossible generalized tuple:3P1 + 4P2 � R1 ^ 100P1 + P2 � R2 ^ P1 + 50P2 � R3:This tuple speci�es how resources and products are related in a given productionprocess. Now suppose that we want to determine all processes that can be satis�ed(thus, speci�c quantities of products P1 and P2 can be found) assuming that a globalconstraint 3R1+ 5R2+6R3 � 400 holds. In order to solve this query, all generalizedtuples whose extension has a non-empty intersection with the extension of the globalconstraint must be determined. This corresponds to an EXIST selection with respectto a query half-plane.1In the following, the term \open" has not the classical topological meaning but it means\unbound".

8.1. Motivations and basic notation 129As another example, suppose to determine all processes that, whatever the quantit-ies produced are, satisfy the global constraint. In this case, all generalized tuples whoseextension is contained in the extension of the global constraint must be determined.Thus this is an ALL selection with respect to a query half-plane. 3From the previous example it follows that the de�nition of data structures e�-ciently supporting queries with respect to open spatial objects is an important issuein constraint databases.In the following, we analyze ALL and EXIST selection problems with respectto a half-plane (also called query half-plane). Generalized tuples are assumed to berepresented by using lpoly. Thus, each generalized tuple has the form: ^ni=1ai1X1+:::: + aidXd + ci � 0, where �i 2 f�;�;=g. Generalized tuples of this kind andgeneralized relations containing only such generalized tuples are called regular. Inthe following any generalized tuple is assumed to be regular. Given a half-plane q, ageneralized relation r, and E 2 fALL;EXISTg,E(q; r) is called a query whereas Eis called the type of E(q; r). When the generalized relation is not speci�ed, a queryis denoted by E(q).Without limiting the generality of the discussion, we assume that each equalityconstraint ai1X1 + ::::+ aidXd + ci = 0 is replaced by the equivalent conjunction ofconstraints ai1X1+ ::::+aidXd+ci � 0^ai1X1+ ::::+aidXd+ci � 0. Moreover, we usea notation very close that used in spatial contexts. In particular, we call hyperplanein a d-dimensional space (denoted by Ed) the spatial object having equation ai1X1 +::::+ aidXd + ci = 0 and half-plane in a d-dimensional space the spatial object havingequation ai1X1 + ::::+ aidXd + ci � 0, � 2 f�;�g. A half-plane is called 1-half-planeif it can be rewritten as Xd � b1X1 + ::: + bd�1Xd�1 + bd, otherwise it is a 0-half-plane. A d-dimensional convex polyhedron P in a d-dimensional plane is de�ned as theintersection of a �nite number of half-planes in Ed. Moreover, we denote by p(P) theboundary of P and with tP the generalized tuple representing P (thus, P = ext(tP)).Given a polyhedron P and a hyperplane H , H is a supporting hyperplane withrespect to P if H intersects P and P lies in one of the half-spaces de�ned by H . If His a supporting hyperplane for P then H \ P is a face of P . The faces of dimension1 are called edges; those of dimension 0 are called vertices. A supporting hyperplaneis called boundary hyperplane if the face H \P is of dimension d� 1. The faces of Pthat are a subset of some supporting hyperplane with � = ` �0 and ad � 0 form theupper hull of P ; the faces of P that are a subset of some supporting hyperplane with� = ` �0 and ad � 0 form the lower hull of P .

130 Chapter 8. A dual representation for indexing constraint databases8.2 The dual transformationIn [67], Gunther proposed a dual transformation for polyhedra; using this transform-ation, he gave complexity bounds for the problem of �nding the intersections betweena polyhedron and a hyperplane or another polyhedron. In the following, we use thistransformation to determine:� all generalized tuples intersecting a given half-plane;� all generalized tuples contained in a given half-plane.Thus, we extend results presented in [67] to deal with a set of polyhedra andcontainment. The following concepts are taken from [67].In order to present the dual transformation, we assume that none of the consideredhalf-planes are vertical.2 Under this hypothesis, a hyperplane Xd = b1x1 + ::: +bd�1Xd�1 + bd intersects the d-th coordinate in a unique point represented by theequation: Xd = b1x1 + :::+ bd�1Xd�1 + bdwhere bi = �ai=ad; i = 1; :::; d� 1 and bd = c. Given a hyperplane H , the followingfunction is introduced:FH : Ed�1 ! E1FH(X1; :::; Xd�1) = b1X1 + :::+ bd�1Xd�1 + bd.A point p = (p1; :::; pd) lies above (on, below)H if pd > (=; <) FH(p1; :::; pd�1). Usingthe dual transformation proposed by Brown [32], each hyperplane can be mapped intoa point and vice versa. In particular, the dual representation D(H) of a hyperplaneXd = b1x1 + ::: + bd�1Xd�1 + bd is the point (b1; :::; bd) in Ed. Conversely, thedual representation D(p) of a point p = (p1; :::; pd) is the hyperplane de�ned by theequation Xd = �p1X1:::� pd�1Xd�1 + pd. In the following, we call primal space thereference space of the original polyhedra and dual space the reference space of thedual representations. The following result holds.Lemma 8.1 [67] A point p lies above (on, below) a hyperplane H i� the dual D(H)lies below (on, above) D(p). 2The dual representation can be extended to convex polyhedra by associating eachpolyhedron with a pair of functions. Let VP be the set of vertices of a polyhedron P .Such functions are de�ned as follows:2Actually, the proposed transformation can be extended to deal with vertical hyperplanes. Werefer the reader to [67] for some further details.

8.2. The dual transformation 131TOPP (X1; ::; Xd�1) = maxv2VP fFD(v)(X1; :::; Xd�1)gBOTP (X1; ::; Xd�1) = minv2VP fFD(v)(X1; :::; Xd�1)g.These functions are piecewise linear and continuous. TOPP is convex whereasBOTP is concave [124]. Moreover, they map any slope (b1; :::; bd�1) of a non-verticalhyperplane into the maximum (TOPP) or the minimum (BOTP) value bd such thatthe hyperplane Xd = b1x1 + :::+ bd�1Xd�1 + bd intersects P . It can be shown thatthis representation is non-ambiguous, i.e., each polyhedron is associated with exactlyone pair of functions and vice versa. Such functions satisfy the following property.Proposition 8.1 For any point (p1; :::; pd�1), TOPP (p1; :::; pd�1) �BOTP (p1; :::; pd�1). 2If the polyhedron is not bounded (this case is very common in constraint data-bases), the de�nition of functions TOPP and BOTP does not work and have to be ex-tended in order to deal with some virtual vertex at in�nity. In order to deal with suchvertices, let CP denote a d-dimensional cube with edge length E(CP) that contains allvertices of P . The bounded polyhedron P \CP has a set of vertices VP\CP = VP [V ,where V contains those vertices that are formed by the intersections of CP withedges of P . As E(CP) goes to in�nity, so do the vertices in V . The dual D(v) ofany vertex v 2 V goes towards a vertical hyperplane with a corresponding functionFD(v) : Ed�1 ! += �1. Functions TOPP ; BOTP : Ed�1 ! E1 [f+1;�1g canbe de�ned as follows:TOPP (X1; ::; Xd�1) = limE(CP)!1maxv2VP[V fFD(v)(X1; :::; Xd�1)gBOTP (X1; ::; Xd�1) = limE(CP)!1minv2VP[V fFD(v)(X1; :::; Xd�1)g.From [32], it follows that there exists an isomorphism between the upper hull of apolyhedron P and the graph of TOPP . Each k-dimensional face f of the upper hullof P corresponds to exactly one (d � k � 1)-dimensional face D(f) of TOPP graphand vice versa. Moreover, if two faces f1 and f2 of the P upper hull are adjacent,then so are D(f1) and D(f2). The same isomorphism exists between the P lower hulland the graph of BOTP . From this consideration it follows that, if the number ofvertices of P is nv , the graphs of TOPP and of BOTP are polyhedral surfaces inEd consisting of no more than nv convex (d� 1)-dimensional faces and no more thanO(n2v) (d � 2)-dimensional faces. Such surfaces can be constructed as follows (thisalgorithm has not been presented in [67]).

132 Chapter 8. A dual representation for indexing constraint databasesDual Transformation Algorithm1. Let a polyhedron P be represented by the intersection of half-planesH1; :::; Hs.LetH1; :::; Hm be 1-half-planes andHm+1; :::; Hs be 0-half-planes. Let VP be theset of vertices of P .3 Let Pup be the polyhedron represented by the intersectionof H1; :::; Hm. Let Pdown be the polyhedron represented by the intersection ofHm+1; :::; Hs. Note that, if both Pup and Pdown exist, V = (VP nVPup)nVPdown 6=;.2. Let UP (P) be the polyhedron represented by the intersection of the 1-half-planes Ki such that p(Ki) = D(vi), vi 2 VPup [V .3. Let DOWN(P) be the polyhedron represented by the intersection of the 0-half-planes Ki such that p(Ki) = D(vi), vi 2 VPdown [V .4. Consider the unbound hyperplanes belonging to Pup. Let V1 be the set of verticesde�ned by such hyperplanes. It can be proved that each such vertex is de�nedby the intersection of at least (d� 1) unbound hyperplanes. For each such setof hyperplanes, generate the vertical hyperplane Hv passing through the pointscorresponding to these hyperplanes in the dual plane.Generate the half-plane supported by Hv and containing the vertices of Pup, andadd it to UP (P).5. Consider the unbound hyperplanes belonging to Pdown. Let V1 be the set ofvertices de�ned by such hyperplanes. It can be proved that each such vertex isde�ned by the intersection of at least (d � 1) unbound hyperplanes. For eachsuch set of hyperplanes, generate the vertical hyperplane Hv passing throughthe points corresponding to these hyperplanes in the dual plane.Generate the half-plane supported by Hv and containing the vertices of Pdown,and add it to DOWN(P).The previous algorithm can be better understood in the 2-dimensional case. Inthose case, a hyperplane is a line.1. Step 2 generates, for each vertex in VPup [V , the corresponding dual line.UP (P) is the convex polygon obtained by the intersection of the 1-half-planessupported by such lines.2. Step 3 performs a similar construction for vertices in VPdown [V .3Note that faces of dimensions greater than 0 can always be seen as an in�nite number of vertices.

8.2. The dual transformation 1333. Step 4 and Step 5 can be better understood as follows. In the 2-dimensionalcase, some hyperplanes are unbound if Pup and Pdown do not intersect either onthe left or on the right. Consider an unbound line Y = a1X + b1 belonging toPup. In Step 4, the half-plane X � a1, � 2 f�;�g, containing Vup is added toUP (P).4. A similar reasoning is done for DOWN(P) in Step 5.Note that the graph of TOPP coincides with the boundary of UP (P) from whichthe vertical hyperplanes, added in Steps 4 and 5 of the algorithm, have been removed.A similar condition holds for BOTP and DOWN(P).The following results hold (see Appendix C for proofs).Lemma 8.2 Let P be a polyhedron. Let H be a hyperplane. Then, D(H) belongs tothe TOPP graph or to the BOTP graph i� H is a supporting hyperplane for P .Proof: It directly depends on the characterization of the graphs of TOPP andBOTP .Indeed, these two functions map any slope (b1; :::; bd�1) of a non-vertical hyperplaneinto the maximum (TOPP) or the minimum (BOTP) intercept bd such that thehyperplane given by Xd = b1x1 + :::+ bd�1Xd�1 + bd intersects the polyhedron. 2Lemma 8.3 Let UP�(P) = f(p1; :::; pd)j(p1; :::; pd) 2 UP (P) andpd = minfp0dj(p1; :::; pd�1; p0d) 2 UP (P)g. Let DOWN�(P) = f(p1; :::; pd)j(p1; :::; pd) 2 UP (P) and pd = maxfp0dj(p1; :::; pd�1; p0d) 2 DOWN(P)g. Then,(p1; :::; pd) 2 UP�(P) i� TOPP (p1; :::; pd�1) = pd and (p1; :::; pd) 2DOWN�(P) i� BOTP (p1; :::; pd�1) = pd. 2Lemma 8.4 Let P be a polyhedron. The following facts hold:1. All points contained in UP (P) [DOWN(P) represent in the primal planehyperplanes that do not intersect P or are supporting with respect to P .2. All points not contained in UP (P)[DOWN(P) represent in the primal planehyperplanes that intersect P but are not supporting with respect to P . 2By using the previous results, it is possible to prove the following theorem.Theorem 8.1 For all points (X1; :::; Xd�1) 2 Ed:TOPP (X1; :::; Xd�1) = (Xd if (X1; :::; Xd) 2 UP�(P)+1 otherwiseBOTP (X1; :::; Xd�1) = (Xd if (X1; :::; Xd) 2 DOWN�(P)�1 otherwise 2

134 Chapter 8. A dual representation for indexing constraint databases
(a)

y

x

P

BOT graph
P

(b)

y

x

Figure 8.1: An upward open polyhedron: (a) in the primal plane; (b) in the dualplane.The following examples show the dual construction for open and closed polyhedrain E2.Example 8.2 Figures 8.1, 8.2, 8.3, and 8.4 present some examples of dual repres-entations. In each �gure, the polyhedron is represented in (a) and the correspondingdual representation is represented in (b). Note that:� In Figure 8.1 only DOWN(P) is generated, since no 0-half-plane is used inde�ning P .� In Figure 8.2 only UP (P) is generated, since no 1-half-planes is used in de�ningP .� In Figure 8.3, both UP (P) and DOWN(P) are generated. Since the polyhedronis closed, no vertical hyperplanes have been added.� In Figure 8.4, both UP (P) and DOWN(P) are generated. Since the polyhedronis open, two vertical hyperplanes have been added. 3In [67], it has been shown how TOPP (b1; :::; bd�1) and BOTP (b1; :::; bd�1) can becomputed without constructing UP (P) and DOWN(P). Consider the computation

8.2. The dual transformation 135
(a)

x

y

P

(b)

P
TOP graph

x

y

Figure 8.2: A downward open polyhedron: (a) in the primal plane; (b) in the dualplane.of TOPP (b1; :::; bd�1) (BOTP (b1; :::; bd�1) can be similarly generated). The projec-tion of the TOPP graph on the (d�1)- dimensional hyperplane J : bd = 0 subdividesJ into no more than nv4 convex (d � 1)-dimensional polyhedral partitions with nomore than O(n2v) (d�2)-dimensional boundary segments. Any given partition E � Jcorresponds to a vertex v(E) of P upper hull, such that for any point (p1; :::; pd�1) 2 ETOPP (p1; :::; pd�1) = FD(v(E))(p1; :::; pd�1). Hence, TOPP (b1; :::; bd�1) can be ob-tained by a (d�1)-dimensional point location in J to �nd the partitionE that containsthe point (b1; :::; bd�1), followed by a computation of FD(v(E))(b1; :::; bd�1). The com-plexity of this operation depends on the complexity of computing FD(v(E))(b1; :::; bd�1)and the complexity to perform point location (see Section 8.3).4We recall that nv denotes the number of vertices of P .

136 Chapter 8. A dual representation for indexing constraint databases
(a)

x

y

P

(b)

P

P

TOP graph

BOT graph

y

x

Figure 8.3: A closed polyhedron: (a) in the primal plane; (b) in the dual plane.8.3 Intersection and containment with respect to a half-planeAs we have seen, functions TOPP and BOTP map any slope (b1; :::; bd�1) of a non-vertical hyperplane into the maximum (TOPP) or the minimum (BOTP) interceptbd such that the hyperplaneXd = b1x1+ :::+bd�1Xd�1+bd intersects the polyhedron.The following result is a direct consequence of this fact.Theorem 8.2 Let P be a polyhedron in Ed.� A hyperplane Xd = b1x1 + ::: + bd�1Xd�1 + bd intersects P i�BOTP (b1; :::; bd�1) � bd � TOPP (b1; :::; bd�1).� A half-plane Xd � b1X1 + ::: + bd�1Xd�1 + bd intersects P i�bd � TOPP (b1; :::; bd�1).� A half-plane Xd � b1X1 + ::: + bd�1Xd�1 + bd intersects P i�bd � BOTP (b1; :::; bd�1).

8.3. Intersection and containment with respect to a half-plane 137
(a)

x

y

P

(b)

P

P

TOP graph

BOT graph

x

y

Figure 8.4: An open polyhedron: (a) in the primal plane; (b) in the dual plane.� A half-plane Xd � b1X1 + ::: + bd�1Xd�1 + bd contains P i�bd � BOTP (b1; :::; bd�1).� A half-plane Xd � b1X1 + ::: + bd�1Xd�1 + bd contains P i�bd � TOPP (b1; :::; bd�1). 2By considering generalized tuples instead of polyhedra, from Theorem 8.2, weobtain the following result.Corollary 8.1 Let tP be a generalized tuple. Let q(�) be the query generalized tupleXd � b1X1 + :::+ bd�1Xd�1 + bd, where � 2 f�;�g. Then:� All(q(�); tP) i� bd � BOTP (b1; :::; bd�1);� All(q(�); tP) i� bd � TOPP (b1; :::; bd�1);� Exist(q(�); tP) i� bd � TOPP (b1; :::; bd�1);� Exist(q(�); tP) i� bd � BOTP (b1; :::; bd�1);

138 Chapter 8. A dual representation for indexing constraint databasesd Preprocessing Space Timed = 2 O(log nv) O(nv) O(nv)d = 3 O(log nv) O(nv) O(nv)d > 3 O(2dlog nv) O(n2dv) O(n2dv)Table 8.1: Summary of the complexity results for the intersection and the containmentproblems between a polyhedron and a half-plane. In the table, nv identi�es the numberof vertices of the considered polyhedron.� Existe(q(�); tP) i� BOTP (b1; :::; bd�1) < bd � TOPP (b1; :::; bd�1);� Existe(q(�); tP) i� BOTP (b1; :::; bd�1) � bd < TOPP (b1; :::; bd�1): 2The complexity of the previous problems is bound by the complexity of computingTOPP (b1; :::; bd�1) and BOTP (b1; :::; bd�1), thus of performing point location. Thepoint location problem has good in-memory algorithms for the 2-dimensional space[53, 118]. However, solutions for higher d-dimensional space are not so e�cient, espe-cially for space complexity. Table 8.1, taken from [67], summarizes such complexityresults (see [67] for more details).Example 8.3 Consider the polyhedron presented in Figure 8.1. Consider the 1-half-planes q1 � Y � �X�1 and q2 � Y � 5. Figure 8.1(b) shows that �1 � BOTP (�1)and BOTP (0) < 5 < TOPP (0). According to Corollary 8.1, it means that All(q1; t)and Existe(q2; t) are satis�ed. Figure 8.1(a) con�rms the results. If we insteadconsider the 0-half-planes q01 � Y � �X � 1 and q02 � Y � 5, we obtain fromCorollary 8.1 that only the selection Existe(q02; t) is satis�ed. The correctness of thisresult can be observed in Figure 8.1(a).Now consider the polyhedron presented in Figure 8.3. Given the 1-half-planes q1 �Y � �X�1, q2 � Y � 5, q3 � Y � 4:5, q4 � Y � X, we can see in Figure 8.3(b) that�1 < BOTP (�1), 5 > TOPP (0), 4:5 = TOPP (0) and BOTP (1) < 0 < TOPP (1).It follows from Corollary 8.1 that All(q1; t), Existe(q3; t), and Existe(q4; t) are sat-is�ed. Figure 8.3(a) shows that this result is correct. If we consider the up-queriesq01 � Y � �X � 1, q02 � Y � 5, q03 � Y � 4:5 and q4 � Y � x, from Corollary8.1 it follows that All(q02; t), All(q03; t), and Existe(q04; t) are satis�ed. Figure 8.3(a)con�rms the results. 3

8.4. Intersection and containment between two polyhedra 139
(a)

p(q2) = p(q2’)

p(q1) = p(q1’)

y

x

P

(b)

y

x

D(p(q2))=(0,5)

D(p(q1))=(-1,-1)Figure 8.5: A downward open polyhedron and some query half-planes: (a) in theprimal plane P ; (b) in the dual plane D.8.4 Intersection and containment between two polyhedraTwo convex polyhedra P and Q do not intersect if and only if there is a separatingnon-vertical hyperplane between them. Any such hyperplane H does not intersecteither P or Q but there are hyperplanes H 0 and H 00, parallel to H , such that H 0is above H , H 00 is below H , H 0 intersects P , and H 00 intersects Q (see Figure 8.7for a 2-dimensional example). The formal de�nition of separating hyperplane is thefollowing.De�nition 8.1 [67] A non-vertical hyperplane Xd = b1x1 + ::: + bd�1Xd�1 + bdseparates two polyhedra P and Q if and only ifTOPP (b1; :::; bd�1) < bd < BOTQ(b1; :::; bd�1) orTOPQ(b1; :::; bd�1) < bd < BOTP (b1; :::; bd�1). 2On the other hand, a polyhedron P is contained in a polyhedron Q if any hyper-plane intersecting P also intersects Q. From these considerations and De�nition 8.1,the following theorem holds.Theorem 8.3 Let P and Q be two polyhedra in Ed.

140 Chapter 8. A dual representation for indexing constraint databases
(a)

p(q1) = p(q1’)
p(q4) = p(q4’)

p(q3) = p(q3’)
p(q2) = p(q2’)

x

y

(b)

+

y

x

D(p(q2))=(0,5)
D(p(q3))=(0,4.5)

D(p(q4))=(1,0)

D(p(q1))=(-1,-1)Figure 8.6: A closed polyhedron and some query half-planes: (a) in the primal planeP ; (b) in the dual plane D.� P intersects Q i�min(X1;:::;Xd�1)2Ed�1fTOPP (X1; :::; Xd�1)� BOTQ(b1; :::; bd�1)g � 0 andmin(X1;:::;Xd�1)2Ed�1fTOPQ(X1; :::; Xd�1)�BOTP (b1; :::; bd�1)g � 0.� P is contained in Q i� for all (X1; :::; Xd�1) 2 Ed�1; TOPQ(X1; :::; Xd�1) �TOPP (X1; :::; Xd�1) and BOTQ(X1; :::; Xd�1) � BOTP (X1; :::; Xd�1). 2From the previous theorem it also follow that P is contained in Q i� UP (Q) �UP (P) and DOWN(Q) � DOWN(P) (see Figure 8.8). Moreover, P intersects Qi� UP (P) \DOWN(Q) = ; and DOWN(P) \ UP (Q) = ;.Corollary 8.2 Let P and Q be two polyhedra. Then:� All(tP ; tQ) i� for all (X1; :::; Xd�1);TOPQ(X1; :::; Xd�1) � TOPP (X1; :::; Xd�1) andBOTQ(X1; :::; Xd�1) � BOTP (X1; :::; Xd�1).

8.4. Intersection and containment between two polyhedra 141
H

H’’

H’

P

QFigure 8.7: An example of separating hyperplane.
(a)

y

x

P

Q

(b)

P

BOT graph
Q

BOT graph

x

y

Figure 8.8: Containment between two polyhedra: (a) in the primal plane; (b) in thedual plane.

142 Chapter 8. A dual representation for indexing constraint databasesd Preprocessing Space Timed = 2 O(log nv) O(nv) O(nv)d = 3 O(log2 nv) O(n2v) O(n2v)d > 3 O((2d)d�1logd�1 nv) O(n2dv) O(n2dv)Table 8.2: Summary of the complexity results for the intersection and the containmentproblems between two polyhedra. In the table, nv identi�es the number of vertices ofthe considered polyhedron.� Exist(tP ; tQ) i�min(X1;:::;Xd�1)2Ed�1fTOPP (X1; :::; Xd�1)�BOTQ(b1; :::; bd�1)g � 0 andmin(X1;:::;Xd�1)2Ed�1fTOPQ(X1; :::; Xd�1)�BOTP (b1; :::; bd�1)g � 0. 2Table 8.2 summarizes the complexity bounds for the problems introduced above.8.5 Secondary storage solutions for half-plane queriesIn the previous section, we have introduced the basic dual transformation for poly-hedra (and therefore for generalized tuples) and shown its main properties. In thefollowing, we show how indexing techniques supporting ALL and EXIST selectionswith respect to a half-plane can be de�ned, based on this representation. In par-ticular, we �rst consider a restriction of this problem, then we relax the consideredhypothesis and we discuss the general case.8.5.1 A secondary storage solution for a weaker problemIn the following, we consider a restricted type of ALL and EXIST selections. We as-sume that, given a query half-planeXd � b1X1+:::+bd�1Xd�1+bd, point (b1; :::; bd�1)belongs to a prede�ned set S (note that point (b1; :::; bd�1) is the normal vector ofXd � b1X1 + ::: + bd�1Xd�1 + bd [118]). This assumption allows us to precomputeTOPP and BOTP values for speci�c points.Under the previous hypothesis, due to Corollary 8.1, in order to check intersectionand containment between a set of polyhedra and Xd � b1X1+ :::+ bd�1Xd�1 + bd, itis su�cient to maintain two sets of values. Given a generalized relation r, for eachgeneralized tuple tP 2 r, the �rst set contains value TOPP (b1; :::; bd�1) whereas thesecond set contains value BOTP (b1; :::; bd�1). Since both sets of points are totally

8.5. Secondary storage solutions for half-plane queries 143ordered, they can be organized in two lists, denoted by LBOT and LTOP . We assumethat the lists are ordered with respect to their increasing values. Given a querygeneralized tuple q(�) � Xd � b1X1 + :::+ bd�1Xd�1 + bd, it is easy to see that theposition of bd in the total order determines the result of the query. Indeed:� ALL(q(�); r) is represented by all the generalized tuples associated with pointsfollowing or equal to bd in LBOT .� ALL(q(�); r) is represented by all the generalized tuples associated with pointspreceding or equal to bd in LTOP .� EXIST(q(�); r) is represented by all the generalized tuples associated withpoints following or equal to bd in LTOP .� EXIST(q(�); r) is represented by all the generalized tuples associated withpoints preceding or equal to bd in LBOT .Note that a similar solution cannot be applied to EXISTe queries.From the previous discussion, it follows that, in order to perform selections againsta set of generalized tuples in secondary storage, it is su�cient to maintain, for eachpoint in S, two ordered sets of values. B+-trees can be used to this purpose.Given the query E(Xd � b1X1 + :::+ bd�1Xd�1 + bd; r), where r is a generalizedrelation and E 2 fALL,EXISTg, the search algorithm �rst selects the B+-tree asso-ciated with point (b1; :::; bd�1); then, value bd is searched in such a B+-tree.Another solution to the same problem can be provided by reducing ALL andEXIST selection problems to the 1-dimensional interval management problem. Thissolution homogeneously supports ALL, EXIST, and EXISTe selections.The reduction is based on the following considerations. Given a half-plane q(�) �Xd � b1X1 + :::+ bd�1Xd�1 + bd, any tuple tP can be associated with three intervals]�1; BOT t(b1; :::; bd�1)[;]BOT t(b1; :::; bd�1); TOP t(b1; :::; bd�1)[; and]TOP t(b1; :::;bd�1);+1[. By Corollary 8.1, if (b1; :::; bd�1) 2 S, we have the following cases:� if value bd belongs to the interval]�1; BOTP (b1; :::; bd�1)], predicateAll(q(�); t)is satis�ed;� if bd 2 [TOPP (b1; :::; bd�1);+1[, predicate All(q(�); t) is satis�ed;� if bd 2 [BOTP (b1; :::; bd�1); TOPP (b1; :::; bd�1)[, predicate Existe(q(�); t) issatis�ed;� if bd 2]BOTP (b1; :::; bd�1); TOPP (b1; :::; bd�1)], predicate Existe(q(�); t) issatis�ed;

144 Chapter 8. A dual representation for indexing constraint databases� if bd 2]�1; TOPP (b1; :::; bd�1)], Exist(q(�); t) is satis�ed;� if bd 2 [BOTP (b1; :::; bd�1);+1[, Exist(q(�); t) is satis�ed.Thus, to perform selections against a set of generalized tuples, it is su�cient tomaintain three 1-dimensional interval sets for each value in set S. Management of1-dimensional intervals is a classic problem from computational geometry [53, 118].An optimal solution to the problem in secondary storage has been recently proposedin [7]. It requires linear space and logarithmic time for query and update operationsapplied on a set of N intervals.The next result follows from the previous discussion.Theorem 8.4 Let r be a generalized relation containing N generalized tuples. Letq � Xd � b1X1 + :::+ bd�1Xd�1 + bd be a query half-plane. Let T be the cardinalityof the set ALL(q; r) (respectively EXISTe(q; r) and EXISTe(q; r)). If (b1; :::; bd�1)is contained in a prede�ned set of cardinality k, there is an indexing structure forstoring r in O(k N=B) pages such that ALL(q; r), EXISTe(q; r), and EXIST (q; r)selections are performed in O(logBN=B + T=B) time, and generalized tuple updateoperations are performed in O(k logBN=B) time. 28.5.2 Secondary storage solutions for the general problemIf (b1; :::; bd�1) 62 S, as we have seen in Section 8.2, a d-dimensional point locationmust be performed in order to compute TOPP (b1; :::; bd�1) andBOTP (b1; :::; bd�1).Consider for example the computation of TOPP (b1; :::; bd�1). A point location hasto be performed with respect to the partition of the (d�1)-dimensional hyperplane J :bd = 0, induced by the open polyhedraUP (P)'s. If the considered generalized relationcontains N generalized tuples and if each generalized tuple is composed of at most kconstraints (thus, the corresponding polyhedron has at most k vertices), J : bd = 0 isdecomposed in at most N2k2 partitions. Indeed, the projection of each polyhedrondivides J into no more than k convex (d� 1)-dimensional polyhedral partitions withno more than O(k2) (d�2)-dimensional boundary segments. Therefore, by combiningtogether N di�erent partitions, J is divided in at most N2k2 partitions. Any givenpartition E corresponds to a speci�c order of polyhedra. This means that, givena partition, any line parallel to the d-th axis and passing through E, intersects theN polyhedra in the same order. Moreover, any given partition E corresponds to aspeci�c vertex of the upper hull of each polyhedron.From the previous discussion it follows that one obvious way to de�ne a data struc-ture to answer a general half-plane query requires maintaining one B+-tree for each

8.5. Secondary storage solutions for half-plane queries 145
x

y

For each line ==> one B-tree
+Figure 8.9: The basic idea of the indexing technique in the general indexing case.given partition of J , induced by UP (P)0s, and one B+-tree for each given partition ofJ , induced byDOWN(P)0s. Then, given a half-planeXd � b1X1+:::+bd�1Xd�1+bd,a point location is performed to determine the partition containing point (b1; :::; bd�1);the corresponding B+-tree is then used to answer the query.The previous solution, though very simple, cannot be considered satisfactory. In-deed, N2k2 data structures have to be maintained (see Figure 8.9 for a 2-dimensionalexample). This also means that the use of the dual representation does not allowthe e�cient indexing of generalized tuples to perform selections with respect to anarbitrary half-plane.A possible solution to this problem is to apply a �ltering/re�nement approachwhen (b1; :::; bd�1) 62 S. In the remainder of this chapter, we propose three di�erentsolutions:� The �rst technique, denoted by T1, (see Section 8.6) replaces the original half-plane query with two new half-plane queries. The union of the results of thetwo new queries is a superset of the generalized tuples belonging to the resultof the original query. This technique can always be applied but, besides thegeneration of false hits, due to the fact that the results of the two queries maynot be disjoint, some generalized tuples may be returned twice.T1 is based on the B+-tree data structure presented in Section 8.5.1.

146 Chapter 8. A dual representation for indexing constraint databases� The second technique, denoted by T2, (see Section 8.7) replaces the originalhalf-plane query with a new half-plane query. This technique can be appliedonly if the database satis�es some speci�c properties but, since only one newquery is executed, no duplicates are generated.T2 is based on the B+-tree data structure presented in Section 8.5.1.� The third technique, denoted by T3, (see Section 8.8) reduces the original prob-lem to a new problem. Speci�c solutions to the new problem are presented andused to answer the original query. No duplicates are generated, however newdata structures have to be used.In the following, these solutions will be described. To simplify the notation, eachsolution is presented for the 2-dimensional case and then extended to deal with ar-bitrary dimensions. Moreover, we denote with S a set of angular coe�cients and weassume that, given a query half-planeXd � b1X1+:::+bd�1Xd�1+bd, (b1; :::; bd�1) 62 S.We call up-query a query with respect to a 0-half-plane and down-query a query withrespect to a 1-half-plane.8.6 Approximating the query with two new queriesConsider the query E(Y � aX + b; r), such that E 2 fALL,EXISTg. The simplestway to approximate an arbitrary half-plane query is to replace the query with two newqueries such that the angular coe�cients associated with the new query half-planesare contained in S. The evaluation of the new queries must retrieve at least all thegeneralized tuples that would be generated by the evaluation of Y � aX + b. Thisis achieved by replacing the original query half-plane with two new query half-planessuch that the region of space totally covered by the two new half-planes contains theregion of space covered by the original half-plane. This guarantees that each tuplebelonging to the result of the original query also belongs to the result of at least onenew query, ensuring the safety of the approximation (see Figure 8.10).There are two main issues in applying such an approach:� The results returned by the two new queries may not be disjoint. Thus, somegeneralized tuples may be returned twice (see Figure 8.10); this means thatsome duplicates can be generated.� Not all the generalized tuples returned by the evaluation of the two queriessatisfy the original query, thus some false hits can be generated (see Figure8.10) and a re�nement step should be applied in order to remove them from theresult.

8.6. Approximating the query with two new queries 147
false hits area

false hits area

Y= aX + b

new query half-plane

new query half-plane

common areaFigure 8.10: An example of safe approximation.The number of duplicates and false hits depends on the choice of the new queries.Indeed, there exist in�nite pairs of new queries (a �nite number for each point of lineY = aX+b) retrieving a superset of the result. However di�erent pairs may generatemore or less duplicates and false hits.The determination of the new queries depends on the following choices:1. Choice of the angular coe�cients. First, the angular coe�cients a0 and a00 ofthe lines associated with the new query half-planes must be determined in orderto reduce duplicates or false hits. We choose to reduce the number of false hits.2. Choice of the line. The equation of the line associated with the new queryhalf-plane must be determined. This is possible by choosing a point P on theline associated with the original query half-plane and then determining the linespassing through P and having a0 and a00 as angular coe�cients.3. Choice of the half-plane. Each line must be transformed in a half-plane, partiallycovering the original one.4. Choice of the type of the query. A type (ALL or EXIST) for the new queriesmust be speci�ed, ensuring the safety of the approximation.In the following, we present solutions to all these problems.Choice of the angular coe�cients. We assume that S contains the angular coef-�cients of k lines, dividing the two-dimensional space in 2k sectors (no vertical lineis permitted { see Section 8.2 {). Di�erent choices may lead to the generation ofdi�erent sets of false hits and duplicates.

148 Chapter 8. A dual representation for indexing constraint databases
a’ < a < a’’

a’ < a, a’’ < a

a’ > a, a’’ > a

Y = a’’X + b’’

Y = aX + b

Y = a’X + b’

Y = aX + b

Y = a’X + b’
Y = a’’X + b’’

Y = a’’X + b’’

Y = aX + b

Y = a’X + b’Figure 8.11: Choice of the new query half-planes, for an original down-query.In order to reduce the number of generated false hits, the coe�cients a0 and a00 ofthe lines associated with the new query half-planes must be the angular coe�cientsof the lines representing the border of the sector in which the line Y = aX + b iscontained. Note that this heuristic allows minimizing the area corresponding to thedi�erence between the space covered by the new queries and the space covered bythe original one (also called false hits area). In most cases, this choice results in thegeneration of a higher number of duplicates and a lower number of false hits. Thisapproach seems to be more reliable for large databases. Indeed, the generation offewer duplicates results in a greater number of false hits, and all the database objectsmay be selected.We denote by a0 the angular coe�cient of the �rst line which is encountered byperforming a clockwise rotation of line Y = aX+b and with a00 the angular coe�cientof the �rst line which is encountered by performing an anti-clockwise rotation of lineY = aX + b.Choice of the lines. Given the angular coe�cients a0 and a00, the lines can bedetermined by choosing a point P on line Y = aX + b. If P = (x; y), the lines havethe following equations:� Y = a0X + (y � a0x)

8.6. Approximating the query with two new queries 149Conditions on a; a0; a00 Values for �0 and �00a0 < a < a00 �0 � �, �00 � �a0 < a; a00 < a �0 � �, �00 � :�a < a0; a < a00 �0 � :�, �00 � �Table 8.3: Choice of the query half-planes.� Y = a00X + (y � a00x).Di�erent choices of P may lead to di�erent distributions of false hits.Choice of the half-planes. Given the lines constructed as above, we should decidewhich half-plane queries must be considered. The union of the points belonging to thetwo new half-planes must cover the space already covered by the original half-plane.The new query half-planes are given by:� Y �0 a0X + (x� a0y)� Y �00 a00X + (y � a00x)where �0 and �00 are presented in Table 8.3, for each combination of a; a0 and a00.In the tables, :� corresponds to `�' if � is `�' and to ` �0 if � is `�'. Figure 8.11graphically explains these choices for an original down-query.Choice of the type of the new queries. A type must be assigned to each half-planequery constructed as above. The choice is the following:� The original query is EXIST. If the original query is approximated with twonew EXIST queries, the approximation is safe, because each generalized tuplesatisfying the original query is returned by at least one new query.� The original query is ALL. If we substitute the original ALL query with twonew ALL queries, some generalized tuples satisfying the original query maynot be returned by the union of the results of the two queries; this happens,for example, if at least one generalized tuple exists such that its extension iscontained in the original half-plane but it is not contained in any of the newhalf-planes (see Figure 8.12). A possible solution is to approximate the ALLquery with an EXIST and an ALL query. In such a case, the approximationis safe. Indeed, if a generalized tuple does not satisfy an EXIST query withrespect to the half-plane Y � a00X + b00 (see Figure 8.12), it must be containedin the opposite half-plane Y � a00X + b00. Due to the original query, we are

150 Chapter 8. A dual representation for indexing constraint databases
Y= aX + b

Y = a’X + b’’

Y = a’X + b’Figure 8.12: An example of unsafe approximation.interested only in generalized tuples whose extension is contained in the sectoron the right of the intersection point of lines Y = aX + b and Y = a00X + b00.This set of generalized tuples can be approximated by evaluating an ALL querywith respect to the half-plane Y � a0X + b0.From the previous considerations, the following result holds.Proposition 8.2 Let E(q) be a query, such that E 2 fALL,EXISTg. Let P be apoint of line p(q). Let E1(q1), E2(q2) be the two new queries constructed as abovewith respect to P , such that E1; E2 2 fALL,EXISTg. Then, for each generalizedrelation r, E(q; r)� E1(q1; r)[E2(q2; r). 2The previous result ensures that the proposed approximation is safe. Since theangular coe�cients of the new query half-planes belong to S, the technique presentedin Subsection 8.5.1 can be used to execute the corresponding queries. Thus, we obtainthe following result.Theorem 8.5 Let r be a generalized relation containing N generalized tuples. Let qbe a query half-plane. Let T be the cardinality of the set ALL(q; r) (EXIST (q; r)).If the angular coe�cient of p(q) is not contained in a prede�ned set of cardinality k,there is an indexing structure for storing r in O(k N=B) pages such that ALL(q; r)and EXIST (q; r) selections are performed in O(logBN=B + T1=B + T2=B) time,where T1 and T2 represent the number of generalized tuples returned by the two newqueries generated as above, and generalized tuple update operations are performed inO(k logBN=B) time. 2In the following, the technique introduced in this section is denoted by T1.8.6.1 Extension to an arbitrary d-dimensional spaceThe proposed technique can be extended to deal with an arbitrary d-dimensionalspace as follows:

8.7. Approximating the query with a single new query 1511. Choice of the angular coe�cients. In this case, the ordering between angu-lar coe�cients (which are real numbers) has to be replaced with the orderingbetween the angle formed by two hyperplanes [118]. In particular, for eachpoint (b1; :::; bd�1) 2 S, we maintain the angle formed by the normal vectorrepresented by this point and the normal vector of the hyperplane Xd = 0.We denote this order by �. Also in this case we assume that S contains kpoints corresponding to hyperplanes that divide the space in 2k sectors of equaldimension.2. Choice of the hyperplanes. In order to determine the hyperplanes supporting thenew query half-plane, given their normal vectors, a (d� 1)-hyperplane lying onthe original query half-plane have to be chosen and the hyperplanes having thechosen normal vectors and passing through that hyperplane must be determined.By assuming that points in S characterize hyperplanes dividing the d-dimen-sional space in k equal sectors, all such hyperplanes intersect a given (d� 1)-hyperplane l. Therefore, the technique can be applied only when the originalquery hyperplane is parallel to l. If this condition is not satis�ed, the approx-imation cannot be applied. This is not true for the 2-dimensional case, where,given a (2� 1)-hyperplane (thus, a point) and an angular coe�cient in S, it isalways possible to �nd the 2-dimensional hyperplane (thus, a line) characterizedby such a coe�cient and passing through that point.3. Choice of the half-plane. Rules proposed for the 2-dimensional cases are stillvalid by replacing � with �.4. Choice of the type of the query. Rules proposed for the 2-dimensional cases arestill valid.8.7 Approximating the query with a single new queryThe technique proposed in Section 8.6 may generate duplicates and false hits. Duplic-ates are generated since the original query is approximated by two new queries, whoseresults may not be disjoint. In the following we give su�cient conditions to safelyapproximate the original query with a single new query. This approach eliminatesduplicates. The new query has the same type of the original query. For this reason,in the following, we do not further specify the type of the query. We also show howpoint P should be chosen in order to reduce the number of generated false hits.From Figure 8.10 we can see that, for an arbitrary choice of point P , each newhalf-plane does not completely cover the original half-plane, even if it has a non-empty

152 Chapter 8. A dual representation for indexing constraint databases
direction lineFigure 8.13: The extension of a generalized relation r and a direction line for r.intersection with it. Moreover, each new half-plane covers the part of the original half-plane not covered by the other half-plane. From this consideration, it follows that thequery can be approximated by using a single new query if it is possible to replace theoriginal half-plane with a new half-plane such that the part of the original half-planenot covered by the new one does not contain the extension of any generalized tuple.This approximation can be applied if we know something about the distribution of theextensions of the generalized tuples in the plane. The notion of direction half-plane,introduced by the following de�nition, gives this kind of information, specifying thatnone is present in a given region of space (see Figure 8.13).De�nition 8.2 Let r be a generalized relation. A line l is a direction line for r ifext(r) is contained in a single half-plane with respect to l. Such half-plane is calleddirection half-plane for r. 2Given a query E(q), such that E 2 fALL,EXISTg, if at least one direction half-plane q1 exists such that p(q1) and p(q) are not parallel lines, at least one query E(q0)exists approximating the given one, such that p(q) and p(q0) are not parallel lines.Note that if the original query line and the direction line are parallel, the directionline does not give enough information to �nd a new query approximating the originalone, excluding queries whose query half-plane contains the direction half-plane (thus,retrieving all database objects). If p(q) and p(q1) are not parallel lines, we say thatq1 is approximating for q.Proposition 8.3 Let r be a generalized relation. Let E(q) be a query, such thatE 2 fALL,EXISTg. Assume that there exists a direction half-plane q1 for r, which

8.7. Approximating the query with a single new query 153
Y = a1 X + b1

Y = aX + b

Y = a’X + b’

Y = a’X + b’ Y = a1 X + b1Y

Y = a’X + b’ Y = aX + b

Y = a1 X + b1

Y = aX + b

Y = aX + b

Y = a1 X + b1

Y = a’X + b’

Y = a1 X + b1

Y = a’X + b’

Y = aX + b

Y = aX + b
Y = a’X+ b’

Y = a1 X + b1 Figure 8.14: Choice of the new query half-plane, for an original down-query.is approximating for q. Then, there exists at least one other query E(q0) such thatp(q0) and p(q) are not parallel lines and E(q; r)� E(q0; r). 2Given a queryE(Y � aX+b) and an approximating direction half-plane Y �1 a1X+b1, in order to construct the new query Y �0 a0X + b0, as we have done in Subsection8.6, the following choices must be taken:1. Choice of the point. Since we assume that a1 6= a, the direction line and thequery line Y � aX+b intersect. We choose their intersection point to constructthe new query. The reason for this choice is due to the fact that for each queryhalf-plane, whose associated line passes through this point, it is immediate to

154 Chapter 8. A dual representation for indexing constraint databasesConditions on a; a1 �1 a0 �0a1 > a � maxfa0ja0 2 S; a0 < ag �minfa0ja0 2 S; a0 � a1g �a1 < a � minfa0ja0 2 S; a0 > ag �maxfa0ja0 2 S; a0 � a1g �a1 > a � maxfa0ja0 2 S; a < a0 � a1g �a1 < a � minfa0ja0 2 S; a1 � a0 < ag �Table 8.4: Choice of the new queries, for an original down query (in the �rst twocases, there are two alternative solutions).establish if the part of the original query half-plane not covered by the new onecontains the extension of some generalized tuple.2. Choice of the half-plane query. Conditions on the angular coe�cient of the newquery line and on the direction of the new half-plane must be given with respectto the position of line Y = aX + b and the direction line. Table 8.4 summarizesthe various cases for an original down-query. Similar conditions can be given foran up-query. Note that the proposed conditions also depend on set S. Figure8.14 graphically represents the various cases for an original down-query.If, given a; a1; �; �1 and a set of angular coe�cients S, at least one angular coe�-cient a0 can be found satisfying the previous conditions, we say that Y �1 a1X+b1is acceptable for S and Y � aX + b.Given a relation r and a query E(q), if no acceptable direction half-plane exists,the new query cannot be found. Thus, with respect to the technique presented inSubsection 8.6, this technique can be applied in fewer cases.The following result holds.Proposition 8.4 Let S be a set of angular coe�cients. Let r be a generalized re-lation. Let E(q) be a query, such that E 2 fALL,EXISTg. Let q1 be a directionhalf-plane for r, which is acceptable for q and S. Then, the previous algorithm en-sures to �nd a new query E(q0) such that E(q; r)� E(q0; r). 2Of course, acceptable direction lines with di�erent angular coe�cient may exist.However, not all direction half-planes have the same behavior with respect to thegeneration of false-hits. We distinguish three main cases:1. If only one acceptable direction half-plane Y �1 a1X + b1 is known, a goodmeasure to associate with the selected new query Y �0 a0X + b0 is the angleformed by lines Y = aX + b and y = a0X + b0, external to the half-planeY � aX + b.

8.7. Approximating the query with a single new query 1552. If two acceptable direction half-plane Y �1 a1X+b1 and Y �2 a2X+b2 exist, andthe new query is constructed with respect to the direction half-plane Y �1 a1X+b1, the previously de�ned measure can be re�ned by considering the area ofthe triangle obtained by cutting the sector formed by lines Y = aX + b andY = a0X + b0 with line Y = a2X + b2. If no triangle is generated (either a = a2or a0 = a2), the area is associate with 1. In both cases, the new measureis the pair (Ai; �i), where �i is the angle de�ned as before and Ai is the areaconstructed as before for the direction half-plane Y �i aiX+bi (see Figure 8.15).3. The previous case can be generalized to the existence of n acceptable directionhalf-planes Y �i aiX + bi, i = 1; :::; n. In this case, the (open) polygon de�nedby the direction lines must be constructed. A query line can intersect such apolygon in at most two points. The two points lay on (at least) two directionlines. A new query is constructed for each direction line. The query corres-ponding to the lowest measure, with respect to the lexicographic ordering, isthen chosen. Note that if all areas are in�nite, the new query is selected withrespect to the generated angles. However, if the area of at least one measure is�nite, the query generating the lowest false hits area is selected.Note that the previous algorithm does not guarantee that the query generatingthe lowest number of false hits is always found. Rather, it only applies a goodheuristic to select the new query, assuming that direction half-planes are the onlyknown information on the extension of the considered generalized relation.
P1

P2

Y=aX+b

Y=a1X+b1

direction line

Y=a2X+b2
direction line

query line

approximation
w.r.t. Y = a2X + b2

approximation
w.r.t. Y = a1X + b1

A1

A2Figure 8.15: Choice of the direction line.

156 Chapter 8. A dual representation for indexing constraint databasesThe �nal problem to solve is how direction lines are determined. The generalapproach is to maintain a (possibly open) minimum bounding polybox of the entireextension of the relation. If such a polybox does not exist, this means that thegeneralized relation does not admit any direction line. Otherwise, the lines on whichthe edges of the polybox lay represent direction lines for the relation.Since the angular coe�cient of the new query belongs to S, the following resultholds.Theorem 8.6 Let S be a set of angular coe�cients. Let r be a generalized relationcontaining N generalized tuples. Let q be a query half-plane. Let T be the cardinalityof the set ALL(q; r) (EXIST (q; r)). Assume that there exists at least one directionhalf-plane for r, which is acceptable for q and S. If the angular coe�cient of p(q) isnot contained in S, there is an indexing structure for storing r in O(k N=B) pagessuch that ALL(q; r) and EXIST (q; r) selections are performed in O(logBN=B +T1=B) time, where T1 represents the number of generalized tuples returned by the newquery constructed as before, and generalized tuple update operations are performed inO(k logBN=B) time. 2In the following, the technique presented in this section is denoted by T2.When compared with the technique presented in Subsection 8.6, T2 does not gen-erate duplicates, since only one new query is selected. However, no clear relationshipexists between the number of false hits generated by the two techniques. It essentiallydepends on the choice of point P for the �rst technique and on the choice of directionlines for the second one.8.7.1 Extension to an arbitrary d-dimensional spaceIn a d-dimensional space, a direction line becomes a direction hyperplane. The pro-posed technique can be extended to deal with such a space as follows:1. Choice of the new hyperplane. As in the 2-dimensional case, we assume that thedirection hyperplane and the query hyperplane intersect. The new hyperplanemust pass through the (d� 1)-hyperplane de�ned by this intersection.As for T1, the extension of this approximation technique to a d-dimensionalspace, with d > 2 does not allow the approximation of a generic half-planequery. The set of queries that can be approximated depends, in this case, bythe direction hyperplane.2. Choice of the half-plane query. The cases presented in Table 8.4 can still beused by replacing � with � in order to determine the normal vector and thehalf-plane direction of the new query.

8.8. Using sector queries to approximate half-plane queries 1578.8 Using sector queries to approximate half-plane quer-iesThe solutions proposed in Section 8.6 and Section 8.7 to answer half-plane queries arebased on data structures proposed for the weaker problem (see Subsection 8.5.1). Adi�erent solution is based on the following consideration. From Figure 8.10 it followsthat, in order to approximate an EXIST half-plane query, all generalized tuples whichare not contained in a speci�c (depending on the chosen approximation lines) sectormust be determined. In a similar way, to approximate an ALL selection all generalizedtuples which do not intersect a given sector must be determined.Starting from this consideration, the result of an EXIST or ALL selection withrespect to a half-plane is equivalent to the di�erence between the input generalizedrelation and the generalized tuples satisfying respectively the ALL or the EXISTselection with respect to a speci�c sector.In the following we �rst introduce sector queries and then we show how they canbe used to approximated half-plane queries. The proposed technique, denoted by T3,can be applied when, given a query half-plane q, the new query half-planes q1 and q2are both 0-half-planes or both 1-half-planes.8.8.1 Sector queriesAn ALL (EXIST) sector query is de�ned as an ALL (EXIST) query with respectto a space sector, de�ned by the intersection of two d-dimensional half-planes. It issimple to show that the dual representation of a sector is a subset of a 2-dimensionalhalf-plane H . In particular, let H1 and H2 be the half-planes de�ning the sector. LetP1 = D(p(H1)) and P2 = D(p(H2)). Let H be the vertical 2-dimensional half-planeintersecting P1 and P2. The points of H lying over the segment connecting P1 andP2 belong to the dual representation of the sector.In the following we propose some external-memory solutions for ALL and EXISTsector queries. The technique proposed for ALL sector queries allows the exactdetection of all and only those generalized tuples which are contained in the sectorwhereas the solution proposed for the EXIST sector query retrieves a superset of thegeneralized tuples which intersect the sector.8.8.1.1 ALL sector queriesFor simplicity we consider only downward oriented ALL sector queries. In this case,the query generalized tuple has the form:tQ+ � Y � aX + b ^ Y � cX + d:

158 Chapter 8. A dual representation for indexing constraint databases
b

d

t

e

f

X=a X=cFigure 8.16: The representation of an ALL sector query problem with respect toY � aX + b^ Y � cX + d in the dual plan.Suppose that a 2 S; c 2 S. Without leading the generality of the discussion, weassume that a � c. Each generalized tuple of this kind is represented in the dualplane as shown in Figure 8.16.From the results presented in Section 8.4, it follows that a generalized tuple tPsatis�es an ALL sector query with respect to tQ+ if UP (Q+) � UP (P). This condi-tion is veri�ed if the intersection of UP (P) with slab a � X � c is under the segmentconnecting points (a; b) and (c; d) (see Figure 8.16). This condition is also equivalentto establishing whether, being e and f the intersections of UP�(P) with X = a andX = c, e � b and f � d.Proposition 8.5 Let tP be a generalized relational tuple. Let e be the intersectionof UP�(P) with X = a and let f be the intersection of UP�(P) with X = c. Then,All(tQ+; tP) is true i� e � b and f � d. 2Checking the previous condition for all the generalized tuples contained in a gen-eralized relation corresponds to a 2-dimensional 2-sided range searching problem,introduced in Chapter 6 (see Figure 8.17). Among the techniques that have beenproposed, path caching [120] allows us to perform 2-sided queries in O(logBn), withO(n log2B log2 log2B) space. Assuming we use this technique, the following resultholds.Theorem 8.7 Let r be a generalized relation containing N generalized tuples. LettQ+ � Y � aX+b^Y � cX+d. Let T be the cardinality of the set ALL(tQ+ ; r). If aand c are contained in a prede�ned set of cardinality k, there is an indexing structure

8.8. Using sector queries to approximate half-plane queries 159
b

d

(e,f)

y

xFigure 8.17: Reduction of the ALL sector query problem to a point location problem.for storing r in O(k n loglogB) pages such that ALL(tQ+ ; r) selection is performedin O(logBn + t) time. Updates are executed in O(k logBn), amortized. 2Note that the k factor in space and update complexity is due to the fact that2k data structures has to be maintained, one for each pair of adjacent values in theincreasing order of S.8.8.1.1.1 Extension to an arbitrary d-dimensional space The extension ofthe solution proposed for ALL sector queries to a d-dimensional space is immediate.In a d-dimensional space, a sector query is de�ned by the intersection of two d-dimensional half-planes. Assuming that the normal vectors corresponding to suchhalf-planes belong to the prede�ned set S, as required by Theorem 8.7, the reasoningdone for the 2-dimensional case still holds for the generic d-dimensional case. Thenumber of B+-trees can be reduced by maintaining only values for \adjacent" normalvectors, i.e., normal vectors whose angles formed with plane Xd = 0 are consecutivein the total order of such angles.8.8.1.2 EXIST sector queriesFor simplicity we consider only downward oriented EXIST sector queries. In thiscase, the query generalized tuple has the form:tQ+ � Y � aX + b ^ Y � cX + d:Suppose that a 2 S; c 2 S. Without leading the generality of the discussion, weassume that a � c. Thus, each query generalized tuple of this kind is represented inthe dual plane as shown in Figure 8.18.

160 Chapter 8. A dual representation for indexing constraint databasesFrom the results presented in Section 8.4, it follows that a generalized tuple tPsatis�es an EXIST sector query with respect to tQ+ if UP (Q+) \ DOWN(P) = ;.This condition is veri�ed if the intersection of DOWN�(P) with this slab is underthe segment connecting points (a; b) and (c; d) (see Figure 8.18). The intersection ofDOWN�(P) with this slab is a chain of segments, downward oriented. This meansthat the previous condition cannot be reduced, as for the case of ALL sector queries,to check the position of the segment, connecting the intersections of DOWN(P) withX = a and X = c, with respect to the position of the segment connecting points (a; b)and (c; d). As an example, consider chains (1) and (2) in Figure 8.18. The highest Ycoordinate of chain (1) is over segment (a; b)� (c; d), thus the corresponding general-ized tuple does not satisfy the EXIST selection, whereas the highest Y coordinate of(2) is under segment (a; b)� (c; d), thus the corresponding generalized tuple satis�esthe EXIST selection. However, the extreme points of both chains in slab a � X � care under segment (a; b)� (c; d).Condition UP (Q+)\DOWN(P) = ; can however be checked by considering themaximum Y coordinate of DOWN(P) in slab a � X � c, as the following resultshows.Proposition 8.6 Let tP be a generalized relational tuple. Let tQ+ � Y � aX + b ^Y � cX + d. Let e be the intersection of DOWN�(P) with X = a and let f be theintersection of DOWN�(P) with X = c. Let (mx; my) 2 DOWN(P) such that myis the maximum Y value of DOWN(P) in slab a � X � c. Then, Exist(tQ+; tP) issatis�ed i� e � b, f � d, and mx b�da�c + b� a b�da�c � my. 2Proof: It follows from the previous considerations and results presented in Section8.4. 2Di�erently from the ALL case, the condition proposed by Proposition 8.6 doesnot correspond to any well-known geometric problem. Therefore, in order to executean EXIST sector query, only approximated solutions can be proposed. In particular,from Figure 8.18 we can observe that:� If the maximum Y -coordinate of a tuple tP is over segment connecting (a; b)and (c; b), then Exist(tQ+; tP) is not satis�ed.� If the maximum Y -coordinate of a tuple tP is under segment connecting (a; d)and (c; d), then Exist(tQ+; tP) is satis�ed.� If the maximum Y -coordinate of a tuple tP is between segment connecting (a; b)and (c; b) and segment connecting (a; d) and (c; d), then Exist(tQ+ ; tP) may ormay not be satis�ed.

8.8. Using sector queries to approximate half-plane queries 161
b

d

e

f

t

1
2

X=a X=cFigure 8.18: The representation of an EXIST sector query problem with respect toY � aX + b ^ Y � cX + d in the dual plane.Thus, all generalized tuples tP whose maximum y coordinate of DOWN(P) inslab a � X � c is not greater than b, represent a superset of the generalized tuplessatisfying the EXIST sector query. A B+-tree, storing the maximum Y value of eachgeneralized tuple in the considered slab, can be used to determine this superset.Theorem 8.8 Let S be a set of angular coe�cients. Let r be a generalized relationcontaining N generalized tuples. Let tQ+ � Y � aX + b ^ Y � cX + d. Let a 2 S,c 2 S. Let T be the cardinality of the set EXIST (tQ+; r). There is an indexingstructure for storing r in O(k N=B) pages such that EXIST (tQ+; r) selection isperformed in O(logBN=B+T1=B) time, where T1 represents the number of generalizedtuples returned by the new query constructed as before, and generalized tuple updateoperations are performed in O(k logBN=B) time. 2Also in this case, the k factor in space and update complexity is due to the factthat 2k data structures has to be maintained, one for each pair of adjacent values inthe increasing order of S.8.8.1.2.1 Extension to an arbitrary d-dimensional space The techniqueproposed for 2-dimensional EXIST sector queries can be extended to a d-dimensionalspace by maintaining for each pair of normal vectors in S and for each generalized

162 Chapter 8. A dual representation for indexing constraint databases
Q

c
QFigure 8.19: A sector domain and its complement in the 2-dimensional space.tuple tP the maximum Xd coordinate of DOWN(P) in the slab represented by theconsidered normal vectors. These values can then be indexed by using a B+-tree. Thenumber of B+-trees can be reduced by maintaining only values for \adjacent" normalvectors, i.e., normal vectors whose angles formed with plane Xd = 0 are consecutivein the total order of such angles.Given a query sector, the value to search in such a B+-tree is given by the max-imum between the d-th coordinates of the two points representing the hyperplanessupporting the given sector query in the dual plane.8.8.2 Approximating half-plane queries by sector queriesIn the following, we show how sector queries can be used to execute half-plane queries.Given a half-plane query, the basic approach is to replace the original query with twonew queries, constructed as described in Section 8.6. using the constructed queryhalf-planes, a sector query is constructed and solutions proposed for sector queriesare also used, by complementation of the obtained results, to answer the originalhalf-plane query.8.8.2.1 EXIST half-plane queriesLet q be a query half-plane. Suppose that, by applying the technique presentedin Section 8.6, q is approximated by two new half-planes q1 � Y � aX + b andq2 � Y � cX + d such that a 2 S, c 2 S (a similar discussion holds if q1 � Y �aX + b and q2 � Y � cX + d). Let tQ � Y < aX + b ^ Y < cX + d. LettQ+ � Y � aX + b ^ Y � cX + d. Further, given a domain Q, let Qc represent theset of points not contained in Q (see Figure 8.19).It is trivial to prove that EXIST (tQc; r) = r nALL(tQ; r). This means that theresult of an EXIST selection with respect to a domain Qc, coincides with the set ofgeneralized tuples not satisfying the ALL selection with respect to Q.

8.8. Using sector queries to approximate half-plane queries 163
1

2

2

b

d

y

xFigure 8.20: The two 2-sided range queries corresponding to the original EXISThalf-plane query.Proposition 8.7 Let r be a generalized relation. Let Q be a domain contained inthe Euclidean plan and let Qc be the complementary region. Then, r nALL(tQ; r) =EXIST (tQc; r). 2By Proposition 8.5, the execution schema proposed for ALL sector queries can beused to answer EXIST half-plane queries as follows.Theorem 8.9 Let tQ � Y < aX+b^Y < cX+d. Let tP be a generalized relationaltuple. Let e be the intersection of UP (P) with X = a and let f be the intersectionof UP (P) with X = c. Then, Exist(tQc; tP) is true i� e � b or f � d, i.e., i� e � bor e < b ^ f � d.Proof: This result follows from Proposition 8.5 and from the fact that if e = b thenY = aX+b is a supporting hyperplane for P and if f = d, Y = cX+d is a supportinghyperplane for P . 2Conditions stated by Theorem 8.9 correspond to two 2-dimensional 2-sided rangesearching problems, as shown in Figure 8.20. Therefore, due to results about pathcaching presented in [120], the following result holds.Theorem 8.10 Let S be a set of angular coe�cients. Let r be a generalized relationcontaining N generalized tuples. Let q be a query half-plane. Let T be the cardinalityof the set EXIST (tQc; r). There is an indexing structure for storing r in O(k N=B)pages such that EXIST (tQc; r) selection is performed in O(logBN=B+T1=B+T2=B)time, where T1 and T2 represent the number of generalized tuples returned by the newqueries constructed as before, and generalized tuple update operations are performedin O(k logBN=B) time. 2

164 Chapter 8. A dual representation for indexing constraint databases8.8.2.1.1 Extension to an arbitrary d-dimensional space The proposedtechnique can be extended to any d-dimensional space. The same limitations existingfor T1 hold.8.8.2.2 ALL half-plane queriesBy using the notation introduced in Subsection 8.8.2.1, it is trivial to prove that ageneralized tuple is contained in ALL(tQc ; r) = r nEXIST (tQ; r). This means thatthe result of an ALL selection with respect to a domain Qc, coincides with the set ofgeneralized tuples not satisfying the EXIST selection with respect to Q.Proposition 8.8 Let r be a generalized relation. Let Q be a domain contained inthe Euclidean plan and let Qc be the complementary region. Then, r nEXIST(tQ; r)= ALL(tQc ; r). 2By Proposition 8.6, the execution schema proposed for EXIST sector queries canbe used to answer ALL half-plane queries. In particular, the following result holds.Theorem 8.11 Let tQ � Y < aX + b ^ Y < cX + d. Let tP be a generalizedrelational tuple. Let e be the intersection of DOWN�(P) with X = a and let f bethe intersection of DOWN�(P) with X = c. Let (mx; my) 2 DOWN(P) such thatmy is the maximum Y value of DOWN(P) in slab a � X � c. Then, All(tQc; t) issatis�ed i� one of the following conditions holds:� e � b� f � d� mx b�da�c + b� a b�da�c < my.Proof: The result follows from Proposition 8.6 and from the fact that if e = b,Y = aX + b is a supporting hyperplane for P and if f = d, Y = cX + d is asupporting hyperplane for P . 2The previous conditions cannot be reduced to a 2-dimensional 2-sided rangesearching problem, as in the case of EXIST half-plane queries. However, follow-ing the approach proposed for ALL sector queries, from Figure 8.18 we can observethat:� If a maximum Y -coordinate of a tuple tP is over segment connecting (a; b) and(c; b), then All(tQc; tP) is satis�ed.

8.9. Theoretical comparison 165� If a maximum Y -coordinate of a tuple t is under segment connecting (a; d) and(c; d), then All(tQc; tP) is not satis�ed.� If the maximum Y -coordinate of a tuple tP is between segment connecting (a; b)and (c; b) and segment connecting (a; d) and (c; d), ALL(tQc ; tP) may or maynot be satis�ed.Thus, the generalized tuples tP whose maximum Y coordinate of DOWN(P) inslab a � X � c is not lower than d, represent a superset of the generalized tuplessatisfying the EXIST sector query. A B+-tree, storing the maximum Y value of eachgeneralized tuple, can be used to determine this approximated set.The following result holds.Theorem 8.12 Let S be a set of angular coe�cients. Let r be a generalized re-lation containing N generalized tuples. Let q be a query half-plane. Let T be thecardinality of the set ALL(tQc; r). There is an indexing structure for storing r inO(k N=B) pages such that ALL(tQc ; r) selection is performed in O(logBN=B+T1=B)time, where T1 represents the number of generalized tuples returned by the newquery constructed as before, and generalized tuple update operations are performedin O(k logBN=B) time. 28.8.2.2.1 Extension to an arbitrary d-dimensional space The same consid-erations presented in Subsection 8.8.1.2 hold.8.9 Theoretical comparisonIn the following, the three proposed techniques are theoretically compared with re-spect to several parameters:� The type of the used data structures.� The number of the used data structures.� The freedom: with freedom we mean the available alternative choices to ap-proximate a given half-plane query, given a prede�ned set S.� The space complexity.� The time complexity of searching in the index structure.� The update complexity.

166 Chapter 8. A dual representation for indexing constraint databasesT1 T2 T3Used D.S. B+-trees B+-trees priority searchtreesNumber of used D.S. 2k 2k 2kFalse hits yes yes yesDuplicates yes no noFreedom anypoint on thequery line one for eachdirectionline any point on thequery lineSpace complexity O(2kn) O(2kn) O(2knloglogB)Time complexity O(2logBn) O(logBn) O(logBn)Update complexity O(2k logBn) O(2k logBn) O(2klogBn)amortizedTable 8.5: Comparison for EXIST selections.� The number of generated false hits.� The number of generated duplicates.All the techniques are compared with respect to the 2-dimensional case. In orderto analyze the behavior of the techniques in an arbitrary d-dimensional space, weconsider a further parameter:� The applicability to an arbitrary d-dimensional space: this parameter allows usto determine which techniques better scale to higher dimensions.The analysis is performed by considering �rst EXIST selections and then ALLselections.8.9.1 EXIST selectionsIn the following, we compare the performance of the three techniques we have pro-posed to solve an EXIST selection with respect to a half-plane query whose angularcoe�cient does not belong to a prede�ned set. Table 8.5 summarizes this comparison.� Used data structures. T1 and T2 are based on the data structure presented inSubsection 8.5.1 to answer half-plane queries whose angular coe�cient belongsto a given set.

8.9. Theoretical comparison 167T3 uses priority search trees, therefore di�erent techniques must be used toanswer half-plane queries whose angular coe�cient belongs to a given set S andhalf-plane queries whose angular coe�cient does not belong to S.Therefore, with respect to the used data structure, T3 has the worst behavior.� Number of used data structures. If k is the cardinality of the prede�ned set S,all techniques require 2k data structures, two (one for TOPP values and onefor BOTP values) for each value in S. Under this point of view, the techniquesare therefore equivalent.� False hits. All techniques generate false hits when the angular coe�cient of thequery half-plane does not belong to the prede�ned set. For the same set S, theset of generated false hits depends on the chosen point in techniques T1 andT3 on the considered direction line for technique T2. By considering the samepoint, techniques T1 and T3 generate the same set of false hits.� Duplicates. Duplicates can be generated only by technique T1. Since techniqueT3 can be seen as an improvement of technique T1 removing the generation ofduplicates, from a theoretical point of view we can assess that the cost of T3 isalways lower than the cost of T1.� Freedom. In technique T1, each point lying on the line supporting the query half-plane can be chosen to generate the approximating queries. The same holds fortechnique T3. In technique T2 di�erent results can be obtained by consideringdi�erent direction lines. Moreover, T2 and T3 can be applied only in particularcases.� Space complexity. The space complexity is higher in T3, since the number ofpages required to store a priority search tree is higher than the number of pagesrequired to store a B+-tree containing the same number of elements.� Time complexity. All time complexities are in O(logBn). However, techniqueT1 requires two index scans whereas all other techniques require only one indexscan.� Update complexity. T1 and T2 have the same update complexity; technique T3has the same update bound than T1 and T2 but amortized.� Extension to a d-dimensional space. The proposed techniques can be used toapproximate half-plane queries in an arbitrary d-dimensional space (d > 2) onlyin some speci�c cases. Detection of techniques that can always be applied toanswer half-plane queries in a d-dimensional space is a topic left to future work.

168 Chapter 8. A dual representation for indexing constraint databasesT1 T2 T3Used D.S. B+-trees B+-trees B+-treesNumber of used D.S. 2k 2k 2kFalse hits yes yes yesDuplicates yes no noFreedom anypoint on thequery line one for eachdirectionline no freedomSpace complexity O(2kn) O(2kn) O(2kn)Time complexity O(2logBn) O(logBn) O(logBn)Update complexity O(2k logBn) O(2k logBn) O(2k logBn)amortizedTable 8.6: Comparison for ALL selections.8.9.2 ALL selectionsTable 8.6 summarizes the characteristics of T1, T2, and T3 with respect to ALLselections. In general, considerations similar to those presented for EXIST querieshold. The only di�erence is related to the used data structures. Indeed, for answeringALL selections, technique T3 uses B+-trees which however contain di�erent inform-ation with respect to the B+-trees used to answer half-plane queries whose angularcoe�cient belongs to a given set. Thus, with respect to the used data structure, T3has the worst behavior.8.10 Preliminary experimental resultsSome preliminary experiments have been carried out in order to compare the per-formance of the proposed techniques in the 2-dimensional space. In particular, wehave performed two di�erent groups of experiments. The aim of the �rst group ofexperiments is to compare techniques T1, T2, and T3 with respect to the number ofpage accesses and the number of generated false hits. The aim of the second group isto compare T1 and T2 with respect to the R-tree, a well known spatial data structure[71].In all the considered techniques, the re�nement step has been applied directly onUP (P) and DOWN(P) polygons. In particular, each B+-tree is associated with a�le (called UP-�le) containing tUP (P) and another �le (called DOWN-�le) containingtDOWN(P), for each generalized tuple tP belonging to the input generalized relation.

8.10. Preliminary experimental results 169Such generalized tuples are ordered following the ordering induced by the correspond-ing B+-tree. By assuming that a 2 S, each half-plane query E(Y � aX + b; r) can beanswered by �rst looking for b in a B+-tree corresponding to a; this value is associ-ated with a speci�c o�set either in the corresponding UP- or DOWN- �le. Startingfrom this o�set, all tuples contained in the �le and preceding or following this o�set,depending on the speci�c query, have to be checked for re�nement. Thus, only oneleaf node per search is accessed in the B+-tree structure. A similar approach hasbeen taken for implementing re�nement in the R-tree. Note that, even if this ap-proach increases the redundancy of the data representation, since generalized tuplesare replicated k times, it improves the query time, since only one leaf node per searchis accessed. As a �nal remark note that, even if this solution could be not feasiblefrom the point of view of the space occupancy, it does not alter the results of thecomparison.The experiments have been performed on a PC Pentium 100, with 16 Mb RAM.The page size is 1k. The program has been written in C++. The considered gen-eralized relations contain respectively 500, 2000, 4000, 8000, and 12000 generalizedtuples; each generalized tuple contains at most 30 constraints.8.10.1 Comparing the performance of T1, T2, and T3The �rst group of experiments concerns techniques T1, T2, and T3. Such techniqueshave been applied to two di�erent groups of generalized relations, the �rst contain-ing closed generalized tuples (closed relations) and the second containing also opengeneralized tuples (open relations). In the �rst case, direction lines for the consideredrelation have been assumed to de�ne the minimum bounding box containing the wholerelation extension. For technique T1 and T3, point P has been chosen inside suchrectangle. In the second case, open generalized tuples have been constructed in sucha way to guarantee the existence of at least one direction line. In particular, theextension of the generalized tuples contained in the considered generalized relation isrepresented in Figure 8.21.The aim of the experiments is to analyze the trade-o� existing among T1, T2,and T3, in order to assess the impact of duplicate and false hits on the search. Indoing that, we have mainly focused on the inuence of the cardinality of the setof angular coe�cients S. In particular, we have assumed that the set S containsangular coe�cients of lines dividing the space in 2k equal sectors. In the performedexperiments we have chosen k = 2; 4; 8.Several experiments have been performed by considering di�erent object sets anddi�erent queries. We have observed that the trade-o� between the techniques doesnot change by changing the selectivity of the query. For this reason, all results we

170 Chapter 8. A dual representation for indexing constraint databases
query line

direction line

direction line

Figure 8.21: Shapes of the open generalized tuples contained in the considered gen-eralized relation.report here are related to a single query. Moreover, similar results have been obtainedfor generalized relations containing closed or open objects. Since closed relations willbe considered in Subsection 8.10.2, here we report results obtained for open relations,i.e., relations containing at least one open generalized tuple. Both ALL and EXISTselections have been investigated, with respect to the same query half-plane.In the following, experimental results are presented in three groups:� The �rst group of results shows how the number of duplicates generated bytechnique T1 changes by changing k.� The second group of results shows how the number of false hits generated bytechniques T1, T2, and T3 changes by changing k.� The third group of results shows the behavior of the three techniques withrespect to the number of page accesses.8.10.1.1 DuplicatesWe have compared the number of duplicates generated by T1 for di�erent cardinalitiesof set S on data sets containing open generalized tuples. Similar results have beenobtained for closed and open generalized relations. Figure 8.22 shows that the numberof duplicates increases for increasing values of k. Indeed, for higher values of k, the

8.10. Preliminary experimental results 171
500

1000

1500

2000

2500

500 2000 4000 8000 12000

T
up

le
s

N

(a)

k=2
k=4
k=8

500

1000

1500

2000

2300

500 2000 4000 8000 12000

T
up

le
s

N

(b)

k=2
k=4
k=8

Figure 8.22: Duplicates generated by T1 (a) for an EXIST selection, (b) for an ALLselection.common area of the two new half-planes increases. Therefore, more generalized tuplesare returned twice.8.10.1.2 False hitsFigures 8.23 and 8.24 show that the number of false hits generated by T1, T2, and T3decreases for increasing values of k. This behavior is reasonable since higher values fork correspond to smaller false hits areas. A similar result has been obtained for closedrelations. Note that T2 generates the lowest number of false hits. This is mainlydue to the particular type of generalized relations we used in these experiments (inSubsection 8.10.2 we will see that, for closed relations, this di�erence is not so clear).The number of false hits generated by the three techniques can also be used tocompare their degree of �ltering. From Figures 8.25 and 8.26 we can see that thenumber of generated false hits is higher for techniques T1 and T3. This is mainlydue to the chosen generalized relation and therefore to the shape of the extension ofopen generalized tuples (see Figure 8.21) and to the choice of point P . Moreover,T1 and T3 have a similar behavior. Indeed, T3 can be seen as an optimization ofT1, not generating duplicates. However, T3 usually generates more false hits thanT1. For EXIST selections, this is mainly due to the path caching implementation(see Section 8.8.2.1). Indeed, not all tuples associated with the pages accessed inthe corresponding data structure belong to the sector result. These tuples representadditional false hits for technique T3. For ALL selections, this is due to the factthat T3 approximates a half-plane query by further approximating the correspondingsector query (see Section 8.8.2.2). The great di�erence between T2 and T1, T3 is

172 Chapter 8. A dual representation for indexing constraint databases
1000

2000

3000

4000

4500

500 2000 4000 8000 12000

T
up

le
s

N

(a)

k=2
k=4
k=8

50

100

150

200

500 2000 4000 8000 12000

T
up

le
s

N

(b)

k=2
k=4
k=8

1000

2000

3000

4000

5000

6000

6500

500 2000 4000 8000 12000

T
up

le
s

N

(c)

k=2
k=4
k=8

Figure 8.23: False hits generated for an EXIST selection by (a) T1, (b) T2, (c) T3.

8.10. Preliminary experimental results 173
500

1000

1500

2000

2500

3000

3500

4000

500 2000 4000 8000 12000

T
up

le
s

N

(a)

k=2
k=4
k=8

50

100

150

200

500 2000 4000 8000 12000

T
up

le
s

N

(b)

k=2
k=4
k=8

500

1000

1500

2000

2500

3000

3500

4000

500 2000 4000 8000 12000

T
up

le
s

N

(c)

k=2
k=4
k=8

Figure 8.24: False hits generated for an ALL selection by (a) T1, (b) T2, (c) T3.

174 Chapter 8. A dual representation for indexing constraint databases
1000

2000

3000

4000

5000

6000

500 2000 4000 8000 12000

T
up

le
s

N

(a)

T1
T2
T3

1000

2000

3000

4000

5000

6000

500 2000 4000 8000 12000

T
up

le
s

N

(b)

T1
T2
T3

1000

2000

3000

4000

5000

6000

500 2000 4000 8000 12000

T
up

le
s

N

(c)

T1
T2
T3

Figure 8.25: False hits generated by T1, T2, and T3 for an EXIST selection and (a)k = 2, (b) k = 4, and (c) k = 8.mainly due to the choice of point P . By choosing point P on the direction line, thenumber of false hits would have been almost equal.8.10.1.3 Comparison with respect to page accessesT1, T2, and T3 have been compared with respect to the number of pages accessedin the B+-tree and in re�ning the retrieved generalized tuples. Similar results havebeen obtained for all k-values. Figure reports results obtained for k = 2. It can beobserved that technique T2 performs better than techniques T1 and T3, in almost allcases. This is mainly due to the choice of point P . From the same �gures, we canalso see that the number of page accessed by T1 is always lower than the number ofpage accessed by T3, even if higher than the number of page accessed by T2.

8.10. Preliminary experimental results 175
500

1000

2000

3000

4000

500 2000 4000 8000 12000

T
up

le
s

N

(a)

T1
T2
T3

500

1000

2000

3000

4000

500 2000 4000 8000 12000

T
up

le
s

N

(b)

T1
T2
T3

500

1000

2000

3000

4000

500 2000 4000 8000 12000

T
up

le
s

N

(c)

T1
T2
T3

Figure 8.26: False hits generated by T1, T2, and T3 for an ALL selection and (a)k = 2, (b) k = 4, and (c) k = 8.
100

200

300

400

500

600

700

500 2000 4000 8000 12000

P
ag

es

N

(a)

T1
T2
T3

100

200

300

400

500

600

700

500 2000 4000 8000 12000

P
ag

es

N

(b)

T1
T2
T3

Figure 8.27: Comparison of the number of page accesses for k = 2 and (a) an EXISTselection, (b) an ALL selection.

176 Chapter 8. A dual representation for indexing constraint databases8.10.2 Comparing the performance of T1, T2, and R-treesIn order to establish the practical applicability of the proposed techniques, we havecompared their performance with respect to the performance of the R-tree [71], a wellknown spatial data structure for closed objects. The R-tree has been compared withrespect to T1 and T2, i.e., with the techniques guaranteeing the worst and the bestperformance among those we have proposed. T3 has not been considered since itsbehavior on closed relations is very similar to the behavior of T2 and since, on closedrelations, T2 can always be applied.The R-tree is a direct extension of B-trees in k-dimensions. The data structureis a height-balanced tree which consists of intermediate and leaf nodes. Data objectsare stored in leaf nodes. Each data object is approximated by its minimum boundingrectangle and intermediate nodes are built by grouping rectangles at the lower level.Thus, each intermediate node is associated with some rectangle which completelyencloses all rectangles that correspond to lower level nodes.The R-tree can be used to answer EXIST and ALL queries. The search startsfrom the root. If the rectangle associated with the root satis�es the query, the queryis checked against rectangles corresponding to the root sons. This approach is thenrecursively applied to all nodes whose associated rectangle satis�es the query untilleaf nodes are reached and data objects are directly checked. Note that, di�erentlyfrom B+-trees, more than one path may be accessed during a single search.This approach is safe for EXIST queries. However, for ALL queries, it is safe onlyif the query object is a rectangle. If it is not, the search may not be safe. Indeed,since data objects are approximated by rectangles, some rectangles may not satisfythe ALL query even if the original object does. Therefore, some (sub)-paths of thetree may not be accessed, even if they are associated with some generalized tuplesbelonging to the result. In order to safely execute an ALL selection, the selectionhas to be replaced by the corresponding EXIST selection; the result has then to bere�ned with respect to the original ALL query. Since in our case the query object isa half-plane, this is the method to be applied.Based on the previous assumption, several experiments have been performed, byvarying the following parameters:� The average size of the considered objects.Three di�erent groups of relations have been considered. The �rst group con-tains large rectangles, i.e., rectangles intersecting almost all other rectangles;the second group deals with medium rectangles, i.e., rectangles whose area doesnot exceed half the area of the bounding rectangle containing all stored ones;�nally, the third group deals small rectangles, i.e., rectangles with a very small

8.10. Preliminary experimental results 177area with respect to the bounding rectangle containing all stored ones. Allobjects are uniformly distributed in the space.Since spatial databases typically deal with small objects, the size of the con-sidered objects is a good parameter to analyze how the performance of R-treeschange by changing the average size of the considered objects.� The cardinality of the indexed generalized relation.We have considered �ve di�erent groups of relations, containing 500, 2000, 4000,8000, and 12000 generalized tuples, respectively.� The selectivity of the considered queries.We have considered six ALL queries and six EXIST queries with di�erent se-lectivity. The considered selectivity are:1-3%, 3-10%, 30-40%, 40-60%, 60-80%,90-100%. Note that in comparing the proposed techniques with R-trees, se-lectivity is very important since di�erent selectivities correspond to a di�erentnumber of internal tree nodes accesses in the R-tree.Experiments have been performed by combining in all possible ways the parametervalues described above. In performing these experiments, we have taken k = 2. Thisassumption allows us to compare R-trees with respect to the proposed techniques inthe case when they have the worst performance (see Subsection 8.10.1).In the following, we discuss the obtained results with respect to the number ofgenerated false hits and the number of page accesses. The technique supported bythe R-tree data structure will be denoted by R.8.10.2.1 EXIST selectionsFalse hits. We have �rst analyzed the number of false hits generated by T1, T2,and R. From the performed experiments, it follows that R almost always generatesthe lowest number of false hits. For selectivity very low (< 10%), the number of falsehits generated by T2 is very close to the number of false hits generated by R. OftenT2 generates less false hits than T1, but this mainly depends on the chosen relationand on the choice of point P . These results can be observed from Figure 8.28 andFigure 8.29.From the same �gures, we can see that, by increasing the selectivity, the numberof false hits generated by T1 decreases whereas the number of false hits generated byT2 and R increases. In R, the number of false hits increases because, by augmentingthe selectivity, the number of tree paths to be searched increases. In T1, the numberof false hits decreases since the false hits area decreases whereas in T2 increases, thusincreasing the number of generated false hits (see Figure 8.30).

178 Chapter 8. A dual representation for indexing constraint databasesFrom Figure 8.28 and Figure 8.29, we can also observe that R generates thelowest number of false hits when rectangles are small. This is the typical case inspatial databases. This number increases by increasing the area of the rectangles andtherefore the number of their intersections. Indeed, it can be shown that in such a casethe number of R-tree paths to be analyzed increases. A similar situation arises forT1 and T2. However, in this case, the reason is di�erent. In particular, in those casesthe number of false hits increases because, by augmenting the area of the objects, theprobability that one of such objects intersects or is contained in the false hits areadetermined by the new queries increases.These considerations point out an important di�erence between R-trees and theproposed data structures: the performance of a search based on R-trees depends onthe size of the query object. On the other hand, the performance of T1 and T2 de-pends on the size of the false hits area generated by the approximation. Thus, bychoosing a good approximation, similar performance can be obtained when executingqueries with di�erent selectivity.Page accesses. Di�erent results have been obtained by considering the number ofpage accesses. In this case, T2 almost always performs better than R. This is incontrast with the result deriving from the analysis of false hits and is mainly due tothe number of tree paths that have to be analyzed in the R-tree. Indeed, in T2, alwaysa single path of a B+-tree has to be analyzed. In the performed experiments, thiscorresponds to at most 3 page accesses. On the other hand, each single query mayrequire the analysis of several paths in the R-tree, depending on the query selectivity.From the experimental results, it follows that the number of additional page accessesrequired to search the R-tree is higher than the number of additional pages that haveto be analyzed in T2 for the additional false hits. These results can be observedfrom Figure 8.31 and Figure 8.32. From the same �gures it also follows that R isbetter than T1 for low selectivity (< 10%) or for very small relations. Finally, in theperformed experiments, T2 is better than T1. T1 and T2 have a similar behavior forvery high selectivity. This, as already explained, is due to the choice of point P .The reported results show that, similarly to the analysis of false hits, by augment-ing the selectivity, the number of pages accessed by T2 and R increases. However,di�erently from the result obtained by the analysis of false hits, the number of pagesaccessed by T1 increases by increasing the selectivity. This is mainly due to the factthat T1, besides the generation of false hits, also generates duplicates. This aspect,together with the fact that the number of tuples belonging to the result increases byincreasing the selectivity, increments the number of page accesses.

8.10. Preliminary experimental results 179
1000

2000

3000

4000

5000

6000

7000

500 2000 4000 8000 12000

T
up

le
s

N

(a)

T1
T2

R-tree

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

500 2000 4000 8000 12000

T
up

le
s

N

(b)

T1
T2

R-tree

500

1000

1500

2000

2500

3000

3500

4000

4500

500 2000 4000 8000 12000

T
up

le
s

N

(c)

T1
T2

R-tree

Figure 8.28: Comparison of the number of false hits for an EXIST selection, a se-lectivity lower than 10% and (a) large rectangles, (b) medium rectangles, (c) smallrectangles.

180 Chapter 8. A dual representation for indexing constraint databases
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

500 2000 4000 8000 12000

T
up

le
s

N

(a)

T1
T2

R-tree

500

1000

1500

2000

2500

3000

3500

500 2000 4000 8000 12000

T
up

le
s

N

(b)

T1
T2

R-tree

500

1000

1500

2000

2500

500 2000 4000 8000 12000

T
up

le
s

N

(c)

T1
T2

R-tree

Figure 8.29: Comparison of the number of false hits for an EXIST selection, a se-lectivity of about 40% and (a) large rectangles, (b) medium rectangles, (c) smallrectangles.

8.10. Preliminary experimental results 181
(a)

T2

T1 T1

q1

q2
a

q2

a1

a2

q1 a1

a2

(b)

false hits areaFigure 8.30: False hits area generated by (a) technique T2, (b) technique T1, withrespect to queries having di�erent selectivity. In the �gure, q1 represents a highselectivity query and q2 represents a low selectivity query. a,a1, and a2 representslines associated with the approximating query half-planes.

182 Chapter 8. A dual representation for indexing constraint databases
100

200

300

400

500

600

700

500 2000 4000 8000 12000

P
ag

es

N

(a)

T1
T2

R-tree

100

200

300

400

500

600

500 2000 4000 8000 12000

P
ag

es

N

(b)

T1
T2

R-tree

100

200

300

400

500

500 2000 4000 8000 12000

P
ag

es

N

(c)

T1
T2

R-tree

Figure 8.31: Comparison of the number of page accesses for an EXIST selection, aselectivity lower than 10% and (a) large rectangles, (b) medium rectangles, (c) smallrectangles.

8.10. Preliminary experimental results 183
200

400

600

800

1000

1200

1400

500 2000 4000 8000 12000

P
ag

es

N

(a)

T1
T2

R-tree

100

200

300

400

500

600

700

800

900

1000

500 2000 4000 8000 12000

P
ag

es

N

(b)

T1
T2

R-tree

100

200

300

400

500

600

700

500 2000 4000 8000 12000

P
ag

es

N

(c)

T1
T2

R-tree

Figure 8.32: Comparison of the number of page accesses for an EXIST selection, aselectivity of about 40% and (a) large rectangles, (b) medium rectangles, (c) smallrectangles.

184 Chapter 8. A dual representation for indexing constraint databases
1000

2000

3000

4000

5000

6000

500 2000 4000 8000 12000

T
up

le
s

N

(a)

T1
T2

R-tree

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

500 2000 4000 8000 12000
T

up
le

s
N

(b)

T1
T2

R-tree

500

1000

1500

2000

2500

3000

3500

4000

4500

500 2000 4000 8000 12000

T
up

le
s

N

(c)

T1
T2

R-tree

Figure 8.33: Comparison of the number of false hits for an ALL selection, a selectivitylower than 10% and (a) large rectangles, (b) medium rectangles, (c) small rectangles.8.10.2.2 ALL selectionsFalse hits. By analyzing the number of false hits generated by T1, T2, and R withrespect to ALL selections, we can see that T2 almost always generates the lowestnumber of false hits. On the other hand, the performance of R is much worst for ALLselections than for EXIST selections, with the same selectivity. This is due to the factthat the search in the tree for an ALL selection coincides with a search in the treefor a corresponding EXIST selection and therefore the degree of �ltering is lower. Asa particular case, for large rectangles and low selectivity, R is much more close toT1 than in the corresponding EXIST case. For high selectivity and large generalizedrelations, T1 is better than R. These results can be observed from Figure 8.33 andFigure 8.34.Page accesses. Considerations presented for the analysis of false hits still holds for

8.10. Preliminary experimental results 185
1000

2000

3000

4000

5000

6000

7000

500 2000 4000 8000 12000

T
up

le
s

N

(a)

T1
T2

R-tree

500

1000

1500

2000

2500

3000

3500

4000

4500

500 2000 4000 8000 12000

T
up

le
s

N

(b)

T1
T2

R-tree

500

1000

1500

2000

2500

3000

500 2000 4000 8000 12000

T
up

le
s

N

(c)

T1
T2

R-tree

Figure 8.34: Comparison of the number of false hits for an ALL selection, a selectivityof about 40%, and (a) large rectangles, (b) medium rectangles, (c) small rectangles.

186 Chapter 8. A dual representation for indexing constraint databases
200

400

600

800

1000

500 2000 4000 8000 12000

P
ag

es

N

(a)

T1
T2

R-tree

100

200

300

400

500

600

500 2000 4000 8000 12000
P

ag
es

N

(b)

T1
T2

R-tree

100

200

300

400

500

500 2000 4000 8000 12000

P
ag

es

N

(c)

T1
T2

R-tree

Figure 8.35: Comparison of the number of page accesses for an ALL selection, aselectivity lower than 10% and (a) large rectangles, (b) medium rectangles, (c) smallrectangles.the analysis of page accesses. Also in this case, R performs better with respect toEXIST selections. These results can be observed from Figure 8.35 and Figure 8.36.8.11 Concluding remarksIn this chapter, we have analyzed the use of a dual representation for spatial objectsto index constraint databases. The main advantage of such an approach is thatthe dual representation is de�ned whatever the space dimension is. Based on thisrepresentation, we have shown how EXIST and ALL selections can be performed inoptimal time and space with respect to a half-plane having a �xed direction. Whenthis condition is not satis�ed, we have presented three approximation techniques,approximating the original query by applying a �ltering-re�nement approach.

8.11. Concluding remarks 187
200

400

600

800

1000

1200

1400

500 2000 4000 8000 12000

P
ag

es

N

(a)

T1
T2

R-tree

200

400

600

800

1000

1200

500 2000 4000 8000 12000

P
ag

es

N

(b)

T1
T2

R-tree

100

200

300

400

500

600

700

500 2000 4000 8000 12000

P
ag

es

N

(c)

T1
T2

R-tree

Figure 8.36: Comparison of the number of page accesses for an ALL selection, aselectivity of about 40% and (a) large rectangles, (b) medium rectangles, (c) smallrectangles.

188 Chapter 8. A dual representation for indexing constraint databasesThe proposed techniques have been implemented and compared. They have alsobeen compared with respect to R-trees, a well-known spatial data structures. Theobtained results show that, on relations containing unbound objects, where R-treescannot always be applied, T2 has the better performance.On closed generalized relations, T2 has the better time performance. However,on relations containing objects with small size, R-tree performs very well and its per-formance is very close to that of T2. Note that this is the typical assumption in spatialdatabases. However, in a general constraint database setting, this is not a reasonableassumption. In this case, T2 guarantees the better performance independently of theobject size.The performed experiments also point out an important di�erence between R-trees and the proposed data structures: the performance of a search based on R-treesdepends on the size of the query object. On the other hand, the performance ofthe proposed techniques depend on the size of the false hits area generated by theapproximation.It is important to remark that, since experiments have been performed by consid-ering k = 2, only two B+-trees are constructed and the space overhead of using T2instead of R is not remarkable. Better results for T2 can be obtained by increasingthe number of sectors, for example by considering k = 4. On the other hand, R-treeperformance can be improved by considering some R-tree variant such as R+-treesor R�-trees [130].

Chapter 9An indexing technique for segmentdatabasesAs we have seen in Chapter 6, sometimes spatial objects are internally representedas the set of their boundary segments. Often, segments are not crossing but possiblytouching (also called NCT segments). NCT segments �nd several applications ingeographical information systems, since they often represent the basic representationfor geographical data. Since, as we have seen in Chapter 2, each generalized tuplewith d variables can be seen as the symbolic representation of a d-dimensional spatialobject, an interesting issue is to analyze how indexing data structures de�ned forsegment databases can be applied to constraint databases.Few approaches have been proposed to index segment databases with good worst-case complexities. In particular, as we have seen in Chapter 6, the stabbing queryproblem, related to the detection of all segments intersecting a given vertical line, hasbeen deeply investigated and an optimal dynamic solution has been recently proposed[7]. The aim of this chapter is to propose a close to optimal complexity solution for amore general problem for segment databases. The investigated problem concerns thedetection of all NCT segments intersecting a given segment, having a �xed direction.Two solutions are proposed to solve this problem. The second solution uses thefractional cascading technique to improve the time complexity of the �rst proposedapproach. The obtained complexity bounds are very close to the optimal ones.Since the proposed approach relies on a segment representation of spatial ob-jects representing the extension of generalized tuples, before introducing the proposedtechniques, we analyze how indexing techniques for NCT segments can be applied toconstraint databases, retaining good complexity results in the number of generalizedtuples stored in the database. 189

190 Chapter 9. An indexing technique for segment databasesThe chapter is organized as follows. In Section 9.1, the relationships betweensegment and constraint databases are investigated. In Section 9.2 the new consideredproblem is introduced, together with some motivations, and the basic idea of our ap-proach is outlined. In Section 9.3, a preliminary data structure is developed, whereasin Sections 9.4 and 9.5 two di�erent solutions to the considered problem are presented.Finally, Section 9.6 presents some preliminary experimental results.9.1 Segment and constraint databasesAs we have already pointed out, the extension of each generalized tuple with d vari-ables on lpoly represents a, possibly open, polyhedra in a d-dimensional space. Inthe following, we assume that the considered generalized database contains only gener-alized tuples with two variables, thus representing 2-dimensional object, representingconvex objects (i.e., disjunction is not used).Each generalized tuple of the previous type can be represented as a set of seg-ments, constituting the boundary of the generalized tuple extensions. The numberof edges of such polygon corresponds to the number of non-redundant constraints1in the generalized tuple. In particular, it has been observed in [66] that for eachgeneralized tuple t, expressed by using lpoly and containing k variables, there existsa generalized tuple t0 such that t �r t0 and t0 contains at most (k + 1) constraints.Thus, t0 has been generated from t by removing redundant constraints.By assuming this representation, if the generalized relation contains N general-ized tuples and each generalized tuple contains at most k constraints, the generalizeddatabase can be seen as a segment database containing O(kN) segments. Such seg-ments are not necessarily NCT segments, since they may intersect. We can, however,generate NCT segments by creating four new segments for each pair of intersectingsegments, corresponding to the non-intersecting parts of the two segments. After thisprocess, the number of segments (denoted by TI(D), for a relational constraint data-base D) is O(N2). Indexing techniques for segment databases can then be used forindexing spatial objects and therefore constraint databases. This approach, even ifappealing, introduces two main problems:� each generalized tuple is represented at most k times inside the indexing struc-ture;� in the worst case, the number of indexed segments is quadratic in the numberof generalized tuples. This means that, for example, indexing techniques that1Let t be a generalized tuple and C a constraint. C is redundant with respect to t if t � t ^C

9.1. Segment and constraint databases 191
(a) (b)Figure 9.1: Example of O(N) databases: a) SCP database: b) DG database.guarantee a linear space with respect to the number of segments contained inthe database require a quadratic space in the number of generalized tuples. Inspatial and constraint databases this often cannot be considered acceptable.From the previous discussion it follows that indexing techniques de�ned for seg-ment databases can be safely and e�ciently applied to constraint databases only insome particular cases, for example, when the number of intersections among the NCTsegments is O(N). In this case, we retain a linear space complexity in the number ofthe generalized tuples, i.e., in the number of spatial objects.In general, TI(D) varies between O(1) and O(N2). TI(D) is O(1) when mosttuples are disjoint, whereas is O(N2) if each tuple intersects most of the other tuples.However, in many applications TI(D) is far from the extreme cases. For example, ifthe objects associated with generalized tuples are partitioned into disjoint groups, orthey are closed and of small size, the number of intersection is very likely to be O(N).This leads to the de�nition of an interesting class of O(N)-databases. In particular,a O(N)-database is a database where the number of intersections among tuples isO(N).Table 9.1 lists two classes of constraint O(N)-databases. In the table K repres-ents the length of the database �eld side. Given a constraint relational database D,the database �eld of D is a rectangular domain in the plane which contains all theintersections among the generalized tuples in D. For the sake of simplicity, we as-sume that the �eld is a square K � K. A graphical representation of each class ispresented in Figure 9.1. The class of small closed polygons (SCP for short) charac-terizes generalized relations in which generalized tuple extensions have a small size.On the other hand, the class of disjoint group generalized relations (DJ for short)characterizes generalized relations in which tuple extensions can be partitioned intonon intersecting groups, containing a �xed number of generalized tuples.The following theorem holds.

192 Chapter 9. An indexing technique for segment databasesRelation type ConditionsSCP (Small Closed Polygons) 1. K is �xed2. Each tuple �ts into a rectangle of sizeO((K=N)1=4)�O((K=N)1=4)3. Tuples are uniformly distributed in thedatabase �eldDG (Disjoint Groups) 1. The database �eld K � K can be splitinto some regions such that each tuple iscompletely contained into a single region2. Each region contains up to a �xed num-ber m of elementsTable 9.1: Characterization of some O(N)-databases.Theorem 9.1 Any SCP and DG generalized relation has O(N) tuple intersections.Proof:� SCP databases. Under the hypothesis, the probability that two polygons, cor-responding to the extension of two generalized tuples, intersect is equal to theprobability that their projections on the X-axis intersect and the projectionson the Y -axis intersect. The probability that their projections on the X-axisintersect is equal to the probability that their projections on the Y -axis inter-sect and it is equal to O((K=N)1=2). Thus, the probability that two polygonsintersect is O(K=N). This means that each polygon intersects O(K) polygonsand therefore, since K is �xed, the total number of intersections is O(N).� DG databases. Sincem is a constant not depending onN , each region generatesO(m2) intersections and the total number is O(m2) � O(N=m) = O(Nm) =O(N). 2Several applications can be represented by using the classes of O(N)-databases in-troduced above. For example, all applications modeled by planar subdivisions (typicalof GIS) can be represented by SCP O(N)-databases. For such classes of databases,indexing techniques proposed for segment databases can be e�ciently applied. Inparticular, if the considered technique guarantees a linear space complexity in thenumber of NCT segments, the application of the same technique on the segment data-base, corresponding to the original constraint database, requires a linear space in thenumber of generalized tuples; it can therefore be considered e�cient from a spacecomplexity point of view.

9.2. Towards optimal indexing of segment databases 193
stabbing query a) vertical segment query b)Figure 9.2: Vertical line queries vs vertical segment queries.9.2 Towards optimal indexing of segment databasesAs we have seen in Chapter 6, only few approaches have been proposed to answerqueries on segment databases with optimal worst-case complexity. The most inter-esting problem for which an optimal worst-case complexity data structure has beenproposed [7] is the stabbing query problem. Given a vertical line, a stabbing querydetermines all segments which are intersected by this line.A more general and relevant problem in segment databases (especially for GIS) isto determine all segments intersecting a given query segment. In the following we goone step towards the solution of this problem by investigating a weaker problem, con-sisting in determining all segments intersected by a given generalized query segment(a line, a ray, a segment), having a �xed angular coe�cient. Without leading thegenerality of the discussion, we consider vertical query segments.2 The correspondingquery is called VS query (see Figure 9.2).There exists a di�erence in the optimal time complexity between VS and stabbingqueries even in internal memory. A space optimal solution for solving VS queriesin internal memory has O(log2N + T) query complexity, uses O(N) space and per-forms updates in O(log N) time [42] (with update we mean the insertion/deletionof a segment non-crossing, but possibly touching, the already stored ones). On theother hand, the optimal solution for solving stabbing queries in internal memory hasO(log N +T) query complexity, uses O(N) space and performs updates in O(log N)time [43]. VS queries are therefore inherently more expensive than stabbing queries.In the following, we propose a O(n log2B) space solution having query I/O complex-ity very close to O(log2Bn+ t). The solution is proposed for static and semi-dynamic(thus, allowing insertion) cases.The data structures we propose to solve VS queries are organized according totwo levels. At the top level, we use a primary data structure (called �rst-level data2If the query segment is not vertical, coordinate axes can be appropriately rotated.

194 Chapter 9. An indexing technique for segment databasesstructure). One or more auxiliary data structures (called second-level data structures)are associated with each node of the �rst-level data structure. The second-level datastructures are tailored to e�ciently execute queries on a special type of segments,called line-based segments. A set of segments is line-based if all segments have anendpoint lying on a given line and all segments are positioned in the same half-planewith respect to such line. Thus, our main contributions can be summarized as follows:1. We propose a data structure to store and query line-based segments, based onpriority search trees (PST for short) [43, 76], similar to the internal memorydata structure proposed in [42]. The proposed data structure is then extendedwith the P-range technique presented in [136], to reduce time complexity.2. We propose two approaches to the problem of VS queries:� In the �rst approach, the �rst-level structure is a binary tree, whereas thesecond-level structure, associated with each node of the �rst-level structure,is a pair of priority search trees, storing line-based segments in secondarystorage. This solution uses O(n) blocks of secondary storage and answersqueries in O(log n(logBn+IL�(B))+ t) I/O's. We also show how updateson the proposed structures can be performed in O(log n+ log2BnB) amortizedtime.3� In the second approach, to improve the query time complexity of the �rstsolution, we replace the binary tree at the top level with a secondary storageinterval tree [7]. The second-level structures are based on priority searchtrees for line-based segments and segment trees, enhanced with fractionalcascading [40]. This solution uses O(n log2B) space and answers queriesin O(logBn(logBn + log2B + IL�(B)) + t) time. We also show how theproposed structure can be made semi-dynamic, performing insertions inO(logBn+ log2B + log2BnB) amortized time.9.3 Data structures for line-based segmentsLet S be a set of segments. S is line-based if there exists a line l (called base line)such that each segment in S has (at least) one endpoint on l and all the segments inS having only one end-point on l are located in the same half-plane with respect to l.In the following, we construct a data structure for storing line-based segments insecondary storage and retrieving all segments intersected by a query segment q which3If a sequence of m operations takes total time t, the amortized time complexity of a singleoperation is t=m.

9.3. Data structures for line-based segments 195is parallel to the base line. More precisely, the query object q may be a segment,a ray, or a line.4 Since a segment query represents the most complex case, in thefollowing we focus only on such a type of queries. Moreover, without loss of generality,through out Section 9.3, we restrict the presentation to horizontal base lines. Thischoice simpli�es the description of our data structure making it consistent with thetraditional way of drawing data structures. The query thus becomes a horizontalsegment as well.The solution we propose for storing a set of line-based segments is based on thefact that there exists an obvious relationship between a segment query against aset of line-based segments on the plane and a 3-sided query against a set of points(see Figure 9.3). Given a set of points in the plane and a rectangular region openin one of its sides, the corresponding 3-sided query returns all points contained inthe (open) rectangle. A segment query de�nes in a unique way a 3-sided queryon the point database corresponding to all segment endpoints not belonging to thebase line. On the other hand, the bottom segment of a 3-sided query on such pointdatabase corresponds to a segment query on the segment database. However, thesecorresponding queries do not necessarily return the same answers. Indeed, althoughboth queries often retrieve the same data (segment 1 in Figure 9.3), this is not alwaystrue. The intersection of a segment with the query segment q does not imply thatthe segment endpoint is contained in the 3-sided region (segment 2 in Figure 9.3).Also, the presence of a segment endpoint in the 3-sided region does not imply thatthe query segment q intersects the segment (segment 3 in Figure 9.3). Despite thesedi�erences, solutions developed for 3-sided queries can be successfully applied toline-based segments as well.In internal memory, priority search trees [101] are used to answer 3-sided queriesin optimal space, query, and update time. All proposals to extend priority search trees,for use in secondary storage, do not provide both query and space optimal complexities[76, 120, 136]. In [76], a solution with O(n) storage and O(log n+ t) query time wasdeveloped. Two techniques have been de�ned to improve these results. Path-caching[120] allows us to perform 3-sided queries in O(logBn), with O(n log2B log2 log2B)space. A space optimal solution to implement secondary storage priority search treesis based on the P-range tree [136] and uses O(n) blocks, performing 3-sided queriesin O(logBn+ IL�(B) + t) and updates in O(logBn+ log2BnB), where IL�(B) is a smallconstant, representing the number of times we must repeatedly apply the log� functionto B before the result becomes � 2.54We assume that the query object belongs to the same half-plane where segment endpoints belong.Otherwise, no segment intersects the query.5Unless otherwise stated all logarithms are given with respect to base 2.

196 Chapter 9. An indexing technique for segment databases
related to the segment q

3 2

q

1

1 3-sided queryFigure 9.3: A segment query on a set of line-based segments vs a 3-sided query onthe endpoint set of the same segments.As in the approach presented in [120, 136] for point databases, in order to de�nepriority search trees for a set of line-based segments, a binary decomposition is �rstused and algorithms for retrieving all segments intersected by the query segment aredeveloped. As a result, we obtain a binary tree structure in secondary storage ofheight O(log n), which meets all conditions required in [120, 136] for applying anyadvanced technique between path-caching and P-range tree.Data structure. Let S be a set of N line-based segments. We �rst select a numberB of segments from S with the topmost y-value endpoints and store them in the rootr of the tree Tr under construction, ordered with respect to their intersections withthe base line.6 The set containing all other segments is partitioned into two subsetscontaining an equal number of elements. The top segment in each subset is thencopied into the root. These segments are denoted respectively by left and right. Aseparator low is also inserted in the root, which is a horizontal line separating theselected segments from the others. Line low for a generic node v is denoted by v:low.A similar notation is used for left and right (see Figure 9.4). If v:left:y (v:right:y)denotes the top y-value of segment v:left (v:right) and v:low:y denotes the y-valueof line v:low, then v:left:y � v:low:y and v:right:y � v:low:y.The decomposition process is recursively repeated for each of the two subsets. Likeexternal priority search trees in point databases, the resulting tree Tr is a balancedbinary tree of height O(log n), occupying O(n) blocks in external storage. Thedi�erence, however, is that no subtree in Tr de�nes a rectangular region in the plane.Indeed, in a point database, a vertical line is used as a separator between pointsstored in left and right subtrees. Instead, in a segment database, the line separatingsegments stored in left and right subtrees is often biased (see Figure 9.4).Search algorithm. Let q be a horizontal query segment. We want to �nd allsegments intersecting q. The search algorithm is based on the comparison of q withstored segments.7 The search is based on two functions Find and Report. Function6Note that the construction guarantees that each node is contained in exactly one block.7Note that this is di�erent from the approach usually used in PST for point databases. In that

9.3. Data structures for line-based segments 197
r.low

a)

12

10

9

8

6

5

4

3
1

2

117

b)

2,4

1 3,5 8,9 12

6,10

7,11
r.rightr.left

rFigure 9.4: External PST for line-based segments (a) and corresponding binary tree(b), assuming B = 2. Non-horizontal dashed lines do not exist in the real datastructure and are given only for convenience. Moreover segments v:left and v:right,as well as line v:low, are shown only for the root r.Find is to locate the deepest-leftmost (deepest-rightmost) segment intersected bythe query q, with respect to its storage position in Tr, and the node in Tr wherethe segment is located. Function Report then uses the result of function Find toretrieve all segments in Tr intersected by q, starting from the deepest-leftmost anddeepest-rightmost segments intersecting the query. The algorithms for such functionsare presented in Figures 9.5 and 9.6. Figure 9.7 illustrates some di�erent cases, con-sidered in function Find. Figure 9.8 shows all nodes visited by the Report algorithm.The algorithms are similar to those presented in [42] for the internal memory inter-section problem, and satisfy the following properties:� Function Find maintains in a queue Q the nodes that should be analyzed to�nd the deepest-leftmost (the deepest-rightmost) segment intersecting the querysegment. It can be shown that Q contains at most two nodes for each level ofTr, thereby assuring that the answer is found in O(log n) steps. Moreover, aconstant space O(1) is su�cient to store Q [42].� Function Report determines the deepest-leftmost and the deepest-rightmost seg-ments intersecting the query, using function Find. Then, it visits the subtreerooted at the common ancestor of the nodes containing such segments and thepath from such ancestor to the root of the tree. It can be proved that the num-ber of nodes of such subtree, containing at least one segment non-intersectingq, is O(log n+ t) [42].The following lemma follows from the previous considerations.case, the comparison is performed against region boundaries. Such an approach is not possible forline-based segments, since no rectangular region is related to any subtree of Tr.

198 Chapter 9. An indexing technique for segment databasesAlgorithm 9.1input : a PST T for a set of N line-based segmentsa query segment qoutput : the deepest-leftmost segment intersected by the query segment q,with respect to its storage position in Tthe node in T where the segment is locatedbeginlet q be the segment q:l � x � q:r; y = q:ylet (v:left:x; v:left:y) be the upper endpoint of segment v:leftlet (v:right:x; v:right:y) be the upper endpoint of segment v:rightlet Q be the empty queueInitialize Q with the tree rootanswern 1; answers 1;repeatExtract a block v from the front of Qif some segments in v intersect q thenselect the leftmost segment in v and answers and assign it to answersselect the block of Tr containing answers and assign it to answernQ is updated according to the following cases:if q:y � v:low thenno segments in the blocks having v as ancestor in Tr can intersect q and the queueremains unchangedelsea) if q:y > v:left:y and q:y > v:right:y then Q remains unchanged (Figure 9.7.a)endifb) if q:y � v:left:y and q:l is on the left of v:left then the left son of v is addedat the end of Q (Figure 9.7.b). In symmetric case if q:y � v:right:y and q:lis on the right of v:right, the right son of v is added at the end of Q endifc) if q:y � v:left:y, q:y > v:right:y and q:l lies between v:left and v:right then theleft son of v is added at the end of Q (Figure 9.7.c). Symmetric case istreated similarly endifd) if q:y � v:left, q:y � v:right and q:l lies between v:left and v:right then weempty queue Q and then insert both sons in it (Figure 9.7.d) endifendifuntil Q is emptyreturn answers and answernend Figure 9.5: Function Find.Lemma 9.1 [42] Let S be a set of line-based segments. Let q be a query segment.Let Tr be the priority search tree for S, constructed as above. Then:1. Function Find returns the deepest-leftmost (the deepest-rightmost) segment bll(blr) in S intersected by q and the node it belongs to in O(log n) I/O's.2. All T segments in S intersected by q can be found from Tr, bll and blr, inO(log n+ TB) I/O's. 2The following result summarizes the costs of the proposed data structure.Lemma 9.2 [42] N line-based segments can be stored in a secondary storage prioritysearch tree having the following costs: (i) storage cost is O(n); (ii) horizontal segmentquery cost is O(log n+ t), where t is the number of the detected intersections. 2

9.3. Data structures for line-based segments 199Algorithm 9.2input : a PST T for a set of N line-based segmentsa segment query qoutput : all segments stored in Tr and intersected by qbeginlet q be the segment q:l � x � q:r; y = q:yApply function Find to Tr and qlet sl and bll be the segment and the block containing sl located by function Find, respectivelyif bll =1 then q does not intersect any segmentelseApply the symmetric version of function Find (Find0) to Tr and q,retrieving the deepest-rightmost segment intersected by q and the node where it is containedlet sr and blr be the segment and the block containing sl located by function Find0, respectivelylet lca be the lowest common ancestor of bll and blr in Trlet Pl and Pr be the paths from bll to lca and from blr to lca, respectivelyWalk up Plfor each node v in Pl doretrieve all segments in v intersected by qif (case 1) v = bll or (case 2) v 6= lca and the predecessor of v on Pl is a left child of v thenif (case 1) then z = v else (case 2) z = v's right child endifperform a preorder traversal of the sub-tree rooted at zfor each visited node w doretrieve all segments in w which intersect qif w:low < q:y or w does not contain any segment intersecting q thendo not proceed the traversal in w's children endifendforendifendforThe above steps are repeated also on Pr, with \left" and \right" interchangedlet P be the path from lca to the root of the treeWalk up Pfor each node v in P doretrieve all segments in v intersected by qendforendifend Figure 9.6: Function Report.Despite the di�erence in the query results between a 3-sided query on a pointdatabase and a segment query on a segment database (see Figure 2), either the path-caching [120] or the P-range tree [136] methods can be applied for reducing the searchtime in a segment database, using an external PST. Since we will use an externalPST on each level of the �rst-level data structure we are going to develop (see nextsection), we choose a linear memory solution based on P-range trees, obtaining anoptimal space complexity in the data structure for storing line-based segments.The application of the P-range tree technique to an external PST for line-basedsegments requires only one minor modi�cation of the technique described in [136].As for PST, the vertical line separator should be replaced by the queue Q and severalprocedures needed for the queue maintenance. Then, a comparison of a query pointagainst a vertical line separator in a point database is replaced by the check of at mosttwo nodes in queue Q, during the search in a segment database. Since the detectionof the next-level node and the queue maintenance in a segment database takes O(1)time, this substitution does not inuence any properties of the P-range tree technique.

200 Chapter 9. An indexing technique for segment databases
d)

q.y

c)b)a)

q.l
r.left r.right

r.row
rr

r.row

r.right
r.left

q.l q.y

r.rightr.right

r.left
q.l

r.row
r

r.row
q.y

q.lr.left

r

q.yFigure 9.7: Di�erent cases in function Find.
lca

bl_rbl_r

q

nodes visited by Report

Figure 9.8: Search space visited by the Report algorithm.This proves the following lemma.Lemma 9.3 N line-based segments can be stored in a secondary storage data struc-ture having the following costs: (i) storage cost is O(n); (ii) horizontal segment querycost is O(logBn+IL�(B)+ t) I/O's; (iii) update amortized cost is O(logBn+ log2BnB).29.4 External storage of NCT segmentsIn order to determine all NCT segments intersecting a vertical segment, we pro-pose two secondary storage solutions, based on two-level data structures (denotedby 2LDS). Second-level data structures are based on the organization for line-basedsegments presented in Section 9.3. In the following, we introduce the �rst proposeddata structure; the second one will be presented in Section 9.5.First-level data structure. The basic idea is to consider a binary tree as �rst-levelstructure. With each node v of the tree, we associate a line bl(v) (standing for baseline of v) and the set of segments intersected by the line. More formally, let N be aset of NCT segments. We order the set of endpoints corresponding to such segments

9.4. External storage of NCT segments 201in ascending order according to their x-values. Then, we determine a vertical linepartitioning such ordered set in two subsets of equal cardinality and we associatesuch vertical line with the base line bl(r) of the root. All segments intersecting bl(r)are associated with the root whereas all segments which are on the left (right) ofbl(r) and do not intersect it, are passed to the left (right) subtree of the root. Thedecomposition recursively continues until each leaf node contains B segments and �tsas a whole in internal memory. The construction of base lines guarantees that thesegments in a node v are intersected by bl(v) but are not intersected by the base lineof the parent of v. The tree height is O(log n).Second-level data structures. Because of the above construction, each segmentin an internal node v either lies on bl(v) or intersects it. The segments which lie onthe base line are stored in C(v), an external interval tree [7] which requires a linearnumber of storage blocks and performs a VS query in O(logBn + t) I/O's. Eachsegment which is intersected by bl(v) has left and right parts. Left and right partsof all the segments are collected into two sets, called L(v) and R(v), respectively.Each of these sets contains line-based segments and can be e�ciently maintained insecondary storage using the technique proposed in Section 9.3. Totally, each segmentis represented at most twice inside the two-level data structure. Therefore, the treestores N segments in O(n) blocks in secondary storage. Figure 9.9 (b) illustrates theorganization and content of the proposed 2LDS, for the set of segments presented inFigure 9.9 (a).Search algorithm. Given a query segment of the form x = x0; a � y � b, thesearch is performed on the �rst-level tree as follows. We scan the tree and visitexactly one node v for each level. In each node v, we �rst verify if x0 equals thex-coordinate of the vertical line bl(v). In such a case, all segments in C(v), L(v) andR(v) intersected by q are retrieved and the search stops. Otherwise, if x0 is lowerthan the x-coordinate of bl(v), we visit only L(v) and move to the left son of v. Ifx0 is greater than the x-coordinate of bl(v), we visit only R(v) and move to the rightson. The search for all segments T 0 inside one node intersected by the query requiresO(logBn + IL�(B) + T 0B) time. Since the height of the �rst-level data structure isO(log n) and each segment is reported at most twice,8 the I/O complexity of thetotal search is O(log n(logBn+ IL�(B)) + t).Updates. If updates are allowed, the binary tree should be replaced by a dynamicsearch-tree, for which e�cient rebalancing methods are known. Tomaintain insertionsand deletions of line-based segments in the data structure described above, we replacethe binary tree with a BB[�]-tree [42, 108], 0 < � < 1 � 1=p2. We store balance8A segment is reported twice only if it intersects q and it is contained in a node v such that x0equals the x-coordinate of bl(v).

202 Chapter 9. An indexing technique for segment databases
1

4

PST for L(r)

PST for R(r)

IT for C(r)

L(r) R(r)
right son left son

bl(r)
base line C(r)

2

5

2

5Root r

b)

leaf node for leaf node for

a) bl(r)

3

7

1 2 3

4

5

7

6

6Figure 9.9: a) A set of 7 NCT segments; b) the corresponding data structure (B = 2,PST stands for priority search tree, IT stands for interval tree).values in internal nodes of the BB[�]-tree and maintain the optimal O(log n) heightof the tree by performing O(log n) single or double rotations during an update. Theupdate cost consists of O(log n) operations for the search and balance maintenancein the �rst-level tree and O(logBn + log2BnB) operations for updating the second-leveldata structures. Therefore, the total update cost is O(log n + log2BnB). The cost isO(log n) for all real values of n (more exactly, for n 2 O(2B)).Theorem 9.2 N NCT segments can be stored in a secondary storage data struc-ture having the following costs: (i) storage cost is O(n); (ii) VS query time isO(log n(logBn+ IL�(B)) + t); (iii) update time is O(log n+ log2BnB). 29.5 An improved solution to query NCT segmentsIn order to improve the complexity results obtained in the previous section, a second-ary storage interval tree, designed for solving stabbing queries [7], is used as �rst-leveldata structure, instead of the binary tree. This modi�cation, together with the use

9.5. An improved solution to query NCT segments 203
s1 s2 s3 s4 s5

1 2

4

5

7

6

3Figure 9.10: Partition of the segments by lines si.of the fractional cascading technique [40], improves the wasteful factor log n in thecomplexity results presented in Theorem 9.2, but uses O(n log2B) space.9.5.1 First-level data structureThe interval tree is a standard dynamic data structure for storing a set of 1-dimensionalsegments [7, 52], tailored to support stabbing queries. The tree is balanced over thesegment endpoints, has a branching factor b, and requires O(n) blocks for storage.Segments are stored in secondary structures associated with the internal nodes of thetree.As �rst level data structure, we use an external-memory interval tree and weselect b equal to B=4. The height of the �rst-level structure is therefore O(logbn) =O(logBn). The �rst level of the tree partitions the data into b+ 1 slabs separated byvertical lines s1; : : : ; sb. In Figure 9.10, such lines are represented as dashed lines. Inthe example, b is equal to 5. Multislabs are de�ned as contiguous ranges of slabs suchas, for example, [1 : 4]. There are O(b2) multislabs in each internal node. Segmentsstored in the root are those which intersect one or more dashed lines si. Segmentsthat intersect no line are passed to the next level (segments 3, 4 and 7 in Figure 9.10).All segments between lines si�1 and si are passed to the node corresponding to thei-th slab. The decomposition continues until each leaf represents B segments.9.5.2 Second-level data structuresIn each internal node of the �rst-level tree, we split all segments which do not lie ondashed lines si into long and short fragments. A long fragment spans one or moreslabs and has both its endpoints on dashed lines. A short fragment spans no completeslab and has only one endpoint on the dashed line. Segments are split as follows (seeFigure 9.11). If a segment completely spans one or more slabs, we split it into one long(central) fragment and at most two short fragments. The long fragment is obtainedby splitting the segment on the boundaries of the largest multislab it spans. After

204 Chapter 9. An indexing technique for segment databases
c)b)a) s3s2s1 s3s2s1s3s2s1

4

2
1

5

6

4
2

3

3

6

6

11

2

4

5
5

6

5

4

3

2 1Figure 9.11: The splitting of segments: a) segments associated with a node; b) shortfragments; c) long fragments.this splitting, at most two additional short segments are generated. If a segment inthe node intersects only one dashed line and spans no slab, it is simply split intotwo short fragments. In total, if k segments are associated with a node, the splittingprocess generates at most k long and 2k short fragments.As before, segments lying on a dashed line si are stored in an external intervaltree Ci. Short ad long fragments are stored as follows.Short fragments. All short fragments are naturally clustered according to thedashed line they touch. Note that short fragments having one endpoint on line siare line-based segments and can be maintained in an external priority search tree asdescribed in Section 9.3. Short line-based fragments which are located on the left ofsi are stored in an external PST Li. Symmetrically, short fragments on the right sideof si are stored in an external PST Ri. Totally, an internal node of the �rst-levelstructure contains 2b external PSTs for short fragments.Long fragments. We store all long segments in an additional structure G whichis essentially a segment tree [5, 43] based on dashed lines si, i = 1; : : : ; b. G is abalanced binary tree with b� 2 internal nodes and b� 1 leaves. Thus, in total it hasO(B) nodes.Each leaf of the segment tree G corresponds to a single slab and each internal nodev is associated with the multislab I(v) formed by the union of the slabs associatedwith the leaves of the subtree of v. The root of G is associated with the multislab[1 : b]. Given a long fragment l which spans many slabs, the allocation nodes of lare the nodes vi of G such that l spans I(vi) but not I(par(vi)), where par(v) is theparent of v in G. There are at most two allocation nodes of l at any level of G, sothat, since the height of the segment tree is log2B, l has O(log2B) allocation nodes[43].Each internal node v of G is associated with a multislab [i : j] and is associatedwith the ordered list (called multislab list [i : j]) of long fragments having v asallocation node, cut on the boundaries of I(v). A B+-tree is maintained on the list

9.5. An improved solution to query NCT segments 205for fast retrieval and update.Since the segment tree G contains O(B) nodes, each containing a pointer to aB+-tree in addition to standard node information, it can be stored in O(1) blocks. Intotal, each segment may be stored in at most three external-memory structures. Thatis, if a segment spans the multislab [i : j], the segment is stored in data structuresLi, Rj , and in O(log2B) allocation nodes of G. Since b = B=4, an internal nodeof the �rst-level structure has enough space to store all references to b structuresCi, b structures Li, b structures Ri and one structure G. Thus, in total, the spaceutilization is O(n log2B).Search algorithm. Given a query segment x = x0; a1 � y � a2, a lookup isperformed on the �rst-level tree from the root, searching for a leaf containing x0. Foreach node, if x0 equals the x-coordinate of any si, the interval tree Ci is searchedtogether with the second-level structures Ri and Li to retrieve the segments lying onsi and short fragments intersected by the query segment. Otherwise, if x0 hits thei-th slab, that is si < x0 < si+1, then we check second-level structures Ri and Li+1.In both cases, we have to check also the second-level structures G which containmultislabs spanning the query value x0 and retrieve all the long fragments intersectedby the query. When visiting G, we scan from the root of G to a leaf containing thevalue x0. In each visited node, we search the ordered list associated with the node.Finally, if x0 does not coincide with any si in the node, the search continues on thenext level, in the node associated with the slab containing x0.Although any segment may be stored in three di�erent external structures, itis clear that each segment intersected by the query q is retrieved at most twice.Moreover, for each internal node, during the search we visit exactly two structuresfor short fragments and structure G for long ones. This proves the following lemma.Lemma 9.4 N NCT segments can be stored in a secondary storage data structurehaving the following costs: (i) storage cost is O(n log2B); (ii) VS query time isO(logBn(logBnlog2B + IL�(B)) + t). 2To further reduce the search time, we extend this approach with fractional cas-cading [40] between lists stored on neighbor levels of structures G.9.5.3 Fractional cascadingFractional cascading [40] is a technique supporting the execution of a sequence ofsearches at a constant cost (in both internal memory and secondary storage) persearch, except for the �rst one. The main idea is to construct a number of \bridges"among lists. Once an element is found in one list, the location of the element in

206 Chapter 9. An indexing technique for segment databasesother lists is quickly determined by traversing the bridges rather than applying thegeneral search. Fractional cascading has been extensively used in internal-memoryalgorithms [40, 43, 102]. Recently, the technique has been also applied to o�-lineexternal-memory algorithms [6]. Our approach can be summarized as follows.Data structure supporting fractional cascading. The idea is to create bridgesbetween nodes on neighbor levels of the G structure, stored in one node of the �rst-level data structure. In particular, for an internal node of G associated with a multis-lab [i : j], two sets of bridges are created between the node and its two sons associatedwith multislabs [i : i+j2] and [i+j2 : j] (see Figure 9.12). Each fragment in the multislablist [i : j] keeps two references to the nearest fragments in the list, which are bridgesto left and right sons.For multislabs [i : j] and [i : i+j2] (and similarly for multislabs [i : j] and [i+j2 : j]),the bridges are created in such a way that the following d-property is satis�ed: thenumber s of fragments in both multislab lists [i : j] and [i : i+j2] between two sequentialbridges is such that d � s � 2d, where d is a constant � 2.The bridges between twomultislab lists [i : j] and [i : i+j2] are generated as follows.First we merge the two lists in one. All fragments in the joined list do not intersecteach other and either touch or intersect line s i+j2 . We scan the joined list given by theorder of segment intersections with line s i+j2 and select each d+ 1-th fragment fromthe list as a bridge. If the fragment is from [i : j] (like fragment 7 in Figure 9.12), wecut it on line s i+j2 and copy it in the multislab list [i : i+j2]. Otherwise, if the fragmentis from [i : i+j2] (like fragment 4 in Figure 9.12), we copy it in the multislab list [i : j].Such a copy of the bridge is called augmented bridge fragment; in Figure 9.12 thesefragments are marked with *". 9 The position of the augmented bridge fragment in[i : j] is determined by its intersection with line s i+j2 . Analogously, the bridges arecreated between multislabs [i : j] and [i+j2 : j]. Bridge fragments from a multislablist [i : j] are copied (after the cutting) in the multislab list [i+j2 : j] while bridgefragments from the multislab list [i+j2 : j] are copied to [i : j].After bridges from the multislab list [i : j] to both lists [i : i+j2] and [i+j2 : j] aregenerated, the list [i : j] contains original fragments (some of them are bridges to leftor right son) and augmented bridge fragments copied from lists [i : i+j2] and [i+j2 : j].In Figure 9.12, the list [i : j] contains three augmented bridge fragments, respectivelyfragments 3, 4, and 9. All the fragments in [i : j] are ordered by the points in whichthey intersect or touch line s i+j2 . Each non augmented bridge fragment maintains apointer to the next and to the previous non augmented bridge fragment in the list as9Note that augmented bridge fragments are only used to speed up the search, they are neverreported in the query reply.

9.5. An improved solution to query NCT segments 207
3, 9, 10

[i : j]

[i: (i+j)/2] [(i+j)/2 : j]

4, 5, 7*, 8, 11

1, 2, 3*, 4*, 6, 7, 9*

1
2

3
4

5 6

7

8 9

10
11

s i s (i+j)/2 s
j a) b)Figure 9.12: \Bridges" in G. a) Long fragments stored in the node associated withmultislab [i : j] and in its two sons, associated with multislabs [i : i+j2] and [i+j2 : j].b) Lists of fragments associated with nodes of the G structure. The lists are extendedwith bridge segments (d=2). Bridges are shown by lines and new bridge fragmentsinserted in the nodes are marked with `*'.well as a pointer to the next and to the previous augmented bridge fragment. Thefollowing result holds.Proposition 9.1 Multislab lists [i : j], [i : i+j2], and [i+j2 : j] satisfy the d-property.Proof: Consider multislab lists [i : j] and [i : i+j2]. Bridge fragments can be eitherfragments from the multislab list [i : j], cut on line s i+j2 , or fragments from themultislab list [i : i+j2]. Consider the �rst case. These bridge fragments are alreadycontained, as fragments, in the multislab list [i : j] and are inserted as augmentedbridge fragments in the multislab list [i : i+j2]. In the second case, bridge fragmentsare already contained, as fragments, in the multislab list [i : i+j2] and are insertedas augmented bridge fragments in the multislab list [i : j]. This means that bridgefragments are contained both in the father and in the child node. By construction, inthe ordered multislab lists exactly d fragments appear between two bridges. Thesefragments may be either from the multislab list [i : j] or from the multislab list[i : i+j2]. Therefore the sum of the number of fragments in both multislab lists betweentwo bridges is at least d. A similar proof holds for multislab lists [i : j] and [i+j2 : j].During insertion/deletions, the number of fragments between two sequentialbridges may change. To guarantee the satisfaction of the d-property after an updateis executed, speci�c rebalancing operators are applied to split or merge the nodesin order to still satisfy the d-property. These operations origins from 2-4-trees andB-trees [40, 102]. 2Given an internal node v of G, associated with the multislab [i : j], a B+-treeis built from the multislab list [i : j], after bridges to both sons are generated and

208 Chapter 9. An indexing technique for segment databasescopied in the list. The following result holds.Proposition 9.2 After including augmented bridge fragments in all nodes of G, thespace complexity is still O(n log2B).Proof: Without bridges, the space complexity is O(nlog2B). Each insertion of abridge fragment in the structure results in inserting a copy of an existing fragmentinto a list. Moreover, the insertion of pointers can only add a constant to the space.Therefore, the insertion of augmented bridge fragments cannot alter the space com-plexity. 2Search algorithm. Let q be the vertical segment of the form x = x0; a1 � y � a2.The VS query q is performed as described in Subsection 9.5.2, by modifying the searchin G as follows. First we search in the B+-tree associated with the root ofG and detectthe leftmost segment fragment f1l intersected by q and associated with the root. Thistakes O(logBn) steps. Then, the leaves of the B+-tree are traversed and all fragmentsin the root of G intersected by q (except for the augmented bridge fragments) areretrieved. As a second step, if x0 is lower than s i+j2 , the bridge to the left son,nearest to f1l , is determined, otherwise the bridge to the right son, nearest to f1l , isdetermined. Following the appropriate bridge, a leaf node in the B+-tree associatedwith a second level node of G is reached. Because of the d-property of bridges, theleftmost segment fragment f2l , contained in the reached leaf node and intersected byq, can be found in O(1) I/O's. Then, the leaves of the B+-tree are traversed and allfragments intersected by q (except for the augmented bridge fragments) are retrieved.The same procedure for bridge navigation and fragment retrieval is repeated on levels3; : : : ; log2b of G. The following result holds.Proposition 9.3 Let f il be the leftmost fragment intersected by q and associated witha node v stored at level i of G. Let bi be the bridge fragment to the left son, nearestto f il . The leftmost fragment intersected by q and associated with a son of v can befound from bi in O(1) I/O'.Proof: Suppose that x0 is lower than s i+j2 . We show that the number of fragmentsin the left son between f i+1l and bi is at most 2d, thus f i+1l can be reached in O(1)I/O. Let d0i be the bridge fragment nearest to bi, and such that if bi is lower than f il ,then b0i is greater than f il and vice versa. Suppose that bi is lower than f il (a similarproof can be given if bi is greater than f il). There are several cases:

9.5. An improved solution to query NCT segments 209� bi � f il � b0i � f i+1l . Since bridge fragments are stored both in the father andin the son and since f i+1l and f il intersect q, this means that f i+1l is not theleftmost fragment intersected by q and this contradict the hypothesis.� bi � f il � f i+1l � b0i. Since b0i can be determined from bi in O(1), the same holdsfor f i+1l .� bi � f i+1l � f il � b0i. Since b0i can be determined from bi in O(1), the same holdsfor f i+1l .� f i+1l � bi � f il � b0i. Since bridge fragments are stored both in the fatherand in the son and since f i+1l intersects q, this means that f il is not the left-most fragment intersected by q and associated with v and this contradicts thehypothesis. 2With the use of bridges, searching for the leftmost fragment intersecting q onall levels of G takes O(logBn + log2B) steps. Together with searching in Li andRi+1 for short fragments, the search time for one internal node a of the �rst-levelstructure is O(logBn + log2B + IL�(B) + T 0B), where T 0 is the number of segmentsin node a intersected by the query. Since any segment is stored in only one node ofthe �rst-level tree (whose height is O(logBn)) and each segment intersected by thequery is reported only once, reporting all segments intersected by the query takesO(logBn(logBn+ log2B + IL�(B)) + t).Insertions. The 2LDS proposed above has been designed for the static case. Toextend the schema to the semi-dynamic case when segment insertions are allowedtogether with queries, we have to extend both �rst- and second-level structures tomanage insertion of segments.First, we replace a static interval tree, used as a �rst-level structure, with aweighted-balanced B-tree [7] (see Chapter 6). Updates on such structure can beperformed in O(logBn) amortized time. The second-level structures Ci, Ri and Liare dynamic and need not any extension. However, in order to store long fragments,a BB[�]-tree [42, 108], 0 < � < 1�1=p2 can be used as the second-level structureGfor long fragments. The last issue is how to maintain bridges between neighbor levelsof the G structure, when a segment is inserted and the corresponding long fragmentmay violate the d-property. To ensure O(1) I/O navigation complexity neighborlevels of the G structure, we provide some additional operations on multislab lists(similar to those presented in [102]). The linear bridge structure when each multislablist [i : j] contains bridges to at most two multislabs [i : i+j2] and [i+j2 : j] allows usto retain the O(1) I/O amortized complexity of bridge navigation. Such extensionsallow the execution of insertions in O(logBn + log2B + log2BnB) amortized time.

210 Chapter 9. An indexing technique for segment databasesTheorem 9.3 N NCT segments can be stored in a secondary storage data structurehaving the following costs: (i) storage cost is O(n log2B); (ii) VS query time isO(logBn(logBn+ log2B + IL�(B)) + t); (iii) insertion amortized time is O(logBn+log2B + log2BnB). 29.6 Preliminary experimental resultsSome preliminary experiments have been carried out in order to investigate the per-formance of the proposed technique. The performed experiments deal with a sim-pli�ed implementation of the technique presented in Section 9.4 (hereafter denotedby T). In particular, the P-range tree technique has not been applied to the datastructures supporting the search on a set of line-based segments (see Section 9.3).The experiments have been performed on a PC Pentium 100, with 16 Mb RAM.The page size is 1k. The program has been written in C++. The considered gen-eralized relations contain respectively 5000, 10000, 15000, 20000, and 31000 NCTsegments, uniformly distributed in the Euclidean plane. Segments are assumed to beordered in the data �le with respect their leftmost X-coordinate. The query segmentis assumed to be vertical.The aim of the performed experiments is to compare the number of page accessedby T during the execution of VS queries having di�erent selectivity. This number hasbeen compared with the number of page accessed in executing the same queries byapplying a particular type of sequential search, that we call clever sequential search(hereafter denoted by CS). Since segments are orderly stored with respect to theirleftmost X-coordinate, a sequential search can be interrupted as soon as a segmentis retrieved such that its leftmost X-coordinate is greater than the X-coordinate ofthe query segment. This approach greatly reduces the number of segments that haveto be analyzed in a sequential scan. Since the performance of CS depends on thedistance of the query segment from the leftmost border of the minimum boundingbox containing the stored segments, we have considered query segments di�eringnot only in their length but also in this additional parameter. In particular, thereported experiments deal with three di�erent query segments, Q1, Q2, and Q3; theyare graphically represented in Figure 9.14. Q1 is the lowest selective query objectwhereas Q3 is the highest selective query object.From the performed experiments, we have observed that the number of page ac-cesses for T increases by decreasing the selectivity. This is due to the fact thatqueries with lower selectivity retrieve more segments and therefore require the ana-lysis of more tree nodes. This result can be observed from Figure 9.15. Note thatthe considered selectivities are very low. Indeed, due to the form of the query ob-

9.7. Concluding remarks 211
Q3 Q1

Q2Figure 9.13: Position of the query segment with respect to the minimum boundingbox containing all stored segments.ject, selectivity greater than 10% can only be achieved by considering speci�c datadistributions. On the other hand, experiments have been performed by assuming anuniform distribution of segments in the space.From Figure 9.15 it also follows that the number of page accessed by CS doesnot depend on the query selectivity. In the case of the reported experiments, suchnumber decreases by decreasing the selectivity. However, from Figure 9.13 we cansee that CS has very good performance when the X-coordinate of the query segmentis close to the leftmost border of the minimum bounding box containing the storedsegments. In particular, the number of page accessed by CS decreases by decreasingsuch distance. On the other hand, T performance does not depend on this parameter.9.7 Concluding remarksIn this chapter we have proposed two techniques to solve a vertical (or having anyother �xed direction) segment query on segment databases. The more e�cient tech-nique has O(n log2B) space complexity and time complexity very close to O(log2Bn+t). These are the optimal bounds that can be achieved by using the (non-optimal)solution for the secondary storage implementation of priority search trees we havedeveloped. The hypothesis under which the proposed techniques can be e�cientlyapplied to constraint databases have also been pointed out, introducing the class ofO(N)-databases.

212 Chapter 9. An indexing technique for segment databases
100

200

300

400

500

600

5000 10000 15000 20000 31000

P
ag

es

N

(a)

CS
T

10

20

30

40

50

60

70

80

90

100

110

120

130

5000 10000 15000 20000 31000

P
ag

es

N

(b)

CS
T

10

20

30

40

50

60

70

80

5000 10000 15000 20000 31000

P
ag

es

N

(c)

CS
T

Figure 9.14: Number of page accesses with respect to the database size, by consideringqueries (a) Q1, (b) Q2, (c) Q3.
100

200

300

400

500

600

Q1 Q2 Q3

P
ag

es

N

CS
T

Figure 9.15: Number of page accesses with respect to di�erent selectivities and N =31000.

Chapter 10ConclusionsIn this dissertation, we have investigated modeling and optimization topics in thecontext of constraint databases. In particular, after a brief introduction to constraintdatabases (Chapter 1), the �rst part of the dissertation (Chapters 2{5) concernedmodeling aspects whereas the second part (Chapters 6{9) concerned optimizationissues. In this last chapter, we shortly summarize the contributions of this dissertationand we outline some topics left to future work.10.1 Summary of the contributionsData modeling. Contributions with respect to data modeling can be summarized asfollows. After a brief survey of the main results that have been proposed in the contextof constraint database modeling (Chapter 2), we have investigated the de�nition ofnew data manipulation languages for relational constraint databases. In particular,in Chapter 3 we have introduced an extended generalized algebra (EGRA) and anextended generalized calculus (ECAL) for relational constraint databases; in Chapter4 an update language has also been proposed to complete the de�nition of a datamanipulation language for relational constraint databases.The main di�erence between the proposed languages and the classical languagesproposed for relational constraint databases can be summarized as follows:� Algebraic operators deal with generalized relations as they were �nite sets ofpossibly in�nite sets. By considering this semantics, which is slightly di�erentfrom the standard one, two di�erent groups of operators have been proposed.The �rst group includes the standard generalized relational algebra operators;the second group includes operators treating each generalized tuple as a single213

214 Chapter 10. Conclusionsobject. The proposed algebra is equivalent to the standard one when general-ized tuple identi�ers are introduced, but it allows typical user requests to beexpressed in a more convenient way.� The calculus, similarly to the algebra, is de�ned by using two di�erent types ofvariables, those representing generalized tuples and those representing atomicvalues. The calculus has been de�ned by following Klug's approach [88].� Both the algebra and the calculus have been extended to deal with externalfunctions. As far as we know, this is the �rst approach to integrate constraintdatabase languages with external primitives.The algebra and the calculus have been proved to be equivalent. The proof, whichis very technical, follows the approach taken by Klug [88] to prove the equivalencebetween the relational algebra and the relational calculus extended with aggregatefunctions.As a second contribution with respect to data modeling, in Chapter 5 we haveintroduced a formal model and a query language for nested relational constraint data-bases, overcoming some limitations of the previous proposals. Indeed, the proposedmodel is characterized by a clear formal foundation, a low data complexity, and theability to model any degree of nesting. The proposed language is obtained by extend-ing NRC [148] to deal with possibly in�nite relations, �nitely representable by usingpoly. Its de�nition is based on structural recursion and on monads. We would like torecall that the proposed language is not a new language. Rather, it represents a newformal de�nition of already existing languages. We claim that this formalism couldbe useful to investigate further properties of relational constraint query languages.Optimization issues. The contributions with respect to optimization issues canbe summarized as follows. After a brief survey of the main results that have beenproposed in the context of constraint database optimization (Chapter 6), in Chapter7 we have investigated the de�nition of rewriting rules for EGRA expressions. Inparticular, following the approach taken in [61], simpli�cation and optimization rulesfor EGRA expressions have been proposed, pointing out the di�erences with respectto the typical rules used in the relational context. The proposed rules can be usednot only to optimize EGRA expressions but, due to the equivalence between GRAand EGRA, they can also be used to improve the e�ciency of GRA optimizers. Thebasic issues in designing such an optimizer have also been discussed.In Chapter 8 we have investigated the use of a dual representation for polyhedra toindex constraint databases. Under this representation, each generalized tuple is trans-formed into two unbound polyhedra in a dual plane. We have shown that intersection

10.2. Topics for further research 215and containment problems with respect to a half-plane query with a prede�ned dir-ection can be solved in logarithmic time and linear space. When the query half-planedoes not satisfy this condition, some approximated solutions have also be proposed.Experimental results show that such techniques often perform better than R-trees, awell-known spatial data structure [71, 130].In Chapter 9, we have proposed a close to optimal technique for segment data-bases, allowing the detection of all segments which are intersected by a given verticalsegment. This result is an improvement with respect to the classical stabbing queryproblem, determining all segments intersecting a given line. We have also discussedhow techniques proposed for segment databases can be applied to constraint andspatial databases and we have introduced some classes of databases in which suchtechniques can be e�ciently used.10.2 Topics for further researchThe research described in this dissertation can be extended along several directions.Data modeling. With respect to data modeling, we feel that it may be interestingto continue in the investigation of models for complex objects. In particular, a quiteinteresting topic is the de�nition of a complex object model for the representation ofplanning reasoning and partial information. Planning reasoning refers to the supportof decision activities with respect to non yet existing entities. A typical example isthe analysis of the impact that some buildings will have on the environment. Partialinformation refers to the ability of representing incomplete information with respectto complex objects. Note that this topic is di�erent from the use of generalized tuplesto model imprecise values [91, 133]. In this case, we would like to express partialinformation not only with respect to atomic objects, but also with respect to complexones, represented by using constraints.Optimization issues. With respect to the investigated optimization issues, we feelthat it may be interesting to investigate the following topics:� With respect to the logical optimization, the development of a prototype isrequired in order to establish if the logical optimization of relational constraintquery languages can really bene�t from the use of the new introduced rules.The design of a logical optimizer for the generalized relational algebra, basedon the guidelines we have proposed, is another interesting issue.� With respect to the indexing techniques based on the dual representation, an

216 Chapter 10. Conclusionsimportant issue is the de�nition of indexing techniques with optimal complexityfor arbitrary half-plane queries. The use of the dual representation as the basisfor the development of further indexing techniques is another topic of greatinterest. Finally, the de�nition of more general techniques for arbitrary d-dimensional tuples is another issue that should be investigated.� With respect to the indexing technique based on the segment representation, a�rst aspect requiring further investigation is the comparison, in terms of per-formance, of the proposed technique with R-trees and their variants, in orderto establish the real applicability of the proposed approach. Further, a funda-mental issue is the development of indexing techniques to retrieve all segmentsintersecting a given segment having an arbitrary direction.

Bibliography[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,1995.[2] S. Abiteboul and P. Kanellakis. Query Languages for Complex Object Databases.SIGACT News, 21(3):9{18, 1990.[3] F. Afrati, S.S. Cosmadakis, S. Grumbach, and G.M. Kuper. Linear vs. PolynomialConstraints in Database Query Languages. In A. Borning, editor, LNCS 874: Proc.of the 2nd Int. Workshop on Principles and Practice of Constraint Programming,pages 181{192, 1994. Springer Verlag.[4] W.G. Aref and H. Samet. Extending a Database with Spatial Operations. In O.G�unther and H.J. Schek, editors, LNCS 525: Proc. of the 2nd Int. Symp. on Advancesin Spatial Databases, pages 299{319, 1991. Springer Verlag.[5] L. Arge. The Bu�er Tree: A New Technique for Optimal I/O Algorithms. In S.G.Akl, F.K.H.A. Dehne, J.R. Sack, and N. Santoro, editors, LNCS 955: Proc. of the4th Int. Workshop on Algorithms and Data Structures, pages 334{345, 1995. SpringerVerlag.[6] L. Arge, D.E. Vengro�, and J. S. Vitter. External-Memory Algorithms for ProcessingLine Segments in Geographic Information Systems. In P.G. Spirakis, editor, LNCS979: Proc. of the 3rd Annual European Symp. on Algorithms, pages 295{310, 1995.[7] L. Arge and J.S. Vitter. Optimal Dynamic Interval Management in External Memory.In Proc. of the Int. Symp. on Foundations of Computer Science, pages 560{569, 1996.[8] J.L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity I. Springer Verlag,1989.[9] M. Baudinet, J. Chomicki, and P. Wolper. Temporal Databases: Beyond FiniteExtensions. In Proc. of the Int. Workshop on Infrastructure for Temporal Databases,1993.[10] M. Baudinet, M. Niezette, and P. Wolper. On the Representation of In�nite TemporalData and Queries. In Proc. of the 10th ACM SIGACT-SIGMOD-SIGART Int. Symp.on Principles of Database Systems, pages 280{290, 1991. ACM Press.217

218 Bibliography[11] R. Bayer and E. McCreight. Organization andMaintenance of Large Ordered Indexes.Acta Informatica, 1:173{189, 1972. Springer Verlag. Springer Verlag.[12] A. Belussi, E. Bertino, M. Bertolotto, and B. Catania. Generalized Relational Al-gebra: Modeling Spatial Queries in Constraint Databases. In G.M. Kuper and M.Wallace, editors, LNCS 1034: Proc. of the 1st Int. CONTESSA Database Workshop,Constraint Databases and their Applications, pages 40{67, 1995. Springer Verlag.[13] A. Belussi, E. Bertino, and B. Catania. An Extended Algebra for Constraint Data-bases. IEEE Trans. on Knowledge and Data Engineering. To appear. IEEE ComputerSociety Press. Also Technical Report n. 211{98, University of Milano, 1996.[14] A. Belussi, E. Bertino, and B. Catania. Manipulating Spatial Data in ConstraintDatabases. In M. Scholl and A. Voisard, editors, LNCS 1262: Proc. of the 5th Symp.on Spatial Databases, pages 115{141, 1997. Springer Verlag.[15] M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational Expressive Power ofConstraint Query Languages. In Proc. of the 15th ACM SIGACT-SIGMOD-SIGARTInt. Symp. on Principles of Database Systems, pages 5{16, 1996. ACM Press.[16] E. Bertino and B. Catania. Query Re�nement in Constraint Multimedia Databases.In Proc. of the Principles of Multimedia Information Systems Workshop, 1995.[17] E. Bertino and B. Catania. Constraints and Optimization in Database Systems: aSurvey and Research Issues. Int. Journal of Information Technology, 1(2): 111{143,1996. World Scienti�c.[18] E. Bertino and B. Catania. A Constraint-based Approach to Shape Management inMultimedia Databases. ACM Multimedia Journal. 6(1):2{16, 1998. ACM Springer.[19] E. Bertino, B. Catania, and B. Shidlovsky. Towards Optimal Two-Dimensional In-dexing for Constraint Databases. Information Processing Letters, 64(1):1{8, 1997.Elsevier Science Publishers.[20] E. Bertino, B. Catania, and B. Shidlovsky. Towards Optimal Indexing for SegmentDatabases. In Proc of the 6th Int. Conf on Extended Database Technology, 1998. Toappear. Springer Verlag.[21] E. Bertino, B. Catania, and L. Wong. Finitely Representable Nested Relations. Sub-mitted for publication.[22] E. Bertino and L. Martino. Object-Oriented Database Systems - Concepts and Archi-tectures. Addison-Wesley, 1993.[23] A.H. Borning. The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory. ACM Transactions on Programming Languagesand Systems, 3(3):353{387, 1981. ACM Press.[24] T. Brinkho�, H.-P. Kriegel, and R. Schneider. Comparison of Approximations ofComplex Objects Used for Approximation-based Query Processing in Spatial Data-base Systems. In Proc. of the IEEE Int. Conf. on Data Engineering, pages 40{49,1993. IEEE Computer Society Press.

Bibliography 219[25] A. Brodsky. Constraint Databases: Promising Technology or Just Intellectual Exer-cize?. Constraints Journal. To appear. Kluwer Academic Publishers.[26] A. Brodsky, D. Goldin, and V. Segal. On Strongly Polynomial Projections in d-monotone Constraint Databases. In Proc. of the Int. Workshop on Constraints andDatabases, 2nd Int. Conf. on the Principles and Practice of Constraint Programming,1996.[27] A. Brodsky, J. Ja�ar, and M.J. Maher. Toward Practical Constraint Databases. InR. Agrawal, S. Baker, and D.A. Bell, editors, Proc. of the 19th Int. Conf. on VeryLarge Data Bases, pages 567{579, 1993. Morgan Kaufmann Publishers.[28] A. Brodsky and Y. Kornatzky. The LyriC Language: Querying Constraint Objects.In M.J. Carey and D.A. Schneider, editors, Proc. of the 1995 ACM SIGMOD Int.Conf. on Management of Data, pages 35{46, 1995. ACM Press.[29] A. Brodsky, C. Lassez, J.L. Lassez, and M.J. Maher. Separability of Polyhedra anda New Approach to Spatial Storage. In Proc. of the 14th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Systems, pages 7{11, 1995. ACMPress.[30] A. Brodsky and V. Segal. The C3 Constraint Object-Oriented Database System: AnOverview. In V. Gaede, A. Brodsky, O. G�unther, D. Srivastava, V. Vianu, and M.Wallace, editors, LNCS 1191: Proc. of the 2nd Int. CONTESSA Database Workshop,Constraint Databases and their Applications, pages 134{159, 1997. Springer Verlag.[31] A. Brodsky and X. S. Wang. On Approximation-Based Query Evaluation, ExpensivePredicates and Constraint Objects. In Proc. of the ILPS Post-Conference Worskshopon Constraints, Databases and Logic Programming, 1995.[32] K.Q. Brown. Geometric Transformations for Fast Geometric Algorithms, Ph.D. Dis-sertation, Carnegie-Mellon University, Pittsburgh, Pa., December 1979.[33] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension Syntax.SIGMOD Record, 23(1):87{96, 1994.[34] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of Programming withComplex Objects and Collection Types. Theoretical Computer Science, 149(1):3{48,1995. Elsevier Science Publishers.[35] J. Byon and P.Z. Revesz. DISCO: A Constraint Database System with Sets. In G.M.Kuper and M. Wallace, editors, LNCS 1034: Proc. of the 1st Int. CONTESSA Data-base Workshop, Constraint Databases and their Applications, pages 68{83, 1995.Springer Verlag.[36] A.K. Chandra and D. Harel. Computable Queries for Relational Data Bases. Journalof Computer and System Sciences, 21(2):156{178, 1980. Academic Press.[37] A.K. Chandra and D. Harel. Structure and Complexity of Relational Queries. Journalof Computer and System Sciences, 25(1):99{128, 1980. Academic Press.

220 Bibliography[38] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 1973.[39] B. Chazelle. Filtering Search: A New Approach to Query-Answering. SIAM Journalof Computing, 15(3): 703{724, 1986. SIAM Press.[40] B. Chazelle and L.J. Guibas. Fractional Cascading : I. A Data Structuring Technique.Algorithmica, 1(2):133{162, 1986. Springer Verlag.[41] C.M. Chen and N. Roussopoulos. Adaptive Selectivity Estimation Using Query Feed-back. In R.T. Snodgrass and M. Winslett, editors, Proc. of the 1994 ACM SIGMODInt. Conf. on Management of Data, pages 161{174, 1994.[42] S.W. Cheng and R. Janardan. E�cient Dynamic Algorithms for Some GeometricIntersection Problems. Information Processing Letters, 36(5):251{258, 1990. ElsevierScience Publishers.[43] Y.-J. Chiang and R. Tamassia. Dynamic Algorithms in Computational Geometry.Proc. IEEE, 80(9):1412{1434, 1992. IEEE Computer Society Press.[44] J. Chomicki, D. Goldin, and G. Kuper. Variable Independence and Aggregation Clos-ure. In Proc. of the 15th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principlesof Database Systems, pages 40{48, 1996. ACM Press.[45] J. Chomicki and G. Kuper. Measuring In�nite Relations. In Proc. of the 14th ACMSIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Systems, pages78{94, 1995. ACM Press.[46] E. Clementini, P. Di Felice, and P. van Oosterom. A Small Set of Formal TopologicalRelationships Suitable for End-User Interaction. In D.J. Abel and B.C. Ooi, editors,LNCS 692: Proc. of the 3rd Int. Symp. on Advances in Spatial Databases, pages277{295, 1993. Springer Verlag.[47] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Communica-tions of the ACM, 6(13):377{387, 1970. ACM Press.[48] A. Colmerauer. An Introduction to Prolog III. Communications of the ACM,33(7):69{90, 1980. ACM Press.[49] D. Comer. The Ubiquitous B-tree. Computing Surveys, 11(2):121{138, 1979. ACMPress.[50] L. De Floriani, P. Marzano, and E. Puppo. Spatial Queries and Data Models. InA.U. Frank, editor, LNCS 716: Spatial Information Theory: a Theoretical Basis forGIS, pages 123{138, 1993. Spinger Verlag.[51] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.The Constraint Logic Programming Language CHIP. In ICOT, editor, Proc. of theFifth Generation Computer Systems, pages 693{702, 1988. Springer Verlag.[52] H. Edelsbrunner. A New Approach to Rectangular Intersection. Part I. Int. Journalof Comp. Mathematics, 13:209{219, 1983.

Bibliography 221[53] H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Monographs onTheoretical Computer Science, Vol. 10, 1987.[54] M.J. Egenhofer. Reasoning about Binary Topological Relations. In O. G�unther andH.J. Schek, editors, LNCS 525: Proc. of the Int. Symp. on Advances in SpatialDatabases, pages 143{160, 1991. Springer Verlag.[55] E. Freuder. Synthesizing Constraint Expressions. Communication of the ACM,21(11):958-966, 1978. ACM Press.[56] V. Gaede and O. G�unther. Constraint-Based Query Optimization and Processing.In G.M. Kuper and M. Wallace, editors, LNCS 1034: Proc. of the 1st Int. CON-TESSA Database Workshop, Constraint Databases and their Applications, pages 84{101, 1995. Springer Verlag.[57] M. Gargano, E. Nardelli, and M. Talamo. Abstract Data Types for the Logical Mod-eling of Complex Data. Information Systems, 16(6):565{583, 1991. North Holland.[58] D.Q. Goldin. Constraint Query Algebras. Ph.D. Thesis, Brown University, 1996.[59] D.Q. Goldin and P.C. Kanellakis. Constraint Query Algebras. Constraints Journal.To appear. Kluwer Academic Publishers.[60] S. Grumbach and G. Kuper. Tractable Query Languages for Geometric and To-pological Data. In Proc. of 13th ACM SIGACT-SIGMOD-SIGART Int. Symp. onPrinciples of Database Systems, pages 289{300, 1994. ACM Press.[61] S. Grumbach and Z. Lacroix. Computing Queries on Linear Constraint Databases. InP. Atzeni, editor, Proc. of the Int. Workshop on Database Programming Languages,1995.[62] S. Grumbach, P. Rigaux, M. School, and L. Segou�n. DEDALE, A Spatial ConstraintDatabase. In Proc. of the Int. Workshop on Database Programming Languages, 1997.[63] S. Grumbach, P. Rigaux, and L. Segou�n. The DEDALE System for Complex SpatialQueries. In Proc. of the 1998 ACM SIGMOD Int. Conf. on Management of Data,1998. To appear. ACM Press.[64] S. Grumbach and J. Su. Finitely Representable Databases. In Proc. of 13th ACMSIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Systems, pages289{300, 1994. ACM Press.[65] S. Grumbach and J. Su. Dense-Order Constraint Databases. In Proc. of the 14thACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Systems,pages 66{77, 1995. ACM Press.[66] S. Grumbach, J. Su, and C. Tollu. Linear Constraint Query Languages. ExpressivePower and Complexity. In D. Leivant, editor, LNCS 960: Proc. of the Int. Workshopon Logic and Computation, pages 426{446, 1994. Springer Verlag.

222 Bibliography[67] O. G�unther. E�cient Structures for Geometric Data Management. Springer Verlag,1988.[68] O. G�unther. The Design of the Cell Tree: An Object-Oriented Index Structure forGeometric Databases. In Proc. of the 5th Int. Conf. on Data Engineering, pages598{605, 1989. IEEE Computer Society Press.[69] A. Gupta, Y. Sagiv, J.D. Ullman, J. Widom. Constraint Checking with Partial In-formation. In Proc. of the 3th ACM SIGMOD-SIGACT-SIGART Int. Symp. on Prin-ciples of Database Systems, pages 45{55, 1994. ACM Press.[70] R.H. G�uting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Al-gebra. VLDB Journal, 4(2):243{286, 1995. Springer Verlag.[71] A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In B. Yor-mark, editor, Proc. of the 1984 ACM SIGMOD Int. Conference on Management ofData, pages 47{57, 1984. ACM Press.[72] M.R. Hansen, B.S. Hansen, P. Lucas, and P. van Emde Boas. Integrating RelationalDatabases and Constraint Languages. Computer Languages, 14(2):63{82, 1989. El-sevier Science Publishers.[73] L. Hermosilla and G. Kuper. Towards the De�nition of a Spatial Object-OrientedData Model with Constraints. In G.M. Kuper and M. Wallace, editors, LNCS 1034:Proc. of the 1st Int. CONTESSA Database Workshop, Constraint Databases andtheir Applications, pages 120{131, 1995. Springer Verlag.[74] D.S. Hochbaum and J. Naor. Simple and Fast Algorithms for Linear and Integer Pro-grams with Two Variables per Inequalities. SIAM Journal of Computing, 23(6):1179{1192, 1994. SIAM Press.[75] R. Hull and J. Su. On the Expressive Power of Database Queries with IntermediateTypes. Journal of Computer and System Sciences, 43(1):219{267, 1991. AcademicPress.[76] C. Icking, R. Klein, and T. Ottmann. Priority Search Trees in Secondary Memory. InLNCS 314: Proc. of the Int. Workshop on Graph-Theoretic Concepts in ComputerScience, pages 84{93, 1988. Springer Verlag.[77] J. Ja�ar and J.L. Lassez. Constraint Logic Programming. In Proc. of the 14th ACMSymp. on Principles of Programming Languages, pages 111{119, 1987. ACM Press.[78] M. Jarke and Jurgen Koch. Query Optimization in Database Systems. ACM Com-puting Surveys, 16(2): 111{150. ACM Press.[79] F. Kabanza, J.M. Stevenne, and P. Wolper. Handling In�nite Temporal Data. In Proc.the 9th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Sys-tems, pages 392{403, 1990. ACM Press.

Bibliography 223[80] P.C. Kanellakis. Constraint Programming and Database Languages: a Tutorial. InProc. the 14th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Data-base Systems, pages 46{53, 1995. ACM Press.[81] P.C. Kanellakis. Elements of Relational Database Theory. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, Chapter 17, 1990.[82] P.C. Kanellakis and D.Q. Goldin. Constraint Programming and Database QueryLanguages. In LNCS 789: Proc. of the Int. Symp. on Theoretical Aspects of ComputerSoftware, pages 96{120, 1994. Springer Verlag.[83] P.C. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languages. Journal ofComputer and System Sciences, 51(1):25{52, 1995. Academic Press.[84] P.C. Kanellakis and S. Ramaswamy. Indexing for Data Models with Constraints andClasses. Journal of Computer and System Sciences, 52(3):589{612, 1996. AcademicPress.[85] H. Katsumo and A.O. Mendelzon. On the Di�erence Between Updating a KnowledgeBase and Revising it. Belief Revision, Cambridge Tracts in Theoretical ComputerScience, 1992. Cambridge University Press.[86] D.B. Kemp, K. Ramamohanarao, I. Balbin, and K. Meenakshi. Propagating Con-straints in Recursive Deductive Databases. In E.L. Lusk and R.A. Overbeek, editors,Proc. of the North American Conf. on Logic Programming, pages 981{998, 1989.[87] M. Kifer, W. Kim, and Y. Sagiv. Querying Object-Oriented Databases. In M.Stonebraker, editor, Proc. of the 1992 ACM SIGMOD Int. Conf. on Management ofData, pages 393{402, 1992. ACM Press.[88] A. Klug. Equivalence of Relational Algebra and Relational Calculus Query LanguagesHaving Aggregate Functions. Journal of the ACM, 29(3):699{717. ACM Press.[89] P. Kolaitis and C.H. Papadimitriou. Why not Negation by Fixpoint?. In Proc. the7th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Systems,pages 231{239, 1988. ACM Press.[90] M. Koubarakis. Representation and Querying in Temporal Databases: the Powerof Temporal Constraints. In Proc. of the Int. Conf. on Data Engineering, pages327{334, 1993. IEEE Computer Society Press.[91] M. Koubarakis. Database Models for In�nite and Inde�nite Temporal Information.Information Systems, 19(2):141{173, 1994. North Holland.[92] G.M. Kuper. On the Expressive Power of the Relational Calculus with ArithmeticConstraints. In S. Abiteboul and V. Vianu, editors, LNCS 470: Proc. of the 3th Int.Conf. on Database Theory, pages 202{211, 1990. Springer Verlag.[93] G.M. Kuper. Aggregation in Constraint Databases. In Proc. of the 1st Int. Workshopon Principles and Practice of Constraint Programming, pages 166{173, 1993.

224 Bibliography[94] J.L. Lassez. Querying Constraints. In Proc. of the ACM SIGACT-SIGMOD-SIGARTInt. Symp. on Principles of Database Systems, pages 288{298, 1990. ACM Press.[95] A. Levy and Y. Sagiv. Constraints and Redundancy in Datalog. In Proc. of the 11thACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Systems,pages 67{80, 1992. ACM Press.[96] L. Libkin and L. Wong. Conservativity of Nested-Relational Calculi with InternalGeneric Functions. Information Processing Letters, 49(6):273{280, 1994. ElsevierScience Publishers.[97] L. Libkin and L. Wong. On Representation and Querying Incomplete Information inDatabases with Multisets. Information Processing Letters, 56:209{214, 1995. ElsevierScience Publishers.[98] D. Lomet and B. Salzberg. The hB-tree: A Multiattribute Indexing Method with GoodGuaranteed Performance. ACM Transactions on Database Systems, 15(4):625{658,1990. ACM Press.[99] A.K. Mackworth. Consistency in Networks of Relations. Arti�cial Intelligence, 8(1),1977.[100] K. Marriott, and P.J. Stuckey. The 3 R's of Optimizing Constraint Logic Programs:Re�nement, Removal and Reordering. In Proc. of the 20th Annual ACM SIGPLAN-SIGACT Int. Symp. on Principles of Programming Languages, pages 334{344, 1993.ACM Press.[101] E.McCreight. Priority Search Trees. SIAM Journal of Computing. 14(2): 257{276,1985. SIAM Press.[102] K. Mehlhorn and S. Naher. Dynamic Fractional Cascading. Algorithmica, 5(2):215{241, 1990. Springer Verlag.[103] E. Moggi. Notions of Computation and Monads. Information and Computation,93(1):55{92, 1991. Academic Press.[104] E.E. Moise. Geometric Topology in Dimension Two and Three. Springer Verlag,1977.[105] U. Montanari. Networks of Constraints Fundamental Properties and Application toPicture Processing. Information Sciences, 7, 1974.[106] I.S. Mumich, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic Conditions.In Proc. of the 9th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles ofDatabase Systems, pages 314{330, 1990. ACM Press.[107] J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File: An Adaptable, Symmet-ric Multikey File Structure. ACM Transactions on Database Systems, 9(1):257{276,1984. ACM Press.

Bibliography 225[108] J. Nievergelt and E. M. Reingold. Binary Search Tree of Bounded Balance. SIAM J.Computing, 2(1):33{43, 1973. SIAM Press.[109] M. Niezette and J.M. Stevenne. An E�cient Representation of Periodic Time. InProc. of the Int. Conf. on Information and Knowledge Management, pages 161{168,1992.[110] J. Orenstein. Spatial Query Processing in an Object-Oriented Database System. InC. Zaniolo, editor, Proc. of the 1986 ACM SIGMOD Int. Conference on Managementof Data, pages 326{336, 1986. ACM Press.[111] G. Ozsoyoglu, Z.M. Ozsoyoglu, and V. Matos. Extending Relational Algebra and Re-lational Calculus with Set-Valued Attributes and Aggregated Functions. ACM Trans-actions on Database Systems, 12(4):566{592, 1987. ACM Press.[112] C.H. Papadimitriou, D. Suciu, and V. Vianu. Topological Queries in Spatial Data-bases. In Proc. of the 15th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Prin-ciples of Database Systems, pages 81{92, 1996. ACM Press.[113] C.H. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries.In Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles ofDatabase Systems, pages 12{19, 1997. ACM Press.[114] J. Paredaens. Spatial Databases, The Final Frontier. In G. Gottlob and M.Y. Vardi,editors, LNCS 893: Proc. of the 5th Int. Conf. on Database Theory, pages 14{31,1995. Springer Verlag.[115] J. Paredaens, J. Van den Bussche, and D. Van Gucht. Towards a Theory of SpatialDatabase Queries. In Proc. of the 13th ACM SIGACT-SIGMOD-SIGART Int. Symp.on Principles of Database Systems, pages 279{288, 1994. ACM Press.[116] J. Paredaens and D. Van Gucht. Possibilities and Limitations of Using Flat Operatorsin Nested Algebra Expressions. In Proc. of the 7th ACM SIGACT-SIGMOD-SIGARTInt. Symp. on Principles of Database Systems, pages 29{38, 1988. ACM Press.[117] J. Paredaens and D. Van Gucht. Converting Nested Relational Algebra Expressionsinto Flat Algebra Expressions. ACM Transactions on Database Systems, 17(1):65{93,1992. ACM Press.[118] F. P. Preparata and M.I. Shamos. Computational Geometry - an Introduction,Springer Verlag, New York, 1985.[119] S. Ramaswamy. E�cient Indexing for Constraints and Temporal Databases. In F.N.Afrati and P. Kolaitis, editors, LNCS 1186: Proc. of the 6th Int. Conf. on DatabaseTheory, pages 419{431, 1997. Springer Verlag.[120] S. Ramaswamy and S. Subramanian. Path-Caching: A Technique for Optimal Ex-ternal Searching. In Proc. of the 13th ACM SIGACT-SIGMOD-SIGART Int. Symp.on Principles of Database Systems, pages 25{35, 1994. ACM Press.

226 Bibliography[121] P.Z. Revesz. A Closed Form for Datalog Queries with Integer Order. In S. Abitebouland P.C. Kanellakis, editors, LNCS 470: Proc. of the Int. Conf. on Database Theory,pages 187{201, 1990. Springer Verlag.[122] P.Z. Revesz. Datalog Queries of Set Constraint Databases. In G. Gottlob and M.Y.Vardi, editors, LNCS 893: Proc. of the 5th Int. Conf. on Database Theory, pages424{438, 1995. Springer Verlag.[123] P.Z. Revesz. Model-Theoretic Minimal Change Operators for Constraint Databases.In F.N. Afrati and P. Kolaitis, editors, LNCS 1186: Proc. of the 6th Int. Conf. onDatabase Theory, pages 447-460, 1997. Springer Verlag.[124] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.[125] M.A. Roth, H.F. Korth, and A. Silberschatz. Theory of Non-First Normal FormRelational Databases. ACM Transactions on Database Systems, 1(3):189{222, 1976.ACM Press.[126] N. Roussopoulos, C. Faloutsos, and T. Sellis. An E�cient Pictorial Database Systemfor PSQL. IEEE Transactions on Software Engineering, 14(5):639{650, 1988. IEEEComputer Society Press.[127] H. Samet.The Design and Analysis of Spatial Data Structures. AddisonWesley, 1989.[128] M. Scholl and A. Voisard. Thematic Map Modeling. In A.P. Buchmann, O. G�unther,and T.R. Smith, editors, LNCS 409: Proc. of the Int. Symp. on the Design andImplementation of Large Spatial Databases, pages 167{190, 1989. Springer Verlag.[129] A. Schriver. Theory of Linear and Integer Programming. Interscience Series inDescrete Mathematics and Optimization. John Wiley, 1986.[130] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A Dynamic Index forMulti-Dimensional Objects. In P.M. Stoker, W. Kent, and P. Hammersley, editors,Proc. of the 13th Int. Conf. on Very Large Data Bases, pages 507{518, 1987. MorganKaufmann Publishers.[131] D. Srivastava. Subsumption and Indexing in Constraint Query Languages with Lin-ear Arithmetic Constraints. Annals of Mathematics and Arti�cial Intelligence, 8(3-4):315{343, 1993. Baltzer Press.[132] D. Srivastava and R. Ramakrishnan. Pushing Constraint Selections. In Proc. of the11th ACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Sys-tems, pages 301{315, 1992. ACM Press.[133] D. Srivastava, R. Ramakrishnan, and P.Z. Revesz. Constraint Objects. In A. Borning,editor, LNCS 874: Proc. of the 2nd Int. Workshop on Principles and Practice ofConstraint Programming, pages 218{228, 1994. Springer Verlag.[134] G.L. Steele. The De�nition and Implementation of a Computer Programming Lan-guage Based on Constraints. Ph.D. Thesis, MIT, AI-TR 595, 1980.

Bibliography 227[135] P.J. Stuckey and S. Sudarshan. Compiling Query Constraints. In Proc. of the 14thACM SIGACT-SIGMOD-SIGART Int. Symp. on Principles of Database Systems,pages 56{67, 1995. ACM Press.[136] S. Subramanian and S. Ramaswamy. The P-Range Tree: A New Data Structurefor Range Searching in Secondary Memory. In Proc. of the ACM-SIAM Symp. onDiscrete Algorithms, pages 378{387, 1995. ACM Press.[137] D. Suciu. Bounded Fixpoints for Complex Objects. In C. Beeri, A. Ohori, and D.Shasha, editors, Proc. of the Int. Workshop on Database Programming Languages,pages 263{281, 1993.[138] D. Suciu. Domain-Independent Queries on Databases with External Functions. In G.Gottlob and M.Y. Vardi, editors, LNCS 893: Proc. of the 5th Int. Conf. on DatabaseTheory, pages 177{190, 1995. Springer Verlag.[139] P. Svensson. GEO-SAL: a Query Language for Spatial Data Analysis. In O. G�untherand H.J. Schek, editors, LNCS 525: Proc. of the Int. Symp. on Advances in SpatialDatabases, pages 119{140, 1991. Springer Verlag.[140] J.D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. 1 and 2.Computer Science Press, 1989.[141] J. Van den Bussche. Complex Object Manipulation through Identi�ers - an AlgebraicPerspective. Techical report 92-41, University of Antwerp, Belgium, 1992.[142] L. Vandeurzen, M. Gyssens, and D. Van Gucht On the Desirability and Limitationsof Linear Spatial Database Models. In M.J. Egenhofer, editor, LNCS 951: Proc. ofthe Int. Symp. on Advances in Spatial Databases, pages 14{28, 1995. Springer Verlag.[143] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.[144] M.Y. Vardi. The Complexity of Relational Query Languages. In Proc. of the ACMSIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 137{146, 1982. ACM Press.[145] P. Wadler. Comprehending Monads. Mathematical Structures in Computer Science,2:461{493, 1992.[146] A. Wallance. An Introduction to Algebraic Topology. Pergamon Press, 1967.[147] W.L. Wilson. Operations Research. Int. Thomson Publishing under licence ofWadsworth Publishing Company, 1993.[148] L. Wong. Normal Forms and Conservative Extension Properties for Query Languagesover Collection Types. Journal of Computer and System Sciences, 52(3):495{505,1996. Academic Press.[149] L. Wong. Normal Forms and Conservative Properties for Query Languages overCollection Types. In Proc. of the 13th ACM SIGACT-SIGMOD-SIGART Int. Symp.on Principles of Database Systems, pages 26{36, 1993. ACM Press.

228 Bibliography

Appendix ASelected proofs of resultspresented in Chapter 3Proposition 3.2 Let L1 and L2 be two constraint query languages. Let � be adecidable theory admitting variable elimination and closed under complementation.Let t 2 fr; ng. The following facts hold:1. If Li(�) is t-based, then for all S(�;�1); S(�;�2), S(�;�1) �t S(�;�2) i�Li(�;�1) �t Li(�;�2).2. If L1(�;�1) �t L2(�;�2) then S(�;�1) �t S(�;�2).Proof:1. We only prove the case t = r. The case t = n trivially follows from t = r, usingfunction nested instead of function rel.) Suppose thatS(�;�1) �t S(�;�2). Consider q 2 Li(�). Consider r1; :::; rn 2S(�;�1). By hypothesis, there exist r01; :::; r0n 2 S(�;�2) such that ri �rr0i, i = 1; :::; n. Since Li(�) is r-based, there exists a relational algebraquery q0 such that:rel(q(r1; :::; rn)) = q0(rel(r1); :::; rel(rn))rel(q(r01; :::; r0n)) = q0(rel(r01); :::; rel(r0n)).But, since rel(ri) = rel(r0i), then q0(rel(r1); :::; rel(rn)) = q0(rel(r01);:::; rel(r0n)). Therefore, rel(q(r1; :::; rn)) = rel(q(r01; :::; r0n)), thusq(r1; :::; rn) �r q(r01; :::; r0n).(Directly from De�nition 3.6. 229

230 Appendix A. Selected proofs of results presented in Chapter 32. Directly from De�nition 3.6. 2Proposition 3.3 Let L be a constraint query language. Let � be a decidable theoryadmitting variable elimination and closed under complementation. Let t 2 fr; ng. LetS(�;�1) and S(�;�2) be two EGR supports. If L(�) is t-based, for all q 2 L(�),for all r1; :::; rn 2 S(�;�1) and for all r01; :::; r0n 2 S(�;�2), such that r0i �t ri,q(r1; :::; rn) �t q(r01; :::; r0n) holds.Proof: We only prove the case t = r. The case t = n trivially follows from t = r,using function nested instead of function rel.Consider ri 2 S(�;�1), i = 1; :::; n and r0i 2 S(�;�2), i = 1; :::; n, such thatri �r r0i, i = 1; :::; n. Since L(�) is r-based, for each query q 2 L(�) there ex-ists a relational algebra query q0 such that rel(q(r1; :::; rn)) = q0(rel(r1); :::; rel(rn))and rel(q(r01; :::; r0n)) = q0(rel(r01); :::; rel(r0n)). Moreover, since ri �r r0i, i = 1; :::; n,q0(rel(r1); :::; rel(rn)) = q0(rel(r01); :::; rel(r0n))). Therefore, rel(q(r1; :::; rn)) =rel(q(r01; :::; r0n)) and this concludes the proof. 2Theorem 3.1 EGRA(�) is n-based.Proof: In order to show that EGRA(�) is n-based, we construct, for each EGRAexpression a nested-relational algebra expression for which the condition of De�nition3.5 holds..Let D be a domain of values. The nested-relational model deals with objects oftype: � ::= D j hA1 : �; :::;An : �i j f�gwhere A1; :::; An are attributes names. A basic nested-relational algebra consists ofthe following operators:1. the classical relational operators extended to nested-relations: union ([), di�er-ence (n), selection (�), projection (�), and join (1);2. two restructuring operators: nest and unnest.The unnest operator transforms a relation into one which is less deeply nes-ted by concatenating each element in the set attribute being unnested to theremaining attributes in the relation. Thus, if R is a nested-relation of typefhA1 : �1; :::; An : �nig:unnestAj = fhA1 : x1; :::; Aj�1 : xj�1; B1 : y1; :::; Bm : ym; Aj+1 : xj+1;:::; An : xni j hA1 : x1; :::; An : xni 2 R; hB1 : y1; :::; Bm : ymi 2 xjg:

231The nest operator creates partitions based on the formation of equivalenceclasses. Two tuples are equivalent if they have the same values for the at-tributes which are not being nested. For each equivalence class, a single tupleis placed into the result. The attributes being nested are used to generate anested-relation containing all tuples in the equivalence class for those attributes.Thus, if R is a nested-relation of type fhA1 : �1; :::;An : �nig:nestB=hAk+1 ;:::;Ani = fhA1 : x1; :::; Ak : xk ; B = yi jfhAk+1 : xk+1; :::; An : xni j hA1 : x1; :::; An : xni 2 Rg = y 6= ;g:Let � be a decidable logical theory, admitting elimination of quanti�er and closedunder complementation. Let D be the domain of �. Table A.1 shows for each EGRAexpression the corresponding nested-relational algebra expression. In the table:� For all name of generalized relation Ri, R0i represents the name of a nested-relation. If the generalized relation associated with Ri during the evaluation isr, then the nested-relation associated with R0i is nested(r).� If the generalized relation Ri has schema fX1; :::; Xng, then R0i has type fhAi :fhX1 : D; :::; Xn : Digig.� Given a generalized tuple P with schema fX1; :::; Xng, r(P) denotes the nested-relation fhAP : hX1 : a1; :::; Xn : anii j X1 = a1 ^ ::: ^ Xn = an 2 ext(P)g.Note that the type of r(P) is fhAP : hX1 : D; :::; Xn : Diig.� Given a generalized tuple P with schema fX1; :::; Xng, n(P) denotes the nested-relation containing only one element, represented by the set ext(P). Thus, n(P)coincides with the set fhAP : fhX1 : a1 ^ :::^Xn : anigi j X1 = a1 ^ :::^Xn =an 2 ext(P)g. The type of n(P) is fhAP : fhX1 : D; :::; Xn : Digig.� t tot(�(R)) represents the generalized tuple whose extension contains all pos-sible relational tuples with schema �(R) that can be constructed on �. Forexample, if �(R) = fX; Y g, in poly one possible t tot(�(R)) is X + Y �2 _X + Y � 2.� When a Cartesian product is used, we assume to rename the attributes namesAj ; X1; :::; Xn of the relation appearing in the i-th position of the product (i > 1)as Ai; X i1; :::; X in.It is simple to show that the proposed expressions satisfy De�nition 3.5. 2

232 Appendix A. Selected proofs of results presented in Chapter 3
EGRA expression NRA expressionR1 R01R1 [R2 R01 [R02R1 ns R2 R01 n R02�s(P;t;�)(R) �[A1](�AP�A1(R01 � n(P))) where�AP�A1 is de�ned in [1]�s(P;t;16=;)(R1) �[A1](�AP2A1(R01 � r(P))):sR1 �[B](nestB=hX21 ;:::;X2n i(R3 n R2)) whereR2 = unnestA2(R01 � R01)R3 = unnestAt tot(R01 � n(t tot(�(R01)))%[AjB](R1) see [1]�[Xi1 ;:::;Xim](R1) �[B](R3) whereR2 = �[A1;X2i1 ;:::;X2im](unnestA2 (R01 � R01))R3 = nestB=hX2i1 ;:::;X2im i(R2):R1 nestB=hX1;:::;Xn i(R3 n R2) whereR2 = unnestA1(R01)R3 = unnestAt tot(n(t tot(�(R01))))�P (R1) �[B](nestB=hX21 ;:::;X2n i(R4)) whereR2 = unnestA2(R01 � R01)R3 = unnestAP (R2 � n(P))R4 = �[A1;X1;:::;Xn ;X21 ;:::;X2n](�X21=X31^:::^X2n=X3n (R3))R1 1 R2 �[B](R8) whereR3 = R01 �R02 � R01R4 = R01 �R02 � R02R5 = unnestA3(R3)R6 = unnestA3(R4)R7 = R5 1 R6R8 = nestB=hX31 ;:::;X3n i(R7)Table A.1: Nested-relational algebra expressions corresponding to EGRA expressions.

233Theorem A.1 Let F be a set of admissible functions. Any EGRA expression canbe translated into an equivalent ECAL expression.Proof: In the following we prove only the translations that are di�erent from thosepresented in [88] and [111].1. Tac(Ri) = Ri.See [88].2. Tac(�P (e)) = ((x : g(x); tP(x) :) : �(g) :)where tP is the target alpha representing the generalized tuple P .Suppose that u 2 �P (e)(I). This means that there exists a generalized tupleu1 2 e(I) such that u = u1 ^ P and ext(u) = ext(u1) \ ext(P). By inductionu1 2 �(I) and ext(P) = tP . Therefore, ext(u) = (x : g(x); tP (x) :)(I) when gis bound to u1 and this concludes the proof.3. Tac(�[X](e)) = (t[X] : r1; :::; rh : (9rh+1):::(9rm))where t[X] contains free variables v1; :::; vh ranging over r1; :::; rh. Variables of� that are not included in the projection list range over rh+1; :::; rm.If � is a target alpha, t[X] is well de�ned. If � is a general alpha, t is eithera target alpha or a set term. In the �rst case, if t = (t1 : r01; :::; r0n :),t[X] is de�ned as (t1[X] : r01; :::; r0n :), in the second case t[X] is de�ned as(v[X] : t(v) :).The proof follows from [88] by extending the projection on target alphas andset terms.4. Tac(e1 1 e2) = (((v1; v3) : g1(v1); g2(v2) : ^k=1;nv1[Xik] = v2[Xjk]) : �1(g1);�2(g2) :)where each pair (Xik ; Xjk) represents a pair of variables on which natural joinis performed. and v3 is the tuple formed by all column of v2 except Xj1 ; :::; Xjn.Suppose that u2e1 1 e2(I). This means that there exists a generalized tupleu1 2 e1(I) and a generalized tuple u2 2 e2(I) and u = u1 ^ u2. Moreover,ext(u) = ext(u1) 1 ext(u2). By inductive hypothesis, u1 2 �1(I) and u2 2�2(I). Moreover, it is simple to show that ext(u) = ((v1; v3) : g1(v1); g2(v2) :^k=1;:::;nv1[Xik] = v2[Xjk])(I) when g1 is bound to u1 and g2 is bound to u2and this concludes the proof.

234 Appendix A. Selected proofs of results presented in Chapter 35. Tac(:e) = ((v : Dn(v) : (6 9�(g)) g(v)) : :).Suppose that u = (:e)(I). This means that u = :u1 ^ ::: ^ :un, and e(I) =fu1; :::; ung. By induction, ui 2 �(I), i = 1; :::; n, and ext(u) = Dnt n (ext(u1)[::: [ext(un), where Dnt represents the generalized tuple whose extension con-tains all possible relational tuples with n arguments, constructed on domain D.Therefore, ext(u) = (v : Dn(v) : (6 9�(g)) g(v))(I) and this concludes the proof.6. Tac(:s(e)) = ((v : Dn(v) : :g(v)) : �(g) :).Suppose that u 2 (:e)(I). This means that there exists a generalized tuple u1 2e(I) such that u = :u1 and ext(u) = ext(Dnt) n ext(u1) where Dnt representsthe generalized tuple whose extension contains all possible relational tupleswith n arguments, constructed on domain D. By induction, u1 2 �(I) andext(Dnt) = Dn. Therefore, ext(u) = (v : Dn(v) : :g(v))(I) when t is bound tou1 and this concludes the proof.7. Tac(e1 [e2) = (g : �1(g)_ �2(g) :).See [88].8. Tac(e1 ns e2) = (g : �1(g) : :�2(g)).See [88].9. Tac(e1 n e2) = ((v : g1(v) : :9�2(g2)g2(v)) : �1(g1) :).Suppose that u 2 (e1 nt e2)(I). This means that there exists a generalizedtuple u1 2 e1(I) such that u = u1 ^ :u2 ^ ::: ^ :un, e2(I) = fu2; :::; ung andext(u) = ext(u1) n (ext(u2) [::: [ext(un). By induction, u1 2 �1(I) andui 2 �2(I), i = 2; :::; n. Therefore, ext(u) = (v : g1(v) : :9�2(g2)t2(v))(I)when g1 is bound to u1 and this concludes the proof.10. Tac(�s(Q1;Q2;�)(e)) = (g : �(g) : ((9 g1)Tac(Q01)(g1))(((9 g2)Tac(�[�(Q1)](Q02))(g2)) g1�g2))where Q0i is obtained from Qi by replacing constant t with relation ftg. Notethat Tac(Q0i) = fgig.Suppose that u 2 (�s(Q1;Q2;�)(e))(I). This means that u 2 e(I) andext(Q1(u))�ext(�[�(Q1)](Q2(u))) is true, i.e., (Q01(fug)) = u1, (�[�(Q01)](Q02(fug))) =u2 and ext(u1)�ext(u2). By induction u 2 �(I), fu1g = Tac(Q01(fug)), andfu1g = Tac(�[�(Q01)](Q02(u))). Thereforeu 2 (g : �(g) : ((9 g1)Tac(Q01)(g1))(((9 t2)Tac(�[�(Q1)](Q02))(g2)) g1�g2))(I)and this concludes the proof.

23511. Tac(ATf(e)) = (f(g) : �(g) :).Suppose that u 2 (ATf(e))(I). This means that there exists a generalizedtuple u1 2 e(I) such that u = f(u1). By induction u1 2 �(I) and thereforeu 2 (f(g) : �(g) :)(I) and this concludes the proof.12. Tac(AT ~Xf (e)) =(((v2[~X n los(f)]; v1) : (f(g))(v1); g(v2) : v2[~X \ los(f)] = v1[~X \ los(f)]) :�(g) :).Suppose that u 2 (ATXf (e))(I). This means that there exists a generalizedtuple u1 2 e(I) such that u = �[X](u1) 1 f(u1) and ext(u) = ext(�[X](u1)) 1ext(f(u1)). By induction u1 2 �(I), and ext(u) = (v2[X]; v1) : (f(g))(v1); g(v2) :v2[v] = v1[~X \ los(f)])(I) when g is bound to u1 and this concludes the proof.2Theorem A.2 Let F be a set of admissible functions. Any ECAL expression can betranslated into an equivalent EGRA expression.Proof: As in [88], we de�ne several notational conventions using free attribute lists.In the following, L1; L01; L001 are simple free attribute lists, L2; L02; L002 are set freeattribute lists, e is an expression, and x is a valuation. Let hI; S;X; i be a model.1. L1 = X .If hvi[A]; ci 2 L1, then c = xi[A]1 is a component of L1 = X .2. L2 = X .If hgi; sci 2 L2, then (xi;�[sc](t);=) belongs to L2 = X .3. Lr1.If hvi[A]; ci 2 L1, then c = A is a component of Lr1. Note that in c = A, Asymbolically represents the column number corresponding to A in the resultingexpression.4. Lr2.If hgi; sci 2 L2, then (�[sc](t);�[�(gi)];=) is a component of Lr2. Note that in(�[sc](t);�[�(gi)];=), �(gi) symbolically represents the set of column numberscorresponding to gi attributes in the resulting expressions.1We recall that we assume that hv1; xii 2 X.

236 Appendix A. Selected proofs of results presented in Chapter 35. Ls1. If hvi[A]; ci 2 L1, then c 2 Ls1.6. Ls2. If hgi; sci 2 L2, then sc � Ls2.7. L1(i) = fhvi[A]; cijhvi[A]; ci 2 L1g.8. L2(i) = fhgi; scijhgi; sci 2 L2g.9. L1(:i) = fhvj[A]; cijhvj[A]; ci 2 L1; j 6= ig.10. L2(:i) = fhgj; scijhgj; sci 2 L2; j 6= ig.11. L01L001 = L01 [L001.12. L02L002 = L02 [L002.In the following we prove only translations that are di�erent from those presentedin [88] and [111]. Moreover, if D is an expression of degree n, we denote with D� theexpression (f1gn (f1g�D)[1])�f1gn�1[D. Note thatD� is never empty and, givenan instance I , D�(I) = D(I) if D(I) is not empty.Simple terms1. Constants. Let c 2 D. Then, Tca(c) = he; Z; Li wheree = fcgZ = 1L = ;.Proof: see [88].2. Simple variables. Suppose that vi ranges over the closed alpha r, and D is theequivalent algebraic expression, i.e., r(I) = D(I). Then, Tca(vi[A]) = he; Z; Liwheree = D[A]Z = 1L = fhvi[A]; 1igProof: see [88].

237Set terms1. Set variables. Suppose that gi 2 T ranges over the closed alpha r and Tca(r) =Di. Then, Tca(gi) = he; Z; Li wheree = DiZ = f1; :::; deg(r)gL = sc, where sc = fhgi; f1; :::; deg(r)gig.Proof: �[Z](�sL=X(e))(I) = �s(si;�[sc](t);=)(Di)(I) = fsig = fti(I; S;X)g.2. Constants. Tca(Dn) = he; Z; Li wheree = fDngZ = f1; :::; ngL = ;Proof: �[Z](�sL=X(e))(I) = fDng(I) = fDng = fDn(I; S; x)g.3. External functions. Let Tca(gi) = hh; Y; Ji. Then, Tca(f(gi)) = he; Z; Li wheree = ATf (h� h)Z = f1; :::; deg(h)gL = JProof:�[Z](�sL=X(e))(I) = �sJ=x(ATf(h� h))(I)= �sJ=x(ATf;[k+1;:::;k+k](h� h))(I) (1)= �sJ=x(ff(�[k+1;:::;k+k](t) j t 2 h� h)g)(I)= ff(�[k+1;:::;k+k](t) j t 2 xi � xi)g(I)= ff(xi)g= ff(gi(I; S;X))g= ff(gi)(I; S;X)gExpression in (1) is obtained due to the hypothesis on the validity of the uni-formity property.Simple formulas1. Simple range formulas. Suppose that Tca(g) = hh; Y; Ji. Suppose that vi rangesover r, corresponding to expression Di. Tca(g(vi)) = he; Z; Li where

238 Appendix A. Selected proofs of results presented in Chapter 3e = hE = DiL = fhvi[1]; 1i; :::; hvi[n]; nigProof: �L=X(e)(I) = �1=xi[1]^:::^n=xi[n](h)(I) = �1=xi[1]^:::^n=xi[n](Di)(I).(a) If t(vi)(I; S;X) = 1, then xi 2 Di and �1=xi[1]^:::^n=xi[n](Di)(I) = fxig =�L=X(E)(I).(b) If t(vi)(I; S;X) = 0, then xi 62 Di and �1=xi[1]^:::^n=xi[n](Di)(I) = ;.(c) �L=X(E)(I) = �1=xi[1]^:::^n=xi[n](D�i)(I) = fxig 6= ;.2. Simple constraints. Let Tca(si) = hei; Zi; Lii, i = 1; ::; n.Then, Tca(�(s1; :::; sn)) = he; E; Li wheree = ��(Z1;:::;Zn)(e1 � :::� en)E = e1 � :::� enL = L1L2:::Ln.Proof: see the proof in [88].3. Negation. Suppose that Tca() = he1; E1; L1i. Then, Tca(:) = he; E; Liwheree = E1 n e1E = E1L = L1.Proof: see [88].4. Disjunction. Suppose that Tca(i) = hei; Ei; Lii, i = 1; :::; 2. Then, Tca(:) =he; E; Li wheree = (e1 �E2)[(E1� e2)E = E1 �E2L = L1L2.Proof: see [88].5. Existential quanti�cation. Suppose that the translation of range r (i.e., theclosed alpha) produces the algebra expression D and Tca() = he1; E1; L1i.Then, Tca((9rvi)) = he; E; Li where

239e = �[Ls1(:i)](�Lr1(i)(e1 �D))E = �[Ls1(:i)](E1)L = L1L2.Proof: see [88].Set formulas1. Set range formulas. Suppose that Tca(�) = hh; Y; Ji. Suppose that ti rangesover r, corresponding to an expression Di. Tca(�(gi)) = he; E; Li wheree = hE = DiL = fhgi; f1; :::; deg(r)gigProof: �sL=X(e)(I) = �s(t;xi;=)(h)(I) = �s(t;xi;=)(Di)(I).(a) If �(gi)(I; S;X) = 1, then xi 2 D and �s(t;xi;=)(Di)(I) = fxig = �sJ=X (E)(I).(b) If �(gi)(I; S;X) = 0, then xi 62 Di and �s(t;xi;=)(Di)(I) = ;.(c) �sJ=X (E)(I) = �s(t;xi;=)(D�i)(I) = fxig 6= ;.2. Set constraints. Let Tca(t1) = he1; Z1; L1i and Tca(t2) = he2; Z2; L2i. Then,Tca(t1�t2) = he; E; Li wheree = �s(�[Z1](t);�[Z2](t);�)(e1 � e2)E = e1 � e2L = L1L2.Proof: see [111].3. Negation. Suppose that Tca() = he1; E1; L1i. Then, Tca(:) = he; E; Liwheree = E1 ns e1E = E1L = L1.Proof: �sL=X(e)(I) = �sL1=x(E1 ns e1)(I) = �sL1=x(E1)(I) ns �sL1=x(e1)(I).(a) If : (I; S; x) = 1, then (I; S; x) = 0 and �sL1=x(E1)(I)ns�sL1=x(e1)(I) =�sL1=x(E1)(I) = �sL1=x(E)(I).(b) If : (I; S; x) = 0, then (I; S; x) = 1 and�sL1=x(E1)(I) ns �sL1=x(e1)(I) = ;.

240 Appendix A. Selected proofs of results presented in Chapter 3(c) Moreover, �sL1=x(E)(I) = �sL1=x(E1)(I) 6= ;.4. Disjunction. Suppose that Tca(i) = hei; Ei; Lii, i = 1; :::; 2. Then, Tca(1 _ 2) = he; E; Li wheree = (e1 �E2)[(E1� e2)E = E1 �E2L = L1L2.Proof: See [88].5. Existential quanti�cation. Suppose that the translation of range r (i.e., theclosed set alpha) produces the algebra expression D and Tca() = he1; E1; L1i.Then, Tca((9rvi)) = he; E; Li wheree = �[Ls1(:i)](�Lr1(i)(e1 �D))E = �[Ls1(:i)](E1)L = L1L2.Proof: See [88].Simple alphas1. Target alpha. Consider a target alpha �1 = (t1; :::; tn) : r1; :::; rm : . Supposethat Tca(ti) = hei; Zi; Lii. Let simple range formulas r1; :::; rm produce theequivalent algebra expressions D1; :::; Dm and let Tca() = he2; E2; L2i. Then,Tca(�1) = he; Z; Li wheree = �Lr1Lr2(1;:::;m)(e1 ��en �D1 � :::�Dm)Z = Z1Z2:::ZnL = L2(:1:::m)Proof: See [88].Set alphas1. Atomic alpha. Tca(Ri) = he; Z; Li wheree = RiZ = f1; :::; ng, where n = deg(Ri)L = ;

2412. General alpha. Consider a general alpha �1 = (t1) : r1; :::; rm : . Sup-pose that Tca(t1) = he1; Z1; L1i. Suppose that the translation of range formu-las r1; :::; rm produce the equivalent algebraic expressions D1; :::; Dm and letTca() = he2; E2; L2i. Let � = Tca(t1 : :)) = he; Z; Li. Tca(�1) = he; Z; Liwheree = �sLr1Lr2(1;:::;m)(e01 � e2 �D1 � :::�Dm) wheree01 = (�[ZLs](e) if t1 is a target alphae1 if t1 is a set termZ = Z1L = L2(:1:::m)Proof: We consider two cases:(a) (t1) is a set term: the proof follows from the proof proposed in [88].(b) t1 is a target alpha: We assume that m = 1 and t1 has only one freevariable vi, ranging over Tca(r1) = D.�[Z](�sL=X(e))(I)= �[Z;Z2](�sL2(:i)=x(�sLrLr2(i)(�[ZLs](e)� e2 �D)))= �[Z;Z2](�sL2(:i)=x([t2D(t)(�sLL2(i)=t(�[ZLs](e)� e2))))= �[Z;Z2]([t2D(t)(�sL=X 0(�[ZLs](e))� �sL2(i)=X 0(e2)))= �[Z;Z2]([t2D(t); (I;S;X 0)=1(�sL=X 0(�[ZLs](e))))= [t2D(t); (I;S;X 0)=1(�[Z](�sL=X 0(�[ZLs](e))))= [t2D(t); (I;S;X 0)=1(�[Z](�[ZLs](�sL=X 0(e))))= [t2D(t); (I;S;X 0)=1(�[Z](�[Z](�sL=X 0(e))))= [t2D(t); (I;S;X 0)=1(�[Z](�sL=X 0(e)))= [t2D(t); (I;S;X 0)=1(�(I; S;X0))= [t2D(t); (I;S;X 0)=1ft1(I; S;X0)g= �1(I; S;X0):where X 0 = X [fhvi; tig. 2

242 Appendix A. Selected proofs of results presented in Chapter 3

Appendix BSelected proofs of resultspresented in Chapter 5Proposition 5.4 For every function f : s1 ! s2 in gNRC, there is a function(f)0 : s01 ! s02 such thats1 id - s1 f - s2 id - s2s01ps1 ? � - s01qs1 6 (f)0 - s02qs26 � - s02ps2?Proof. We note that the left and right squares commute by de�nitions of ps, qs, and�. We now construct (f)0 by induction on the structure of the gNRC expression thatde�nes f and we argue that the middle square and thus the entire diagram commutes.To simplify notations, we omit the subscript s from ps and qs in the proof below. Wealso omit the argument for the more obvious cases.� Case f(~x) = xi. Set (f)0(O) = ffrxi j (x1; : : : ; xn) 2fr Og.For this case, suppose q(O) = ~x. Thus O � p(~x). Then (f)0(O) � p(xi). Sinceq � p = id, we have q((f)0(O)) = xi. So the middle square commutes.� Case f(~x) = c. Set (f)0(O) = ffrcg� Case f(~x) = �ie. Let g(~x) = e. Set (f)0(O) = ffrxi j (x1; : : : ; xn) 2fr (g)0(O)g.243

244 Appendix B. Selected proofs of results presented in Chapter 5For this case, suppose q(O) = ~x. Thus O � p(~x). By hypothesis, q((g)0(O)) =e. Thus (g)0(O) � p(e). By de�nitionp(�ie) = ffrxi j (x1; : : : ; xn) 2fr p(e)g.Then (f)0(O) � p(�ie). Hence q((f)0(O)) = �ie. So the middle square com-mutes.� Case f(~x) = (e1; : : : ; en). Let gi(~x) = ei. Set(f)0(O) = ffr(x1; : : : ; xn) j x1 2fr (g1)0(O), ..., xn 2fr (gn)0(O)g.For this case, suppose q(O) = ~x. Thus O � p(~x). By hypothesis, q((gi)0(O)) =ei. Thus (gi)0(O) � p(ei).By de�nition, p((e1; : : : ; en)) = ffr(x1; : : : ; xn) j x1 2fr p(e1); : : : ; xn 2frp(en)g. Then (f)0(O) � p((e1; : : : ; en)). Hence q((f)0(O)) = (e1; : : : ; en). Sothe middle square commutes.� Case f(~x) = fg. Set (f)0(O) = ffr(0; 0;~0)g.� Case f(~x) = feg. Let g(~x) = e. Set (f)0(O) = ffr(1; 1; x) j x 2fr (g)0(O)g.For this case, suppose q(O) = ~x. Thus O � p(~x). By hypothesis, q((g)0(O)) =e. Thus (g)0(O) � p(e).By de�nition, p(feg) = ffr(1; 1; x) j x 2fr p(e)g. Then (f)0(O) � p(feg).Hence q((f)0(O)) = feg. So the middle square commutes.� Case f(~x) = emptyfre. Let g(~x) = e. Set (f)0(O) = ffr1 j (0;~0) 2fr(g)0(O)g [fr ffr0 j (1; x) 2fr (g)0(O)g.For this case, suppose q(O) = ~x. Thus O � p(~x). By hypothesis, q((g)0(O)) =e. Thus (g)0(O) � p(e). Thus e is empty i� (g)0(O) = ffr(0;~0)g. Thusq((f)0(O)) = emptyfre. So the middle square commutes.The following variations of the emptiness test are used in subsequent cases:myempty(X) = emptyfrffr0 j 0 2fr (emptyfr)0(X)gmyempty0(X) = emptyfrffr1 j (1; x) 2fr Xg� Case f(~x) = e1 [e2. Let gi(~x) = ei. Set(f)0(O) =if myempty((g1)0(O))then(if myempty((g2)0 (O))thenffr~0g

245else (g2)0(O))else(if myempty((g2)0(O))then(g1)0(O)else (g1)0(O)[fr A(O))whereA(O) = ffr(1; i+ k + 1; x) j (1; i; x)2fr (g2)0(O),k = maxffrj j (1; j; y)2fr (g1)0(O)g.For this case, suppose q(O) = ~x. Thus O � p(~x).By hypothesis, q((gi)0(O)) = ei. There are four subcases. The subcases whereeither e1 or e2 is empty are trivial. So suppose e1 and e2 are both not empty.First note that A(O) � (g2)0(O) and thus q(A(O)) = e2. Next observe that forany (1; i; x) in (g1)0(O) and (1; j; y) in A(O), it is the case that i < j. Thusfor any h so that one of the set X = ffr(1; i; x) j (1; i; x) 2fr (f)0(O); i = hg,Y = ffr(1; i; x) j (1; i; x) 2fr (g1)0(O); i = hg, Z = ffr(1; i; x) j (1; i; x) 2frA(O); i = hg is not empty, it is the case that X = Y or X = Z. Consequently,for any o in (f)0(O), we have o in e1 [e2 and vice versa. That is, q((f)0(O)) =e1 [e2. So the middle square commutes.� Case f(~x) = Sfe1 j y 2 e2g. Let g1(~x; y) = e1 and g2(~x) = e2. Set(f)0(O) =if myempty((g2)0 (O))thenffr(0; 0;~0)gelse if myempty0(A(O))thenffr(0; 0;~0)gelse A(O)where A(O) = Sffr B(O; i) j (1; i; y) 2fr (g2)0(O)g, where B(O; i) = ffr(1; k �i+ h + 1; w) j (1; h; w) 2fr C(O; i); k = maxffrh j (1; j; u) 2fr (g2)0(O); j <i; (1; h; v)2fr C(O; j)gg, whereC(O; i) = (g1)0(ffr(z; u) j z 2fr O; (1; j; u) 2fr(g2)0(O); i = jg).This is the most complex case. Suppose q(O) = p(~x). Thus O � p(~x). Byhypothesis, q((g2)0(O)) = e2. Thus (g2)0(O) � p(e2). Now there are twosubcases. For the �rst subcase, suppose e2 is empty. Then myempty((g2)0(O))

246 Appendix B. Selected proofs of results presented in Chapter 5is true. Then q((f)0(O)) = ffrg = f(~x). So the middle square commutes inthis subcase.For the second subcase, we assume that e2 is not empty. Thenmyempty((g2)0(O)) is false. By the hypothesis on g2, we know that for each isuch that the set yi = ffru j (1; j; u) 2fr (g2)0(O); i = jg is not empty, we haveq(yi) is an element oi of e2. Moreover, there is one such i for each element of e2.Then by hypothesis on g1, we have q(C(O; i)) = g1(~x; oi) for each such i. It isalso obvious that q(B(O; i)) = g1(~x; oi) for each such i, provided g1(~x; oi) is notempty. Note that if g1(~x; oi) is empty, then B(O; i) is also empty, as opposedto being a singleton zero tuple.However, B(O; i) has an advantage over C(O; i) because the numbers it uses toidentify the elements of g1(~x; oi) are distinct from those of B(O; j) whenever i 6=j. To see this, suppose k = maxffrh j (1; j; u)2fr (g2)0(O); j < i; (1; h; v)2frC(O; j)g. Then k is the maximum identi�er that is used to identify elements ing1(~x; oj), for j < i. This k exists because g1(~x; oj) is �nite for each oj in e2.Then k � i+ 1 is greater than the cardinality of the union of g1(~x; oj) for j < i.We now have two subsubcases. For the �rst subsubcase, suppose g1(~x; oi) isempty for each oi in e2. Then B(O; i) is empty for all such oi. Then A(O) isalso empty. Then myempty0(A(O)) is true. Then q((f)0(O)) = ffrg = f(~x).So the middle square commutes in this subsubcase.For the second subsubcase, we assume that there are o1, ..., on in e2 suchthat g1(~x; oi) is not empty and f(~x) = g1(~x; o1) [fr � � � [fr g1(~x; on). Then(f)0(O) = A(O) = B(O; o1) [fr � � � [fr B(O; on). Then q((f)0(O)) = f(~x).This �nishes the �nal subsubcase.� Case f(~x) = (e1 = e2). Let gi(~x) = ei. Set(f)0(O) = if emptyfrffr1 j x 2fr (g1)0(O); y 2fr (g2)0(O); x = yg thenffrfalseg else ffrtrueg.For this case, suppose q(O) = ~x. Thus O � p(~x). By hypothesis, q((gi)0(O)) =ei. So (gi)0(O) � p(ei). Since ei : R, we have (gi)0(O) = ffreig. Then it isobvious that q((f)0(O)) = (e1 = e2). So the middle square commutes.� Case f(~x) = empty e. Let g(~x) = e.Set (f)0(O) = ffremptyfrffr1 j (1; i; x)2fr (g)0(O)gg.

247� Case f(~x) = if e1 then e2 else e3. Let gi(~x) = ei.Set (f)0(O) = if emptyfrffr1 j 0 2fr (g1)0(O)g then (g2)0(O) else (g3)0(O).For this case, suppose q(O) = ~x. Thus O � p(~x).By hypothesis, q((g1)0(O)) = e1. Thus (g1)0(O) � p(e1). Since e1 : B , wehave (g2)0(O) = ffr1g if e1 is true and (g2)0(O) = ffr0g if e1 is false. Thenemptyfrffr1 j 0 2fr (g1)0(O)g is true i� e1 is true. Then it follows by hypothesison e2 and e3 that q((f)0(O)) = if e1 then e2 else e3. So the middle squarecommutes.� Case f(~x) = ffrg. Set (f)0(O) = ffr~0g.� Case f(~x) = ffreg. Let g(~x) = e. Set (f)0(O) = ffr(1; x) j x 2fr (g)0(O)g.For this case, suppose q(O) = ~x. Thus O � p(~x).By hypothesis, q((g)0(O)) = e. Thus (g)0(O) � p(e). Since e : R� � � � � R, weknow that (g)0(O) = ffreg. Thus q((f)0(O)) = ffreg. So the middle squarecommutes.� Case f(~x) = e1 [fr e2. Let gi(~x) = ei. Set(f)0(O) = if myempty((g1)0(O))then(if myempty ((g2)0(O))thenffr~0gelse (g2)0(O))else(if myempty((g2)0(O))then(g1)0(O)else (g1)0(O)[fr (g2)0(O)).� Case f(~x) = Sffre1 j y 2fr e2g. Let g1(~x; y) = e1 and g2(~x) = e2.Set(f)0(O) = if myempty ((g2)0(O)) thenffr~0gelseif myempty0(A(O)) thenffr(0; 0;~0)gelse A(O)

248 Appendix B. Selected proofs of results presented in Chapter 5whereA(O) = Sffr if myempty (B(O; y)) then ffrg else B(O; y) j(1; y) 2fr (g2)0(O)gand B(O; y) = (g1)0(ffr(z; y) j z 2fr Og).For this case, suppose q(O) = ~x. Thus O � p(~x).By hypothesis, q((g2)0(O)) = e2. Thus (g02)(O) � p(e2). Now there are twosubcases. For the �rst subcase, suppose e2 is empty. Then myempty((g2)0(O))is true. Then q((f)0(O)) = ffrg = Sffre1 j y 2fr e2g. So the middle squarecommutes in this subcase.For the second subcase, we assume that e2 is not empty. Thenmyempty((g2)0(O)) is false and (g2)0(O) = ffr(1; x) j x 2fr e2g is forced.It is clear that q(ffr(z; y) j z 2fr Og) = (~x; y) for each y in e2. By hypo-thesis, q(B(O; y)) = g1(~x; y) for each y in e2. We now have two subsubcases.For the �rst subsubcase, suppose g1(~x; y) is empty for each y in e2. Thenmyempty(B(O; y)) is true for each y in e2. Then myempty0(A(O)) is true.Then q((f)0(O)) = ffrg = f(~x). So the middle square commutes in thissubsubcase.For the second subsubcase, we assume that there are y1, ..., yn in e2 suchthat g1(~x; yi) is not empty and f(~x) = g1(~x; y1) [fr � � � [fr g1(~x; yn). Then(f)0(O) = A(O) = B(O; y1) [fr � � � [fr B(O; yn). Then q((f)0(O)) = f(~x).This �nishes the �nal subsubcase. So the middle square commutes.� Case f(~x) = e1 � e2, where � is either +, �, �, or �. Let gi(~x) = ei. Set(f)0(O) = ffrx� y j x 2fr (g1)0(O); y 2fr (g2)0(O)g.For this case, suppose q(O) = ~x. Thus O � p(~x).By hypothesis, q((gi)0(O)) = ei. Thus (gi)0(O) � p(ei). Since ei : R, we musthave (gi)0(O) = ffreig. Then q((f)0(O)) = q(ffre1 � e2g) = e1 � e2. So themiddle square commutes.� Case f(~x) = R. Set (f)0(O) = ffr(1; x) j x 2fr Rg.� Case f(~x) = Sffre1 j y 2 e2g. Let g1(~x; y) = e1 and g2(~x) = e2. Set(f)0(O) = if myempty((g2)0 (O)) then ffr(0;~0)g else if myempty0(A(O))then ffr(0;~0)g else A(O), where A(O) = Sffr if myempty (B(O; i)) then ffrgelse B(O; i) j (1; i; y)2fr (g2)0(O)g, where

249B(O; i) = (g1)0(ffr(z; u) j z 2fr O; (1; j; u) 2fr (g2)0(O); i = jg).For this case, suppose q(O) = ~x.Thus O � p(~x). By hypothesis, q((g2)0(O)) = e2. Thus (g2)0(O) � p(e2). Wehave two subcases. The �rst is when e2 is empty. Then (g2)0(O) is a singletonzero tuple. Then myempty((g2)0 (O)) is true. Then (f)0(O) = ffr(0;~0)g. Thusq((f)0(O)) = ffrg = f(~x). So the middle square commutes in this subcase.For the second subcase, we assume that e2 is not empty. Thenmyempty((g2)0(O)) is false. By the hypothesis on g2, we know that for eachi such that the set yi = ffru j (1; j; u) 2fr (g2)0(O); i = jg is not empty, wehave q(yi) is an element oi of e2. Moreover, there is one such i for each elementof e2. Then by hypothesis on g1, we have q(B(O; i)) = g1(~x; oi) for each suchi. We now have two subsubcases. For the �rst subsubcase, suppose g1(~x; oi) isempty for each such i. Then myempty(B(O; i)) is true for each such i. Thenmyempty0(A(O)) is true. Then q((f)0(O)) = ffrg = f(~x). So the middlesquare commutes in this subsubcase.For the second subsubcase, we assume that there are o1, ..., on in e2 suchthat g1(~x; oi) is not empty and f(~x) = g1(~x; o1) [fr � � � [fr g1(~x; on). Then(f)0(O) = A(O) = B(O; o1) [fr � � � [fr B(O; on). Then q((f)0(O)) = f(~x).This �nishes the �nal subsubcase. So the middle square commutes. 2

250 Appendix B. Selected proofs of results presented in Chapter 5

Appendix CSelected proofs of resultspresented in Chapter 8Lemma 8.3 Let UP�(P) = f(p1; :::; pd)j(p1; :::; pd) 2 UP (P) andpd = minfp0dj(p1; :::; pd�1; p0d) 2 UP (P)g. Let DOWN�(P) = f(p1; :::; pd)j(p1; :::; pd) 2 UP (P) and pd = maxfp0dj(p1; :::; pd�1; p0d) 2 DOWN(P)g. Then,(p1; :::; pd) 2 UP�(P) i� TOPP (p1; :::; pd�1) = pd and (p1; :::; pd) 2DOWN�(P) i� BOTP (p1; :::; pd�1) = pd.Proof:) Suppose that (p1; :::; pd) 2 UP�(P). There are two di�erent cases:� (p1; :::; pd) belongs to a line which is the dual representation of a vertex,say v, of P (thus, it has been added in Steps 1 or 2 of the transformationalgorithm). Since (p1; :::; pd) 2 UP�(P), and all hyperplanes in UP (P)are transformed in 1-half-planes, this also mean that there does not existanother hyperplane H 0 supporting UP (P) such that (p1; :::; pd�1; p0d) 2 H 0and p0d > pd. But, since H 0 would correspond to another vertex v0 of P ,this means that pd = maxv2VP fFD(v)(p1; :::; pd�1)g = TOPP (p1; :::; pd�1).� (p1; :::; pd) belongs to a line which has been added in Steps 3 or 4 of thetransformation algorithm. Since this line connects d�1 points representingin the primal plane d � 1 unbound hyperplanes, (p1; :::; pd) in the primalplane represents a hyperplane passing through the vertex de�ned by theintersection of such hyperplanes. Since (p1; :::; pd) 2 UP�(P), and allhyperplanes in UP (P) are transformed in 1-half-planes, this also meanthat there does not exist another hyperplane H 0, besides the one on which(p1; :::; pd) lies, supporting UP (P) such that (p1; :::; pd�1; p0d) 2 H 0 and251

252 Appendix C. Selected proofs of results presented in Chapter 8p0d > pd. But, since H 0 would correspond to another vertex v0 of P , thismeans that pd = maxv2VP fFD(v)(p1; :::; pd�1)g = TOPP (p1; :::; pd�1).A similar reasoning can be done for BOTP .(Suppose that TOPP (p1; :::; pd) = pd (thus, for Lemma 8.2, D((p1; :::; pd)) is asupporting hyperplane for P) and assume that (p1; :::; pd) 62 UP�(P). Thereare several cases:1. (p1; :::; pd) 62 UP (P) [DOWN(P). Three di�erent situations may arise:(a) There exist two points (p1; :::; p0d) and (p1; :::; p00d) such that p00d < pd <p0d and such that (p1; :::; p0d) 2 UP�(P) and(p1; :::; p00d) 2 DOWN�(P). For the proof of) and Lemma 8.2, itfollows that in the primal plane these points represent hyperplanewhich are supporting with respect to P . But this also means thatD((p1; :::; pd)) intersects P and is not supporting. But this leads to acontradiction, since D((p1; :::; pd)) is supported by hypothesis.(b) There exists a point (p1; :::; p0d) such that pd < p0d and (p1; :::; p0d) 2UP�(P) but there does not exist a point (p1; :::; p00d) such that p00d < pdand (p1; :::; p00d) 2 DOWN�(P).For the proof of) and Lemma 8.2 it follows that in the primal planepoint (p1; :::; p0d) represents a hyperplane which is supporting with re-spect to P . However, for any real number qd < p0d, D((p1; :::; qd)) isnot a supporting hyperplane for P . Thus, (p1; :::; pd) in the primalplane is a hyperplane intersecting P but is not supporting. This leadsto a contradiction.(c) There exists a point (p1; :::; p0d) such that p0d < pd and such that(p1; :::; p0d) 2 DOWN�(P) but there does not exist a point (p1; :::; p00d)such that pd < p00d and such that (p1; :::; p00d) 2 UP�(P).The proof is similar to item (1.c).2. (p1; :::; pd) 2 UP (P) n UP�(P). This means that a point (p1; :::; p0d)exists such that p0d < pd and such that (p1; :::; p0d) 2 UP�(P). Thus,D((p1; :::; p0d)) is supporting with respect to P . Moreover, by hypothesis,TOPP (p1; :::; pd�1) = pd; this means that there does not exist p00d < pdsuch that D((p1; :::; p00d)) is a supporting hyperplane for P and this leads toa contradiction.3. (p1; :::; pd) 2 DOWN(P) nDOWN�(P).The proof is similar to item (2).

2534. (p1; :::; pd) 2 DOWN�(P). In this case, for the proof of), this meansthat BOTP (p1; :::; pd�1) = pd. Since (p1; :::; pd) 62 UP�(P), this meansthat either there exists p0d > pd such that (p1; :::; p0d) 2 UP�(P) or theredoes not exist any p0d such that (p1; :::; p0d) 2 UP�(P). In the �rst case,for the proof of), D((p1; :::; p0d)) is a supporting hyperplane for P ; inthe second case, for any real number qd > p0d, D((p1; :::; qd)) is not asupporting hyperplane for P . In both cases, (p1; :::; pd) in the primal planeis a hyperplane intersecting P but is not supporting. This leads to acontradiction. 2Lemma 8.4 The following facts hold:1. All points contained in UP (P) [DOWN(P) represent in the primal planehyperplanes that do not intersect P or are supporting with respect to P .2. All points not contained in UP (P)[DOWN(P) represent in the primal planehyperplanes that intersect P but are not supporting with respect to P .Proof:1. Suppose that (p1; :::; pd) 2 UP�(P).In this case, by Lemma 8.3, pd = TOPP (p1; :::; pd) and therefore hyperplaneD((p1; :::; pd)) is supporting with respect to P .Now suppose that (p1; :::; pd) 2 UP (P) n UP�(P). In this case, there exists apoint (p1; :::; p0d) such that p0d < pd andD((p1; :::; p0d)) is supporting with respectto P . This means that D(p1; :::; pd) does not intersect P .A similar proof holds for points (p1; :::; pd) 2 DOWN�(P).2. Suppose that (p1; :::; pd) 62 UP (P) [DOWN(P). For the proof of Lemma 8.3,case (1.b), D((p1; :::; pd)) is not a supporting hyperplane. 2Theorem 8.1 For all points (X1; :::; Xd�1):TOPP (X1; :::; Xd�1) = (Xd if (X1; :::; Xd) 2 UP�(P)+1 otherwiseBOTP (X1; :::; Xd�1) = (Xd if (X1; :::; Xd) 2 DOWN�(P)�1 otherwiseProof: We present the proof for TOPP . A similar proof holds for BOTP .

254 Appendix C. Selected proofs of results presented in Chapter 8(Suppose that (x1; :::; xd) 2 UP�(P). In this case the theorem follows from Lemma8.3.Now suppose that for all xd, (x1; :::; xd) 62 UP�(P). By Lemma 8.4, thismeans that for each value xd, hyperplane D((x1; :::; xd)) intersects P but isnot supporting with respect to it. Due to the de�nition of TOPP , this meansthat TOPP (X1; :::; Xd�1) = +1.) Suppose that TOPP (x1; :::; xd) = +1. From Lemma 8.3 it follows that there doesnot exists xd such that (x1; :::; xd) 2 UP�(P) and this concludes the proof.Now suppose that TOPP (x1; :::; xd) = xd. In this case, the result follows fromLemma 8.3. 2

