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Abstract. It is often infeasible to recompile all the sources an applica-
tion consists of each time a change is made. Yet, a recompilation strategy
which does not guarantee the same outcome of an entire recompilation
is not useful: why wasting time in debugging a program (a set of .class
files in the Java case) which might behave differently from the program
obtained recompiling all the sources from scratch?

We say that a compilation strategy is sound if it recompiles, besides
the changed sources, all the unchanged sources whose new binary, pro-
duced by the overall recompilation, would differ from the existing one
(if any) and all the sources for which the recompilation would be unde-
fined: indeed, when the entire compilation fails, so should do the partial
recompilation.

We say that a compilation strategy is minimal if it never recompiles an
unchanged source whose new binary would be equal to the existing one.

In this paper we present a compilation strategy for a substantial subset
of Java which is proved to be sound and minimal.

1 Introduction

When dealing with large applications it is infeasible to recompile all the sources
each time a change is made. Of course, separate compilation is the answer to
such a problem, but a key point has to be considered: in addition to the modi-
fied sources, which files have to be recompiled as well? A recompilation strategy
which does not guarantee the same outcome of an entire recompilation is not
useful: why wasting time in debugging a program (a set of .class files in the
Java case) which might behave differently from the program obtained recom-
piling all the sources from scratch? It is known that, using the most common
Java compilers (including the standard one), a program which is the result of a
successful recompilation may throw linking related exceptions at runtime even if
these errors could have been detected at compile time [3]. This is not in contrast
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with the soundness for Java investigated by other papers [6, 7] because they did
not take separate compilation into account.

Two contrasting requirements have to be considered: on the one hand re-
compilations can be rather expensive (in time), hence they should be avoided
when possible. More precisely, they are useless when the recompilation of an
unchanged (with respect to the previous compilation) source fragment S, whose
corresponding binary fragment B is already present, would produce a binary
equal to B. On the other hand, a recompilation strategy which saves time not
recompiling a fragment S, with a corresponding binary fragment B, whose re-
compilation would produce a new binary B′ different from B, could cost a lot
of wasted time in debugging an inconsistent application, that is, an application
that cannot be rebuilt by recompiling all the sources.

Albeit some Java IDEs support smart or incremental compilation, to our
knowledge there are no publications which explain in detail the inner working of
such recompilation strategies. In this paper we chose to analyze Java, a main-
stream language, and model its peculiar features, because our final goal is to
implement a compilation manager, for a widespread language, whose correct-
ness and minimality (in the sense explained below) can be formally proved.

We say that a compilation strategy is sound if it recompiles all the changed
sources and the unchanged sources whose new binary, produced by the overall
recompilation, would differ from the existing one (if any) and all the unchanged
sources for which the recompilation would be undefined. This latter requirement
is very important: indeed, when the entire recompilation is not defined, so should
be the partial recompilation.

Of course, a strategy which recompiles all the sources each time a change is
made is trivially sound and, obviously, totally useless in practice. We say that
a compilation strategy is minimal if it never recompiles an unchanged fragment
whose new binary would be equal to the existing one.

In this paper we present a compilation strategy for a substantial subset of
Java which is proved to be sound and minimal.

Section 2 presents the formal framework, Section 3 explains the ideas behind
our compilation strategy and Section 4 discusses related and future work.

2 Formalization

2.1 The Language

In this paper we model a substantial subset of Java at both source (Figure 1) and
binary (Figure 2) level. Our model of bytecode is rather abstract: it is basically
source code enriched with some annotations (discussed below). However, the
same source level expression can be compiled to different binary level expressions,
as it happens in Java. For instance, a method invocation x.m() can be translated
to a virtual method invocation or an interface method invocation depending on
the static type of x.

With the exception of arrays and inner-classes we model all the major features
of Java: classes (including abstract classes), interfaces, primitive types, access



S ::= AM CK class C extends C′ implements I1 . . . In { KDSs FDSs MDSs } |
AM interface I extends I1 . . . In { FDSs MDSs }

AM ::= public | protected | ε | private
CK ::= ε | abstract

KDSs ::= KDs1 . . . KD
s
n

FDSs ::= FDs1 . . . FD
s
n

MDSs ::= MDs1 . . . MD
s
n

KDs ::= AM KH { super(Es1, . . . , E
s
n); STMTSs }

FDs ::= AM FINAL FK T f = Es ;
MDs ::= AM MK MH { STMTSs return Es; } | AM abstract MH ;
KH ::= (T1 x1, . . . , Tn xn) throws ES

MK ::= ε | static | abstract
MH ::= T m(T1 x1, . . . , Tn xn) throws ES

FINAL ::= ε | final
FK ::= ε | static
T ::= RT | int | bool
RT ::= C | I
ES ::= C1, . . . , Cn
Es ::= PRIMARYs|ASSIGNs|N|true|false

PRIMARYs ::= null | this | NEWs | x | INVOKEs | super.f | PRIMARYs.f | RT.f
ASSIGNs ::= x = Es | PRIMARYs.f = Es | super.f = Es | RT.f = Es

NEWs ::= new C(Es1, . . . , E
s
n)

INVOKEs ::= PRIMARYs.m(Es1, . . . , E
s
n) | super.m(Es1, . . . , E

s
n) | RT.m(Es1, . . . , E

s
n)

STMTSs ::= STMTs1 . . . STMT
s
n

STMTs ::= {STMTSs} | SEs ; | if (Es) STMTs1 else STMTs2 | while (Es) STMTs |
try {STMTSs } CATCHESs finally { STMTSs1 } | throw Es

SEs ::= ASSIGNs | INVOKEs | NEWs
CATCHESs ::= CATCHs1 . . . CATCH

s
n

CATCHs ::= catch (C x) { STMTSs }

Assumptions:

– interface names in S are distinct;
– field names in FDSs are distinct;
– method/constructor signatures in MDSs/KDSs are distinct;
– parameter and exception names in both KH and MH are distinct;
– class names in CATCHESs are distinct.

Fig. 1. Syntax - Sources



modifiers (including packages, but without the import directive), constructors,
(instance/static) fields (both in classes and interfaces), (instance/static/abstract)
methods, super field accesses and method invocations, exceptions. The treatment
of arrays and inner-classes would complicate the model without apparently giv-
ing further insights.

Figure 1 gives the syntax of the language. A source fragment S can be a
class declaration or an interface declaration. In the former case it consists of:
an access modifier AM, a class kind CK (either ε or abstract), the name of the
class, the name of the superclass, the list of the implemented interfaces and
the declaration of constructors, fields and methods. Analogously, an interface
declaration consists of an access modifier, the name of the interface, the name
of the superinterfaces and the declaration of fields and methods.

A constructor declaration KDs consists of an access modifier AM, a construc-
tor header KH, the invocation of a superclass’s constructor1 and a sequence of
statements STMTSs. A constructor header consists of the sequence of parameters
and the exception specification ES. In this paper we assume for simplicity that
any class can be an exception, that is, we do not model the predefined class
Throwable. So, an exception specification is just a sequence of class names.

A field declaration FDs consists of an access modifier AM, an optional modifier
FINAL, a field kind FK, a type T, the name of the field f and the initialization
expression Es.

A method declaration MDs can be either concrete or abstract. In the former
case it consists of an access modifier AM, a method kind MK, a method header MH,
a sequence of statements STMTSs and a return expression Es. In the latter case
it just consists of an access modifier AM, the keyword abstract and a method
header. A type T can be a reference type RT or a primitive type (int or bool).
We distinguish between class names C and interface names I for clarity only,
even though they actually range over the same set of names.

An expression Es can be: a primary expression, an assignment expression,
an integer literal N or a boolean literal. Some expressions, SEs, can be used
as statements; they are: assignment ASSIGNs, method invocation INVOKEs and
instance creation NEWs.

While Java permits accessing a static member of a class/interface RT via both
the type name RT or any expression which has static type RT, here we allow only
the former kind of access (because allowing both kinds of access would require
additional, uninteresting, typing rules).

Figure 2 gives the syntax of the binary language. As already said, it mostly
mimics the source language, except for it is enriched with some annotations
enclosed between “�” and “�”.

For example, the instance creation expression NEWs is translated to NEWb,
which contains, as annotation, the tuple of types describing the constructor
which has been found as most specific at compile time. Analogously, method

1 Invocations of a constructor of the same class (using this) are not considered since
they are simply syntactic shortcuts (recursive invocations are not allowed - see 8.8.5
of [8]).



B ::= AM CK class C extends C′ implements I1 . . . In { KDSb FDSb MDSb } |
AM interface I extends I1 . . . In { FDSb MDSb }

KDSb ::= KDb1 . . . KD
b
n

MDSb ::= MDb1 . . . MD
b
n

FDSb ::= FDb1 . . . FD
b
n

KDb ::= AM KH { super(Eb1, . . . , E
b
n)� T̄�c; STMTSb }

FDb ::= AM FINAL FK T f = Eb

MDb ::= AM MK MH { STMTSb return Eb; } | AM abstract MH ;

Eb ::= PRIMARYb|ASSIGNb|N|true|false
PRIMARYb ::= null | this | NEWb | x | INVOKEb

PRIMARYb.� C.T�if f |� RT.T�sf f

ASSIGNb ::= x = Eb | PRIMARYb.� C.T�if f = Eb |� RT.T�sf f = Eb

NEWb ::= new C� T̄�c (Eb1, . . . , E
b
n)

INVOKEb ::= PRIMARYb.� C.m(T̄)T�vrt m(Eb1, . . . , E
b
n) | this.� C.m(T̄)T�spr m(Eb1, . . . , E

b
n) |

PRIMARYb.� C.m(T̄)T�stt m(Eb1, . . . , E
b
n) | PRIMARYb.� I.m(T̄)T�int m(Eb1, . . . , E

b
n)

STMTSb ::= STMTb1 . . . STMT
b
n

STMTb ::= {STMTSb} | SEb ; | if (Eb) STMTb1 else STMTb2 | while (Eb) STMTb

try {STMTSb } CATCHESb finally { STMTSb1 } | throw Es

SEb ::= ASSIGNb | INVOKEb | NEWb
CATCHESb ::= CATCHb1 . . . CATCH

b
n

CATCHb ::= catch (C x) { STMTSb }

Assumptions:

– interface names in B are distinct;
– field names in FDSb are distinct;
– method/constructor signatures in MDSb/KDSb are distinct;
– class names in CATCHESb are distinct.

Fig. 2. Syntax - Binaries

invocation expressions are annotated with the signature of the most specific
method found at compile time and the static type of the receiver. There are
four kinds of (binary) method invocation expressions INVOKEb: virtual (instance
method invocation), super (invocation via super), static and interface.

2.2 Type Environments

Type environments Γ are defined in Figure 3. A type assignment γ maps a
class/interface name to its type.

The assignment C 7→ [AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=KSS, FSS=FSS,MSS=MSS]
has the meaning “the class C has access modifier AM and kind CK, extends C’, im-
plements I1 . . . In and has constructor signatures KSS, field signatures FSS and
method signatures MSS”. Analogously, I 7→ [AM=AM, IS=I1 . . . In, FSS=FSS,MSS=MSS]
has the meaning “the interface I has access modifier AM, extends I1 . . . In, and
has field signatures FSS and method signatures MSS”.



Γ ::= γ1 . . . γn
γ ::= C 7→ [AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=KSS, FSS=FSS,MSS=MSS] |

I 7→ [AM=AM, IS=I1 . . . In, FSS=FSS,MSS=MSS]

T⊥ ::= T | ⊥
KS ::= AM T̄ throws ES

FS ::= AM FK T f

MS ::= AM MK T m(T̄) throws ES

T̄ ::= T1 . . . Tn
T̄
⊥ ::= T⊥1 . . . T

⊥
n

KSS ::= KS1 . . . KSn
FSS ::= FS1 . . . FSn
MSS ::= MS1 . . . MSn

λ ::= T ≤ T′ |
RT <1 RT′ |
RT� ∃ T |
RT� ∃C CK? C |
RT� ∃I I |
RT�Cns(C, T̄⊥) = [PAR=T̄, ES=ES] |
RT�Fld(RT′, f) = [FINAL=FINAL?, FK=FK, T=T] |
RT�Mth(RT′, m, T̄⊥) = [MK=MK?, RET=T, PAR=T̄, ES=ES]

CK? ::= CK | FINAL? ::= FINAL | MK? ::= MK | not-static

Fig. 3. Type environments and Type assumptions

Type assumptions λ, also defined in Figure 3, describe fine-grained require-
ments; they are:

– T ≤ T′ with the meaning “T is a subtype of T′”;
– RT <1 RT′ with the meaning “RT directly extends RT′”;
– RT�∃ T with the meaning “type T exists and is accessible from code con-

tained in type RT”2;
– RT�∃C CK? C with the meaning “class C, with kind CK?, exists and is acces-

sible from code contained in RT”. CK? = means “any kind”, that is, we do
not care whether the class is abstract or not;

– RT�∃I I with the meaning “interface I exists and is accessible from code
contained in RT”;

– RT�Cns(C, T̄⊥) = [PAR=T̄, ES=ES] with the meaning “the most specific con-
structor for class C and parameter types T̄⊥, invoked from code contained in
RT, has parameter types T̄ and can throw exceptions which are compatible
with the exception specification ES”3;

– RT�Fld(RT′, f) = [FINAL=FINAL, FK=FK, T=T] with the meaning “if code con-
tained in RT looks up a field named f in type RT′, then it finds a field with

2 If you think the symbol “� ” as an eye, then you can interpret any assumption of
the form “RT � . . . ” as: “RT sees . . . ” and this is supposed to help ,.

3 That is, any exception C such that a C’s superclass is contained in ES - see 11.2 of [8].



a final modifier FINAL?, kind FK and type T”. FINAL? = means we do not
care whether the field is final or not;

– RT�Mth(RT′, m, T̄⊥) = [MK=MK?, RET=T, PAR=T̄, ES=ES] with the meaning “the
most specific method, invoked from code contained in RT, for a method
named m, with parameter types T̄⊥ on a receiver with static type RT′ is a
method which has kind MK?, return type T, parameter types T̄ and can throw
exceptions which are compatible with the exception specification ES”3.

These assumptions can be thought as “the minimal pieces of information”
needed to compile a certain source to a certain bytecode, as we will detail in
the sequel. The rules defining the judgment Γ ` λ are omitted for lack of
space. A forthcoming extended work, containing all the rules, will be available at
http://www.disi.unige.it/person/LagorioG/publications.html shortly.
Also, the rules for a small subset of Java can be found in [2].

Next subsection shows how and when these assumptions are used in the
process of compilation, while Section 3 explain how to exploit type assumptions
in order to obtain a recompilation strategy which is both sound and minimal.

2.3 Compilation

Compilation of expressions is expressed by the following judgment:

RT;Π; ES;Γ ` Es ; Eb : T

with the meaning “expression Es has type T and compiles to binary expression
Eb when contained in type RT, in a local environment Π, in a context where
exceptions ES can be thrown and in a type environment Γ”. Type RT is needed
to model the access control; for instance, RT’s private methods can be invoked
only by expressions inside RT. The local environment Π maps parameter names
and this to their respective types (this is undefined when typing expressions
contained in static contexts). Figure 4 show some selected rules defining this
judgment.

Compilation of statements is expressed by the following judgment:

RT;Π; ES;Γ ` STMTs ; STMTb

with the meaning “statement STMTs is compiled to STMTb when contained in type
RT, in a local environment Π, in a context where exceptions ES can be thrown
and in a type environment Γ”. The rules defining this judgment are omitted
because of lack of space.

Before describing the compilation of fragments, we need to introduce the no-
tion of compilation environment. A compilation environment ce maps fragment
names to the corresponding fragment.

ce : RT⇀ S ∪ B

Note that ce models a compilation environment from a compiler’s point of
view; that is, for each fragment name ce returns either a source or a binary



∀i ∈ 1..n RT;Π; ES;Γ ` Esi ; Ebi : Ti
Γ ` RT�Cns(C, T1 . . . Tn) = [PAR=T̄, ES=ES]
Γ ` RT� ∃C ε C

RT;Π; ES;Γ ` new C(Es1, . . . E
s
n) ; new C� T̄�c (Eb1, . . . , E

b
n) : C

Γ ` C <1 C′

Γ ` C�Fld(C′, f) = [FINAL= , FK=ε, T=T]

C;Π; ES;Γ ` super.f; this.� C′.T�if : T
this ∈ Def (Π)

RT;Π; ES;Γ ` Es1 ; Eb1 : C
Γ ` RT�Fld(C, f) = [FINAL=ε, FK=ε, T=T]

RT;Π; ES;Γ ` Es2 ; Eb2 : T2

Γ ` T2 ≤ T

RT;Π; ES;Γ ` Es1.f = Es2 ;
Eb1.� C.T�if= Eb2 : T

Γ ` RT�Fld(RT′, f) = [FINAL= , FK=static, T=T]

RT;Π; ES;Γ ` RT′.f;� RT′.T�sf : T

RT;Π; ES;Γ ` Es ; Eb : RT′

Γ ` RT� ∃C RT′

Γ ` RT�Mth(RT′, m, T1 . . . Tn) = [MK=not-static, RET=T, PAR=T̄, ES=ES]

∀i ∈ 1..n RT;Π; ES;Γ ` Esi ; Ebi : Ti

RT;Π; ES;Γ ` Es.m(Es1, . . . , E
s
n) ; Eb.� RT′.m(T̄)�vrt (Eb1, . . . , E

b
n) : T

RT;Π; ES;Γ ` Es ; Eb : RT′

Γ ` RT� ∃I RT′
Γ ` RT�Mth(RT′, m, T1 . . . Tn) = [MK=abstract, RET=T, PAR=T̄, ES=ES]

∀i ∈ 1..n RT;Π; ES;Γ ` Esi ; Ebi : Ti

RT;Π; ES;Γ ` Es.m(Es1, . . . , E
s
n) ; Eb.� RT′.m(T̄)�int (Eb1, . . . , E

b
n) : T

Fig. 4. Selected expression typing rules

fragment, but not both. In fact, even if both are present, only one is considered
by the compiler, usually the most up-to-date according to the file’s attributes.
As a consequence, a type environment Γ can be extracted from a compilation
environment ce by disregarding the code while retaining signatures and infor-
mation about type hierarchy. Let us assume the function extractEnv : ce → Γ
does this job.

Assume we have a consistent compilation environment ce, that is, if we
compile all the sources in ce we obtain, for the sources which have been re-
compiled, the same binaries already present in ce. Assume, then, to change a
bunch of sources, say RT1, . . . , RTn, obtaining cenew (and a corresponding Γnew =
extractEnv(cenew)). What do we have to do in order to obtain a new consistent
compilation environment?

First of all, we have to check that the environment Γnew is well-formed, for
instance, it must not contain a cycle in the type hierarchy. We formally capture
this notion with the judgment ` Γnew�. One could argue that we do not want



to check the well-formedness of the whole Γnew after having changed, say, a tiny
detail in one source. Right, we do not want to; yet, we need to unless we know
something more (see Section 3).

After having checked the environment Γnew, we need to decide which frag-
ments to (re)compile. Of course we have to recompile those which have been
changed, that is, RT1 . . . RTn but what else? Are you tempted to answer “make
clean; make all will do”? A lot of real-world programmers would do just that.
When dealing with a small/medium application and a quite powerful computer
you can do that. And, it works. It works fine actually, but what if you can not
do that? Next section addresses this crucial point. For now, just assume we have
to compile RT1, . . . , RTm (obviously m ≥ n).

When we have a well-formed Γnew and do know which fragments to recompile
we can go for it: in our model “running the compilation” on each fragment RTi
amounts to prove the following judgments:

RTi;Γnew ` cenew(RTi) ; Bi

Figure 5 shows some selected rules defining this judgment. In defining the
compilation of a set of classes we assume to compile them one by one, that is,
we assume that no global optimizations take place. This reflects the fact that
in languages with dynamic linking like Java, the concept of “program” is only
significant at runtime so it is safer to leave cross class optimizations to virtual
machines like HotSpot [9].

3 A Smart Strategy

When dealing with an updated compilation context cenew (in respect to a previ-
ous ceold) there are two steps to perform: checking whether the corresponding
new type environment Γnew is well-formed and, when it is, decide which (un-
changed) source fragments have to be recompiled besides the changed ones. Some
information gathered during a previous compilation can be used to speedup both
these steps. We first show how we can check only the “updated part” of an en-
vironment Γnew when a previous well-formed environment Γold is known. Then,
we show how the type assumptions used to compile a fragment can be used later
to decide whether it has to be recompiled.

We define leavesΓ (RT) = {RT′|Γ ` RT′ ≤ RT ∧ ∀RT′′ Γ ` RT′′ ≤ RT′ =⇒
RT′′ = RT′} and the judgment Γ ` okOvr RT with the meaning “RT correctly
extends its parent types (up to Object) in Γ”. That is, RT’s hierarchy is acyclic
and the Java rules on method overriding/hiding are respected. The rules defining
such a judgment are omitted for lack of space.

Definition 1. A type environment Γnew is well-formed w.r.t. another type envi-
ronment Γold iff the following conditions hold:

[add] RT ∈ Def (Γnew) \Def (Γold) =⇒
{
Γnew ` okOvr RT
usedΓnew

(RT) ⊆ Def (Γnew)



These metarules assume Γ to be well-formed, that is, ` Γ�.
Anyway, we do not want ` Γ� to be a premise of any of them (see the text for full details).

C;Γ ` KDSs ; KDSb C;Γ ` FDSs ; FDSb C;Γ ` MDSs ; MDSb

Γ ` AM CK class C extends C′ implements I1, . . . , Im {KDSs FDSs MDSs} ;
AM CK class C extends C′ implements I1, . . . , Im {KDSb FDSb MDSb}

AM ∈ {ε, public}

I;Γ ` FDSs ; FDSb I;Γ ` MDSs ; MDSb

Γ ` AM interface I extends I1 . . . Im { FDSs MDSs } ;
AM interface I extends I1 . . . Im { FDSb MDSb }

MDSs = MDs1..MD
s
n

∀i ∈ 1..n MDsi = public abstract . . .
FDSs = FDs1..FD

s
m

∀i ∈ 1..m FDsi = public static final . . .
AM ∈ {ε, public}

Γ ` C <1 C′

∀i ∈ 1..n C;Π; ES;Γ ` Esi ; Ebi : Ti
C;Π; ES;Γ ` STMTSs ; STMTSb

Γ ` C�Cns(C′, T1 . . . Tn) = [PAR=T̄, ES=ES]

C;Γ ` AM (T1 x1, . . . , Tn xn) throws ES { super(Es1, . . . , E
s
n); STMTSs } ;

AM (T1 x1, . . . , Tn xn) throws ES { super(Eb1, . . . , E
b
n)� T̄�c; STMTSb }

Π = {x1 7→ T1,
. . . ,
xn 7→ Tn,
this 7→ C}

RT;Π; ∅;Γ ` Es ; Eb : T′

Γ ` T′ ≤ T

RT;Γ ` AM FINAL FK T f = Es ; ; AM FINAL FK T f = Eb ;
Π = This(FK, C)

C;Π; ES;Γ ` STMTSs ; STMTSb

C;Π; ES;Γ ` Es ; Eb : T′

Γ ` T′ ≤ T

C;Γ ` AM MK T m(T1 x1, . . . , Tn xn) throws ES { STMTSs return Es; };
AM MK T m(T1 x1, . . . , Tn xn) throws ES { STMTSb return Eb; }

Π = {x1 7→ T1,
. . . ,
xn 7→ Tn}∪
This(MK, C)

MK 6= abstract

This( , I) = ∅
This(static, C) = ∅;
This(ε, C) = {this 7→ C}

Fig. 5. Selected compilation rules



[rmv] Def (Γold) \Def (Γnew) 6= ∅ =⇒ ∀RT ∈ Def (Γnew) usedΓnew
(RT) ⊆ Def (Γnew)

[cng] RT ∈ Def (Γold) ∩Def (Γnew), Γold(RT) 6= Γnew(RT) =⇒{
∀RT′ ∈ leavesΓnew

(RT) Γnew ` okOvr RT′

usedΓnew
(RT) ⊆ Def (Γnew)

where “used by RT in Γ”, usedΓ (RT), means all types directly referenced by RT.

Theorem 1. If ` Γold� holds, and Γnew is well-formed w.r.t. Γold then, ` Γnew�
holds.

Proof Two requirements have to be met:

– Γnew must be closed, that is, usedΓnew
(RT) ⊆ Def (Γnew) for all RT ∈ Def (Γnew);

– overriding rules must be satisfied, that is, for any RT ∈ Def (Γnew) the judg-
ment Γnew ` okOvr RT must be valid.

The former requirement is met by hypothesis when some type defined in Γold
has been removed from Γnew, see [rmv] in Definition 1. When no types have
been removed, the unchanged types cannot, trivially, refer to undefined types
because, by hypothesis, Γold is closed. By [add] and [cng] of Definition 1 new
and updated types refer only to types defined in Γnew.

The latter requirement can be proved by case analysis. Consider Def (Γnew)
as the union of three disjoint sets: U , C and N . These sets contain, respectively,
the unchanged, changed and new types in Γnew with respect to Γold. Formally:

U = {RT|RT ∈ Def (Γnew) ∩Def (Γold), Γnew(RT) = Γold(RT)}
C = {RT|RT ∈ Def (Γnew) ∩Def (Γold), Γnew(RT) 6= Γold(RT)}
N = Def (Γnew) \Def (Γold)

Let us consider N ∪C first. For any new type RT, contained in N , the judgment
Γnew ` okOvr RT is valid by the hypothesis, see [add] of Definition 1. For any
changed type RT, contained in C, the judgment Γnew ` okOvr RT is valid because
of [cng] of Definition 1.

It remains to prove that the judgment holds for the unchanged types, con-
tained in U . Since they are unchanged the direct supertypes of any type in U
are the same in Γold and Γnew. Furthermore, each direct supertype of RT must
be contained in Def (Γold) and in Def (Γnew) because of, respectively, the fact
that ` Γold� holds and the fact that Γnew is closed (which we have proved be-
fore). Hence, these direct supertypes must be contained in Def (Γold)∩Def (Γnew)
which, by definition, is equal to: U ∪ C. If a direct supertype is in U , then the
same reasoning can be applied; so, for any RT ∈ U , only two cases are possible:

– all supertypes of RT are in U ; then, the hierarchy of RT has not changed and
by the hypothesis ` Γold� is valid, so the judgment Γnew ` okOvr RT is valid
too;

– there exists a supertype RT′ of RT which is in C, whose subtypes till RT
are in U . Then, by [cng] there exists a type RT′′ such that RT′′ ≤ RT and
Γnew ` okOvr RT′′ holds. So, Γnew ` okOvr RT must be valid too.



In summary, as long as we keep trace of a previous well-formed environ-
ment Γold we can check for the well-formedness of any new environment Γnew
by examining the changes w.r.t. Γold. The most expensive check must be per-
formed when some classes are removed; this is acceptable because classes are
added/changed more often than removed in the usual software development cy-
cle. The requirement of having a previous well-formed environment available may
seem restrictive, but it is not, since one can always use the empty environment
(which is trivially well-formed) as Γold when starting to use our strategy from
scratch.

Assume we have a compilation environment ceold, a corresponding well-
formed type environment Γold = extractEnv(ceold), and we can prove:

RT;Γold ` ceold(RT) ; B

The proof tree for this judgment can be proved to be unique, and contains a set
of assumptions Λ = λ1, . . . , λn. We call it the requirements for RT in Γold and
write

Reqs(RT, Γold) = Λ

Assume to change ceold leaving the fragment for RT untouched. That is, as-
sume to have another compilation environment cenew, with a corresponding well-
formed environment Γnew, such that cenew(RT) = ceold(RT).

Does RT compile in cenew? If it does, can we say something about the corre-
sponding binary?

The following theorem states that, if Γnew still satisfy the requirements of RT
in Γold, then we do know that RT compiles in Γnew and it compiles to the same
binary.

Theorem 2. If ceold and cenew are two compilation environments which share
the same source for RT, that is, ceold(RT) = cenew(RT), the corresponding type
environments Γold = extractEnv(ceold) and Γnew = extractEnv(cenew) are well-
formed, and the judgment RT;Γold ` ceold(RT) ; B can be proved, then:

RT;Γnew ` cenew(RT) ; B ⇐⇒ Γnew ` Reqs(RT, Γold)

Proof (sketch) If Γnew ` Reqs(RT, Γold), that is, Γnew ` λ holds for all λ ∈
Reqs(RT, Γold), the proof for RT;Γold ` ceold(RT) ; B is a proof for RT;Γnew `
cenew(RT) ; B too. On the other hand, if Γnew 6` Reqs(RT, Γold), then there exists
at least one λ ∈ Reqs(RT, Γold) such that Γnew 6` λ. Since the proof tree for a
compilation judgment is unique, either there is no proof tree for compiling RT in
Γnew or the compilation produces another binary B′ which differs from B.

When the compilation for a fragment RT is undefined, or the binary produced
by the compilation differs from the existing one, a sound strategy requires the
compilation of RT.

To sum up, our compilation strategy is quite simple: a fragment has to be
recompiled if and only if the new environment does not entail its requirements.
This strategy is both sound and minimal.



So far so good: if we keep trace of the requirements for a fragment when we
compile it we can apply a sound and minimal strategy. However, from a practical
point of view there is another point to ponder: the cost of checking whether the
requirements of a fragment are entailed by a type environment. If this checking
costed more than compiling the source fragment, then all the reasoning so far
would be useless. Luckily, this is not the case. In typechecking a source fragment
a compiler must necessarily perform all the steps which are necessary to check
the validity of the entailment. In addition, a compiler must, of course, parse
the source and generate the code. So, checking whether the entailment holds
is definitely faster than recompiling, and we expect this to be much faster. Of
course, the global cost of using a smart strategy is not easy to determine because
it depends on the particular compiler and the compilation context. That is, on
the one hand there is the additional cost of checking the entailment, on the other
hand there is the saving in not compiling the fragments whose requirements
are entailed by the new environment. In a sense, the time used to find that a
fragment’s requirements are not entailed may appear “wasted”, because that
fragment has to be recompiled. However, if the compilation manager and the
compiler are tightly integrated, the compiler’s typechecking step can use the
results of the previous entailment checking step as a sort of cache and skip many
checks when recompiling the fragment. Using this trick, the “wasted” time is
extremely small: it just consists in finding that a single requirement λ does not
hold.

We can model an extended compilation environment as follows:

ce+ : 〈Γ, RT⇀ S ∪ B ∪ (B× Λ)〉

That is, a pair consisting of the previous (well-formed) environment Γ and a
function which, for each fragment name, returns either: the source only, the bi-
nary only (when the source is not available) or a pair consisting of the binary and
the requirements (the idea is that they are the result of a previous compilation).

4 Related and Further Work

This paper, together with [3, 4], can be considered a step towards a better support
for separate compilation of Java-like languages.

The solution presented here, which extends the ideas in [2], is similar to at-
tribute recompilation, according to the classification given in [1] - here attributes
correspond to assumptions.

An inspiring source of our work has certainly been Dmitriev’s paper [5], which
describes a make technology, based on smart dependency checking, that aims to
keep a project consistent while reducing the number of files to be recompiled. A
freely downloadable tool, Javamake, is based on such a paper and implements the
selective recompilation upon any Java compiler. Unfortunately, as pointed out
by the author himself, there is no proof of the correctness of the approach, which
is not based on theoretical foundations. So, it might happen that Javamake fails
to force the recompilation of some classes which is actually needed for ensuring



the consistency of the project. Conversely, Javamake cannot avoid a considerable
amount of unnecessary recompilations. Hence, it is neither sound nor minimal.

The final goal of the work presented in this paper is implementing a smart
compilation manager for the whole Java language, à la Javamake, but based on
a formal model on which the correctness can be actually proved. To achieve this
result, there are some subtle and Java-peculiar features which must be addressed.

– Unreachable code is not just a bad idea: it is forbidden (see 14.20 of [8]) -
this is the most challenging issue to be tackled.

– Final methods: an invocation of a final instance method is compiled to differ-
ent bytecode w.r.t. an invocation of a non-final instance method (non-virtual
invocation vs virtual one, see 15.12.3 of [8]). This issue should not pose major
problems.

– Accessing a final field initialized by a constant expression is a constant
expression (see 15.28 of [8]) and so should be compiled directly to the cor-
responding value. This issue should not pose problems too, as long as an
assumption keeps track that such a constant is really an access to a static
final field.
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