Parameterized Model Checking of Fault-tolerant Distributed Algorithms

Annu Gmeiner Igor Konnov Ulrich Schmid Helmut Veith Josef Widder

PV 2014 Rome, Sept 6, 2014

Why fault-tolerant (FT) distributed algorithms

faults not in the control of system designer

- bit-flips in memory
- power outage
- disconnection from the network
- intruders take control over some computers

Why fault-tolerant (FT) distributed algorithms

faults not in the control of system designer

- bit-flips in memory
- power outage
- disconnection from the network
- intruders take control over some computers

distributed algorithms intended to make systems more reliable even in the presence of faults

- replicate processes
- exchange messages
- do coordinated computation
- goal: keep replicated processes in "good state"

Fault-tolerant distributed algorithms

• *n* processes communicate by messages

Fault-tolerant distributed algorithms

- *n* processes communicate by messages
- all processes know that at most t of them might be faulty

Fault-tolerant distributed algorithms

- *n* processes communicate by messages
- all processes know that at most t of them might be faulty
- f are actually faulty
- resilience conditions, e.g., $n > 3t \land t \ge f \ge 0$

Fault-tolerant DAs: Model Checking Challenges

unbounded data types

counting how many messages have been received

• parameterization in multiple parameters

among *n* processes $f \leq t$ are faulty with n > 3t

• contrast to concurrent programs

fault tolerance against adverse environments

degrees of concurrency

many degrees of partial synchrony

continuous time

fault-tolerant clock synchronization

Importance of liveness in distributed algorithms

Interplay of safety and liveness is a central challenge in DAs

- interplay of safety and liveness is non-trivial
- asynchrony and faults lead to impossibility results

Importance of liveness in distributed algorithms

Interplay of safety and liveness is a central challenge in DAs

- interplay of safety and liveness is non-trivial
- asynchrony and faults lead to impossibility results

Rich literature to verify safety (e.g. in concurrent systems)

Distributed algorithms perspective:

- "doing nothing is always safe"
- "tools verify algorithms that actually might do nothing"

Model checking problem for fault-tolerant DA algorithms

- ullet given a distributed algorithm and spec. φ
- system description: $M(n,t,f) = P(n,t,f) \parallel P(n,t,f) \parallel \cdots \parallel P(n,t,f)$
- every M(n, t, f) is a system of n f correct processes
- show for all n, t, and f satisfying $n > 3t \land t \ge f \ge 0$ $M(n, t, f) \models \varphi$

Model checking problem for fault-tolerant DA algorithms

- $\bullet\,$ given a distributed algorithm and spec. φ
- system description: $M(n, t, f) = P(n, t, f) \parallel P(n, t, f) \parallel \cdots \parallel P(n, t, f)$
- every M(n, t, f) is a system of N(n, t, f) correct processes
- show for all *n*, *t*, and *f* satisfying resilience condition $M(n, t, f) \models \varphi$

Properties in Linear Temporal Logic

Unforgeability (U). If $v_i = 0$ for all correct processes *i*, then for all correct processes *j*, accept_i remains 0 forever.

$$\mathbf{G}\left(\big(\bigwedge_{i=1}^{n-f}v_i=0\big)\to\mathbf{G}\;\left(\bigwedge_{j=1}^{n-f}accept_j=0\right)\right)$$

Completeness (C). If $v_i = 1$ for all correct processes *i*, then there is a correct process *j* that eventually sets accept_{*i*} to 1.

$$\mathsf{G}\left(\big(\bigwedge_{i=1}^{n-f} \mathsf{v}_i=1\big) \to \mathsf{F}\left(\bigvee_{j=1}^{n-f} \mathsf{accept}_j=1\right)\right)$$

Relay (R). If a correct process i sets accept_i to 1, then eventually all correct processes j set accept_i to 1.

$$\mathsf{G}\left(\left(\bigvee_{i=1}^{n-f} accept_i = 1\right) \to \mathsf{F}\left(\bigwedge_{j=1}^{n-f} accept_j = 1\right)\right)$$

Properties in Linear Temporal Logic

Unforgeability (U). If $v_i = 0$ for all correct processes *i*, then for all correct processes *j*, accept_i remains 0 forever.

$$\mathbf{G}\left(\big(\bigwedge_{i=1}^{n-f} v_i = 0\big) \to \mathbf{G} \ \big(\bigwedge_{j=1}^{n-f} accept_j = 0\big)\right)$$
 Safety

Completeness (C). If $v_i = 1$ for all correct processes *i*, then there is a correct process *j* that eventually sets accept_{*i*} to 1.

$$\mathsf{G}\left(\big(\bigwedge_{i=1}^{n-f} \mathsf{v}_i=1\big) \to \mathsf{F}\left(\bigvee_{j=1}^{n-f} accept_j=1\right)\right) \qquad \qquad \mathsf{Liveness}$$

Relay (R). If a correct process i sets accept_i to 1, then eventually all correct processes j set accept_i to 1.

$$\mathsf{G}\left(\left(\bigvee_{i=1}^{n-f} accept_i = 1\right) \to \mathsf{F}\left(\bigwedge_{j=1}^{n-f} accept_j = 1\right)\right)$$
 Liveness

Threshold-guarded fault-tolerant distributed algorithms

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard

if received *m* from *some* process then ...

• Universal Guard

if received *m* from *all* processes then ...

These guards allow one to treat the processes in a parameterized way

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard

if received *m* from *some* process then ...

• Universal Guard

if received *m* from *all* processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

- Existential Guard if received *m* from *some* process then ...
- Universal Guard

if received *m* from *all* processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Fault-Tolerant Algorithms: *n* processes, at most *t* are Byzantine

• Threshold Guard

if received m from n-t processes then ...

• (the processes cannot refer to f!)

Counting argument in threshold-guarded algorithms

Correct processes count distinct incoming messages

Counting argument in threshold-guarded algorithms

Correct processes count distinct incoming messages

Counting argument in threshold-guarded algorithms

Correct processes count distinct incoming messages

our abstractions at a glance

$$n = 6, t = 1, f = 1$$

$$t + 1 = 2, n - t = 5$$

nr. processes (counters)

$$n = 6, t = 1, f = 1$$

$$t + 1 = 2, n - t = 5$$

nr. processes (counters)

Related work: $(0, 1, \infty)$ -counter abstraction

Pnueli, Xu, and Zuck (2001) introduced $(0, 1, \infty)$ -counter abstraction:

- finitely many local states, e.g., {*N*, *T*, *C*}.
- abstract the number of processes in every state,

e.g., $K : C \mapsto \mathbf{0}, \quad T \mapsto \mathbf{1}, \quad N \mapsto$ "many".

• perfectly reflects mutual exclusion properties e.g., $G(K(C) \neq \text{``many''})$.

Related work: $(0, 1, \infty)$ -counter abstraction

Pnueli, Xu, and Zuck (2001) introduced $(0, 1, \infty)$ -counter abstraction:

• finitely many local states, e.g., {*N*, *T*, *C*}.

• abstract the number of processes in every state,

e.g., $K : C \mapsto \mathbf{0}, \quad T \mapsto \mathbf{1}, \quad N \mapsto$ "many".

• perfectly reflects mutual exclusion properties e.g., $G(K(C) \neq \text{``many''})$.

Our parametric data + counter abstraction:

- unboundendly many local states (nr. of received messages)
- finer counting of processes:

 $t+1\ {\rm processes}$ in a specific state can force global progress, while $t\ {\rm processes}$ cannot

• mapping t, t + 1, and n - t to "many" is too coarse.

Tool Chain: ByMC

Tool Chain: ByMC

PV 2014 14 / 21

Tool Chain: ByMC

Concrete vs. parameterized (Byzantine case)

- Parameterized model checking performs well (the red line).
- Experiments for fixed parameters quickly degrade (n = 9 runs out of memory).
- We found counter-examples for the cases n = 3t and f > t, where the resilience condition is violated.

Completeness threshold for bounded model checking

Fix a threshold automaton TA and a size function N.

Theorem

For each **p** with $RC(\mathbf{p})$, the diameter of an accelerated counter system is independent of parameters and is less than or equal to $|E| \cdot (|C| + 1) + |C|$:

- |E| is the number of edges in TA (self-loops excluded).
- |C| is the number of edge conditions in TA that can be unlocked (locked) by an edge appearing later (resp. earlier) in the control flow, or by a parallel edge.

Completeness threshold for bounded model checking

Fix a threshold automaton TA and a size function N.

Theorem

For each **p** with $RC(\mathbf{p})$, the diameter of an accelerated counter system is independent of parameters and is less than or equal to $|E| \cdot (|C| + 1) + |C|$:

- |E| is the number of edges in TA (self-loops excluded).
- |C| is the number of edge conditions in TA that can be unlocked (locked) by an edge appearing later (resp. earlier) in the control flow, or by a parallel edge.

Can we reach the bound with NuSMV?

17 / 21

Experimental setup

The tool (source code in OCaml),

the code of the distributed algorithms in Parametric Promela, and a virtual machine with full setup

are available at: http://forsyte.at/software/bymc

Related work: PV of FTDAs

Regular model checking of fault-tolerant distributed protocols:

[Fisman, Kupferman, Lustig 2008]

- "First-shot" theoretical framework.
- No guards like $x \ge t + 1$, only $x \ge 1$.
- No implementation.
- Manual analysis applied to folklore broadcast (crash faults).

Related work: PV of FTDAs

Regular model checking of fault-tolerant distributed protocols:

[Fisman, Kupferman, Lustig 2008]

- "First-shot" theoretical framework.
- No guards like $x \ge t + 1$, only $x \ge 1$.
- No implementation.
- Manual analysis applied to folklore broadcast (crash faults).

Backward reachability using SMT with arrays:

[Alberti, Ghilardi, Pagani, Ranise, Rossi 2010-2012]

- Implementation.
- Experiments on Chandra-Toueg 1990.
- No resilience conditions like n > 3t.
- Safety only.

Our current work

	Discrete synchronous	Discrete partially synchronous	Discrete asynchronous	Continuous synchronous	Continuous partially synchronous
	one-shot broadcast, c.b.consensus				
			core of {ST87,		
One instance/ finite payload			BT87, CT96},		
			MA06 (common),		
			MR04 (binary)		
Many inst./					
finite payload					
Many inst./ unbounded					
pavload					
Messages with					
reals					

Future work: threshold guards + orthogonal features

Josef Widder (www.forsyte.at)

Parameterized Model Checking of FTDAs

PV 2014 20 / 21

Thank you!

[http://forsyte.at/software/bymc]

Concrete $t + 1 \le x$

Concrete $t + 1 \le x$ is abstracted as $x = I_{t+1} \lor x = I_{n-t}$.

Concrete $t + 1 \le x$ is abstracted as $x = I_{t+1} \lor x = I_{n-t}$.

Concrete x' = x + 1,

Concrete $t + 1 \le x$ is abstracted as $x = I_{t+1} \lor x = I_{n-t}$.

Concrete x' = x + 1, is abstracted as: $x = I_0 \quad \land \ x' = I_1 \dots$

PV 2014 22 / 21

Concrete $t + 1 \le x$ is abstracted as $x = I_{t+1} \lor x = I_{n-t}$.

 $\begin{array}{ll} \text{Concrete } x' = x+1, \ \text{is abstracted as:} \\ x = I_0 & \land \ x' = I_1 \\ \lor x = I_1 & \land \left(x' = I_1 \quad \lor x' = I_{t+1}\right) \ldots \end{array}$

Concrete $t + 1 \le x$ is abstracted as $x = I_{t+1} \lor x = I_{n-t}$.

Concrete x' = x + 1, is abstracted as: $x = I_0 \land x' = I_1$ $\lor x = I_1 \land (x' = I_1 \lor x' = I_{t+1})$ $\lor x = I_{t+1} \land (x' = I_{t+1} \lor x' = I_{n-t}) \dots$

Concrete $t + 1 \le x$ is abstracted as $x = I_{t+1} \lor x = I_{n-t}$.

Concrete x' = x + 1, is abstracted as: $x = I_0 \land x' = I_1$ $\lor x = I_1 \land (x' = I_1 \lor x' = I_{t+1})$ $\lor x = I_{t+1} \land (x' = I_{t+1} \lor x' = I_{n-t})$ $\lor x = I_{n-t} \land x' = I_{n-t}$

Parametric abst. refinement — uniformly spurious paths

Classical CEGAR:

Parametric abst. refinement — uniformly spurious paths

Josef Widder (www.forsyte.at)

Parameterized Model Checking of FTDAs

PV 2014 23 / 21