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Overview

Verification of dynamic systems using graph transformation

1 Model the system by a graph transformation system

2 Use techniques for verifying graph transformation systems in
order to verify the system

Features of graph transformation

Infinite state space

Dynamic creation and deletion of objects

Mobility

Variable topology

. . .

These features are good for modelling, but problematic when it
comes to verification!
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Graph Transformation Systems

Graph Transformation Systems (GTSs) as a computational model
for dynamic systems.

the graph represents the state

production applications represent state changes

A graph transformation system (GTS) consists of an initial
(hyper-)graph and a set of rules:

RL

L R
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n
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...
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n

...

...
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Example: Leader Election

Example: leader election protocol on a ring (Chang/Roberts)

Leader election protocol

The leader should be the process with the smallest Id.

Every process generates a message with its own Id and sends
it to its successor.

Upon reception of a message with content MId a process with
Id PId acts as follows:

if MId < PId forward the message to the next successor
if MId = PId the process declares itself the leader
If MId > PId do not pass on the message

Properties to verify: there will never be two leaders, a leader will
be elected eventually, . . .

Barbara König Decidability Results for Graph Transformation Systems 5
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Example: Leader Election

Rules for the finite-state case (with three processes):

S(1) S(2)

S(3)
1 2 1 2

S(i) i

M(i)

⇒

Start graph Send message (send i )

1 2 1 2

3 3

j j

M(i) M(i)

⇒
i < j 1 2 1 2

i L

M(i)

⇒

Forward (forward i ,j) Declare Leader (leader i )

21

3 4

1 2

3 4

L

L
⇒ Error

Error (error)
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Hypergraphs and Graph Morphisms

I will in the following work with hypergraphs, since I find them
more suitable for system modelling. People have different
preferences . . . The results on verification are mostly independent
of the choice of graph model.

Hypergraph

Let Λ be a set of labels. A hypergraph or graph G is a tuple
G = (V ,E , c , l), where

V is a set of nodes,

E is a set of (hyper-)edges,

c : E → V ∗ is the connection function and

l : E → Λ is the labelling function.

Barbara König Decidability Results for Graph Transformation Systems 7
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Hypergraphs and Graph Morphisms

Graph morphisms are structure-preserving maps between graphs.

Graph morphismus

Let G1 = (V1,E1, c1, l1), G2 = (V2,E2, c2, l2) be two graphs. A
graph morphism ϕ : G1 → G2 is a pair of mappings ϕV : V1 → V2,
ϕE : E1 → E2 such that for all e1 ∈ E1 it holds that

c2(ϕE (e1)) = ϕV (c1(e1)) and

l2(ϕE (e1)) = l1(e1).

Analogously, a partial graph morphism consists of two partial
mappings ϕV , ϕE . If ϕE (e) is defined, ϕV must be defined on all
nodes attached to e.

Two graphs G1,G2 are isomorphic if there is a bijective total
morphism between them (symbolically G1

∼= G2).

Barbara König Decidability Results for Graph Transformation Systems 8
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Graph Transformation

Graph transformation rule (definition)

A (graph transformation) rule consists of two graphs L,R and a
partial graph morphisms r : L→ R.

Example:

1 2

3

1 2

3

j

M(i)R

j

M(i) L

r

A rule r specifies what is deleted (items of the left-hand side for
which r is undefined), what is preserved (items of the left-hand
side for which r is defined) and what is created (parts of the
right-hand side not in the image of r).

Barbara König Decidability Results for Graph Transformation Systems 9



GTSs Decidability Problems for GTSs General and Context-free GTS Restricting Deletion and Creation Conclusion

Graph Transformation

Graph transformation rule (definition)

A (graph transformation) rule consists of two graphs L,R and a
partial graph morphisms r : L→ R.

Example:

1 2

3

1 2

3

j

M(i)R

j

M(i) L

r

A rule r specifies what is deleted (items of the left-hand side for
which r is undefined), what is preserved (items of the left-hand
side for which r is defined) and what is created (parts of the
right-hand side not in the image of r).

Barbara König Decidability Results for Graph Transformation Systems 9



GTSs Decidability Problems for GTSs General and Context-free GTS Restricting Deletion and Creation Conclusion

Graph Transformation

Graph transformation can be described by a gluing diagram,
involving the match m and the rule r .

Graph transformation (single-pushout approach – SPO)

Let r : L→ R be a rule. We say that a graph G is transformed into
a graph H (symbolically: G

r⇒ H) if there is a total graph
morphisms m : L→ G (the match) and additional morphisms into
H such that the following diagram is a pushout (= gluing diagram
of partial graph morphisms).

L

m
��

r // R

��
G // H

Barbara König Decidability Results for Graph Transformation Systems 10
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Graph Transformation

In order to understand (single-pushout) graph transformation we
have to specify what it means to glue two graphs over a common
subgraph.

Gluing of graphs for total morphisms (schematically)

I
ϕ1

zz

ϕ2

$$
G1 G2

~~   
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Graph Transformation

Gluing of graphs (total morphisms)

Let I ,G1,G2 be graphs with total graph morphisms ϕ1 : I → G1,
ϕ2 : I → G2. We call I the interface.

Let ≡ be the smallest equivalence relation on G1 ] G2 which
satisfies ϕ1(x) ≡ ϕ2(x) for all x ∈ I .

The gluing of G1,G2 over I is defined as follows:

G1 +I G2 = (G1 ] G2)/ ≡

(Take the disjoint union of G1,G2 and quotient through the
equivalence ≡.)
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Graph Transformation

For partial morphisms, things become slightly more complicated . . .

Gluing of graphs (partial morphisms)

Let I ,G1,G2 be graphs with partial graph morphisms ϕ1 : I → G1,
ϕ2 : I → G2.

Compute equivalence classes as before, but remove those
equivalence classes which contain the image ϕ1(x) of an item
(node or edge) x of I , for which ϕ2(x) is undefined (or vice versa).

In addition remove all equivalence classes which contain an edge
attached to a node whose equivalence class has been removed
(dangling edge).

Barbara König Decidability Results for Graph Transformation Systems 13
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Graph Transformation

1 2 3

4 5

A BI

ϕ2

��

ϕ1 // 1,2

C

u
G1

2
3

1

4 5

A B

E

x y z

D

G2
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Graph Transformation

1 2 3

4 5

A BI

ϕ2

��

ϕ1 // 1,2

C

u
G1

2
3

1

4 5

A B

E

x y z

D

G2

Equivalence classes:
{x , y , u}
{z}
{A}
{B}

{C}
{D}
{E}
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Graph Transformation

Such a “gluing diagram” has the following universal property:

I
ϕ1

~~

ϕ2

  
G1

ψ1

  

G2

ψ2

~~
G1 +I G2

The diagram commutes, i.e.,
ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2.

For any two morphisms
ψ′1 : G1 → H, ψ′2 : G2 → H
satisfying ψ′1 ◦ϕ1 = ψ′2 ◦ϕ2 there
exists a unique morphism
η : G1 +I G2 → H such that
η ◦ ψ1 = ψ′1 and η ◦ ψ2 = ψ′2.

Diagrams with this property are called pushouts in category theory.
The graph G1 +I G2 is unique up to isomorphism.

Barbara König Decidability Results for Graph Transformation Systems 15
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Graph Transformation

Example diagram describing a graph transformation:

1 2

3

M(1)

2

m
��

r //

1 2

3

M(1)

2

��

2

3

M(1)

1 //
2

3

1

M(1)

In the following: we consider only injective matches

Barbara König Decidability Results for Graph Transformation Systems 16
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Graph Transformation

There are other graph transformation approaches, for instance

the double-pushout approach (DPO)

The main practical difference is the treatment of so-called dangling
edges, i.e., edges which are not deleted by a rule, but where at
least one of the attached nodes is deleted.

In the single-pushout approach the edge is deleted as well.

In the double-pushout approach the corresponding rule can
not be applied.

Barbara König Decidability Results for Graph Transformation Systems 17
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Decidability

We are interested in the following decidability questions . . .

For what kind of GTS are reachability and coverability
decidable?

How can GTS be restricted, such that these problems become
decidable?

What are the key features that cause undecidability?

Survey on existing results and our results published at RTA ’12

Barbara König Decidability Results for Graph Transformation Systems 18
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Reachability and Coverability

A graph transformation system (GTS) consists of a set of rules R
and an initial graph G0.

Reachability: Is there a graph H such that G0 ⇒∗ H and H, Gf

are isomorphic?

Coverability: Is there a graph H such that G0 ⇒∗ H and Gf is
isomorphic to a subgraph of H?

G0

H

Gf

∼ =

Gf is reachable

G0

H

Gf

≤

Gf is coverable

Barbara König Decidability Results for Graph Transformation Systems 19
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General GTS

In the general case GTSs are Turing-complete:

Reachability: Undecidable

 Encode a Turing Machine into a GTS and ask if
a final state is reachable. Additional rules delete
the tape once a final state is reached.

Coverability: Undecidable

 Encode a Turing Machine into a GTS and ask if
a final state is coverable.

Reachability and coverability are naturally decidable for GTSs that
are finite-state (up to isomorphism).

Barbara König Decidability Results for Graph Transformation Systems 20
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Context-free GTS

=⇒A

1

2 3

1 3

2

B B

Left-hand sides of rules consist of a single hyperedge and no nodes
are deleted.

Reachability: NP-complete

 The membership problem for such GTSs is
NP-complete [Habel]

Coverability: In PSPACE, NP-hard

 Exact complexity unknown

Barbara König Decidability Results for Graph Transformation Systems 21
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Node Deletion and Creation

=⇒

1 2

3

1 2

3

Assume the GTS neither creates nor deletes nodes.

Connections between SPO and Petri nets have been studied by
Baldan, Corradini, Montanari.

Reachability and Coverability are decidable for Petri nets [Mayr].

Reachability and Coverability: Decidable

 These problems can be reduced to reachability
and coverability on Petri nets.

Barbara König Decidability Results for Graph Transformation Systems 22
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Node Deletion and Creation

Procedure:

Think of a ”complete” graph with all nodes and an edge
between each pair of nodes (loops included) for each label.

The Petri net has one place for each edge of this graph.

Add transitions to the net for every possible instantiation of a
rule.

The tokens count the occurrence of each edge.

2

3

1

3

1 2

Barbara König Decidability Results for Graph Transformation Systems 23
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Node Deletion and Creation

=⇒

1 2

3 4

1 5

3 2, 4

The GTS may delete and merge nodes, but the number of nodes is
constant.

Reachability: Undecidable

 Reachability of Petri nets with reset and transfer
arcs can be reduced to this type of GTS.

Coverability: Decidable

 This can be reduced to Petri nets with reset and
transfer arcs.

Barbara König Decidability Results for Graph Transformation Systems 24
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Non-deleting GTS

=⇒L L

R

The GTS deletes no nodes or edges, i.e. the rule morphism is a
total injection.

Reachability: Decidable

 Due to the monotonicity of the rules

Coverability: Undecidable

 Reduce the halting problem for Turing machines
to this problem

Barbara König Decidability Results for Graph Transformation Systems 25
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Non-deleting GTS

2

L2

z0

a

b
2

R2

L N R

a
z1

b

L R

z1

c

R

2

R

2

L N R

c
z2

2

Start computation
with the initial graph.

Each application of a
δ-rule increases the
height of the grid.

Auxiliary rules copy
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GTS and Well-structured Transition Systems

In the following we will present decidability results based on
well-structured transition systems [Finkel, Schnoebelen]
[Abdulla et al.]:

Graphs are represented symbolically by using well-quasi orders
(wqo’s)

Coverability may depend on the used order

Rule formats may be restricted
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GTS and Well-structured Transition Systems

order wqo on graph class well-structured for

minor ordering all graphs lossy systems
(contraction rules)

subgraph
ordering

bounded path length GTS without NACs

induced subgr.
ordering

bounded path length
and edge multiplicity

GTS with restricted
NACs

NACs = negative application conditions

In these cases the coverability problem is decidable if only graphs
contained the graph class (e.g., graphs of bounded path length)
are reachable from the start graph G0.

See our paper at CONCUR ’14

Implementation: Uncover
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Node and Edge Relabelling

Nodes and edges are labelled, the rules delete no nodes and edges
but may modify node and edge labels.

M
N

N

B

B

=⇒ N
N

M

B

A

Reachability and coverability are clearly decidable (the set of states
is finite), but there is another interesting problem:

Definition (Existential Coverability Problem)

Is there an initial graph G0, labeled only with initial labels, such
that we can reach a graph G ′ that covers a given graph G?
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Node or Edge Relabelling

If only nodes have labels:

Existential Coverability: Decidable

 We can use a simple fixed point computation.

If only edges have labels.

Existential Coverability: Decidable

 Same as node relabelling case.

Barbara König Decidability Results for Graph Transformation Systems 30



GTSs Decidability Problems for GTSs General and Context-free GTS Restricting Deletion and Creation Conclusion

Node and Edge Relabelling

Assume nodes and edges have labels.

Existential Coverability: Undecidable

 We can encode a Turing machine (TM) into this
setting.

Procedure:

Extract tapes out of the initial graph.

 Node and edge labels are needed!

Rules of the TM can be translated directly.

If the TM halts, then the initial graph was of sufficient size to
simulate the TM.
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Conclusion

Reachability is not strictly more difficult than coverability:

general

context-free

edge contr. edge del. node del.

edge del.
& contr.

node del. &
edge contr.

node &
edge del.

with minor
rules

with
bounded

paths

node del. &
recreation

no node
creation

finite state non-deleting

Reachability

Coverability
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Future Work

Future Work

Are there other interesting restricted GTSs?

Why is reachability sometimes decidable if coverability is not
and vice versa?

Which properties of GTSs cause undecidability?

Decidability results for the double pushout approach?

Can other types of GTSs be modelled as WSTS?

What is the exact complexity of coverability for context-free
GTS?
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