PV 2014

Complexity Bounds for Software Component Reconfiguration

Jacopo Mauro & Gianluigi Zavattaro

Rome, Sept. 2014

Mastering the Complexity of the Cloud

Models, languages and tools for the administrator of cloud applications

Structure of the talk

• Brief summary of AEOLUS Model

- What we knew so far about Deployment?
- What about Reconfiguration ?
- Conclusions

Aeolus components

Bindings

Binding between two packages

Capacity Planning

Capacity constraints: upper and lower bounds to provide and require ports (resp.)

Conflicts

Conflict (no other components can activate that port)

Multi state changes

In some specific case, actions must be executed simultaneously

Actions

- Create
- Delete
- State Change
- Bind
- Unbind

Deployment problem

• Input:

- A set of components to use
- Target: component + state

• Output:

 – yes exists a plan from empty configuration to a configuration containing a target

-no otherwise

Reconfiguration problem

Reconfiguration problem: like deployment problem but with a given initial configuration

Structure of the talk

- Brief summary of AEOLUS Model
- What we knew so far about Deployment ?
- What about Reconfiguration ?
- Conclusions

Undecidability of Aeulus

The deployment problem is undecidable in Aeolus

Deployment problem **Polytime** without capacity constraints, conflicts, multi state change.

Algorithm 1 Checking achievability in the Aeolus⁻ model

function ACHIEVABILITY(universe of resources U, resource type \mathscr{T} , state q) $absConf := \{ \langle \mathscr{T}', \mathscr{T}'. \texttt{init} \rangle \mid \mathscr{T}' \in U \}$ $provPort := \bigcup_{\langle \mathscr{T}', q' \rangle \in absConf} \{ dom(\mathscr{T}'. \mathbf{Pmap}(q')) \}$ repeat $new := \{ \langle \mathscr{T}', q' \rangle \mid \langle \mathscr{T}', q'' \rangle \in absConf, (q'', q') \in \mathscr{T}'.\texttt{trans} \} \setminus absConf$ $\mathit{newPort} := \bigoplus_{\langle \mathscr{T}', q' \rangle \in \mathit{new}} \{\!\!\{ \mathit{dom}(\mathscr{T}'.\mathbf{P}\mathtt{map}(q'))\}\!\!\}$ while $\exists \langle \mathscr{T}', q' \rangle \in new \text{ s.t. } dom(\mathscr{T}'.\mathbf{R}_s \operatorname{map}(q')) \not\subseteq provPort \cup newPort \operatorname{do}$ $new := new \setminus \{ \langle \mathscr{T}', q' \rangle \}$ $newPort := newPort \ominus \{ dom(\mathscr{T}'.\mathbf{Pmap}(q')) \}$ end while $absConf := absConf \cup new$ $provPort := provPort \cup newPort$ until new = 0if $\langle \mathscr{T}, q \rangle \in absConf$ and $dom(\mathscr{T}, \mathbf{R}_w \operatorname{map}(q)) \subseteq provPort$ then return true else return false end if end function

Structure of the talk

- Brief summary of AEOLUS Model
- What we knew so far about Deployment?
- What about Reconfiguration ?
- Conclusions

Aeolus Core

- Conflicts but no capacity constraints (~ packages)
- Reconfiguration problem → Decidable
- Proof \rightarrow **WSTS**

The WQO

• C1 **≤** C2:

- No component r in state s in C1 \rightarrow No component r in state s in C2
- 1 component r in state s in C1 \rightarrow 1 component r in state s in C2
- x components r in state s in C1 \rightarrow y > x components r in state s in C2

Aeolus Core

- Reconfiguration problem → Ackerman hard
- Proof → encoding the Coverability of Petri Nets with Reset Arcs

- No capacity, conflicts, multi state change
- Reconfiguration problem → **PSpace**
- Proof → abstract from bindings & newly created components

- Compute possible abstract plan using non deterministic Turing machine
- Space used → polynomial

Algorithm 1 Check reconfiguration for $C_0 = \langle U, Z_0, S, B \rangle$ and target \mathcal{T}_t, q_t

for all $\langle \mathcal{T}, q \rangle$ pairs in the universe U do $\mathcal{B}_i(\langle \mathcal{T}, q \rangle) = \mathcal{C}_{\langle \mathcal{T}, q \rangle}^{\#}(Z_0)$ $\mathcal{B}_c(\langle \mathcal{T}, q \rangle) = False$ counter = 0 while counter $\leq |Z_0|^k * 2^k$ do \triangleright k is the number of $\langle \mathcal{T}, q \rangle$ pairs in Uguess $\mathcal{B}'_i, \mathcal{B}'_c$ if $\langle \mathcal{B}_i, \mathcal{B}_c \rangle \not\rightarrow \langle \mathcal{B}'_i, \mathcal{B}'_c \rangle$ then return False if $\mathcal{B}'_i(\mathcal{T}_t, q_t) > 0$ or $\mathcal{B}'_c(\mathcal{T}_t, q_t)$ then return True counter = counter + 1; $\mathcal{B}_i = \mathcal{B}'_i; \mathcal{B}_c = \mathcal{B}'_c$ return False

- Reconfiguration → PSpace hard
- Proof → encoding the reachability problem of 1-Safe Petri Nets

Structure of the talk

- Brief summary of AEOLUS Model
- What we knew so far about Deployment?
- What about Reconfiguration ?
- Conclusions

Conclusions

- Deployment problem in Aeolus- polynomial
 → METIS
- Extensions of METIS for reconfiguration → yes but possibly lose completeness
- Hint to deal with reconfiguration: abstract plan with ad-hoc heuristics
- Other "usable" Aeolus model fragments