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We have been using constraints for concurrent program analysis in a number of research ef-
forts (see http://www.cs.utah.edu/~yyang/publications.html for details). This talk will provide
a summary of each effort, the results to date, and future extensions planned. In [Charme’03],
we presented a non-operational approach to specifying and analyzing shared memory consistency
models. The method uses higher order logic to capture a complete set of ordering constraints on
execution traces, in an axiomatic style. A direct encoding of the semantics with a constraint logic
programming language provides an interactive and incremental framework for exercising and ver-
ifying finite test programs. The framework has also been adapted to generate equivalent boolean
satisfiability (SAT) problems. These techniques make a memory model specification executable,
a powerful feature lacked in most non-operational methods. As an example, we provide a concise
formalization of the Intel Itanium memory model and show how constraint solving and SAT solv-
ing can be effectively applied for computer aided analysis. Encouraging initial results demonstrate
scalability for complex industrial designs.

In [IPDPS’03], we show how the above methods can be extended to cover a collection of well
known memory models, including sequential consistency, coherence, PRAM, causal consistency,
and processor consistency. We discuss the essential aspects of this framework called Nemos (Non-
operational yet Executable Memory Ordering Specifications), which employs a uniform notation
based on predicate logic to define shared memory semantics in an axiomatic as well as compositional
style.

In a follow-up to [Charme’03], we pursue two directions. First, we seek a semantically elegant
formulation of the problem, and provide a formal translation from a problem instance 〈r, ops〉,
where r is a collection of higher order logic formulae defining the memory model and ops is a finite
execution, to a QBF formula q. This approach does not yet scale to large problem sizes, but is
semantically cleaner than our work in [Charme’03]. In our second direction, our aim is to scale the
size of (assembly program) executions that can be handled so that we can apply our work to post-
silicon verification and multiprocessor code optimization. In this approach, 〈r, ops〉 is translated
into a functional program p that when run generates a Boolean formula b. Furthermore, we show
that b consists of two parts b1 and b2 where b1 can be pre-generated knowing only the assembly
program length. If we pre-generate b1 for various lengths, we can load them into an incremental
SAT solver and save their process state (i.e., a checkpoint) on disk. Later when given an execution
ops, b2 is generated for it, and the saved image is run on b2 for further execution. We study when
this ‘partial evaluation’ approach yields payoffs. Showing the conformance of an execution to a
memory model involves solving for a total order. In this context, we study two different SAT
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encoding methods and choose one that works well in practice. The results are demonstrated on a
formal specification of the Intel Itanium memory model.

In our latest effort, we explore the practicality of conducting program analysis for multithreaded
software using constraint solving. By precisely defining the underlying memory consistency rules
in addition to the intra-thread program semantics, our approach offers a unique advantage for
program verification - it provides an accurate and exhaustive coverage of all thread interleavings
for any given memory model. We demonstrate how this can be achieved by formalizing sequential
consistency for a source language that supports control branches and a monitor-style mutual exclu-
sion mechanism. Our choice of sequential consistency is merely to make our illustrations clearer;
by adopting the Nemos approach discussed above, we can plug in any desired memory model in the
broad range of memory models for which Nemos is appropriate. We then discuss how to formulate
programmer expectations as constraints and propose three concrete applications of this approach:
execution validation, race detection, and atomicity analysis. Finally, we describe the implemen-
tation of a formal analysis tool using constraint logic programming, with promising initial results
for reasoning about small but non-trivial concurrent programs. To the best of our knowledge, this
is the first effort that considers conducting program analysis in a framework where the underlying
memory model is an explicitly controllable parameter—and not assumed tacitly to be sequential
consistency as in all other works we know about. This may be of growing importance, given
that many programs in real applications today cannot assume sequential consistency. Examples
of programs that are already known to be in this class include: (i) multiprocessor garbage collec-
tors that may run on shared memory multiprocessors that follow a weak shared memory model;
(ii) multithreaded and re-entrant device drivers where the threads may run on co-processors.

In this paper, we provide a detailed explanation of each line of work, the results to date, and
how all these analysis methods might be supported by a unified constraint-solving framework.
We anticipate this framework to consist of efficient SAT engines and efficient compilation engines.
Given a constraint expression e, an evaluator will analyze it and annotate each sub-expression with
what type of evaluation it merits. The evaluation methods under consideration are SAT and direct
execution, although this list could easily be enlarged to include various decision procedures also.
We will then rewrite e to a form which allows multiple evaluation methods to be applied one after
the other. For example, consider a constraint expression of the form p ⇒ q where p has symbolic
information (“free variables”) and q has ground information (variables have been instantiated).
Instead of translating p ⇒ q to a Boolean formula, a more efficient method might to use the
contrapositive form ¬q ⇒ ¬p, emit program code to evaluate q, and if this evaluation returns
true then to emit the Boolean SAT formulas for ¬p. We find that starting from a higher-order
logic specification, such rewrites when judiciously applied result in efficient constraint evaluators
that partly evaluate the constraints through execution and partly through SAT-like tools. We will
discuss our preliminary ideas towards building such a tool.


