
Well-Structured
Parameterized Networks of Systems

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

1st Workshop on Parameterized Verification, Roma, Sep. 6th, 2014

WSTS FOR PV?
I Well-structured systems (WSTS) are a family of infinite-state

models supporting generic verification algorithms based on
well-quasi-ordering (WQO) theory.

I WSTS invented in 1987, developed and popularized in
1996–2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets/VASS extensions, channel systems,
counter machines, integral automata, etc.

I Used in software verification, communication protocols, . . . In
particular, for distributed algorithms, WSTS have been used for
verification of parameterized networks. Useful for proving
safety/for finding minimal unsafe start configurations.

I WSTS still thriving today, with several new models (based on
wqos on graphs, etc.), or applications (deciding data logics,
modal logics, etc.) proposed every year.

I Meanwhile, the generic WSTS theory saw recent new
developments: (1) techniques for wqo-based complexity;
(2) completion theory for forward acceleration; ... 2/24

WSTS FOR PV?
I Well-structured systems (WSTS) are a family of infinite-state

models supporting generic verification algorithms based on
well-quasi-ordering (WQO) theory.

I WSTS invented in 1987, developed and popularized in
1996–2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets/VASS extensions, channel systems,
counter machines, integral automata, etc.

I Used in software verification, communication protocols, . . . In
particular, for distributed algorithms, WSTS have been used for
verification of parameterized networks. Useful for proving
safety/for finding minimal unsafe start configurations.

I WSTS still thriving today, with several new models (based on
wqos on graphs, etc.), or applications (deciding data logics,
modal logics, etc.) proposed every year.

I Meanwhile, the generic WSTS theory saw recent new
developments: (1) techniques for wqo-based complexity;
(2) completion theory for forward acceleration; ... 2/24

WSTS FOR PV?
I Well-structured systems (WSTS) are a family of infinite-state

models supporting generic verification algorithms based on
well-quasi-ordering (WQO) theory.

I WSTS invented in 1987, developed and popularized in
1996–2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets/VASS extensions, channel systems,
counter machines, integral automata, etc.

I Used in software verification, communication protocols, . . . In
particular, for distributed algorithms, WSTS have been used for
verification of parameterized networks. Useful for proving
safety/for finding minimal unsafe start configurations.

I WSTS still thriving today, with several new models (based on
wqos on graphs, etc.), or applications (deciding data logics,
modal logics, etc.) proposed every year.

I Meanwhile, the generic WSTS theory saw recent new
developments: (1) techniques for wqo-based complexity;
(2) completion theory for forward acceleration; ... 2/24

WSTS FOR PV?

I WSTS invented in 1987, developed and popularized in
1996–2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets/VASS extensions, channel systems,
counter machines, integral automata, etc.

I Used in software verification, communication protocols, . . . In
particular, for distributed algorithms, WSTS have been used for
verification of parameterized networks. Useful for proving
safety/for finding minimal unsafe start configurations.

I WSTS still thriving today, with several new models (based on
wqos on graphs, etc.), or applications (deciding data logics,
modal logics, etc.) proposed every year.

I Meanwhile, the generic WSTS theory saw recent new
developments: (1) techniques for wqo-based complexity;
(2) completion theory for forward acceleration; ...

2/24

OUTLINE OF THE TALK

I Part 1: Basics of WSTS.
Recalling the basic definition, with Broadcast protocols and
Timed-arc nets as examples

I Part 2: Verifying WSTS.
Two simple verification algorithms, deciding Termination and
Coverability

I Part 3: A few words on complexity.
Looking at controlled bad sequences and bounding their length

3/24

Part 1 What are WSTS?

4/24

WHAT ARE WSTS?

Def. A WSTS is an ordered TS S= (S,→,6) that is monotonic and
such that (S,6) is a well-quasi-ordering (a wqo, more later).

Recall:
– transition system (TS): S= (S,→) with steps e.g. “s→ s ′”
– ordered TS: S= (S,→,6) with smaller and larger states, e.g. s6 t
– monotonic TS: ordered TS with(
s1→ s2 and s1 6 t1

)
implies ∃t2 ∈ S :

(
t1→ t2 and s2 6 t2

)
,

i.e., “larger states simulate smaller states”.

Equivalently: 6 is a wqo and a simulation.

NB. Starting from any t0 > s0, a run s0→ s1→ ·· · → sn can be
simulated “from above” with some t0→ t1→ ·· · → tn

5/24

WHAT ARE WSTS?

Def. A WSTS is an ordered TS S= (S,→,6) that is monotonic and
such that (S,6) is a well-quasi-ordering (a wqo, more later).

Recall:
– transition system (TS): S= (S,→) with steps e.g. “s→ s ′”
– ordered TS: S= (S,→,6) with smaller and larger states, e.g. s6 t
– monotonic TS: ordered TS with(
s1→ s2 and s1 6 t1

)
implies ∃t2 ∈ S :

(
t1→ t2 and s2 6 t2

)
,

i.e., “larger states simulate smaller states”.

Equivalently: 6 is a wqo and a simulation.

NB. Starting from any t0 > s0, a run s0→ s1→ ·· · → sn can be
simulated “from above” with some t0→ t1→ ·· · → tn

5/24

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S,6) is wqo”?

Def. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains an
increasing pair: xi 6 xj for some i < j.

⇔ “every infinite sequence is a good sequence”
⇔ “every bad sequence is finite”

6/24

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S,6) is wqo”?

Def. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains an
increasing pair: xi 6 xj for some i < j.

⇔ “every infinite sequence is a good sequence”
⇔ “every bad sequence is finite”

Alternatively: (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . .
contains an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

NB. Equivalence of these two definitions is not trivial

6/24

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S,6) is wqo”?

Def. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains an
increasing pair: xi 6 xj for some i < j.

⇔ “every infinite sequence is a good sequence”
⇔ “every bad sequence is finite”

Alternatively: (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . .
contains an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

NB. Equivalence of these two definitions is not trivial

Example. (Dickson’s Lemma) (Nk,6×) is a wqo, with
a= (a1, . . . ,ak)6× b= (b1, . . . ,bk)

def⇔ a1 6 b1∧ · · ·∧ak 6 bk

6/24

WELL-QUASI-ORDERING (WQO)

Def. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains an
infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

Example. (Dickson’s Lemma) (Nk,6×) is a wqo, with
a= (a1, . . . ,ak)6× b= (b1, . . . ,bk)

def⇔ a1 6 b1∧ · · ·∧ak 6 bk

Example. (Cartesian product) (X1× ·· ·×Xk,6×) is a wqo when
(X1,61), . . . ,(Xk,6k) are wqos, with

x= (x1, . . . ,xk)6× y= (y1, . . . ,yk)
def⇔ x1 61 y1∧ · · ·∧ xk 6k yk

6/24

WELL-QUASI-ORDERING (WQO)

Def. (X,6) is a wqo def⇔ any infinite sequence x0,x1,x2, . . . contains an
infinite increasing subsequence: xn0 6 xn1 6 xn2 6 . . .

Example. (Cartesian product) (X1× ·· ·×Xk,6×) is a wqo when
(X1,61), . . . ,(Xk,6k) are wqos, with

x= (x1, . . . ,xk)6× y= (y1, . . . ,yk)
def⇔ x1 61 y1∧ · · ·∧ xk 6k yk

Example. (Kleene star) (X∗,6∗) is a wqo when (X,6) is a wqo, with
x= (x1 · · ·xk)6∗ y= (y1 · · ·y`)

def⇔ x1 6 yi1 ∧ · · ·∧ xk 6 yik for some 16 i1 < i2 < · · ·< ik 6 `
def⇔ x6× y′ for some subsequence y′ of y

6/24

WELL-QUASI-ORDERING (WQO)

Example. (Cartesian product) (X1× ·· ·×Xk,6×) is a wqo when
(X1,61), . . . ,(Xk,6k) are wqos, with

x= (x1, . . . ,xk)6× y= (y1, . . . ,yk)
def⇔ x1 61 y1∧ · · ·∧ xk 6k yk

Example. (Kleene star) (X∗,6∗) is a wqo when (X,6) is a wqo, with
x= (x1 · · ·xk)6∗ y= (y1 · · ·y`)

def⇔ x1 6 yi1 ∧ · · ·∧ xk 6 yik for some 16 i1 < i2 < · · ·< ik 6 `
def⇔ x6× y′ for some subsequence y′ of y

Other important/useful wqos: multisets, trees ordered by
embedding (Kruskal’s Theorem), and graphs with minors (Robertson
& Seymour’s Graph Minor Theorem).

6/24

Two examples of WSTS

7/24

EXAMPLE 1: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r}−→ {a2,c,q,r}−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll see later: The above protocol does not have infinite runs

8/24

EXAMPLE 1: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r}−→ {a2,c,q,r}−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll see later: The above protocol does not have infinite runs

8/24

EXAMPLE 1: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al.’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and
rendez-vous.

r c

a

q ⊥
d!!

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps: {c2,q,r}−→ {a2,c,q,r}−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

We’ll see later: The above protocol does not have infinite runs

8/24

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q}⊆ {c2,r,q}

Fact. Conf =Mf({r,c,a,q,⊥}) equipped with ⊆ is a wqo

Proof: this is exactly (N5,6×)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s1 ⊆ t1 and consider all cases for a step s1→ s2

Coro. Broadcast protocols are WSTS

9/24

EXAMPLE 2: TIMED-ARC NETS

Timed-arc Nets (Abdulla & Nylén 2001), aka TPN, are dynamic &
distributed collections of finite-state processes, each carrying a
real-valued clock.

10/24

EXAMPLE 2: TIMED-ARC NETS

Timed-arc Nets (Abdulla & Nylén 2001), aka TPN, are dynamic &
distributed collections of finite-state processes, each carrying a
real-valued clock.

Control states of individual processes taken from some finite
Q= {r,c,a,q, ..} (same as Broadcast protocols)

A configuration collects the local states of all processes, e.g.,
s= {c : 1.4,r : 3.0,q : 2.5}, this time with clock values.
I.e. Conf def

= Mf(Q×R>0)

10/24

EXAMPLE 2: TIMED-ARC NETS

Control states of individual processes taken from some finite
Q= {r,c,a,q, ..} (same as Broadcast protocols)

A configuration collects the local states of all processes, e.g.,
s= {c : 1.4,r : 3.0,q : 2.5}, this time with clock values.
I.e. Conf def

= Mf(Q×R>0)

TPNs have rules like e.g. δ=

{
c ∈ [1;2)
q ∈ [2;∞)

7→
r ∈ [0;2]
q ∈ [1;1]
a ∈ (0;4)

}

10/24

EXAMPLE 2: TIMED-ARC NETS

A configuration collects the local states of all processes, e.g.,
s= {c : 1.4,r : 3.0,q : 2.5}, this time with clock values.
I.e. Conf def

= Mf(Q×R>0)

TPNs have rules like e.g. δ=

{
c ∈ [1;2)
q ∈ [2;∞)

7→
r ∈ [0;2]
q ∈ [1;1]
a ∈ (0;4)

}

Yielding steps like
s= {c : 1.4,r : 3.0,q : 2.5} δ−→ {r : 3.0,r : 0.73,q : 1.0,a : 2.1}= s ′

10/24

EXAMPLE 2: TIMED-ARC NETS

A configuration collects the local states of all processes, e.g.,
s= {c : 1.4,r : 3.0,q : 2.5}, this time with clock values.
I.e. Conf def

= Mf(Q×R>0)

TPNs have rules like e.g. δ=

{
c ∈ [1;2)
q ∈ [2;∞)

7→
r ∈ [0;2]
q ∈ [1;1]
a ∈ (0;4)

}

Yielding steps like
s= {c : 1.4,r : 3.0,q : 2.5} δ−→ {r : 3.0,r : 0.73,q : 1.0,a : 2.1}= s ′

also time-elapse steps like
s ′ = {r : 3.0,r : 0.73,q : 1.0,s : 2.1} +0.8−−−→ {r : 3.8,r : 1.53,q : 1.8,a : 2.9}

10/24

EXAMPLE 2: TIMED-ARC NETS

TPNs have rules like e.g. δ=

{
c ∈ [1;2)
q ∈ [2;∞)

7→
r ∈ [0;2]
q ∈ [1;1]
a ∈ (0;4)

}

Yielding steps like
s= {c : 1.4,r : 3.0,q : 2.5} δ−→ {r : 3.0,r : 0.73,q : 1.0,a : 2.1}= s ′

also time-elapse steps like
s ′ = {r : 3.0,r : 0.73,q : 1.0,s : 2.1} +0.8−−−→ {r : 3.8,r : 1.53,q : 1.8,a : 2.9}

Fact. Steps are monotonic for multiset inclusion
But (Mf(Q×R>0),⊆) is not wqo —since already (R>0,=) is not

10/24

TIMED-ARC NETS ARE WSTS

s= {r : 3.0,r : 0.73,q : 1.0,a : 2.1} ≈ s̃= {r : 3,q : 1} • {a : 2} • {r : 0}

11/24

TIMED-ARC NETS ARE WSTS

s= {r : 3.0,r : 0.73,q : 1.0,a : 2.1} ≈ s̃= {r : 3,q : 1} • {a : 2} • {r : 0}

[0 < x1 < x2 < 1)

| | |

r : 3 a : 2(+x1) r : 0(+x2)

q : 1

In general s̃ is a sequence over Mf(Q× {0,1,2,3,4,5+})

11/24

TIMED-ARC NETS ARE WSTS

In general s̃ is a sequence over Mf(Q× {0,1,2,3,4,5+})

Fact. The abstracted system is bisimilar with the original one (NB:
durations of time-elapse steps are not preserved).

{r : 3,q : 1} • {a : 2} • {r : 0} +?−−→ {} • {r : 3,q : 1} • {a : 2} • {r : 0}
+?−−→ {r : 1} • {r : 3,q : 1} • {a : 2}−→ ·· ·

11/24

TIMED-ARC NETS ARE WSTS

In general s̃ is a sequence over Mf(Q× {0,1,2,3,4,5+})

Fact. The abstracted system is bisimilar with the original one (NB:
durations of time-elapse steps are not preserved).

{r : 3,q : 1} • {a : 2} • {r : 0} +?−−→ {} • {r : 3,q : 1} • {a : 2} • {r : 0}
+?−−→ {r : 1} • {r : 3,q : 1} • {a : 2}−→ ·· ·

Fact. This new semantics is monotonic wrt pointed sequence
embedding 6∗ over

(
Mf(Q× {0, . . . ,4,5+})

)+, a wqo.
Hence TPN are WSTS!!!

11/24

Part 2 Verification of WSTS

12/24

TERMINATION

Termination is the question, given a TS S= (S,→, . . .) and a state sinit,
whether S has no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS S has an infinite run from sinit iff it has a finite run from sinit
that is a good sequence

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Proof: “⇒” by def of wqo. “⇐” by simulating si
+−→ sj from sj

⇒ one can decide Termination for a WSTS S by enumerating all finite
runs from sinit until a good sequence is found.
NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

13/24

TERMINATION

Termination is the question, given a TS S= (S,→, . . .) and a state sinit,
whether S has no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS S has an infinite run from sinit iff it has a finite run from sinit
that is a good sequence

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Proof: “⇒” by def of wqo. “⇐” by simulating si
+−→ sj from sj

⇒ one can decide Termination for a WSTS S by enumerating all finite
runs from sinit until a good sequence is found.
NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

13/24

TERMINATION

Termination is the question, given a TS S= (S,→, . . .) and a state sinit,
whether S has no infinite runs starting from sinit

Lem. [Finite Witnesses for Infinite Runs]
A WSTS S has an infinite run from sinit iff it has a finite run from sinit
that is a good sequence

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Proof: “⇒” by def of wqo. “⇐” by simulating si
+−→ sj from sj

⇒ one can decide Termination for a WSTS S by enumerating all finite
runs from sinit until a good sequence is found.
NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

13/24

COVERABILITY

Coverability asks, given S= (S,→, . . .), a state sinit and a target state t,
whether S has a covering run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a covering pseudorun of the form
sinit = s0 > t0→ s1 > t1→ s2 > · · ·tn−1→ sn > tn = t

Fact. In a covering pseudorun, we can assume that each ti is a
minimal (pseudo) predecessor of ti+1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn, . . . ,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS S has a covering pseudorun from sinit to t iff it has one that
is minimal and reverse-bad

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and reverse-bad.

14/24

COVERABILITY

Coverability asks, given S= (S,→, . . .), a state sinit and a target state t,
whether S has a covering run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a covering pseudorun of the form
sinit = s0 > t0→ s1 > t1→ s2 > · · ·tn−1→ sn > tn = t

Fact. In a covering pseudorun, we can assume that each ti is a
minimal (pseudo) predecessor of ti+1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn, . . . ,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS S has a covering pseudorun from sinit to t iff it has one that
is minimal and reverse-bad

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and reverse-bad.

14/24

COVERABILITY

Coverability asks, given S= (S,→, . . .), a state sinit and a target state t,
whether S has a covering run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a covering pseudorun of the form
sinit = s0 > t0→ s1 > t1→ s2 > · · ·tn−1→ sn > tn = t

Fact. In a covering pseudorun, we can assume that each ti is a
minimal (pseudo) predecessor of ti+1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn, . . . ,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS S has a covering pseudorun from sinit to t iff it has one that
is minimal and reverse-bad

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and reverse-bad.

14/24

COVERABILITY

Coverability asks, given S= (S,→, . . .), a state sinit and a target state t,
whether S has a covering run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a covering pseudorun of the form
sinit = s0 > t0→ s1 > t1→ s2 > · · ·tn−1→ sn > tn = t

Fact. In a covering pseudorun, we can assume that each ti is a
minimal (pseudo) predecessor of ti+1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn, . . . ,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS S has a covering pseudorun from sinit to t iff it has one that
is minimal and reverse-bad

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and reverse-bad.

14/24

COVERABILITY

Coverability asks, given S= (S,→, . . .), a state sinit and a target state t,
whether S has a covering run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a covering pseudorun of the form
sinit = s0 > t0→ s1 > t1→ s2 > · · ·tn−1→ sn > tn = t

Fact. In a covering pseudorun, we can assume that each ti is a
minimal (pseudo) predecessor of ti+1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn, . . . ,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS S has a covering pseudorun from sinit to t iff it has one that
is minimal and reverse-bad

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and reverse-bad.

14/24

COVERABILITY

Coverability asks, given S= (S,→, . . .), a state sinit and a target state t,
whether S has a covering run sinit→ s1→ s2 . . .→ sn with sn > t.

This is equivalent to having a covering pseudorun of the form
sinit = s0 > t0→ s1 > t1→ s2 > · · ·tn−1→ sn > tn = t

Fact. In a covering pseudorun, we can assume that each ti is a
minimal (pseudo) predecessor of ti+1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn, . . . ,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS S has a covering pseudorun from sinit to t iff it has one that
is minimal and reverse-bad

⇒ one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and reverse-bad.

14/24

Part 3 Bounding complexity

15/24

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {an1 ,cn2 ,qn3 ,rn4 ,⊥∗}, and sj = {an

′
1 ,cn

′
2 ,qn

′
3 ,rn

′
4 ,⊥∗}.

– if si
+−→ sj uses only spawn steps then n ′2 < n2,

– if a m and no d have been broadcast, then n ′3 < n3,
– if a d has been broadcast, and then n ′4 < n4.

In all cases, si * sj. QED

16/24

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {an1 ,cn2 ,qn3 ,rn4 ,⊥∗}, and sj = {an

′
1 ,cn

′
2 ,qn

′
3 ,rn

′
4 ,⊥∗}.

– if si
+−→ sj uses only spawn steps then n ′2 < n2,

– if a m and no d have been broadcast, then n ′3 < n3,
– if a d has been broadcast, and then n ′4 < n4.

In all cases, si * sj. QED

16/24

BROADCAST PROTOCOLS AND TERMINATION

r c

a

q ⊥
d!!

m??

d?? m!!

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume s0→ s1→ ·· · → sn and pick two positions i < j.
Write si = {an1 ,cn2 ,qn3 ,rn4 ,⊥∗}, and sj = {an

′
1 ,cn

′
2 ,qn

′
3 ,rn

′
4 ,⊥∗}.

– if si
+−→ sj uses only spawn steps then n ′2 < n2,

– if a m and no d have been broadcast, then n ′3 < n3,
– if a d has been broadcast, and then n ′4 < n4.

In all cases, si * sj. QED

16/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

17/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

17/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

where tower(n) def
= 22

...
2
}
n times

17/24

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} a
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} a

20m−−−−→ {c2
1
,qn−1,r} a

21m−−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} a
2n−1

m−−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

⇒ Runs of terminating systems may have nonelementary lengths
⇒ Running time of termination verification algorithm is not
elementary (for broadcast protocols)

17/24

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

18/24

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

18/24

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

18/24

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (Nk,6×), one can find arbitrarily long bad sequences:

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don’t play these tricks!

18/24

CONTROLLED BAD SEQUENCES

Def. A control is a pair of n0 ∈N and g :N→N.

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is a bound
on the length of controlled bad sequences.
Write Lg,A(n0) for this maximum length.

Length Function Theorem for (Nk,6×):

— Lg,Nk(n0)6 gω
k
(n0)

— Lg,Nk is in Fk+m−1 for g in Fm [Figueira2SS’11]
(more later on Fast-Growing Hierarchy)

19/24

CONTROLLED BAD SEQUENCES

Def. A control is a pair of n0 ∈N and g :N→N.

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is a bound
on the length of controlled bad sequences.
Write Lg,A(n0) for this maximum length.

Length Function Theorem for (Nk,6×):

— Lg,Nk(n0)6 gω
k
(n0)

— Lg,Nk is in Fk+m−1 for g in Fm [Figueira2SS’11]
(more later on Fast-Growing Hierarchy)

19/24

CONTROLLED BAD SEQUENCES

Def. A control is a pair of n0 ∈N and g :N→N.

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is a bound
on the length of controlled bad sequences.
Write Lg,A(n0) for this maximum length.

Length Function Theorem for (Nk,6×):

— Lg,Nk(n0)6 gω
k
(n0)

— Lg,Nk is in Fk+m−1 for g in Fm [Figueira2SS’11]
(more later on Fast-Growing Hierarchy)

19/24

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with n0 = |sinit| and g= Succ :N→N.

⇒ Time/space bound in Fk−1 for broadcast protocols with k states,
and in Fω when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— WQO-theory provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

20/24

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with n0 = |sinit| and g= Succ :N→N.

⇒ Time/space bound in Fk−1 for broadcast protocols with k states,
and in Fω when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— WQO-theory provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

20/24

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with n0 = |sinit| and g= Succ :N→N.

⇒ Time/space bound in Fk−1 for broadcast protocols with k states,
and in Fω when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

⇒ ·· · same upper bounds · · ·

This is a general situation:
— WSTS model (or WQO-based algorithm) provides g
— WQO-theory provides bounds for LA,g
— Translates as complexity upper bounds for WQO-based algorithm

20/24

NOW APPLYING TO TIMED-ARC NETS
Fact. The runs of a Timed-arc net N are controlled with
n0 = |sinit| and g : x 7→ x+ |N|,
or with n0 = |sinit|+ |N| and g= Double : x 7→ 2x if we want fixed g.

For Conf =Mf(Q× {0,1, . . . ,M+})∗ ordered with pointed sequence
embedding, the Length Function theorem [SS ’11] gives

Lg,Conf in F
ωω

k where k= |Q|×M

⇒ Time/space bound in Fωωω for Timed-arc Nets verification

These bounds are optimal!
— Verification of Timed-arc nets is Fωωω -complete [HSS ’12]
— Verification of Broadcast protocols is Fω-complete, or
“Ackermann-complete” [S ’10]

Bottom line: we can provide definite complexity for many WSTS
models

21/24

NOW APPLYING TO TIMED-ARC NETS
Fact. The runs of a Timed-arc net N are controlled with
n0 = |sinit| and g : x 7→ x+ |N|,
or with n0 = |sinit|+ |N| and g= Double : x 7→ 2x if we want fixed g.

For Conf =Mf(Q× {0,1, . . . ,M+})∗ ordered with pointed sequence
embedding, the Length Function theorem [SS ’11] gives

Lg,Conf in F
ωω

k where k= |Q|×M

⇒ Time/space bound in Fωωω for Timed-arc Nets verification

These bounds are optimal!
— Verification of Timed-arc nets is Fωωω -complete [HSS ’12]
— Verification of Broadcast protocols is Fω-complete, or
“Ackermann-complete” [S ’10]

Bottom line: we can provide definite complexity for many WSTS
models

21/24

NOW APPLYING TO TIMED-ARC NETS
Fact. The runs of a Timed-arc net N are controlled with
n0 = |sinit| and g : x 7→ x+ |N|,
or with n0 = |sinit|+ |N| and g= Double : x 7→ 2x if we want fixed g.

For Conf =Mf(Q× {0,1, . . . ,M+})∗ ordered with pointed sequence
embedding, the Length Function theorem [SS ’11] gives

Lg,Conf in F
ωω

k where k= |Q|×M

⇒ Time/space bound in Fωωω for Timed-arc Nets verification

These bounds are optimal!
— Verification of Timed-arc nets is Fωωω -complete [HSS ’12]
— Verification of Broadcast protocols is Fω-complete, or
“Ackermann-complete” [S ’10]

Bottom line: we can provide definite complexity for many WSTS
models

21/24

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (Fα)α∈Ord of functions N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .))

Fω(x)
def
= Fx+1(x)

gives F1(x) ∼ 2x, F2(x) ∼ 2x, F3(x) ∼ tower(x) and
Fω(x) ∼ ACKERMANN(x), the first Fα that is not primitive recursive.

Fλ(x)
def
= Fλx(x) for λ a limit ordinal with a fundamental sequence

λ0 < λ1 < λ2 < · · ·< λ.

E.g. Fω2(x)=Fω·(x+1)(x)=Fω·x+x+1(x)=

x+1︷ ︸︸ ︷
Fω·x+x(Fω·x+x(..Fω·x+x(x)..))

Fα
def
= all functions computable in time FO(1)

α (very robust).

22/24

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (Fα)α∈Ord of functions N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .))

Fω(x)
def
= Fx+1(x)

gives F1(x) ∼ 2x, F2(x) ∼ 2x, F3(x) ∼ tower(x) and
Fω(x) ∼ ACKERMANN(x), the first Fα that is not primitive recursive.

Fλ(x)
def
= Fλx(x) for λ a limit ordinal with a fundamental sequence

λ0 < λ1 < λ2 < · · ·< λ.

E.g. Fω2(x)=Fω·(x+1)(x)=Fω·x+x+1(x)=

x+1︷ ︸︸ ︷
Fω·x+x(Fω·x+x(..Fω·x+x(x)..))

Fα
def
= all functions computable in time FO(1)

α (very robust).

22/24

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (Fα)α∈Ord of functions N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .))

Fω(x)
def
= Fx+1(x)

gives F1(x) ∼ 2x, F2(x) ∼ 2x, F3(x) ∼ tower(x) and
Fω(x) ∼ ACKERMANN(x), the first Fα that is not primitive recursive.

Fλ(x)
def
= Fλx(x) for λ a limit ordinal with a fundamental sequence

λ0 < λ1 < λ2 < · · ·< λ.

E.g. Fω2(x)=Fω·(x+1)(x)=Fω·x+x+1(x)=

x+1︷ ︸︸ ︷
Fω·x+x(Fω·x+x(..Fω·x+x(x)..))

Fα
def
= all functions computable in time FO(1)

α (very robust).

22/24

CONCLUDING REMARKS

•WSTS are a powerful tool for the verification of parameterized
networks

•WSTS allow complexity analysis

Join the fun!
Technical details are lighter than it seems.
See [Sch ’10] [HSS ’12] [HSS ’13]
and tutorial notes
– “Algorithmic Aspects of WQO Theory” (with S. Schmitz)
– “Complexity Hierarchies Beyond Elementary” (by S. Schmitz)

23/24

CONCLUDING REMARKS

•WSTS are a powerful tool for the verification of parameterized
networks

•WSTS allow complexity analysis

Join the fun!
Technical details are lighter than it seems.
See [Sch ’10] [HSS ’12] [HSS ’13]
and tutorial notes
– “Algorithmic Aspects of WQO Theory” (with S. Schmitz)
– “Complexity Hierarchies Beyond Elementary” (by S. Schmitz)

THANK YOU FOR YOUR INTEREST

23/24

REFERENCES: CLICK TO DOWNLOAD
[AN01] P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. ICATPN 2001.
[A+00] P. A. Abdulla, B. Jonsson et al. Algorithmic analysis of programs with well
quasi-ordered domains. Inf. & Comp. 2000.
[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
Proc. LICS ’99.
[F87] A. Finkel. A generalization of the procedure of Karp and Miller to well structured
transition systems. Proc. ICALP ’87
[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comp. Sci. 2001.
[F+11] D. Figueira et al. Ackermannian and primitive-recursive bounds with Dickson’s
lemma. LICS 2011.
[HSS12] S. Haddad, S. Schmitz, and Ph. Schnoebelen. The ordinal-recursive
complexity of timed-arc Petri nets, data nets, and other enriched nets. LICS 2012
[S13] S. Schmitz. Complexity hierarchies beyond elementary. ArXiv Report
cs.CC/1312.5686, 2013.
[SS11] S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with
Higman’s lemma. ICALP 2011.
[SS12] S. Schmitz and Ph. Schnoebelen. Algorithmic aspects of WQO theory. ESSLLI
lecture notes, 2012.
[S10] Ph. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines
and reset Petri nets. MFCS 2010.

24/24

http://dx.doi.org/10.1007/3-540-45740-2_5
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1109/LICS.1999.782630
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1109/LICS.2012.46
http://arxiv.org/abs/1312.5686
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://cel.archives-ouvertes.fr/cel-00727025
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/978-3-642-15155-2_54

