
Dessert, an Open-Source .NET Framework for
Process-Based Discrete-Event Simulation

Giovanni Lagorio

DIBRIS - University of Genova
Genova, Italy

Email: giovanni.lagorio@unige.it

Alessio Parma

Finsa S.p.A.
Genova, Italy

Email: alessio.parma@finsa.it

Abstract—We present Dessert, an open-source framework for
process-based discrete-event simulation, designed to retain the
simplicity and flexibility of SimPy, within the strongly-typed .NET
environment. Both frameworks build domain-specific languages,
for simulation writing, by using existing constructs in a novel
way and providing a rich library of classes. By exploiting .NET
generic types and iterators, we have successfully retained, and in
few places even enhanced, the lean syntax and usability of the
original library, without sacrificing static type checking. Static
type-safety, in addition to being a very important property by
itself, facilitates runtime code optimizations; indeed, benchmarks
show that our Dessert outperforms SimPy.

Keywords–Discrete-event simulation; .NET; Python.

I. INTRODUCTION

DES (Discrete-Event Simulation) is an intuitive and flex-
ible form of modeling that enables to represent and simulate
complex systems in a wide range of application domains, from
logistics and supply chain management, to health care. In this
paper, we present Dessert, a process-based DES framework for
.NET, explaining the rationale behind its design, and discussing
the technical challenges we have faced during its development.
The design of Dessert has been heavily inspired by SimPy [1]
[2], which exploits Python generators [3], a special form of
coroutines [4], for writing process-based simulations cleanly
and easily.

Being written in, and consumed from, Python can be seen
as a double-edged sword for SimPy, since typing errors are
found at runtime and the (dynamic) typechecking overhead
harms simulation running times. In designing Dessert we
have striven to create a first-class “citizen” in the strongly-
typed .NET environment, while retaining the lean syntax and
usability of SimPy. For instance, Figure 1 shows a simple
example simulation in Python, using SimPy, and Figure 2
shows the same example, written in F# using Dessert. This
example is described more in Section II but, as the reader
can easily verify, both listings are, with the exception of small
syntactic differences, quite similar and very readable; indeed,
even without knowing anything about SimPy or Dessert, the
meaning of the simulation can be easily inferred.

We have developed Dessert as an open-source project,
readily available via both NuGet [5], the package-management
platform for .NET, and GitHub [6], one of the most popular
hosting service for software development projects. Any .NET
language can be used to write simulations to be run on
our engine, since it complies with the Common Language

Specification (CLS), a strict subset of the .NET Common
Type System that describes how to design types that can be
manipulated by any CLS consumer [7].

The paper is organized as follows: Section II gives an
overview of SimPy and Dessert, Section III analyzes design
and implementation issues, and Section IV compares the per-
formance of our framework in various environments. Finally,
Section V discusses related work, while Section VI outlines
some concluding remarks and further work.

1 from simpy import *
2
3 def car(env):
4 while True:
5 print(’Start parking at %d’ % env.now)
6 parking_duration = 5
7 yield env.timeout(parking_duration)
8 print(’Start driving at %d’ % env.now)
9 trip_duration = 2

10 yield env.timeout(trip_duration)
11
12 env = simpy.Environment()
13 env.process(car(env))
14 env.run(until=15)

Figure 1. A simple example of SimPy (Python).

1 open Dessert
2
3 let rec car(env:SimEnvironment)=seq<SimEvent> {
4 printfn "Start parking at %g" env.Now
5 let parkingDuration = 5.0
6 yield upcast env.Timeout(parkingDuration)
7 printfn "Start driving at %g" env.Now
8 let tripDuration = 2.0
9 yield upcast env.Timeout(tripDuration)

10 yield! car(env)
11 }
12
13 let env = Sim.NewEnvironment()
14 env.Process(car(env)) |> ignore
15 env.Run(until = 15.0)

Figure 2. A simple example of Dessert (F#).

II. OVERVIEW OF SIMPY AND DESSERT

As mentioned in Section I, SimPy exploits Python genera-
tors for writing process-based simulations. Indeed, in SimPy a
process is simply a generator function, which is used to model
active components like customers, vehicles or agents.

All processes live in an environment, and interact with it
and with each other via events. This is shown in Figure 1,
where the function car is used to model a process where
a car alternates between being parked and driving. More in
detail, an environment env is created (line 12), then a process
is created by passing car(env) to the method process of the
environment (line 13) and the simulation is run for 15 units of
time, by calling run(until=15) (line 14). The process defined
by the function car enters in an “infinite” (that is, until the
simulation runs) loop that consists in:
• “parking the car”, simulated by suspending the process

for five units of time by yielding a timeout event,
created by calling env.timeout (line 7);

• “driving the car”, simulated by suspending for two
units of time (line 10).

The environment env is used both to create new events and to
get the current time, given in simulation units, by accessing
env.now (lines 5 and 8). It is up to the simulation writers to
decide what a unit of time corresponds to; for some simulations
using seconds is a sensible choice, for others it makes more
sense to use minutes and so on. While in SimPy simulations
can be performed “as fast as possible”, in real time or by
manually stepping through the events, the current version
of Dessert always run simulations at “full speed”, so the
simulation time never corresponds to the real (wall clock) time.

Figure 2 shows the same simulation of Figure 1, but written
in F# using Dessert. As the reader can see, the former is
just a little more verbose and, more importantly, contains
type annotations (for instance, env : SimEnvironment, which
declares that the parameter env must comply with the type
SimEnvironment) that are statically checked by the compiler.

While events are obviously the central topic of DES,
Dessert also provides some utility types for representing:
• resources (modeled by classes Resource and

PreemptiveResource), which can be used by a
limited number of processes at a time (e.g., a gas
station with a limited number of fuel pumps);

• containers (Container), which model the production
and consumption of a homogeneous, undifferentiated
bulk. It may either be continuous (like water) or
discrete (like apples);

• stores (Store<T> and FilterStore<T>), which are
resources that enable the production and consumption
of discrete objects of type T.

Moreover, other classes aid in gathering statistics about re-
sources and processes. Given the available space we cannot
detail all features, so we give an overview of the key concepts
by means of the small, yet feature packed, following example.

Figure 3 contains a stripped down version of a process
representing a network switch, which is used in the peer to
peer simulation presented in Section IV-C. In this simulation,
the switch waits quietly for incoming frames and, when one
arrives, the switch delivers it to the right target. However,
to perform its work, the switch needs to temporarily store
incoming frames inside the buffer _buffer, which can only
store G.BufferSize frames. When the buffer is full, any
incoming frame is simply dropped, that is, thrown away;
this fact is logged, inside method Receive, by invoking
G.Stats.DroppedFrame(). We point out that, except for syn-
tactic differences, this code is analogous to the one that it

1 sealed class Switch : Entity {
2 readonly Store<Frame> _buffer;
3 Switch(SimEnvironment e, G g) : base(e, g) {
4 var cap = G.BufferSize;
5 _buffer = Sim.NewStore<Frame>(e, cap);
6 }
7 IEnumerable<SimEvent> Run() {
8 while (true) {
9 var getFrame = _buffer.Get();

10 yield return getFrame;
11 var f = getFrame.Value;
12 var w = WaitForSend(f, f.Len);
13 yield return Env.Call(w);
14 Send(f);
15 }
16 }
17 void Receive(Frame f) {
18 if (_buffer.Count == G.BufferSize)
19 G.Stats.DroppedFrame();
20 else
21 _buffer.Put(f);
22 }
23 void Send(Frame f) {
24 if (f.Type == FrameType.Request)
25 G.ServerOSes[p.Dst].Receive(f);
26 else
27 G.ClientOSes[p.Dst].Receive(f);
28 }
29 }

Figure 3. The switch process in (C#).

could have been written for SimPy. This is not just a matter of
name similarity: the key point is that the usage of generators
is fully preserved. Consider, for instance, the method Run, at
line 7, which implements the behavior of the switch as an
infinite generator. The body of the method just consists of an
infinite loop, which contains the instructions that “animate”
the switch. In particular, the first yield return yields an event
that corresponds to the wait for an incoming frame. When an
incoming frame f arrives, method Receive puts f in the buffer
_buffer, awakening Run, that continues its execution at line
11. From there, the process calls a subroutine, WaitForSend

(not shown), that stops the switch for the required time to send
the frame f; then, as the final step, the frame is really sent to
the proper target.

In this example, the buffer is represented as store of Frame,
Store<Frame>, allowing us to use its blocking operations (Get,
in this case), to stop the process until the buffer contains
something to get. While the API of Dessert resembles the
one of SimPy, there are some important differences. On the
one hand, as we detail in Section II, everything, from events
to stores, is strongly typed in Dessert so, for instance, local
variable f, in line 12, has (inferred) static type Frame, since
_buffer has static type Store<Frame>.

On the other hand, our goal was not to make a straight
“clone” of SimPy, but keeping what we liked (a lot of design
choices and features) while trying to improve the usability even
more, by making some changes and additions. One addition
is the introduction of a new type of events, the call events.
In the example, a call event is used at line 14, and expresses
a “call” to a subgenerator. While newer versions of Python,
since version 3.3, elegantly handle this situation by using the
new yield from expression [8], previous versions of Python
and all mainstream .NET languages do not offer such a feature.

def f(): # f is a generator function
two = yield 1 # two gets the argument of send
yield 3
...

g = f() # gets the generator
one = g.next() # gets the 1st yielded value
three = g.send(2) # gets the 2nd yielded value

Figure 4. Example of Python generators.

A possible workaround, not particularly elegant nor intuitive, is
to iterate through the result of a subgenerator call, v1, v2, . . .,
yielding each value vi. We think that expressing these calls
through our call events makes the code more readable and
intuitive.

III. DESIGN AND IMPLEMENTATION ISSUES

In this section, we first describe a couple of prerequisites,
common to any implementation of a DES engine, and then we
focus on typing issues.

The common prerequisite are: an efficient priority queue, to
store the (pending) event set, and a random number generator,
able to deal with various probability distributions. Curiously,
both are absent in the .NET standard library. While there
is not a single data structure that is the best choice for
storing the event set in all situations, an heap is a fairly
reasonable choice [9]. For this reason, we have implemented,
and experimented with, various kinds of heaps (array, binary,
binomial, Fibonacci, and pairing) and finally settled with a
skew heap [10] that, in our experiments, outperformed all the
other kinds. The standard .NET System.Random class only
provides the uniform number distributions; fortunately, we
have found, and used, an excellent free library [11], that
supports four different random number generators and many
discrete and continuous probability distributions.

When “translating” the idea of modeling a process as
generator function yielding events, one of the major issues
we had to face has been the fact that in Python the yield
construct is an expression, while in .NET the corresponding
construct is a statement. Moreover, in our settings, the type of
such a value should be statically determined. More in detail, in
Python a function f containing an yield expression e, that is,
e ≡ yield e′, is a generator function, which returns an iterator,
known as a generator g, which is an automatically generated
object that permits to iterate through the values generated by
evaluating the yield-expressions. The evaluation of e suspends
the execution of f , which is then resumed when a method
(as next or send) is invoked on g. The resulting value of
e depends on the method which resumed the execution; for
instance, consider the snippet of code shown in Figure 4: the
call g.next() evaluates the body of f until it yields the value
1, which is assigned to one. The subsequent call g.send(2)

resumes the evaluation of f, that assigns 2 to two and yields
the value 3, which is finally assigned to three.

This passing values back-and-forth works very well for
SimPy, where triggered events can “return” values (by sending
them to the generator). We tried to translate this idea in
.NET as close as possible; unfortunately, in all mainstream
.NET languages there are some critical differences in how
generators work. Terminology aside (we stick with the Python

terminology, double-quoting Python terms when used in place
of the .NET terms, to make the comparison easier to follow),
a method m containing a yield return statement s is a
“generator function”, whose invocation returns a “generator”
g. As in Python, the evaluation of s suspends the execution
of m, which is resumed when the parameterless method
MoveNext() is called on g. The key difference is that yield
return is a statement, so there is no way to pass a value
v to be used as the “resulting value” of evaluating s (since
s, being a statement, does not evaluate to a value!). Since
a process yields only events, we introduced the (read-only)
property Value in SimEvent, the supertype of all event types
in Dessert, to emulate the Python behavior: when the execution
of a generator function f is resumed, after an invocation of
MoveNext() on the corresponding generator, f can retrieve
the “returned/sent” value by reading the property Value of
the yielded event object; see, for instance, lines 10 and 11 of
Figure 3.

In order to statically type these values, we would have
liked to introduce a generic type SimEvent<TVal>, exposing a
property Value of type TVal, to represent events that “return”
values of type TVal. Unfortunately, the situation is more com-
plex than that: each event type E must also expose a collection
of callbacks Callbacks, which are invoked when the event is
triggered. In .NET the standard type to model a strongly-typed
callback, that gets an object of type E as the only argument,
is Action<E>. If we try to implement this common interface
in SimEvent<...> we stumble in an inherent recursion: if E
is an event type returning values of type T , then E should
be a subtype of SimEvent<T>, which, in turn, should expose
a collection of Action<E>. This is a known and recurring
situation [12] that can be solved by introducing a second
type-argument; indeed, we have defined SimEvent<TEv,TVal>

where TEv is the type of the event, and TVal is the type
of the “returned” values, as described above. In this way,
inside SimEvent<TEv,TVal>, we can declare a collection of
strongly-typed callbacks as ICollection<Action<TEv>>. For
instance, consider Timeout<T>, which represents events that
are scheduled with a certain delay and return values of type T.
Such a type (indirectly) extends SimEvent<Timeout<T>,T>; so
when we create a timeout event of type, say, Timeout<double>
we obtain an object that exposes the collection Callbacks of
type ICollection<Action<Timeout<double>>>. This guaran-
tees that the callbacks of Timeout<double> are, correctly, a
collection of Action<Timeout<double>>.

In SimPy, and so in Dessert, events can be combined
together to form event conditions, that is, events that are
triggered when some condition becomes true. For instance,
given two events e1 and e2, we could create a new condition
event eAND that is triggered when both e1 and e2 are triggered,
or create another event eOR that is triggered when any of them
is triggered, and so on. In general, any number of events and
any predicate p can be specified, allowing simulation authors
to build arbitrarily complex conditions that are triggered when-
ever p becomes true on the given events. A common use
of event combinations is implementing timeout policies; for
instance, given a certain event e, obtaining a new event that
corresponds to waiting for e or the expiration of a timeout
event.

Differently from SimPy, in our strongly-typed settings,
the result of combining arbitrary events, of types t1,. . . ,tn,

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 4000 8000 12000 16000 20000

E
v
e
n
ts

 p
e
r

s
e
c
o
n
d

Number of processes

Raw event benchmark - Processing speed

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 5. Events per second in timeout benchmark.

must have a type that “remembers” the types t1,. . . ,tn. That
is, if an event has some type t1, and another event has
type t2, then the resulting type of combining them must
include (some encoding of) both t1 and t2. For this reason,
we use the “variadic-generic type” Condition<t1,. . .,tn> to
encode the type of condition events built from events of type
t1, . . . tn. Inside an object of type Condition<t1,. . .,tn> the
source events are available through the read-only properties
named EvN , where N ∈ {1, . . . , n}. Note that Condition

cannot really be single generic type, since in .NET each
generic type is constrained to have a fixed number of type
arguments. Handling the combination of an arbitrary number of
events would require a mechanism analogous to C++ variadic
templates [13] which, at the moment, is not available in C#
(and the other mainstream .NET languages). So, we had to use
a family of generic types (Condition<T1>, Condition<T1,T2>,
Condition<T1,T2,T3> and so on); fortunately, this family of
types can be automatically generated, for any arbitrary number
of type arguments, by exploiting the T4 [14] (Text Template
Transformation Toolkit) offered by Visual Studio.

IV. BENCHMARKS

In this section, we describe the benchmarks used to assess
the relative performance of our Dessert, with respect to SimPy.
We start, in Section IV-A, with the specifications of the ma-
chines used to run the benchmarks and the general description
of the benchmark environment. Then, we describe the two
kinds of benchmarks we carried out. The former, described
in Section IV-B, is an artificial simulation, akin to a stress-
test, where we obtain the average raw event processing time
of the engines. The latter, described in Section IV-C, consists
in running a real simulation of a peer-to-peer (P2P) system,
thus measuring how the different engines perform on a “real-
world” simulation.

def timeoutBenchmarkProcess(env, counter):
while True:
yield env.timeout(randomDelay())
counter.increment()

Figure 6. Benchmark process.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 4000 8000 12000 16000 20000

M
e
g
a
b
y
te

s

Number of processes

Raw event benchmark - Memory usage

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 7. Memory usage in timeout benchmark.

A. Benchmark environment
Every benchmark has been run under a dedicated virtual

machine (VM), created and run by VirtualBox [15] 4.3.2,
hosted on Ubuntu 13.10 on a Intel Core 2 Duo E4700 with
4 GB or RAM. We created a Windows VM, with Windows
7 SP1 and the .NET Framework 4.5.1, and a GNU/Linux
one, with Lubuntu [16], a lightweight variant of the more
famous Ubuntu, and Mono 3.2. Both VMs share the same
hardware profile: 2 CPU cores and 2 GB of RAM. Since DES
is a strongly CPU-bound process, neither Dessert nor SimPy
use secondary storage, we do not detail storage specifications.
As concerns Python interpreters, we tried out both CPython
2.7, the “default” language implementation, and PyPy [17]
2.2, a recent and highly optimized alternative Python im-
plementation. Both implementations have been run with full
optimizations enabled (-OO flag).

In order to time our benchmarks, we started a virtual
stopwatch at the beginning of each run and we stopped it
at the end. On .NET we used a standard dedicated class,
System.Diagnostics.Stopwatch, while on Python we used
the facilities exposed by the general time module. To evaluate
memory usage, we sampled the resident set size (RSS) of
the (operating system) process at fixed intervals, by taking
advantage of the standard class System.Diagnostics.Process

on .NET, and of the library psutil [18] on Python.
In the following sections, for lack of space, we thoroughly

analyze only the benchmarks on Windows. Anyway, the tests
on GNU/Linux confirmed what we found on Windows, with a
caveat: since Mono is not as optimized as .NET, Dessert still
outperforms SimPy on CPython, but PyPy becomes an inter-
esting competitor, yielding better results in the P2P simulation
tests, but consuming an enormous quantity of memory, as it
does on Windows. Given Mono continuous improvements, the
performance of Dessert on Linux can only get better, so we
hope to achieve soon the same results we already obtain on
Windows.

B. Raw event processing benchmark
The goal of this benchmark is to measure the raw event

processing speed of the DES engines. To do this, we designed
a rather artificial simulation, in which we spawn an increasing
number of extremely simple processes, as shown in Figure 6.

 0

 50

 100

 150

 200

 250

4 8 16 32

M
in

u
te

s

Number of active machines

P2P simulation - Time usage

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 8. Time usage in P2P simulation.

Each of those processes simply awaits a random timeout
and, when woken up, increases a shared counter, which records
the total amount of timeout events properly handled by the en-
gine. So, by dividing that counter by the simulation execution
(wall) time, we obtain a good approximation of the average
event handling speed. Analogously, we measure how much
memory each engine consumes by repeatedly running the
same simulation and varying the number of processes from an
already significant 1, 000, to a rather big 20, 000. In this way,
we evaluate how the engines perform when heavily loaded.
For any given process count, we have run twenty simulations
and averaged the results.

Before discussing the results, we would like to emphasize
that these benchmarks, by themselves, cannot tell us which
is the fastest engine, but only which engine has the potential
of being the fastest. As it is shown Figure 5, the raw event
processing speed of Dessert is impressive, especially when the
number of processes is (relatively) low. Anyway, as the graph
clearly shows, in this benchmark Dessert always outperforms
SimPy, even when it is run by PyPy. We also note that the
graph shows the results of PyPy only to 13, 000 processes be-
cause, given its huge memory consumption, PyPy crashes after
a period of uninterrupted swapping activity (that is, thrash-
ing). This fact can be clearly seen in Figure 7, where PyPy
memory consumption goes off the charts even with a small
number of processes. The same figure shows that Dessert and
CPython follow, more or less, the same curve, demonstrating
that Dessert potentially allows users to run simulations faster
without incurring on higher memory consumption. Moreover,
on higher loads Dessert is faster (Figure 5) and consumes less
memory (Figure 7).

C. P2P simulation
While the benchmarks previously discussed are useful to

understand how fast the simulation engines could perform,
they could not answer to a crucial question: what is the fastest
engine on common, “real-world”, simulations? To answer such
a question, we have simulated the execution of a peer to peer
protocol based on linear network encoding [19]. Since the
protocol was created solely for teaching purposes, we will
describe it here very briefly.

Suppose we have n machines, each one running both a

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

4 8 16 32

M
e
g
a
b
y
te

s

Number of active machines

P2P simulation - Memory usage

SimPy (CPython)
SimPy (PyPy)

Dessert

Figure 9. Memory usage in P2P simulation.

client and a server process, and set k = bn2 c. At first, each
file that must be shared is first split into k parts, then other
k − 1 parts are created by linear combinations of the first k
parts. Thus, every file is encoded in n− 1 parts, and each part
is stored on a different machine. The rest of the simulation
consists in seeing whether the clients, that try to retrieve (parts
of) the files from the servers, saturate the whole network,
since all communications are routed through a single switch.
In particular, each client needs to request at least k parts to
recover a file, but it could do more requests to reduce wait
times. Therefore, one of the goals of the simulation is to
understand how many extra requests give the lowest wait times.
For each combination of machine count n and extra-request
count r, we run twenty simulations, so that results are pretty
accurate and reliable. Therefore, since r lies in the interval
[0, k − 1], for each n we execute 20 · k = 10 · n simulations.

As it is shown in Figure 8, Dessert can execute these
simulations faster than SimPy, especially when the number of
machines gets higher. Under these particular settings, Dessert
is five times faster than SimPy run on CPython, and twice as
fast than SimPy when run on PyPy, which we deem as a good
result. Results on memory consumption, shown in Figure 9,
confirm PyPy memory problems and the fact that Dessert and
SimPy, when run on CPython, have nearly the same footprint,
although in this case the one of Dessert is slightly higher.

V. RELATED WORK

On the one hand, many libraries enable to write discrete-
event simulations, using a variety of programming languages
and environments. Indeed, as we have already said, our work
has been greatly inspired by SimPy [1][2][20], which is
written in, and usable from, Python. On the other hand,
the .NET framework has been somewhat neglected by DES
library authors, so there are very few free options (some
commercial options are: Micro Saint R© Sharp [21] and Sage R©,
the successor of HighMAST

TM
[22]) to choose from.

In particular, as far as we know, our Dessert is the
first open-source (complete) project, on the .NET framework,
for writing discrete event simulations following the process
oriented paradigm. In this paradigm, simulations consist of
interacting processes, that is sequences of events and activities.

This approach allows users to write simple and readable simu-
lation code; the relationships between various paradigms and,
especially, the challenges associated with modeling problems
with different aspects best represented by different paradigms
is a topic of on-going research [23].

Focusing on the .NET framework, the only free options
that we have found implement a different paradigm or are
incomplete and, apparently, abandoned. SharpSim [24] is an
open-source library, written in C#, that implements the event-
oriented paradigm. In this paradigm, users model the systems
in terms of events. Implementations of this paradigm can
be very efficient, but simulation code following this style
is less modular, and harder to write and understand [25].
React.NET [26] is another open-source library written in C#,
which shares our paradigm and general goals. Unfortunately,
the project seems dead, since there are no stable releases and
it has not been updated since 2006. Finally, DotNetSim [27]
is described as a prototype that exploits .NET for writing
fully object-orientated components that cross programming
languages, packages and platforms and link them in a single
application. However, this seems to be another dead project,
since we could not find any prototype to download and
evaluate.

VI. CONCLUSION AND FUTURE WORK

We have presented Dessert, a fully managed .NET en-
gine for process-based discrete-event simulation. On the one
hand, Dessert has been heavily inspired, and tries to follow,
the simplicity and leanness of SimPy, in the strongly typed
.NET world. On the other hand, Dessert is not, and was not
supposed to be, a straight “clone” of SimPy: we kept what we
liked, which is a lot, but we have also tried to improve the
usability even more, by making some changes and additions.
Moreover, by leveraging the .NET framework, and adhering to
Common Language Specification, Dessert allows user to write
simulations in a variety of different programming languages.
For these reasons, Dessert yields better performances both at
development and execution time, since static typing is benefi-
cial for both catching many problems early on, and permitting
the use of refactoring and context-aware code completion tools,
like Visual Studio IntelliSense. Indeed, the speed-up offered by
Dessert is impressive, especially when SimPy is interpreted
through CPython, the “default” Python interpreter, and has
nearly the same memory footprint. We also benchmarked
SimPy on PyPy, a recent and highly optimized alternative
Python implementation, which closes the gap in running times,
but at the cost of a huge memory consumption. For this reason,
SimPy on PyPy crashes on “big” simulations that our Dessert
handles effortlessly.

Since Dessert is completely open-source, its future devel-
opments are somewhat unpredictable. We plan to develop a
library of higher level abstractions, like network components
and elements of stocking chains, to ease the development of
complex simulations. Moreover, we would like to address the
loss of performance when running on Mono. Another direction
for further work is the development of a proper domain-specific
language, to write simulations even more easily, which could
be compiled and run on our engine.

REFERENCES
[1] “SimPy,” 2014, URL: https://pypi.python.org/pypi/simpy [accessed:

2014-03-08].
[2] K. Müller, “Advanced systems simulation capabilities in SimPy,”

2004, europython 2004, URL: http://simpy.sourceforge.net/old/images/
Advanced Systems Simulation Capabilities in%20SimPy Fallback
Last.pdf [accessed: 2014-03-09].

[3] N. Schemenauer, T. Peters, and M. L. Hetland, “Simple generators,”
2001, python Enhancement Proposal 255 URL: http://www.python.org/
dev/peps/pep-0255/ [accessed: 2014-03-08].

[4] A. L. D. Moura and R. Ierusalimschy, “Revisiting coroutines,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 31, no. 2, Feb. 2009, pp. 6:1–6:31.

[5] “Dessert on NuGet,” 2014, URL: https://www.nuget.org/packages/
Dessert/ [accessed: 2014-03-08].

[6] “Dessert on GitHub,” 2014, URL: https://github.com/pomma89/Dessert
[accessed: 2014-03-08].

[7] J. Hamilton, “Language integration in the common language runtime,”
ACM Sigplan Notices, vol. 38, no. 2, 2003, pp. 19–28.

[8] “What is new in Python 3.3,” 2014, URL: http://docs.python.org/3.3/
whatsnew/3.3.html [accessed: 2014-03-08].

[9] R. Rönngren and R. Ayani, “A comparative study of parallel and
sequential priority queue algorithms,” ACM Transactions on Modeling
and Computer Simulation (TOMACS), vol. 7, no. 2, 1997, pp. 157–209.

[10] D. D. Sleator and R. E. Tarjan, “Self-adjusting heaps,” SIAM Journal
on Computing, vol. 15, no. 1, 1986, pp. 52–69.

[11] S. Troschuetz, “.NET random number generators and
distributions,” 2014, URL: http://www.codeproject.com/articles/
15102/net-random-number-generators-and-distributions [accessed:
2014-03-08].

[12] J. O. Coplien, “Curiously recurring template patterns,” C++ Report,
vol. 7, no. 2, 1995, pp. 24–27.

[13] D. Gregor and J. Järvi, “Variadic templates for C++0x.” Journal of
Object Technology, vol. 7, no. 2, 2008, pp. 31–51.

[14] “Code generation and t4 text templates,” 2014, URL: http://msdn.
microsoft.com/en-us/library/bb126445.aspx [accessed: 2014-03-08].

[15] “VirtualBox,” 2014, URL: https://www.virtualbox.org/ [accessed: 2014-
03-08].

[16] “Lubuntu,” 2014, URL: http://lubuntu.net/ [accessed: 2014-03-08].
[17] “PyPy,” 2014, URL: http://pypy.org/ [accessed: 2014-03-08].
[18] “psutil,” 2014, URL: https://code.google.com/p/psutil/ [accessed: 2014-

03-08].
[19] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” Informa-

tion Theory, IEEE Transactions on, vol. 49, no. 2, 2003, pp. 371–381.
[20] K. Müller and T. Vignaux, “SimPy: Simulating systems in Python,”

2003, ONLamp.com Python DevCenter, URL: http://www.onlamp.com/
pub/a/python/2003/02/27/simpy.html [accessed: 2014-03-08].

[21] W. K. Bloechle and D. Schunk, “Micro saint R© sharp simulation
software,” in Proceedings of the 35th conference on Winter simulation:
driving innovation. Winter Simulation Conference, 2003, pp. 182–187.

[22] P. C. Bosch, “Simulations on .NET using HighPoint’s highmast
TM

simulation toolkit,” in Simulation Conference, 2003. Proceedings of the
2003 Winter, vol. 2. IEEE, 2003, pp. 1852–1859.

[23] S. K. Heath, A. Buss, S. C. Brailsford, and C. M. Macal, “Cross-
paradigm simulation modeling: challenges and successes,” in Proceed-
ings of the Winter Simulation Conference, 2011, pp. 2788–2802.

[24] “SharpSim,” 2014, URL: http://sharpsim.codeplex.com/ [accessed:
2014-03-08].

[25] N. Matloff, “Introduction to Discrete-Event Simulation and the SimPy
language,” 2008, URL: http://heather.cs.ucdavis.edu/∼matloff/156/PLN/
DESimIntro.pdf [accessed: 2014-03-08].

[26] “React.NET,” 2014, URL: http://reactnet.sourceforge.net/ [accessed:
2014-03-08].

[27] M. Pidd and A. Carvalho, “Simulation software: not the same yesterday,
today or forever,” Journal of Simulation, vol. 1, no. 1, 2006, pp. 7–20.

