Well-Structured

Parameterized Networks of Systems

Philippe Schnoebelen
LSV, CNRS & ENS Cachan

1st Workshop on Parameterized Verification, Roma, Sep. 6th, 2014

WSTS FOR PV?

» Well-structured systems (WSTS) are a family of infinite-state
models supporting generic verification algorithms based on
well-quasi-ordering (WQO) theory.

WSTS FOR PV?
» Well-structured systems (WSTS) are a family of infinite-state
models supporting generic verification algorithms based on
well-quasi-ordering (WQO) theory.

» WSTS invented in 1987, developed and popularized in
1996-2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets/VASS extensions, channel systems,
counter machines, integral automata, etc.

WSTS FOR PV?

» Well-structured systems (WSTS) are a family of infinite-state
models supporting generic verification algorithms based on
well-quasi-ordering (WQO) theory.

» WSTS invented in 1987, developed and popularized in
1996-2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets/VASS extensions, channel systems,
counter machines, integral automata, etc.

» Used in software verification, communication protocols, ... In
particular, for distributed algorithms, WSTS have been used for
verification of parameterized networks. Useful for proving
safety/for finding minimal unsafe start configurations.

WSTS FOR PV?

» WSTS invented in 1987, developed and popularized in
1996-2005 by Abdulla & Jonsson, Finkel & Schnoebelen, etc.
First used with Petri nets/VASS extensions, channel systems,
counter machines, integral automata, etc.

» Used in software verification, communication protocols, ... In
particular, for distributed algorithms, WSTS have been used for
verification of parameterized networks. Useful for proving
safety/for finding minimal unsafe start configurations.

» WSTS still thriving today, with several new models (based on
wqos on graphs, etc.), or applications (deciding data logics,
modal logics, etc.) proposed every year.

» Meanwhile, the generic WSTS theory saw recent new
developments: (1) techniques for wgo-based complexity;
(2) completion theory for forward acceleration; ...

OUTLINE OF THE TALK

» Part 1: Basics of WSTS.

Recalling the basic definition, with Broadcast protocols and
Timed-arc nets as examples

» Part 2: Verifying WSTS.

Two simple verification algorithms, deciding Termination and
Coverability

» Part 3: A few words on complexity.
Looking at controlled bad sequences and bounding their length

Part 1 What are WSTS?

WHAT ARE WSTS?

Def. A WSTS is an ordered TS 8 = (S,—, <) that is monotonic and
such that (S, <) is a well-quasi-ordering (a wqo, more later).

Recall:
— transition system (TS): § = (S,—) with steps e.g. “s — s’”
—ordered TS: 8 = (S,—, <) with smaller and larger states, e.g. s <t

— monotonic TS: ordered TS with
(Sl — s> and s; < tl) implies 3t, € S: (tl —t>and s> < tz))
i.e., “larger states simulate smaller states”.

WHAT ARE WSTS?

Def. A WSTS is an ordered TS 8 = (S,—, <) that is monotonic and
such that (S, <) is a well-quasi-ordering (a wqo, more later).

Recall:
— transition system (TS): § = (S,—) with steps e.g. “s — s’”
—ordered TS: 8 = (S,—, <) with smaller and larger states, e.g. s <t

— monotonic TS: ordered TS with
(Sl — s> and s; < tl) implies 3t, € S: (tl —t>and s> < tz))
i.e., “larger states simulate smaller states”.

Equivalently: < is a wgo and a simulation.

NB. Starting from any tg > sg, a run sg — s; — --- — s, can be
simulated “from above” with some tg - t; — -+ — tn

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S, <) is wqo”?

Def. (X,<) isawqo %! any infinite sequence xg,x1,x>2,... contains an
increasing pair: x; < x; for some i <j.
& “every infinite sequence is a good sequence”’
& “every bad sequence is finite”

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S, <) is wqo”?
. def o .
Def. (X,<) isawqo & any infinite sequence xg,x1,%>,... contains an
increasing pair: x; < x; for some i <j.
& “every infinite sequence is a good sequence’
< “every bad sequence is finite”
. . def .o
Alternatively: (X,<) is awqo & any infinite sequence xg,x1,%2,...
contains an infinite increasing subsequence: xn, < Xn, < Xn, <...

NB. Equivalence of these two definitions is not trivial

WELL-QUASI-ORDERING (WQO)

Now what was meant by “(S, <) is wqo”?
. def o .
Def. (X,<) isawqo & any infinite sequence xg,x1,%>,... contains an
increasing pair: x; < x; for some i <j.
& “every infinite sequence is a good sequence”
< “every bad sequence is finite”

. . def .o
Alternatively: (X,<) is awqo & any infinite sequence xg,x1,%2,...
contains an infinite increasing subsequence: xn, < Xn; <Xn, < ...

NB. Equivalence of these two definitions is not trivial

Example. (Dickson’s Lemma) (N¥, <) is a wgo, with
a=(ay,...,ax) <x b=(by,....b) 'y <by A Aap <by

WELL-QUASI-ORDERING (WQO)

. def . g s .
Def. (X,<) isawqo £ any infinite sequence xg,x1,x>,... contains an
infinite increasing subsequence: xn, < xn; < Xn, <...

Example. (Dickson’s Lemma) (N, <) is a wgo, with
a=(ap...,a) <x b=(b1,....br) Eay <by A A < by

Example. (Cartesian product) (X; x --- x Xy, <x) is a wgo when
(X1,<1),-.., (X, <x) are wqos, with

def
X = (X1, %) <x Y= (Y1, Yi) B x1 <1 Y1 A Axge < Yi

WELL-QUASI-ORDERING (WQO)

. def e .
Def. (X,<) isawqo & any infinite sequence xg,x1,%,... contains an
infinite increasing subsequence: xn, < Xn; < Xn, <...

Example. (Cartesian product) (X3 x - x Xy, <x) is a wgo when
(X1,<1),---, (Xk, <i) are wqos, with

def
Xx=(X1,0 %) <x Y= (Y1, Y1) B x1 <1 Y1 A Axge < Yxe

Example. (Kleene star) (X*,<.) is a wqgo when (X, <) is a wqgo, with
X =(x1-XK) <« Y = (Y1---ye)
gxl <yi, A Axge <y, forsome 1 <ig <ip <o < <L

def
&' x < y’ for some subsequence y’ of y

WELL-QUASI-ORDERING (WQO)

Example. (Cartesian product) (X1 x --- x X3, <x) is a wqo when
(X1,<1),--., (Xk, <k) are wqos, with

def
x=(X1, %) <x Y= (Y1, Y1) B x1 <1 Y1 A Axge < Yxe

Example. (Kleene star) (X*,<.) is a wqo when (X, <) is a wqgo, with
X =(x1-XK) <« Y = (Y1---ye)

def . . .
Ex1 <yi, N Axge <y, forsome 1 <ig <ip <o < <L

def
&x < y’ for some subsequence y’ of y

Other important/useful wqos: multisets, trees ordered by
embedding (Kruskal’s Theorem), and graphs with minors (Robertson
& Seymour’s Graph Minor Theorem).

Two examples of WSTS

EXAMPLE 1: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and

rendez-vous.
@ au Q an @ mil @
m??/l

A configuration collects the local states of all processes. E.g.,
s ={c,1,c}, also denoted {c?,1}.

EXAMPLE 1: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and

rendez-vous.
@ au Q an @ mil @
m??/l

A configuration collects the local states of all processes. E.g.,
s ={c,1,c}, also denoted {c?,1}.

Steps: {c2,q,1} — {a%,¢,q,7} — {a*, q,7} ™ {c* 1, L} S (e, g%, L)

EXAMPLE 1: BROADCAST PROTOCOLS

Broadcast protocols (Esparza et al’99) are dynamic & distributed
collections of finite-state processes communicating via brodcasts and

rendez-vous.
@ au Q an @ mil @
m?? /l

A configuration collects the local states of all processes. E.g.,
s ={c,1,c}, also denoted {c?,1}.

Steps: {c2,q,1} — {a%,¢,q,7} — {a*, q,7} ™ {c* 1, L} S (e, g%, L)

We’ll see later: The above protocol does not have infinite runs

BRODCAST PROTOCOLS ARE WSTS

Ordering of configurations is multiset inclusion, e.g., {c,q} C {c?,7,q}

Fact. Conf=M;s({r,c,a,q,L}) equipped with C is a wqo
Proof: this is exactly (N°,<y)

Fact. Brodcast protocols are monotonic TS

Proof Idea: assume s; C t; and consider all cases for a step s; — s>

Coro. Broadcast protocols are WSTS

EXAMPLE 2: TIMED-ARC NETS

Timed-arc Nets (Abdulla & Nylén 2001), aka TPN, are dynamic &
distributed collections of finite-state processes, each carrying a
real-valued clock.

EXAMPLE 2: TIMED-ARC NETS

Timed-arc Nets (Abdulla & Nylén 2001), aka TPN, are dynamic &
distributed collections of finite-state processes, each carrying a
real-valued clock.

Control states of individual processes taken from some finite
Q={rc,a,q,.} (same as Broadcast protocols)

A configuration collects the local states of all processes, e.g.,
s={c:1.4,r:3.0,q: 2.5}, this time with clock values.

l.e. Conf& M (Q x R>0)

EXAMPLE 2: TIMED-ARC NETS

Control states of individual processes taken from some finite
Q={rc,qa,q,.} (same as Broadcast protocols)

A configuration collects the local states of all processes, e.g.,
s={c:1.4,7:3.0,q: 2.5}, this time with clock values.

l.e. Conf® M (Q x R>0)

i r€[0;2]
TPNs have rules like e.g. 5 = { cell;2) }

1;1
qel2o0) 266([0;4})

EXAMPLE 2: TIMED-ARC NETS

A configuration collects the local states of all processes, e.g.,
s={c:1.4,r:3.0,q: 2.5}, this time with clock values.

le. Conf® M (Q x R>0)

. r€0;2]
TPNs have rules like e.g. 5 = { cell;2) }

1;1
q € [2300) '—> 266([0;4})

Yielding steps like
s={c:1.4,r:3.0,q: 2.5} E> {r:3.0,r:0.73,q:1.0,a: 2.1} =’

EXAMPLE 2: TIMED-ARC NETS

A configuration collects the local states of all processes, e.g.,
s={c:1.4,7:3.0,q: 2.5}, this time with clock values.

l.e. Conf® M (Q x R>0)

. r€[0;2]
TPNs have rules like e.g. § = { c€l1;2) }

; — qe(l;1]
q€lZ00) 2 (0:4)
Yielding steps like
s={c:1.4,r:3.0,q: 2.5} 3, {r:3.0,7:0.73,q:1.0,a: 2.1} =5’

also time-elapse steps like
s'={r:3.0,v:0.73,q:1.0,5: 2.1} “2& (+:3.8,r:1.53,q: 1.8,a: 2.9}

EXAMPLE 2: TIMED-ARC NETS

— q€[l;1]

) rel0;2]
TPNs have rules like e.g. 5 = { Cee [[21_’2)) }
q€leo0 a € (0;4)

Yielding steps like
s={c:1.4,r:3.0,q:2.5} > {r:3.0,7:0.73,q: 1.0,a: 2.1} = s/

also time-elapse steps like
s’ ={r:3.0,r:0.73,q:1.0,5: 2.1} 728 (+:3.8,r:1.53,q: 1.8,a: 2.9}

Fact. Steps are monotonic for multiset inclusion
But (M¢(Q xRx0),C) is not wgo —since already (R>,=) is not

TIMED-ARC NETS ARE WSTS

s={r:3.0,1:0.73,q:1.0,a:2.1} =~ s={r:3,q:1}e{a:2}e{r:0}

TIMED-ARC NETS ARE WSTS

s={r:3.0,7:0.73,q:1.0,a:2.1} =~ s={r:3,q:1}e{a:2}e{r:0}

0 < X1 < X2 < 1)

| | |
r:3 a:2(+x1) T:0(+x2)
q:1

In general s is a sequence over M(Q x{0,1,2,3,4,5+})

TIMED-ARC NETS ARE WSTS

In general s is a sequence over M¢(Q x{0,1,2,3,4,5+})

Fact. The abstracted system is bisimilar with the original one (NB:
durations of time-elapse steps are not preserved).

{r:3,q:1}e{a:2}e{r:0} *2 {Je{r:3,q:1}e{a:2}e{r:0}
x2 {r:1}e{r:3,q:1}e{a:2}—---

TIMED-ARC NETS ARE WSTS

In general s is a sequence over M¢(Q x{0,1,2,3,4,5+})

Fact. The abstracted system is bisimilar with the original one (NB:
durations of time-elapse steps are not preserved).

{r:3,q:1}e{a:2}e{r:0} A {Je{r:3,q:1}e{a:2}e{r:0}
A {r:1}e{r:3,q:1}e{a:2}—---

Fact. This new semantics is monotonic wrt pointed sequence
embedding <, over (Mf(Q X {0,...,4,5+}))+, a wqo.
Hence TPN are WSTS!!

Part 2 Verification of WSTS

TERMINATION

Termination is the question, given a TS 8§ = (S,—,...) and a state s,
whether 8 has no infinite runs starting from s;,;

TERMINATION
Termination is the question, given a TS 8§ = (S,—,...) and a state s,
whether 8 has no infinite runs starting from s;,;

Lem. [Finite Witnesses for Infinite Runs]
A WSTS 8 has an infinite run from s;,;; iff it has a finite run from s;;;
that is a good sequence

. def . . .
Recall: so,51,s2,...,5n is good & there existi<j s.t. s; < s;

Proof: “=" by def of wgo. “<” by simulating s; x sj from s;

TERMINATION

Termination is the question, given a TS 8§ = (S,—,...) and a state s,
whether 8 has no infinite runs starting from s;,;

Lem. [Finite Witnesses for Infinite Runs]
A WSTS 8 has an infinite run from s;,;; iff it has a finite run from s;;;
that is a good sequence

Recall: sg,s1,s>,...,5n is good % there exist i <js.t sy <s;
Proof: “=" by def of wgo. “<” by simulating s; x sj from s;

=- one can decide Termination for a WSTS 8 by enumerating all finite
runs from s;,; until a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

COVERABILITY

Coverability asks, given 8§ = (S,—,...), a state s, and a target state t,
whether § has a covering run sjpj; — s1 — $2... — s With s, > t.

COVERABILITY

Coverability asks, given 8§ = (S,—,...), a state s, and a target state t,
whether § has a covering run sjpj; — s1 — $2... — s With s, > t.

This is equivalent to having a covering pseudorun of the form
Sipit=so2to—=s1 2t =822 thg1 >sn2thn =t

COVERABILITY

Coverability asks, given 8§ = (S,—,...), a state s, and a target state t,
whether § has a covering run sjpj; — s1 — $2... — s With s, > t.

This is equivalent to having a covering pseudorun of the form
Sipit=so2to—=s1 2t =822 thg1 >sn2thn =t

Fact. In a covering pseudorun, we can assume that each t; is a
minimal (pseudo) predecessor of ti 1

COVERABILITY

Coverability asks, given 8§ = (S,—,...), a state s, and a target state t,
whether § has a covering run sjpj; — s1 — $2... — s With s, > t.

This is equivalent to having a covering pseudorun of the form
Sipit=so2to—=s1 2t =822 thg1 >sn2thn =t

Fact. In a covering pseudorun, we can assume that each t; is a
minimal (pseudo) predecessor of ti 1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn,...,t1,t0 is bad

COVERABILITY

Coverability asks, given 8§ = (S,—,...), a state s, and a target state t,
whether § has a covering run sjpj; — s1 — $2... — s With s, > t.

This is equivalent to having a covering pseudorun of the form
Sipit=so2to—=s1 2t =822 thg1 >sn2thn =t

Fact. In a covering pseudorun, we can assume that each t; is a
minimal (pseudo) predecessor of ti 1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn,...,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS 8 has a covering pseudorun from s;,; to t iff it has one that
is minimal and reverse-bad

COVERABILITY

Coverability asks, given 8§ = (S,—,...), a state s, and a target state t,
whether § has a covering run sjpj; — s1 — $2... — s With s, > t.

This is equivalent to having a covering pseudorun of the form
Sipit=so2to—=s1 2t =822 thg1 >sn2thn =t

Fact. In a covering pseudorun, we can assume that each t; is a
minimal (pseudo) predecessor of ti 1

Fact. In a shortest covering pseudorun, the (reversed) sequence
tn,...,t1,t0 is bad

Lem. [Finite Witnesses for Covering]
A WSTS 8 has a covering pseudorun from s;,; to t iff it has one that
is minimal and reverse-bad

= one can decide Coverability by enumerating all pseudoruns ending
in t (hence backward chaining) that are minimal and reverse-bad.

Part 3 Bounding complexity

BROADCAST PROTOCOLS AND TERMINATION

@ an /c\ d»? @ mll @
m??\\;l

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

BROADCAST PROTOCOLS AND TERMINATION

@ an /c\ a» @ i @
m??\\/‘g

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume so — s; — -+ — sy and pick two positions i < j.

. / ! i I
Write s; ={a™,c™?,q™3,7™4, L*}, and s; ={a™1,c™2,q"3, ™4, L*}.
—ifs; 5 sj uses only spawn steps then n} < ny,

—if a m and no d have been broadcast, then n} < ns,
—if a d has been broadcast, and then n); < ng.

BROADCAST PROTOCOLS AND TERMINATION

@ an /c\ d»? @ ml! @
m??\\/‘g

This broadcast protocol terminates: all its runs are bad sequences,
hence are finite

Proof. Assume so — s; — -+ — sy and pick two positions i < j.

. / ! i I
Write s; ={a™,c™?,q™3,7™4, L*}, and s; ={a™1,c™2,q"3, ™4, L*}.
—ifs; 5 sj uses only spawn steps then n} < ny,

—if a m and no d have been broadcast, then n} < ns,
—if a d has been broadcast, and then n); < ng.

In all cases, s; Z sj. QED

BROADCAST PROTOCOLS TAKE THEIR TIME

O
6
5

aTL

“Doubling” run: {c™,q,(L*)} 2= {a?™,q, (L*)} = {c2™, (L*)}

BROADCAST PROTOCOLS TAKE THEIR TIME

“Doubling” run: {c™,q,(L*)} LN q, (L*)) 5 {2, (L))

I 0 20 1 2! 2
Building up: {cZ ,q", 1} — {c? ,q" L, 5 {c2,q" 1) —
n—1

n—1 a2 m n d 0
e e g — (e S (e, 9%

BROADCAST PROTOCOLS TAKE THEIR TIME

@ an Q a» @ mi @
m??/l

“Doubling” run: {c™,q,(L*)} % rg2n, q, (L)} 5 {c™, (1L*)}

. 0 20 1 21 2
Building up: {c ,q™, 1} =5 {2 ,q™ L) 5 (¢, q") —

1 anl d o
e (e g — (e S (e, g2

Then: {c,q,m"} = {c,q?", " 1} 5 {c,glower(n)}
2

def n times

where tower(n) % 22

BROADCAST PROTOCOLS TAKE THEIR TIME

@ dn /c\ d»? @ mll @
m??\\/‘g

“Doubling” run: {c™, q, (L*)} 25 {a™,q, (L*)} ™ {c2™, (L*)}

I 0 20 1 _ 2t 2 _
Building up: {c? ,q", 7} — {c? ,q" L1 5 {c?,q" 1) —
n—1

n— 2 n n
s {2 g M 2 1 4 (02,92
Then: {c,q,m™} 5 {c,q°", 7™ 1} 5 {c,qlower(n)}
= Runs of terminating systems may have nonelementary lengths

=- Running time of termination verification algorithm is not
elementary (for broadcast protocols)

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:

— 999,998, ...,1,0

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:

—999,998,...,1,0
—(2,2), (2,1), (2,0), (1,999), ..., (1,0), (0,999999999), ...

COMPLEXITY ANALYSIS?

Key point: When analyzing the termination algorithm, the main
question is “how long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

Over (IN¥,<), one can find arbitrarily long bad sequences:
—999,998,...,1,0

—(2,2),(2,1), (2,0), (1,999), ..., (1,0), (0,999999999), ...

Two tricks: unbounded start element, or unbounded increase in a step

The runs of a broadcast protocol don'’t play these tricks!

CONTROLLED BAD SEQUENCES

Def. A control is a pair of ng e Nand g:IN — IN.

. def ;
Def. A sequence xg,x1,... is controlled & xil < g'(ng) for all
i=0,1,...

CONTROLLED BAD SEQUENCES

Def. A control is a pair of ng e Nand g:IN — IN.

. def ;
Def. A sequence xg,x1,... is controlled & xil < g'(ng) for all
i=0,1,...

Fact. For a fixed wgo (A, <,|.]) and control (ng, g), there is a bound
on the length of controlled bad sequences.

Write Ly A (no) for this maximum length.

CONTROLLED BAD SEQUENCES

Def. A control is a pair of ng e Nand g:IN — IN.

. def ;
Def. A sequence xg,x1,... is controlled & xil < g'(ng) for all
i=0,1,...

Fact. For a fixed wgo (A, <,|.]) and control (ng, g), there is a bound
on the length of controlled bad sequences.

Write Ly A (no) for this maximum length.

Length Function Theorem for (IN¥, <):

— Ly (10) < 9% (no)

— Lk isin F g1 for g in %, [Figueira®SS'11]
(more later on Fast-Growing Hierarchy)

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with ng =|sjm# and g = Succ: IN — IN.

= Time/space bound in % _, for broadcast protocols with k states,
and in %, when k is not fixed.

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with ng =|sjm# and g = Succ: IN — IN.

= Time/space bound in % _, for broadcast protocols with k states,
and in %, when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

= --- same upper bounds - - -

APPLYING TO BROADCAST PROTOCOLS

Fact. The runs explored by the Termination algorithm are controlled
with ng =|sjm# and g = Succ: IN — IN.

= Time/space bound in % _, for broadcast protocols with k states,
and in %, when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |t| and Succ.

= --- same upper bounds - - -

This is a general situation:

— WSTS model (or WQO-based algorithm) provides g

— WQO-theory provides bounds for La

— Translates as complexity upper bounds for WQO-based algorithm

NOW APPLYING TO TIMED-ARC NETS

Fact. The runs of a Timed-arc net N are controlled with
g = Isjnirl @nd g : x — x +[N|,
or with ng = sjnifl +IN| and g = Double : x — 2x if we want fixed g.

NOW APPLYING TO TIMED-ARC NETS

Fact. The runs of a Timed-arc net N are controlled with
g = Isjnirl @nd g : x — x +[N|,
or with ng = sjnifl +IN| and g = Double : x — 2x if we want fixed g.

For Conf=M¢(Q x{0,1,...,M+})* ordered with pointed sequence
embedding, the Length Function theorem [SS "11] gives

Lgconr IN F_ , Where k=[Q[x M

= Time/space bound in Z .« for Timed-arc Nets verification

NOW APPLYING TO TIMED-ARC NETS

Fact. The runs of a Timed-arc net N are controlled with
ng =|sjnil @and g:x — x+|NJ,
or with ng = sjnifl +IN| and g = Double : x — 2x if we want fixed g.

For Conf=M¢(Q x{0,1,...,M+})* ordered with pointed sequence
embedding, the Length Function theorem [SS "11] gives
Lgconr IN F_ , Where k=[Q[x M

= Time/space bound in Z .« for Timed-arc Nets verification

These bounds are optimal!
— Verification of Timed-arc nets is 7« -complete [HSS ’12]

— Verification of Broadcast protocols is %, -complete, or
“Ackermann-complete” [S *10]

Bottom line: we can provide definite complexity for many WSTS
models

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (F) xcorg Of functions N — IN

x+1

Fox) ®x+1 Far1(0) B Fo(Fal. . Fa(x)...)
Fo(x) € Fia(x)

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (F) xcorg Of functions N — IN

x+1
def def 4 N
Fo(x) = x+1 Far1(x) = Fa(Fal(...Fx(x)...))
def
Fo(x) € Fyy1(x)
gives Fq(x) ~ 2x, F»(x) ~ 2%, F3(x) ~ tower(x) and
Fw (x) ~ ACKERMANN(x), the first F,, that is not primitive recursive.

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (F) xcorg Of functions N — IN

x+1
def def 4 N
Fo(x) = x+1 Far1(x) = Fa(Fal(...Fx(x)...))
def
Fo(x) € Fyy1(x)
gives Fq(x) ~ 2x, F»(x) ~ 2%, F3(x) ~ tower(x) and
Fw (x) ~ ACKERMANN(x), the first F,, that is not primitive recursive.

Fa(x) def Fa, (x) for A a limit ordinal with a fundamental sequence

A <AL <A <= <A
x+1

E.g. Fu2(x)=F. (x+1) (%) =Fwxctx1 (6) =Fwoxcx (Foooxx (- Feooxx (%))

def (1) (

I~ = all functions computable in time FS very robust).

CONCLUDING REMARKS

o WSTS are a powerful tool for the verification of parameterized
networks

¢ WSTS allow complexity analysis

CONCLUDING REMARKS

¢ WSTS are a powerful tool for the verification of parameterized
networks

o WSTS allow complexity analysis

Join the fun!

Technical details are lighter than it seems.

See [Sch '10] [HSS ’12] [HSS ’13]

and tutorial notes

— “Algorithmic Aspects of WQO Theory” (with S. Schmitz)

— “Complexity Hierarchies Beyond Elementary” (by S. Schmitz)

THANK YOU FOR YOUR INTEREST

REFERENCES: CLICK TO DOWNLOAD

[ANO1] P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. ICATPN 2001.

[A+00] P. A. Abdulla, B. Jonsson et al. Algorithmic analysis of programs with well
quasi-ordered domains. Inf. & Comp. 2000.

[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
Proc. LICS '99.

[F87] A. Finkel. A generalization of the procedure of Karp and Miller to well structured
transition systems. Proc. ICALP '87

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comp. Sci. 2001.

[F+11] D. Figueira et al. Ackermannian and primitive-recursive bounds with Dickson’s
lemma. LICS 2011.

[HSS12] S. Haddad, S. Schmitz, and Ph. Schnoebelen. The ordinal-recursive
complexity of timed-arc Petri nets, data nets, and other enriched nets. LICS 2012
[S13] S. Schmitz. Complexity hierarchies beyond elementary. ArXiv Report
¢s.CC/1312.5686, 2013.

[SS11] S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with
Higman’s lemma. ICALP 2011.

[SS12] S. Schmitz and Ph. Schnoebelen. Algorithmic aspects of WQO theory. ESSLLI
lecture notes, 2012.

[S10] Ph. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines
and reset Petri nets. MFCS 2010.

http://dx.doi.org/10.1007/3-540-45740-2_5
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1109/LICS.1999.782630
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1109/LICS.2012.46
http://arxiv.org/abs/1312.5686
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://cel.archives-ouvertes.fr/cel-00727025
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/978-3-642-15155-2_54

