
Parameterized Model Checking of Fault-tolerant
Distributed Algorithms

Annu Gmeiner Igor Konnov Ulrich Schmid Helmut Veith

Josef Widder

PV 2014
Rome, Sept 6, 2014

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 1 / 21

Why fault-tolerant (FT) distributed algorithms

faults not in the control of system designer

bit-flips in memory

power outage

disconnection from the network

intruders take control over some computers

distributed algorithms intended to make
systems more reliable even in the presence of
faults

replicate processes

exchange messages

do coordinated computation

goal: keep replicated processes in “good state” 1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 2 / 21

Why fault-tolerant (FT) distributed algorithms

faults not in the control of system designer

bit-flips in memory

power outage

disconnection from the network

intruders take control over some computers

distributed algorithms intended to make
systems more reliable even in the presence of
faults

replicate processes

exchange messages

do coordinated computation

goal: keep replicated processes in “good state” 1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 2 / 21

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty

resilience conditions, e.g., n > 3t ∧ t ≥ f ≥ 0

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 3 / 21

Fault-tolerant distributed algorithms

n

?
?

?
t

f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty

resilience conditions, e.g., n > 3t ∧ t ≥ f ≥ 0

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 3 / 21

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty

resilience conditions, e.g., n > 3t ∧ t ≥ f ≥ 0

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 3 / 21

Fault-tolerant DAs: Model Checking Challenges

unbounded data types

counting how many messages have been received

parameterization in multiple parameters

among n processes f ≤ t are faulty with n > 3t

contrast to concurrent programs

fault tolerance against adverse environments

degrees of concurrency

many degrees of partial synchrony

continuous time

fault-tolerant clock synchronization

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 4 / 21

Importance of liveness in distributed algorithms

Interplay of safety and liveness is a central challenge in DAs

interplay of safety and liveness is non-trivial

asynchrony and faults lead to impossibility results

Rich literature to verify safety (e.g. in concurrent systems)

Distributed algorithms perspective:

“doing nothing is always safe”

“tools verify algorithms that actually might do nothing”

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 5 / 21

Importance of liveness in distributed algorithms

Interplay of safety and liveness is a central challenge in DAs

interplay of safety and liveness is non-trivial

asynchrony and faults lead to impossibility results

Rich literature to verify safety (e.g. in concurrent systems)

Distributed algorithms perspective:

“doing nothing is always safe”

“tools verify algorithms that actually might do nothing”

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 5 / 21

Model checking problem for fault-tolerant DA algorithms

given a distributed algorithm and spec. ϕ

system description:
M(n, t, f) = P(n, t, f) ‖ P(n, t, f) ‖ · · · ‖ P(n, t, f)

every M(n, t, f) is a system of n − f correct processes

show for all n, t, and f satisfying n > 3t ∧ t ≥ f ≥ 0
M(n, t, f) |= ϕ

n

?
?

?
t

n

?
?

?
t f

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 6 / 21

Model checking problem for fault-tolerant DA algorithms

given a distributed algorithm and spec. ϕ

system description:
M(n, t, f) = P(n, t, f) ‖ P(n, t, f) ‖ · · · ‖ P(n, t, f)

every M(n, t, f) is a system of N(n, t, f) correct processes

show for all n, t, and f satisfying resilience condition
M(n, t, f) |= ϕ

n

?
?

?
t

n

?
?

?
t f

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 6 / 21

Properties in Linear Temporal Logic

Unforgeability (U). If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
((n−f∧

i=1

vi = 0
)
→ G

(n−f∧
j=1

acceptj = 0
))

Safety

Completeness (C). If vi = 1 for all correct processes i , then there is a correct
process j that eventually sets acceptj to 1.

G
((n−f∧

i=1

vi = 1
)
→ F

(n−f∨
j=1

acceptj = 1
))

Liveness

Relay (R). If a correct process i sets accepti to 1, then eventually all correct
processes j set acceptj to 1.

G
((n−f∨

i=1

accepti = 1
)
→ F

(n−f∧
j=1

acceptj = 1
))

Liveness

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 7 / 21

Properties in Linear Temporal Logic

Unforgeability (U). If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
((n−f∧

i=1

vi = 0
)
→ G

(n−f∧
j=1

acceptj = 0
))

Safety

Completeness (C). If vi = 1 for all correct processes i , then there is a correct
process j that eventually sets acceptj to 1.

G
((n−f∧

i=1

vi = 1
)
→ F

(n−f∨
j=1

acceptj = 1
))

Liveness

Relay (R). If a correct process i sets accepti to 1, then eventually all correct
processes j set acceptj to 1.

G
((n−f∨

i=1

accepti = 1
)
→ F

(n−f∧
j=1

acceptj = 1
))

Liveness

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 7 / 21

Threshold-guarded
fault-tolerant

distributed algorithms

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 8 / 21

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 9 / 21

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 9 / 21

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 9 / 21

Counting argument in threshold-guarded algorithms

n

t f

if received m from t + 1 processes then ...

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 10 / 21

Counting argument in threshold-guarded algorithms

n

t f

if received m from t + 1 processes then ...

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 10 / 21

Counting argument in threshold-guarded algorithms

n

t f

if received m from t + 1 processes then ...

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 10 / 21

our abstractions

at a glance

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 11 / 21

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)

nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t all correct processes accepted?

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 12 / 21

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)

nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t all correct processes accepted?

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 12 / 21

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)

nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t all correct processes accepted?

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 12 / 21

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)
nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t

all correct processes accepted?

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 12 / 21

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)
nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t all correct processes accepted?

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 12 / 21

Related work: (0, 1,∞)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1,∞)-counter abstraction:

finitely many local states,
e.g., {N,T ,C}.

abstract the number of processes in every state,
e.g., K : C 7→ 0, T 7→ 1, N 7→ “many”.

perfectly reflects mutual exclusion properties
e.g., G (K (C) 6= “many”).

Our parametric data + counter abstraction:

unboundendly many local states (nr. of received messages)

finer counting of processes:
t + 1 processes in a specific state can force global progress,
while t processes cannot

mapping t, t + 1, and n − t to “many” is too coarse.

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 13 / 21

Related work: (0, 1,∞)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1,∞)-counter abstraction:

finitely many local states,
e.g., {N,T ,C}.

abstract the number of processes in every state,
e.g., K : C 7→ 0, T 7→ 1, N 7→ “many”.

perfectly reflects mutual exclusion properties
e.g., G (K (C) 6= “many”).

Our parametric data + counter abstraction:

unboundendly many local states (nr. of received messages)

finer counting of processes:
t + 1 processes in a specific state can force global progress,
while t processes cannot

mapping t, t + 1, and n − t to “many” is too coarse.

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 13 / 21

Tool Chain: ByMC

Parametric Promela code static analysis + Yices

Parametric Interval Domain D̂
Parametric data abstraction

with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter
representation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat
sat

Figure: The abstraction scheme

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 14 / 21

Tool Chain: ByMC

Parametric Promela code static analysis + Yices

Parametric Interval Domain D̂
Parametric data abstraction

with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter
representation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat
sat

Figure: The abstraction scheme

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 14 / 21

Tool Chain: ByMC

Parametric Promela code static analysis + Yices

Parametric Interval Domain D̂
Parametric data abstraction

with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter
representation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat
sat

Figure: The abstraction scheme

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 14 / 21

Concrete vs. parameterized (Byzantine case)

Time to check relay (sec, logscale) Memory to check relay (MB, logscale)

Parameterized model checking performs well (the red line).

Experiments for fixed parameters quickly degrade
(n = 9 runs out of memory).

We found counter-examples for the cases n = 3t and f > t,
where the resilience condition is violated.

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 15 / 21

Completeness threshold for bounded model checking

Fix a threshold automaton TA and a size function N.

Theorem

For each p with RC (p), the diameter of an accelerated counter system is
independent of parameters and is less than or equal to |E | · (|C|+ 1) + |C|:

|E | is the number of edges in TA (self-loops excluded).

|C| is the number of edge conditions in TA that can be unlocked
(locked) by an edge appearing later (resp. earlier) in the control flow,
or by a parallel edge.

In our example:

|E | = 4, |C| = 1.

Thus, d ≤ 9.

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

unlocks

unlocks (but appears earlier)

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 16 / 21

Completeness threshold for bounded model checking

Fix a threshold automaton TA and a size function N.

Theorem

For each p with RC (p), the diameter of an accelerated counter system is
independent of parameters and is less than or equal to |E | · (|C|+ 1) + |C|:

|E | is the number of edges in TA (self-loops excluded).

|C| is the number of edge conditions in TA that can be unlocked
(locked) by an edge appearing later (resp. earlier) in the control flow,
or by a parallel edge.

In our example:

|E | = 4, |C| = 1.

Thus, d ≤ 9.

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

unlocks

unlocks (but appears earlier)
Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 16 / 21

Can we reach the bound with NuSMV?

0 2,000 4,000 6,000 8,000

Toy example

Folklore RB

Consistent RB

ABA case 1

ABA case 2

CBC case 1

CBC case 2

27

10

90

1,758

6,620

612

8,720

reached bound

completeness bound

Timeout in abstraction refinement: NBAC (13200) and NBACC (16500).
Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 17 / 21

Experimental setup

The tool (source code in OCaml),

the code of the distributed algorithms in Parametric Promela,

and a virtual machine with full setup

are available at: http://forsyte.at/software/bymc

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 18 / 21

http://forsyte.at/software/bymc/

Related work: PV of FTDAs

Regular model checking of fault-tolerant distributed protocols:

[Fisman, Kupferman, Lustig 2008]

“First-shot” theoretical framework.

No guards like x ≥ t + 1, only x ≥ 1.

No implementation.

Manual analysis applied to folklore broadcast (crash faults).

Backward reachability using SMT with arrays:

[Alberti, Ghilardi, Pagani, Ranise, Rossi 2010-2012]

Implementation.

Experiments on Chandra-Toueg 1990.

No resilience conditions like n > 3t.

Safety only.

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 19 / 21

Related work: PV of FTDAs

Regular model checking of fault-tolerant distributed protocols:

[Fisman, Kupferman, Lustig 2008]

“First-shot” theoretical framework.

No guards like x ≥ t + 1, only x ≥ 1.

No implementation.

Manual analysis applied to folklore broadcast (crash faults).

Backward reachability using SMT with arrays:

[Alberti, Ghilardi, Pagani, Ranise, Rossi 2010-2012]

Implementation.

Experiments on Chandra-Toueg 1990.

No resilience conditions like n > 3t.

Safety only.

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 19 / 21

Our current work

Discrete

synchronous

Discrete
partially

synchronous

Discrete

asynchronous

Continuous

synchronous

Continuous
partially

synchronous

One instance/

finite payload

Many inst./

finite payload

Many inst./
unbounded

payload

Messages with

reals

core of {ST87,

BT87, CT96},

MA06 (common),

MR04 (binary)

one-shot broadcast, c.b.consensus

DHM12

ST87

AK00

CT96

(failure detector)

DLS86, MA06,

L98 (Paxos)

ST87, BT87,

CT96, DAs with

failure-detectors

DLPSW86

DFLPS13

WS07

ST87 (JACM)

FSFK06

WS09

clock sync

broadcast

approx. agreement

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 20 / 21

Future work: threshold guards + orthogonal features

Discrete

synchronous

Discrete
partially

synchronous

Discrete

asynchronous

Continuous

synchronous

Continuous
partially

synchronous

One instance/

finite payload

Many inst./

finite payload

Many inst./
unbounded

payload

Messages with

reals

core of {ST87,

BT87, CT96},

MA06 (common),

MR04 (binary)

one-shot broadcast, c.b.consensus

DHM12

ST87

AK00

CT96

(failure detector)

DLS86, MA06,

L98 (Paxos)

ST87, BT87,

CT96, DAs with

failure-detectors

DLPSW86

DFLPS13

WS07

ST87 (JACM)

FSFK06

WS09

clock sync

broadcast

approx. agreement

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 20 / 21

Thank you!

[
http://forsyte.at/software/bymc

]

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 21 / 21

http://forsyte.at/software/bymc/

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1 It+1 In−t

It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x

is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 22 / 21

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−t

It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 22 / 21

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1 It+1 In−t

It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1,

is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 22 / 21

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1 . . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 22 / 21

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 22 / 21

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1)

. . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .

∨x = In−t ∧ x ′ = In−t

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 22 / 21

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1)

. . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t)

. . .

∨x = In−t ∧ x ′ = In−t

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 22 / 21

Parametric abst. refinement — uniformly spurious paths

Classical CEGAR:

Concrete

Abstr
act

Our case:

Concrete

n2,
t2,

f2

Concrete

n1,
t1,

f1

Abstr
act

··
·

··
·

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 23 / 21

Parametric abst. refinement — uniformly spurious paths

Classical CEGAR:

Concrete

Abstr
act

Our case:

Concrete

n2,
t2,

f2

Concrete

n1,
t1,

f1

Abstr
act

··
·

··
·

Josef Widder (www.forsyte.at) Parameterized Model Checking of FTDAs PV 2014 23 / 21

