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Abstract. We study decision problems for parameterized verificatfaformal
model of Ad Hoc Networks with selective broadcast and spwetas movement
recently proposed by Singh, Ramakrishnan, and Smolka. dhenunication
topology of a network is represented here as a graph. Nogessent states of
individual processes. Adjacent nodes represent singberleighbors. Processes
are finite state automata that communicate via selectivedoast messages. Re-
ception of a broadcast is restricted to single-hop neighb®or this model we
consider verification problems that can be expressed akab#ity of configura-
tions with one node (resp. all nodes) in a certain state. édiglon problems are
parametric both on the size and on the form of the communicatipology of the
initial configurations. We draw a complete picture of theidability boundaries
of these problems according to various assumptions on thencmication topol-
ogy of the network, namely static vs mobile and unboundedbarsnded-path
topologies.

1 Introduction

In recent years there has been an increasing interest iotimaf verification of proto-
cols used in Ad Hoc Networks. In this setting a node of the nétvean communicate
only with the subset of nodes that are within the range oftthewn transmission de-
vice. Movement or external factors can dynamically modifg tonfiguration of the
network. Building on previous works like [18,6,17,20,2%jngh, Ramakrishnan and
Smolka define thev-calculus [22] as a formal model of Ad Hoc Networks with se-
lective broadcast and spontaneous movement. The struaideglying a configuration
is a finite graph that defines the communication topology efrtetwork. Specifically,
in this model each node represents an individual processh pacess has an inter-
face. An interface contains a set of group hames. Nodes carcate through selective
broadcast, i.e., a broadcast message is received only fodesrwhose interfaces share
names in common with that of the sending node (single-haghieirs). When the num-
ber of nodes is fixed a priori, formal models of Ad Hoc Netwolike those proposed
in [22] can be verified by using symbolic model checking [9,22e study of verifi-
cation problems for networks of arbitrary size and unknogpotogy is an interesting
and challenging problem for this class of systems.

In this paper we investigate decidability and undecidgbdf parameterized ver-
ification problems for an automata-based model, we named ,AkBpired by thev-
calculus of [22]. In all decision problems we study, inittanfigurations may have an
arbitrary (finite) number of nodes connected with an arbjttapology. Our investiga-
tion takes into account different assumptions on the conication topology. Specifi-
cally, we consider configurations with unknown but statipdiogy, with unknown but



mobile topology, and with unknown static but bounded pagiotogy. In the latter case
we assume that there is an upper bound to the length of sinaphe in the network
topology.

For these three parameterized cases we present a systamstisis of the decid-
ability of the following verification problemsgoOVER) reachability of a configuration
with onenode in a given stateTARGET) reachability of a configuration witall nodes
in a given state,AEPEAFCOVER) existence of a computation traversiindjinitely often
configurations with at least one node in a given state.

Our main negative result is that all three problems are uddete for arbitrary
static topology. The proofs are based on a simulation of inguzomplete formalism
which is correct only for topologies of a given type. As thedtogy is arbitrary, the
simulation is preceded by a protocol able to explore theerurtopology and to start
the simulation only if it is of the expected form.

Perhaps surprisingly, all three problems become decidalttee mobile case. This
result is similar to what happens in channel systems whén@duncing lossiness simpli-
fies the verification task [3]. On the contrary, for static bded path topologieSAR-
GET and REPEATFCOVER turn out to be undecidable whileovEeR is still decidable.
This last result is similar to what happens in point-to-p@iommunication networks
with bounded communication paths [23], but due to broadzasimunication we need
to resort to a different proof technique. Namely, even if vee the theory of Well-
Structured Transition Systems (WSTS) [1,2,10] as in [1B,2@ need to consider a
stronger ordering on states based on the induced subgrdphiray [4] instead of the
subgraph-embedding. To the best of our knowledge, thisifitbt case of application
of the induced subgraph ordering in the context of WSTS.

Related Work. Ethernet-like broadcast communication has been analyyderdsad
[18] using the Calculus of Broadcasting Systems, in whithralcesses receive a broad-
cast message at once. A similar type of broadcast mechasissed in the Broadcast
Protocols of Emerson and Namjoshi [5]. In our setting, tkisimilar to the case in
which all nodes share a common group (the underlying graghdque). Ene and
Muntean presented tlb@-calculus [6], an extension of thecalculus [15] with a broad-
cast such that only nodes listening on the right channel eagive. Wireless broadcast
communication has been investigated in the context of gcalculi by Nanz and
Hankin [17], Singh, Ramakrishnan and Smolka [20,21], M&raad Sangiorgi [14],
Godskesen [11], and Merro [12]. In particular Nanz and Haijki’] consider a graph
representation of node localities to determine the recewka message, while Godske-
sen [11] makes use of a neighbour relation. On the contraeyZ€itti and Sangiorgi [14]
and Merro [12] associate physical locations to processt#sasthe receivers depend on
the location of the emitter and its transmission range. Asaaly mentioned, we have
been directly inspired by the-calculus of Singh, Ramakrishnan and Smolka [20,21].
Thew-calculus is based on thecalculus. Ther-calculus [15] intermixes the commu-
nication and mobility of processes by expressing mobilitglange of interconnection
structure among processes through communication. Iwtbalculus mobility of pro-
cesses is abstracted from their communication actionsmability is spontaneous and
it does not involve any communication. In [22] the same arghiefine a constraint-



based analysis for configurations with fixed topologies affidead number of nodes.
The authors also mention that checking reachability of digaration from an initial
one is decidable for the fragment without restriction. Tgrigperty is an immediate con-
sequence of the fact that there is no dynamic generationletiae of processes (i.e. it
boils down to a finite-state reachability problem). The sgiithapproach in [22] seems
to improve verification results obtained with more standaadlel checking techniques.
For instance, in [9] model checking is used for automatidfieation of finite-state and
timed models of Ad Hoc Networks. In these works the numberaafas in the initial
configurations is known and fixed a priori. In order to deteacit@col vulnerabilities
tools like Uppaal are executed on all possible topologiesdino symmetries) for a
given number of nodes. In [19] Saksena et al. define a sympaticedure based on
graph-transformations to analyze routing protocol for AatH\etworks. The symbolic
representation is based on upward closed sets of graphedrde.t. subgraph inclu-
sion. Their procedure is not guaranteed to terminate. Inpaper we consider a non
trivial class of graphs (bounded path configurations) foicwibackward analysis with
a similar symbolic representation (upward closure of gsapint. induced subgraph or-
dering) is guaranteed to terminate for finite-state detionip of individual nodes.

Due to lack of space, omitted proofs can be found in Appendix.

2 A Formal Model for Ad Hoc Network Protocols

Syntax. Following [22], a configuration of an Ad Hoc Network is modeles a graph
in which nodes represent processes and edges representinying communication
topology. We assume that nodes cannot dynamically be creatieleted. The behavior
of a single node is described by a finite-state automatofedplocess with either
local, broadcast, or reception actions.

Definition 1. A processP is a tuple(Q, X, E, Qo) where:Q is a finite set of control
states; Y is a finite alphabetE C @ x ({7} U {b(a),r(a) | a € X}) x Q is the
transition relation;Qq C @ is a set of initial control states.

The labelr represents an internal action of a process, the Ialbe) represents the
broadcast messagesent to all single-hop (or adjacent) neighbors, and thel lafeg
represents the reception of messag@ convenient way to describe the connectivity of
the network is to associate to each node an interface thaieddfie set of group names
to which the node belongs. Two nodes are connected if thedrfaces share at least
one common group name.

Definition 2. An Ad Hoc Network Protocol (shortly AHN) is a pdiP, G) whereP is
a process ang is a denumerable set of group names.

Semantics.Given an AHN(P, G) with P = (Q, X, E, Qy), anoden is represented by
apair(q, I), whereg € Q is its currenstateand] C G is itsinterface A configuration
v of (P,G) is then a tupléna, ..., n;) of nodes withk > 1.

We useC to denote the set of configurations associateR@). We define func-
tions o and. to extract the state and the interface of a node, ¢.€lg, I)) = ¢ and
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Fig. 1. Graph associated to a configuration.

t({q,I)) = I. We extendr and. to configurations in the natural way. Given a config-
uration, we sometimes considet(y) as a set rather than a vector and gse o ()

to denote that there exists a nodgin ~ such thatr(n;) = ¢. A configurationy de-
fines a given network topology specified by the graghy). The vertices inG(~) are

in bijection with the nodes of. The label of a vertex is the state of the corresponding
node invy. Furthermore, there exists an edge between two vertic€n if and only

if the intersection of the interfaces of the correspondindes iny is not empty. For
instance, consider a configuratignwith six nodes such that; = (red, {g1, g2}),

ny = (green,{gi,gs}), ns = (green,{g2.95}), na = (white, {gs,ga}), ns =
(yellow, {g4}), andng = (green, {g4}), the communication topology induced by

is depicted in Figure 1.

We then define the set of single-hop neighbors of nedim a configurationy =
(n1,...,ng) asShn(y,i) = {j € [L.k] | t(n;) Ne(n;) # 0 andj # i}, i.e., the set of
nodes adjacent te; in G(v). Furthermore, given a broadcast messageY’, we define
the set of indexe®Rec(v,a) = {j € [1..k] | (o(n;),r(a),q) € E forsomeg € Q}.
The set of nodes i enabled by a broadcastsent by noden; is then defined as
Enabled(r,i,a) = Shn(v,i) N Rec(v, a).

The semantics of an AHNP, G) with P = (Q, X, E, Qo) is given by its associated
transition systen¥'S(P,G) = (C,=,Cy). C is the set of configurations associated to
(P,G), Cy is the set of initial configurations defined@s = {y € C | o(v) C Qo}
and=-C C x C is the transition relation defined as follows: for= (nq,...,n;) and
v = (n},...,nL),v =~ iff one of the following conditions holds:
local action there exists € [1..k] such tha{o(n;), 7,0(n})) € E, t(n;) = ¢(n}), and

forall j € [1..k] \ {i}, n; = n; (local action);
broadcast there exists € [1..k] such that(c(n;),b(a),o(n})) € E, t(n;) = t(n}),

and for allj € Enabled(y,i,a), (o0(n;),r(a),o(n})) € E, and for alll ¢

(Enabled(v,1,a) U {i}) n] = ny.

We denote by="* the reflexive and transitive closureef. An execution is a sequence
Yo - - - such that () € Qo and~y; = ;41 fori > 0. As an example, consider the
following set of rules:

(white, T,yellow)  (yellow,b(m), red)
(green,r(m), yellow) (white,r(m), yellow)
Starting with a configuration with white and green nodesgomced alarm is detected

by a white node (i.e. the node turns yellow), it is flooded tsimgle-hop neighbors. In
turn, they forward the red alarm to their neighbors, and sdrokigure 2 we show an
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execution of the previous rules. After some steps, the ateaohes all the nodes of the
communication graph.

Decision Problems.n this section we consider decision problems related tdivar
tion of safety and liveness properties studied in the litesafor models like Petri nets
[7,8]. All the problems are formulated in the parameterizasge in which the size and
the topology of the networks are not known. In the followirgfiditions we assume an
AHN (P, G) with transition systerT’'S(P, G) = (C, =, Cp).

The first problem igontrol state reachabilitycovER) defined as follows: given a
control statey of P, do there exisy € Cy andy’ € C suchthaty =* 7’ andq € o(v')?
We recall that a configuration is initial if o(v) € Q. Notice that being initial does
not enforce any particular constraint on the topology. Tlassume that the state
represents an error state for a node of the network. If we clae sOVER, then we can
decide if there exists a topology of the network and a sufficireimber of processes
from which we can generate a configuration in which the esexposed.

The second problem igrget reachability problenfTARGET) which we define as
follows: given a subset of control statésof P, do there existy € Cy and+’ € C such
thaty =* ~" ando(v') C F?

Assume that the subsét represents blocking states for nodes of the network. If we
can solveTARGET, then we can decide if there exists a topology of the netwark a
a sufficient number of processes from which we can reach agroafion in which
processes can no longer move.

Finally we will also study theepeated control state reachability probldrmEPEAT
COVER): given a control state of P, does there exist an infinite executipn= v, =
...suchthatthe sgti € N | ¢ € o(v;)} is infinite?

This problem is a classical extension of theveR problem that can be used, for in-
stance, to verify whether a protocol is able to react to tleigence of errors by reach-
ing a state from which errors do not occur any longer. Assumagdt represents the
error state. If we can solMREPEATCOVER, then we can decide if there exists a topol-
ogy of the network and a sufficient number of processes timegeaerate a computation
including infinitely many error states.



3 Static Topology

In this section, we will prove thatOVER, TARGET andREPEATCOVER are all unde-
cidable problems. We first recall that in our decision praide¢here are no assumptions
on the number of nodes and on the communication topologyeofritial configura-
tions. Furthermore, the model does not admit dynamic regordtions of the topology.
Broadcast communication can be used however to ensure gpetcic protocol suc-
ceeds only if the network topology has a certain form. To beenpoecise, consider the

r(req) r(ack) (?

rr LBO

Fig. 3. The RAO (Req/Ack/OKk) protocol.

protocol specified by the process Req/Ack/Ok (RAQO) of FigdirehereA, and B, are
the initial states.

Proposition 1. LetG be a denumerable set of group names arah initial configura-
tion of the AHN(RAO, G). If 4/ is a configuration such thay =* +' and such that
B; € o(v'), then the grapi=(y’) has the following properties:

— each noden labelled with Bs is adjacent to a unique node labelled witty (we
will denotef (n) this node};

— for each node: labelled withBs, all the nodes adjacent ta or f(n) are labelled
with Err (except of course and f(n)).

Proof. Assumen is a node ofy’ in stateB3. Sincen has received a messagieto reach
Bs, itis necessarily adjacent to a node in state No other node adjacent tocan be in
stateAs. Indeed, ifn receives twareq messages before sendingatt, thenn moves to
stateE'rr. Furthermore, if» sends amck, then all adjacent nodes that are in stadgs
(ready to send aeq) move to staté&rr. Rule(Ag, r(req), Err) ensures that, i6/(vy),
no node labeled4; is adjacent to a node labelets. Rules(By,r(ack), Err) and
(B1,r(ack), Err) ensure that, when has labelBs, its single-hop neighbors cannot
have labelB;. Rule (B, r(ok), Err) ensures that a node different frombut adjacent
to f(n) must have state different frof;. Indeed, if such a node is in stalg, then the
broadcasbk sent byf(n) sends it taE'rr, and if such a node moves B, sendinguck
then it sends nodg¢(n) to Err before it can reachls. O

! Two nodes are adjacent iff there is an edge between thesecsiasn



Using an extension of the RAO protocol, we can define an AHNctvisimulates
the execution of a deterministic two-counter Minsky maehamd reduce the halting
problem tocoVER. A deterministic Minsky machine manipulates two integeiatales
c1 andeg, which are called counters, and it is composed of a finite Setstructions.
Each of the instuction is either of the form (L): ¢; := ¢; + 1; goto L’ or (2) L :
if ¢; = 0 thengoto L’ elsec¢; := ¢; — 1; goto L” wherei € {1,2} andL, L', L”
are labels preceding each instruction. Furthermore trege special label.r from
which nothing can be done. The halting problem consists ieleciding whether or
not the execution that starts frohy with counters equal to reached. r.

The intuition behind the reduction is as follows. In a firsaph we adapt the RAO
protocol to ensure that a given control node is connectedidadistinct lists of nodes
used to simulate the content of the counters. Each node iistlassociated to counter
¢; is either in stateZ; or N Z; The current value of the counterequals the number of
N Z; nodes in the list. The length of each list is guessed norAaéniéstically during
the execution of the first phase (i.e. before starting theikition) and it corresponds to
the maximum value store in a counter for the simulation ta@sad. Initially, all nodes
must encode zero (statg). Note however that the RAO protocol can only be used
to connect pairs of nodes with distinct ending state. Fas thason, we assume that
adjacent nodes in the list have distinct states (&;ds connected to a node with state
Zj, Z} is connected to a node in stat¢/, Z!' is connected to a node in stafg, and so
on). This way each node has only one predecessor and onessaco@de among all
neighbors (all other nodes, if present, are sent to errtesta

In the second phase the control node starts the simulatitreafstructions. It op-
erates by querying and changing the state of the nodes imvthksts according to the
type of instructions to be executed. In this phase all nodeké same list behave in
the same way (i.eZ;, Z!’ andZ; are all treated as zero units). Requests are propagated
back and forth a list by using broadcast sent by a node toriig|(e) single-hop succes-
sor/predecessor node. The protocols that define the tweplaas fairly complicated;
the corresponding automata are described in detail in Agigel Since it has been
shown in [16] that the halting problem for deterministic taounter Minsky machine
is undecidable, we obtain the following result.

Theorem 1. covERis an undecidable problem.
Furthermore, we have the following corollary.

Corollary 1. TARGETandREPEATFCOVERare undecidable problems.

Proof. Let P = (Q, X, E, Qo) be a process; a denumerable set of group names and
q € Q. The reduction fronCOVERt0 REPEAFCOVERIs classical and is performed by
adding a loop of the fornig, 7, ¢) to E. To reduceCOVER to TARGET, we build the
processP’ = (@', X', E’, Q) as follows:

- Q' =QW{rg,r1,rr} (WithQ N {ro,r1,rr} = 0);

-y =Xu {Fl,FQ} (Wlth 2N {Fl,FQ} = @),

- E' = Ew{(q,b(F1),7F), (ro,x(F1),71), (r1,b(F2),rr)} U {(¢, v(F2),7F) |
q €Q}

- Q= Qo v {ro}.



LetTS(P,G) = (C,=,Co) andTS(P',G) = (C’',="',C}). It is then easy to see that
there existys € C} and~, € C’ such thaty, =" ~} ando(v4) C {rr} if and
only if there existsy; € Cy andv] € C such thaty; =* ~| andq € o(v1). In fact,
in TS(P’,G) after being in the state a node can broadcast the mess#&gewhich
launches a protocol whose goal is to send all the other nodég istate . a

4 Mobile topology

In this section we consider a variant on the semantics of AHtdined by adding spon-
taneous movement of nodes as in [22]. Node mobility is matielenon-deterministic
updates of their interfaces. Formally, (g%, G) be a AHN withT'S(P,G) = (C, =, Co).
The semantics ofP, G) with mobility is given by the transition systefiS,,(P,G) =
(C, =, Co) where the transitior> ), is defined as follows.

Definition 3 (Transition Relation with Mobility). Forv,~" € Cwithy = (n1,...,ng)
andy’ = (nf,...,n}), we havey =, /' iff one the following condition holds:

— v =~ (no movement);

— there exists € [1..k] such thatg(n}) = o(n;) (state does not change)n,) C G
(interface changes in an arbitrary way), and for glie [1..k] \ {i}, n}; = n; (all
other nodes remain unchanged)gvement).

We prove next thatOVER, REPEAFCOVER and TARGET are decidable for AHN
with mobility. Intuitively, this follows from the observan that the topology of the
network changes in an unpredictable and uncontrollablenerakience, every time a
node broadcasts a message this is received by a non-deistitaily chosen set of
nodes, namely those in the communication range of the araittbe time the message
is broadcast. Formally, we reduc®VER, TARGET and REPEATFCOVER respectively
to the marking coverability marking reachabilityand repeated marking coverability
problems for Petri nets, which are known to be decidable ésgethe survey [7] and
[8] for the repeated coverability).

A Petri net(see e.g. [7]) is a tupl&v = (S,T,mgp), whereS andT are finite
sets ofplacesandtransitions respectively. A finite multiset over the s8tof places
is called amarking andm, is the initial marking. Given a marking: and a place
p, we say that the place containsm(p) tokensin the markingm if there arem(p)
occurrences gf in the multisetn. A transition is a pair of markings written in the form
m’ — m'. The markingn of a Petri net can be modified by means of transitions firing:
a transitionm’ — m” can fire ifm(p) > m/(p) for every placer € S; upon transition
firing the new marking of the net becomes= (m \ m’) & m” where\ andd are the
difference and union operators for multisets, respegtividiis is written asn — n. We
use—* [resp.—* ] to denote the reflexive and transitive closure [resp. thasitive
closure] of—. We say thatn’ is reachable fromm if m —* m’. The coverability
problem for markingn consists of checking whethet, —* m’ with m’(p) > m(p)
for every placep € S. Thereachabilityproblem for markingn consists of checking
whethermqy —* m. Finally, therepeated coverability problefior markingm consists
of checking wether there exists an infinite executian—* m; —* my —1 ... such



Fig. 4. A Petri net which simulates an AHN with mobility

that for alli € N, m;(p) > m(p) for every placep € S. The coverability, reachability
and repeated coverability problems are decidable for Retsi [7,8].

We now show how to build a Petri net which simulates the beireni an AHN
with mobility. The Figure 4 gives an example of a Petri neba&sted to a process. In
the Petri net, each control statéhas a corresponding plageand each nodgy, I') of
the network is represented by a token in the placehe nodes interfaces (thus also the
network topology) are abstracted away in the Petri net. Insafhase, before to put a
token in the placek, the Petri net put non-deterministically tokens in the ptacorre-
sponding to the initial control states of the process. Thproduces a token in the place
ok and the simulation begins. The broadcast communicatiomtehed by droadcast
protocolwhose effect is to deliver the emitted message to a non+detestically cho-
sen set of potential receivers. More precisely, the brostqratocol can be started by a
token in a place such thafq, b(m), ¢'); after starting the protocol the token is moved
to a transient place; and a token is produced in the plage?. During the execution
of the protocol, every token in a plaecesuch that(r,r(m),r’) can receive the mes-
sage moving in a transient plage The protocol ends when the token in the transient
placeg, moves to the place’. The tokens in the transient placgscan move to the
corresponding places only when no broadcast protocol is running (when a broadcast
protocol is running, there is no token in the plagg. This broadcast protocol does
not faithfully reproduces the broadcast as formalized & AHN model: in fact, in
the Petri net there is no guarantee that the tokens in thsiémtnplaces:. move to
the corresponding places at the end of the execution of the protocol. A token that
remains in those transient places (thus losing the poggitil interact with the other
tokens in the Petri net) corresponds to a node in the AHN mibeéeldisconnects, due
to mobility, from the other nodes in the system. Testing lwkethere is an execution
in the AHN with mobility which ends in a configuration whereepaf the nodes is in
the control state can be done by testing whether the mark{gok} can be covered
in the associated Petri net. Hence:



Fig. 5. Arborescence.

Theorem 2. There exists a reduction from tt@VER problem for AHN with mobility
to the marking coverability problem for Petri nets.

Using the same construction, we also obtain:

Theorem 3. There exists a reduction from tiREPEATCOVER problem for AHN with
mobility to the marking repeated coverability problem fetfPnets.

In order to reducerARGET to marking reachability we need to extend the Petri
net associated to an AHN, adding a final stage in the computatiedicated to the
elimination of tokens from the places corresponding to thel tates int". Intuitively
we add a transition of the forquk} — {end} and for eacly € F' we add a transition
{end, q} — {end} and we then test if the marking where all the places are empty
execpt the placend is reachable.

Theorem 4. There exists a reduction from tmaRGET problem for AHN with mobility
to the marking reachability problem for Petri nets.

From these three last theorems and from the fact that theimgadoverability,
marking repeated coverability and marking reachabiliphpems are decidable for Petri
nets, we finally deduce:

Corollary 2. COVER, REPEAFCOVER and TARGET are decidable for AHN with mo-
bility.

5 AHN restricted to Bounded Path Configurations
Let us go back to the AHN model with static topology. The pliiy for a message to
pass through an unbounded number of new nodes is a key féatine proof of The-

orem 1 (undecidability o€ ovER for static topology). For this reason, it seems natural
to studyCOVER, TARGET andrREPEAFCOVERfor a restricted class of configurations in

10
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which, for a fixedK', a message can pass through at ntostifferent nodes. Formally,
given an AHN(P,G) with P = (Q, X, E, Qo) andT'S(P,G) = (C,=,Co) our class
of restricted configurations is defined as follows:

Definition 4 (K-bounded Path Configuration).Given an integetX’ > 1, a configu-
ration v is a K-bounded path configuration if the longest simple path inatssociated
graphG(v) has length at mosk'.

We denote by’ X the set ofi-bounded path configurations. The semantics of the AHN
(P, G) resticted toK-bounded path configurations is given by the transitionesyst
TSk(P,G) = (CK, =k, CE) where the transition relatios- x is the restriction of=

to CK x K andC¥ = Cy N CX. For fixed K, the class of<-bounded path configura-
tions contains an infinite set of graphs. In Figure 5 we shoexample in which nodes
of type S (server) are connected via bounded paths and nodes ofitgpdb (clients)

are locally connected to each server (using private grompesi Here we could add
any number of client nodes (connected with private groupesato a single server)
without breaking the bounded path property.

Decidability of coveR. In order to studycoveR restricted to bounded path configura-
tions, we first introduce some definitions and prove auxilfoperties. First of all we
give the definition of thénduced subgraphelation.

Definition 5 (Induced Subgraph Relation).For configurationsy; and~,, we define
Y1 =is 72 if there exists a label preserving injectidgnfrom nodes of7; = G(v1) to
nodes ofG2 = G(v2) such thatn,n’) is an edge inG; if and only if (h(n),h(n')) is
an edge inG,, i.e.,G1 isisomorphicto an induced subgraph @f,.

Notice that the induced subgraph relation is stronger tharusual subgraph relation
that requires only an homomorphic embedding-gfinto Gs. In Fig. 6 (a)G; is iso-
morphic to an induced subgraph@$, thusG; <;s Gs. In (b) G5 is obtained fromG,
by removing the edge from nodeto nodec. The induced graph affs with nodesa,
b, ¢ is no more isomorphic t6:s, henceGs #;; G2 Notice, however, thaf7s is still a
subgraph of7,.

The following lemma then holds.
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Lemma 1. GivenK > 1, (C¥,<;,) is a well-quasi ordering (shortly wqo), i.e., for
every infinite sequence &f-bounded path configurationg~, . . . there exist < j s.t.

Vi is Vi

Proof. We can apply here Ding’s Theorem (Theorem 2.2 in [4]). Bgtbe the class of
graphs (with wqo labels) that do not contdiy subgraphs, wherE, represents simple
paths withn nodes (over the same labels). Ding’s Theorem states thanfonatural
numbern > 0, the classP,, equipped with the induced subgraph relation is a wqo.
SincePx 1 corresponds to the class of graphs with longest simple pfagngth at
mostK, by taking as set of labels control states equipped witlve obtain the wqo of
(CK, '\<Ls) O

Given a subse$ C CX we defineS 1= {+' € C¥ | y € Sandy <is v'},i.e.,S Tis
the set of configurations generated by thosé wia <;,. A setS C CX is anupward
closed setv.r.t. to (CX, x;,) if S 7= S. Since(CX, x.,) is awgo, we obtain that every
set of configurations that is upward closed W(ct, <) has a finite basis, i.e., it can
be finitely represented by a finite numberigtbounded path configurations. We can
exploit this property to define a decision proceduredaweR. For this purpose, we
apply the methodology proposed in [1]. The first property wedto prove is that the
transition relation induced by our models is compatibléwt .

Lemma 2 (Monotonicity). For everyy;, vz, v, € CX such thaty; =k 7o andy; <
~}, there existsy, € CX such thaty| =k +4 andy, <is 5.

Proof. The interesting case is the application of a broadcastr(d¢. Assume that the
rule is applied to a node adjacent inG(v;) to nodesN = {n4,...,n;}. Assume
that the subselV’ of N contains nodes that are enabled by messadgy applying

the operational semantics, the statenoénd the states of nodes N’ are updated
simultaneously Assume now th@{~y; ) is isomorphic to an induced subgraph(efy; )

via the injectionh. Then,h(n) is adjacent to the set of nodé$N) (there cannot be
more connections sind®G(v1)) is an induced subgraph 6#(~;)). Thus, the same
rule is enabled ik(n) and inh(N’) and yields the same effect on the labels. Thus, we
obtainvy} such thalG(y2) <is G(74)- O

Monotonicity ensures that i§ is an upward closed set of configurations (W,
<is)), then the set of predecessors $faccroding to=x, defined agprex (S) =
{v|v =k~ andy’ € S},is still upward closed. We now show that we can effectively
compute a finite representation$fJ prex (.5).

Lemma 3. Given a finite basis3 of an upward closed sef C C¥, there exists an
algorithm to compute a finite basi¥’ of S U prek (S) such thatS Uprex (S) = B’ 1.

In Appendix E, we give an example of the symbolic computatbf U preg (S). We
can now state the main theorem of this section.

Theorem 5. For K > 1, COVER is decidable for AHN restricted t& -bounded path
configurations.
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Fig. 7. Configuration(go, c1 = 3,c2 = 2) for ¢1 € [0, 4] ande; € [0, 2].

Proof. From Lemmas 1, 2, and 3 it follows that the transition systeduced by any
AHN is well structured with respect t@¥, ;). The theorem then follows from the
general properties of well-structured transition systdescribed in [1,2,10]. The deci-
sion procedure is based on a symbolic backward exploratiarich we use finite sets
of configurations irC¥ to symbolically represent upward closed sets of configonati
(those generated by the bases). Thus, to sotweeR for a control state, we compute
Pre*({q} 7). The wgo of(C¥, <) ensures that the symbolic computation of prede-
cessors terminates after finitely many step whenever wegyusto discard graphs that
do not add new information. We can then test if the resultirgdint contains initial
configurations by looking for graphs in which all nodes haleels inQ. a

Undecidability of TARGET and REPEAFCOVER. In order to show thatARGETis unde-
cidable forK-bounded path configurations, we show how to model a Minskghime

in such a way that the machine terminates if and only if theesponding AHN has

a computation (restricted t&' -bounded path configurations) that reaches a configura-
tion in which all nodes are in some specific final state. Fa thirpose, we design a
protocol that succeeds only on star topologies in which #heer node represents the
current control state and the satellite nodes the unitsetwo counters. Such units
are initially in thezero; state (withi € {1,2}). The number of satellite nodes needed
to guess the maximal values reached by the counters durngdimputation is non-
deterministically chosen in a preliminary part of the siatidn . Only runs that initially
guess a sufficient number of satellite nodes can successfathinate the simulation.
A satellite node moves from theero; to theone; state when the-th counter is incre-
mented, and a single node moves fromdhe; back to thezero; state when the counter
is decremented. For instance, the star in Figure 7 represettinfiguration with con-
trol stateqy and counters; = 3 (with maximal value equals t¢), andcs = 2 (with
maximal value equals ).

Test for zero actions are more difficult to be simulated as ritdgt possible to check
the absence of neighbours in the state;. Nevertheless, it is possible to ensure that no
node is in the statene; after a test for zero is executed. It is sufficient to use bcaat
communication to move all the satellite nodes indhe; state to a specialink state. If
the simulation terminates exposing the final control statered node is in theink state
(i.e. a configuration is reached in which all the nodes ard&énfinal control state, in
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thezero;, or theone; state), we can conclude that the simulated computatiorriecip
thus also the corresponding Minsky machine terminates.

Note that the number of satellite nodes is not fixed a pricviwvelver the graph have
bounded path (the construction works for paths of lerijtlso we can conclude what
follows:

Theorem 6. TARGETIs undecidable for AHN restricted t&-bounded path configura-
tions (with ' > 3).

As a corollary we now prove the undecidability REPEAFCOVER. We need to
slightly modify the way we model Minsky machines. The idetisepeatedly simulate
the computation of the Minsky machine, in such a way that thal ftontrol state can
be exposed infinitely often if and only if the simulated Migskachine terminates.

Every simulation phase simulates only a finite number ofsstéghe Minsky ma-
chine, and if the final control state is reached then a newlatin phase is started.
This is achieved by including in the initial star topologg@katellite nodes in thfree
state, and ensuring that every simulated action moves otteeé nodes to théone
state. In this way, a simulation cannot perform more steps the number offree
nodes in the initial star topology. If the final control steteeached, a new simulation is
started by moving all the nodes from ttiene to the free state, all the nodes from the
one; to thezero; state, and by restarting from the initial control state.ibithat nodes
reaching theink state (due to a wrong execution of a test for zero action) atenger
used in the computation. For this reason, as every time agiest for zero is executed
some node moves in thenk state, we are sure that only finitely many wrong actions
can occur. Hence, if the final control state is exposed igfipivften, we have that only
finitely many simulation phases could be wrong, while inéhitmany are correct. As
all simulation phases reaches the final control state (sacgso start the subsequent
phase), we have that the corresponding Minsky machine neites. Hence, we have
the following Corollary of Theorem 6:

Corollary 3. REPEAFCOVER is undecidable for AHN restricted t&'-bounded path
configurations (with’X’ > 3).

6 Conclusions

In this paper we have studied different types of verificapiosblems for a formal model
of Ad Hoc Networks in which communication is achieved via kestve type of broad-
cast. Perhaps surprisingly, a model with static topologygwut to be more difficult to
analyze with respect to a model with spontaneous node mavefsimilar dichotomy
appears in verification of perfect and lossy channel syst&tuglying the expressive-
ness of other variations on the semantics to model for igstaonflicts, noise and
lossiness, is an interesting research direction for futtoeks.
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A Proof of Theorem 1

We show how to reduce the halting problem for deterministingy machine to the
COVER problem. To perform this reduction we will use many times $iaene prin-
ciple as for the Req/Ack/Ok-protocol. We build a procéss= (Q, E, X, Qo) given
by the Figures 8, 9, 10, 11, 12, 13 and 14. The initial statestar = {R,C4, Cy,
CY, Cq,Ch, CY}. For each label of the Minsky machine there is a control stdten
@ and the instructions of the Minsky machine are encoded b¥fitdneres 13 and 14. In
the sequel we call processwith S € {R, C4,C1, CY, Cq, Ch, CY} the process whose
initial state corresponds to the given name.

We consider an infinite denumerable set of nariesnd we will show that the
Minsky machine eventually reaches the labbel if and only if there is an initial con-
figurationy associated ta” andG and a configuration’ such thaty —* +' and
Lp eo(v).

We first assume that there is an initial configuratioassociated t@ andg and a
configuratiomy’ such thaty =—* 4’ andLy € o(+'). Intuitively the AHN associated
to P andgG works in two phases, in the first phase it ensures that thddgpdas a
certain form (using the same method as &0 protocol) and in the second phase
it simulates the behavior of the Minsky machine. Note thatRMO protocol works
to isolate two nodes in the graph, since we want here to bigilsl bf nodes, we need
at least three types of process (whereasRi) protocol is using only two kinds of
process, the one labelled By and the one labelled b®; in the Figure 3).

Let us now explain the first phase more in details. 1/étbe a configuration such
that Ly € o(«"”) (note that before reaching a configuration containingthe system
has to be in a configuration likg’). Using a reasoning similar to the one developed in
the proof of Proposition 1, we can deduce that the gr@ph’) enjoys the following
properties. Ifn is a node ofG(v"”) labelled with L, then there are two sequences of
nodesn,ng, ..., n; andn’, nj, ..., nj such that:

— ny andn/ are connected to;

—forie {l,...,k — 1}, n; is adjacent toy; 1;

—forie {1,...,1 —1},njis adjeacent te;  ;

—forie {1,...,k},if (i mod 3 = 1)thenn;islabelledwithZ!,if (i mod 3 = 2)
thenn; is labelled withZ}" and if (i mod 3 = 0) thenn, is labelled withZ ;

—forie {1,...,1},if (i mod 3 = 1)thenn!is labelled withZ,, if (i mod 3 = 2)
thenn! is labelled withZ} and if (i mod 3 = 0) thenn/ is labelled withZ,.

In other words in the graph we have two such sequences oblabel Z] — 7 — Z; —
Zy -7 —Z1—...andLy — Z4 — ZY} — Zy — Z}, — Z) — Z5 — .. .. Furthermore, we
have that :

— all the other nodes which are adjacenttare in stateErr (and so they will not
play any role in the further communication);

— fori € {1,...,k} all the other nodes adjacent tg are either in statérr or in
a state belonging to proceés or C or C4 (which is not a problem since these
processes cannot communicate directly with each other);
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— fori € {1,...,1} all the other nodes adjacent #) are either in statd’rr or in
a state belonging to proce€s or C{ or C"'1 (which is not a problem since these
processes cannot communicate directly with each other).

We have the following property because each node first asdwéne protocoRAO to
its predecessor and then either it launches a new profédé) with a successor node
or it sends alone; which is transmitted to the nodesending it in statd.

Once the form of the topology is ensured, the simulation effMinsky machine
begins. In this second phase we forget about the distinti@weenz;, Z; and Z/
[resp.NZ;, NZ! and N Z!'] which was useful only to explain how to obtain two lists
of nodes. The simulation of the Minsky machine is performgtbdlows:

— For the incrementation of the counter, the noden sends arinc; and waits for
anackinc; (see Figure 13); thisnc, is transmitted to the first node; which is
in stateZ; and which then goes in staféZ; sending the acknowledgement (see
Figure 12). So the number of nodesin stateN Z; characterizes the value of the
counter at each step of the simulation. Note that if ther@isiore node in stat&,
then the node: is in a pending state;

— For the decrementation of the counteithe noden sends alec; and then there are
two cases (see Figure 14):

1. if the noden; is in stateZ;, it sends back aero; to the noden,

2. if the noden; is not in stateZ;, but in stateN 7, the dec; is transmitted
to first noden; in stateN Z1, this node then sendszaro; and the nodes;_;
receives this message and goes fiiiff; to stateZ; sending arckdec; which
is transmitted back to nodeby its predecessors.

The incrementation and decrementation of the second coargeperformed exactly
the same way. It is then clear that if the AHN reaches the cordigpn~’ such that
Lp € o(v') we can build a run of the Minsky machine which reaches the labe

We now assume that the Minsky machine reaches the Statduring its unique
execution. We denote by [resp. byl] the highest value taken by the first [resp. the
second] counter during this execution. Then itis enougltsitler the following initial
configurationy;, | —n; —... —ny —n —ny — ... —ng — ngy1 Where:

— nis labelled byR;

—foriel,...,l+1,if (i mod 3= 1)thenn/islabelled byC%,if (i mod 3 = 2)
thenn! is labelled byC% and if (i mod 3 = 0) thenn/, is labelled byCy;

—foriel,....,k+1,if (i mod 3= 1)thenn;islabelledbyC?,if (i mod 3 = 2)
thenn; is labelled byC{ and if (i mod 3 = 0) thenn; is labelled byC} .

The execution of the AHN from this initial configuration willecessarily reaches a
configuratiom’ such thatL» € o(v’), the details of the execution being the same as to
prove the previous implication. O
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Fig. 8. Ensuring a topology to prove undecidability (1)
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Fig. 9. Ensuring a topology to prove undecidability witke {1, 2} (II)
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r(ack;)

r(req;’)
r(req)’)r(acky) r(

done;)
r(ack;)
r(oki')
r(red)

Fig. 10. Ensuring a topology to prove undecidability witke {1, 2} (Ill)
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r(ack;)

r(ack})

done;)
r(ack;)

r(req) r(ack;) r(

r(done;)

r(req;)

Fig. 11.Ensuring a topology to prove undecidability witke {1, 2} (IV)
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b(ackinc;)

r(inc;)

b(dec;)

r(ackdec;)

r(ackince;)

b(ackdec;)

Fig. 12. Encoding the counter behavior fore {1,2} (Z; and NZ; can be replaced b¥; and

NZ!orbyZz! andNZ])

b(inc;) r(ackine;)
L > . r

Fig. 13.EncodingL : ¢; :== ¢; + 1; goto L’

r(ackdec;)

Fig. 14.EncodingL : if ¢; = 0 then goto L’ else ¢; := ¢; — 1; goto L”
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B Proof of Theorem 2

Let (P,G) be a AHN withP = (Q, X, E, Qo) andT'Sp (P, G) = (C,=1,Co) its
associated transition system with mobility. We associat® the following Petri net
[P] = (S, T, mo) where the set of placesis defined as follows

S =QU{m, ¢ |qgeQtU{al|aec X} U {start, ok}
the set of transition®' is the minimal set containing the following classes of titoiss

Prepare: if g0 € Qo then{start} — {start,qo} € T}

Start: if go € Qo {start} — {ok,qo} € T;

Start protocol: if (¢,b(a),¢’) € E then{q, ok} — {q,,al} € T}
Receive: if (¢,r(a),q’) € Ethen{q,al} — {q.,al} € T}

End protocol: if ¢ € @ anda € X then{gy,al} — {q,0k} € T;
Complete receive:if ¢ € Q anda € X then{q,, ok} — {q,0k} € T.

and the initial markingng = {start} € T.

This Petri net includes therepareand Start transitions that are used to reach the
markings corresponding to every possible (parameterimdil configuration of the
AHN. The other transitions are used to implement the brostqmatocol.

We now prove that the behavior /] models the behavior ofP, G) with mobil-
ity. This proof is divided in two distinct results: a comp@agess result stating that all
execution inT'Sy, (P, G) are mimicked by computations f?] and a soundness result
showing that for every marking not including tokens in tians places (places of the
form ¢, or ¢,) there is a corresponding configuration reachable in the AHN

We use the following notation: given a configuration= (n1,...,ny) in C, the
marking corresponding tg is denoted withlec(y) = ;... k) o(n:) W {0k}

Lemma 4 (Completeness)Lety € Cy andy’ € C. If v =%, ' then the marking
dec(v') is reachable i P].

Proof. By induction on the length of the computatign=-1%, +'. ad

Lemma5 (Soundness)Letm be a marking reachable in the Petri ng?] such that
m(ok) = 1 andm(p) = 0 for every placep € {q, ¢ | ¢ € Q}. There existsy € C
and+y’ € C’ such thatdec(y') = m andy =%, +'.

Proof. By induction on the number of broadcast protocols executethd the compu-
tationmg —* m of the Petri nefP]. In the inductive case we note that the computation
mo —* m can be divided in three partsg —* m' —* m” —* m wherem’ —* m”

is the last execution of the broadcast protocol. The tramstin m” —* m are all
Complete receivé&ransitions and can be divided in two groups: (i) those tipgatyato
tokens introduced in transient places by the last broagicasbcol, and (ii) those that
apply to the tokens in transient places when the last braagbcatocol is started. It is
easy to see that an alternative computatign—* m can be obtained simply by antici-
pating the transitions of type (ii) immediately before tixeeution of the last broadcast
protocol. In this way, the last broadcast protocol stadefa marking in which all tran-
sient places are empty, thus it is possible to apply the itikibypothesis to prove the
thesis. a
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As a corollary of these two Lemmas we have thatverin an AHN with mobility
can be reduced to marking coverability in the corresponBitg net, thu€ OvVERturns
out to be decidable.

Lemma6. Let ¢ € Q. We have that there exists ane Cy and~’ € C such that
v =um 7' andq € o(v') if and only if the markind ¢, ok} is coverable in the Petri net
[P]-

Proof. Theonly-if part directly follows from Theorem 4. In thE part we observe that

if in [P] there exists a computation, —* {q, ok} & m, then the computation can be
extended withComplete receiveansitions in order to remove all the tokens present in
transient places in the markimg. Thus the thesis directly follows from Lemma 50

C Proof of Theorem 4

Let (P,G) be a AHN withP = (Q, X, E, Qo) andT Sy (P, G) = (C,=um,Co) its
associated transition system with mobility. We consideetaF5C (). We associate to
P the following Petri nefP, F] = (S, T, mo) where the set of placeS includes the
places of the Petri nets built in the proof of Theorem 2 plesglaceend, the initial
markingmy is defined as in the proof of Theorem 2, and the set of tramsifidncludes
the transitions defined in proof of Theorem 2 plus the folloyvi

End {ok} — {end} € T;
Remove Final: if ¢ € F'then{end, ¢} — {end} € T.

We have then:

Lemma 7. There existsy € Cy and~y € C such thaty =%, v ando(y’) C F if and
only if the marking{end} is reachable in the Petri n§P, F]}.

Proof. The only-if part follows from Lemma 4; it is sufficient to observe thategiv
a configurationy’ such that(y') C F, then the markindend} is reachable ifiP, F]
from the markingiec(v’). Theif partfollows from Theorem 5; it is sufficient to observe
that every computatiom, —* {end} is of the formm, —* {0k} W m’ — {end} ¥
m’ —* {end} wherem’ has tokens only in places corresponding to statds.in O

D Proof of Lemma 3

The interesting case is the backward application of a bragtdtle(q, b(a),¢’) to a
configuration in the upward closure Bf The computation of the sé& | U prex (B 1)
whereprex (B 1) = {v| v =k 7 andy’ € B 1} is done according to the following
steps :

— B :=B;
— For eachy € B:

1. For each vertex labelled withq’ in the graphG(y), let N be the set of nodes
adjacent tay’
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If There exists a node ilV with stater such thaf(r, r(a), ') is a rule in the
model
Then We add no predecessor i (because every nod€ € S in stater must
react to the broadcast);

Else For any subseN’ = {n4,...,n;} of nodes inN such that:; has state;
and(r;,r(a),r;) is arule in the model, we build a predecessor configura-
tion~’ in which the label of: is updated t@ and the label of.; is updated
tor; fori € {1,...,k} and if there is noy” in B’ such thaty” <;s v/,
we addy’ to B’ (Note that we have to select all possible suligébf N
because we must consider the cases in which nodes connectedre
already in the target state of some reception rule).

2. Let I be the set of configurationg in C obtained by adding a nodein
stateg’ toy such that inG(v’), n is adjacent to at least one node (i.eIihwe
have all the configurations obtained by added a connectegltogdand which
are still K-bounded path configurations). We then apply the precedént r
to each configuration ii” considering the added noddabelled withg’.

O

E An Example of Pre-computation

b(m)
r(m)

Fig. 15.Example of process.

We consider the procesB represented on the Figure 15. The Figure 16 shows
example of the computation pf-e({~} 1), in other words for this example we restrict
the configurations t6-bounded path configurations. We build four configuratiarshs
that {~1,v2,73,74} 1C pres({7y} T). Configuratiomy; is obtained by matching the
right-hand side of the broadcast rule with the topleftmastenand the righthand side of
the reception rule with all of its yellow neighbors, whije is obtained by matching the
righthand side of the reception rule with a subset of thenmfigarationys is obtained
by assuming that the broadcast node is sent by a node in therdjplosure, connected
to two yellow nodes. In the example the effect is that of ag@éimew green node and
changing one of two yellow neighbors (we must consider ottases like changing
all yellow neighbors etc.). Similarly, configuration is obtained by assuming that the
broadcast node is sent by a node in the upward closure, ctatteca red node and two
yellow nodes. The effect is that of adding a new green nodeirtg the yellow nodes
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v [ red H yellow } [ yellow J

[ yellow J [ yellow J [ white ]

71 [ green H white } [ white } [ green H white } [ white } Y2

[white | [ yeltow | [white | [ vetlow | [ yellow | ([ white |

Y3 [ red H yellow } [ white green } [ reﬁ white } [ yellow } Y4
[ yellow ] [ yellow ] [ white ] [ green H white } [ yellow ] [ white ]

Fig. 16. Example of symboligpre computation.

into white, and leaving the red node unchanged. It is immbtanotice that in the last
two cases the new graphs have both a new node and additiayesd.ed

F Proof of Theorem 6

Let Ly be the initial location of the Minsky machine. To simulateua of the Minsky
machine in which the upper bound on the values of the two evsrareB; and Bs,
in a preliminary phase we non-deterministically selectame part of the network
a control node and a sufficient number of unit nodes (at I8ast- B5) initially all
in statenull; or nulls. The protocol is defined in Figure 17. The broadcast message
req sent by a node in statéart forces all other nodestart in its vicinity to enter an
error state. The sending node moves to an auxiliary statdichmon-deterministically
either accepts acknowledgment from unit nodes or stopsitialization phase. Null
nodes in the vicinity send acknowledgements and move to sliay state. Reception
of acknowledgments from another unit node results in arrstete. The control node
sends amk message to send unit nodes which did not acknowledge:th® a special
error state and the others to the stateo; or zero,. This protocol ensures that every
node inzero; Or zeros State has no othefero; or zero, neighbors (i.e. every edge
connecting a satellite node must be labeled with a diffegemtip name).

In the second phase we run the simulation of the counter machihe ruleL :
¢; = ¢; + 1; goto L' is simulated by the automaton in Figure 18. The control node
broadcastsnc; message forcing allero; nodes to move to an auxiliary state. The first
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Fig. 17.Initialization of the star: Selection of the control nodelanitialization of satellite node
associated to counterc {1,2}.

node in that state that broadcasts the acknowledgment nto\aateia; and forces
the control node to move to a special state. If the controlen@teives another ac-
knowledgment it moves to an error state. Otherwise, it semd&k; message that
forces theia; node to statene; and all other nodes in auxiliary states backtao;.
This way, only one satellite in stateero; changes its state to stab@e;. The rule
L:if ¢; =0thengoto L' elsec; := ¢; — 1; goto L” is simulated by the automa-
tonin Figure 19. The simulation works as follows: the cohtiae chooses to broadcast
non deterministically eithedec; or zero;. If it broadcastsiec;, it launches a symmet-
ric protocol to the one for incrementation which forces oatellite node to move from
one; to zero;. If it broadcasts aero; message, it forces athe; satellite nodes to move
to a speciakink state. Thus, a zero test is correctly executed only ifsthe: state is
never generated. Hence the Minsky machine stops in statéan only if there exists
an execution of the protocol that starts from an initial cgmfation in in which nodes
have state i start, nully, nully } and, in some neighbor, it non-deterministically se-
lects a control node and a sufficient number of satellite adiéially all in statezero)
such that the protocol stops in a configuratigrin which there are no nodes éror
and sink (nowhere in the network) state and at least of the controkrisdn state
Lp. From this property, it follows thatARGET is undecidable for AHN restricted to
K-bounded path configurations wifti > 3.
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Fig.18.EncodingL : ¢; := ¢; + 1; goto L'.

) b(dec) _D r(de) M) bldok)
b(zero;) r(da;)
r(dok;)

r(zero;)

Y
sink

Fig. 19.EncodingL : if ¢; = 0 then goto L’ else ¢; := ¢; — 1; goto L”
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