
Undefined 0 (2010) 1 1
IOS Press

Some Applications of Computational Logic to
the Development of Intelligent Systems and
Verification Methods
Viviana Mascardi, Giorgio Delzanno, Maurizio Martelli
Department of Computer and Information Science (DISI), Università degli Studi di Genova, via Dodecaneso 35,
16146, Genova, Italy

Abstract. Computational Logic plays a very relevant role
in engineering complex systems. It can be used to specify
systems at different levels of abstraction. The specifications
are executable, thus providing a working prototype for free.
Thanks to its well-founded semantics it can be used to rea-
son about the correctness of the specifications, a fundamen-
tal aspect when safety critical applications are developed.
Researchers working in the Logic Programming Group at
DISI, a Genova University Department, have applied meth-
ods and tools of Computational Logic for modelling, proto-
typing, and verifying complex systems. These three research
lines are largely overlapping: the complex systems we take
into account are often multiagent systems, for which we pro-
pose modelling languages as well as prototyping environ-
ments and verification techniques. In this paper we describe
activities that, in the last decade, we carried out along these
research lines.

Keywords: Computational Logic, Intelligent Agents, Rapid
Prototyping, Protocol Verification

Logic Languages for Modelling Rational Agents

Many logics for modelling beliefs, desires and in-
tentions of agents, such as Rao and Georgeff’s BDI
logic [47,46] and Wooldridge’sLORA [51], are based
on temporal logics like CTL/CTL∗ (Computational
Tree Logic [34,26]) where the structure of time is
branching in the future and linear in the past. In
2005 we started to explore the advantages of substi-
tuting ATL∗ (Alternating-Time Temporal Logic [2])
for CTL∗ in Rao and Georgeff’s logic. This activity,
that resulted in the formalisation of BDIATL [45], was
born from our effort to find a BDI logic suitable for
modelling the behaviour of agents structured accord-
ing to the CooBDI architecture [3].

A CooBDI agent, whose behavioural specification
was given using Prolog, is characterised by a built-
in mechanism for retrieving plans from cooperative
agents, for example when no local plans suitable for
achieving a certain desire are available. In particular,
the cooperation strategy of an agent includes the set
of agents with which it is expected to cooperate (its
partner agents, or its “friends”). BDIATL allows us
to express new commitment strategies that are more
realistic than those proposed by Rao and Georgeff
(and that could not be defined in their logic), since
they take collaboration among agents into account. In
particular, we can express three variants of Rao and
Georgeff’s “open minded” commitment: “independent
open minded”, “optimistic open minded”, and “pes-
simistic open minded”. In these commitment strategies
we exploit the new feature that ATL∗ adds to CTL∗,
namely cooperation modalities, to express the way of
thinking of CooBDI agents.

Other logic-based languages conceived for specify-
ing BDI-style and, more in general, rational agents,
are “Dynamics in Logic” [12], Ehhf [30], the IM-
PACT language [33], Concurrent METATEM [35],
CongoLog [37], and AGENT-0 [49]. In 2004, we pub-
lished a survey of these six languages [43], chosen be-
cause of the availability, for each of them, of a working
interpreter or an automatic mechanism for animating
specifications. In our survey we described the logical
foundations of each language and we gave an example
of use. A comparison along twelve dimensions (pur-
pose of use, language support to time, sensing, concur-
rency, nondeterminism, etc.) was also provided.

0000-0000/10/$00.00 c© 2010 – IOS Press and the authors. All rights reserved

Computational Logic for MAS Prototyping

It is well known that computational logic and logic
programming in particular are very suitable to im-
plement sophisticated, self-aware agents able to rea-
son about themselves and other agents in a multi-
agent system (MAS). DCaseLP (Distributed Com-
plex Applications Specification Environment based
on Logic Programming [42]) is an environment for
rapid prototyping of MASs developed by the Logic
Programming Group at DISI. DCaseLP was initially
born as a logic-based framework, as the acronym it-
self suggests, and then evolved into a multi-language
prototyping environment that integrates both impera-
tive (object-oriented) and declarative (rule-based and
logic-based) languages, as well as graphical ones. The
languages and tools that DCaseLP integrates are: UML
and an XML-based language for the analysis and de-
sign stages; Java, JESS [36] and tuProlog [32] for the
implementation stage; JADE [14] for the execution
stage. DCaseLP provides libraries for integrating JESS
and tuProlog agents into the JADE platform and li-
braries for translating UML class diagrams into JESS
and tuProlog code. The source code of DCaseLP li-
braries together with manuals and tutorials is available
from http://www.disi.unige.it/person/
MascardiV/Software/DCaseLP.html.

The methodological integration of DCaseLP with
the “Dynamics in Logic” agent programming language
is described in [8].

All the applications, that we developed with DCa-
seLP in collaboration with Italian industries, exploit
tuProlog for implementing the MAS.

One recent activity, described in [40,23], is a MAS
that monitors processes running in a railway signalling
plant, detects functioning anomalies, provides diag-
noses for explaining them, and early notifies prob-
lems to the Command and Control System Assistance.
This work is part of an ongoing project that involves
DISI and Ansaldo Segnalamento Ferroviario, the Ital-
ian leader in design and construction of signalling and
automation systems for railway lines. See also [22].

The research activity carried out with Ansaldo led us
to modelling and simulating the behaviour of complex
systems where a limited set of agents must cooperate
(or compete) to share a limited set of resources under
topological and spatial constraints. Problems of this
kind are known as “Multiagent Resource Allocation
(MARA) problems” [25]. Although in [21] we concen-
trated on a specific MARA problem, the methodology
we followed for solving it and the tools we used (or

that we mean to use in the future) could be exploited as
well for different problems and scenarios involving au-
tonomous entities that are difficult to model with stan-
dard simulation techniques.

The work described in [48] deals with an elec-
tronic implementation of different auction mecha-
nisms. There are many different auction mechanisms
that can be classified according to their features [39].
The experiments ran with all the implemented mech-
anisms satisfied the “Revenue Equivalence Theorem”
[50] (up to some error due to discretisation), giving
empirical evidence of the correctness of our implemen-
tation.

Many applications had also been developed using
the ancestor of DCaseLP, CaseLP: a prototype of a
multimedia, multichannel, personalised news provider,
[28], was developed in collaboration with Ksolutions
s.p.a. as part of the ClickWorld project, a research
project partially funded by the Italian Ministero dell’I-
struzione, dell’Università e della Ricerca (MIUR).
Older industrial applications involve freight train traf-
fic [27] and vehicle monitoring [6].

The industrial applications of CaseLP and DCaseLP
show an increased industrial interest and trust in both
agent-based and declarative technologies, and demon-
strate the liveliness of computational logic outside the
boundaries of academia.

The expertise obtained in these years allowed us
to apply MAS techniques also to very different fields
such as web applications for the cultural heritage in
connection with the new field of research of the Virtual
Institutions [15,4].

We were also interested in introducing the use of on-
tologies [20] and of sophisticated ontology matching
techniques [41] into our framework.

Verification of Interaction Protocols

To this end we developed a tool aimed at sup-
porting verification of finite-state interaction proto-
cols in a MAS setting, West2East [24], that exploits
“WEb Service Technologies to Engineer Agent-based
SofTware” starting from the specification of an Agent
Interaction Protocol (AIP). West2East exploits AUML
[13] for representing AIPs, many different languages
(including standard languages for Web Services) for
sharing them, and Computational Logic to reason
about them. In particular, West2East consists of a set
of libraries for 1. translating visual AUML AIPs to
various formats: starting from an AUML interaction
diagram graphically drawn using any UML editor,

West2East generates the corresponding representation
in many formats, including a Prolog term; 2. generat-
ing code compliant to the AIP: starting from the Pro-
log term, a tuProlog program for each agent involved
in the AIP is automatically generated by West2East;
after a manual completion for adding the information
missing in the AIP’s specification, the tuProlog code
can be run inside JADE thanks to the DCaseLP li-
braries; 3. reasoning about the AIP: a mechanism for
allowing tuProlog agents to reason about an AIP by ex-
ploiting meta-programming techniques is provided by
West2East. Existential and universal properties, such
as “There is one path of the protocol where I will re-
ceive message1”, and “Whatever the path, I will send
message2”, can be verified.

Verification of Communication and Security Protocols

In addition to the work on intelligent systems, in
the last ten years researchers of our group have stud-
ied computational logic for the specification and anal-
ysis of concurrent systems. One of these formalisms
is linear logic [38] and logic programming languages
inspired to it like LO [5]. Linear logic is based on the
metaphor "formulas and resources" that finds a natural
application when modelling state-based and concur-
rent computation [44]. The LO fragment [5] of full lin-
ear logic extends Horn formulas (the class of formulas
underlying languages like Prolog) by allowing clauses
with multiple heads. Multi-headed clauses have a nat-
ural interpretation as multiset rewriting rules, which in
turn can be applied to locally specify the possible in-
teraction of concurrent activities.

As discussed in [31], a natural way to define a ver-
ification method for temporal properties consists in
the definition of a bottom-up evaluation procedure for
the considered type of logic programs. The bottom-
up evaluation procedure computes immediate conse-
quences of formulas that describe violations of a given
property. Then, by saturating the set of immediate con-
sequences, we compute formulas that represent pre-
conditions for exposing a possible error.

Following this idea, in [17] we have defined a
bottom-up evaluation strategy for LO programs ob-
tained by an adequate extension of the immediate con-
sequence operator used in the fixpoint semantics of
logic programs. In the propositional case the termina-
tion of the resulting procedure is guaranteed whenever
intermediate formulas computed during the bottom-up
evaluation steps are compared using a well-quasi or-
dering like multiset inclusion (over a finite alphabet).

In [18] we have extended the bottom-up evalua-
tion procedure in order to deal with first-order multi-
headed LO clauses. This extension is achieved by re-
placing term instantiation with term unification in the
definition of the immediate consequence operator. A
single step of the bottom-up evaluation procedure can
be computed in an effective way. The termination of
the procedure can be guaranteed only in very special
cases (monadic atomic formulas without function sym-
bols).

In [19] we have further extended the bottom-up eval-
uation procedure in order to deal with LO clauses with
universally quantified goals. The extension is based
on the observation that, when reasoning bottom-up,
universal quantification can be handled locally to the
application of the fixpoint operator by ensuring that
eigen-variables are not extruded from their scope dur-
ing the unification with already deduced formulas.

In [16] we have applied the resulting procedure to
verify secrecy properties of examples of cryptographic
protocols with an unbounded number of agents and
parallel sessions. LO programs are used to specify
the behaviour of honest agents and of the intruder.
Communication is assumed to be asynchronous and
is modelled using rewriting of atoms that represent
messages. A top-down execution of the resulting LO
program represents a finite set of parallel protocol
sessions. Universal quantification in goal formulas is
used to specify the dynamic generation of fresh names
(nonces). Violation of secrecy properties (e.g. secret
data are exposed to the intruder) are specified using
LO axioms. The bottom-up evaluation of the resulting
LO program generates the collection of preconditions
under which the intruder is able to capture the secret
data exchanged by honest agents.

In [29] we have presented a generalisation of the
verification methods developed in [17,19,16] for spec-
ifications given in multiset rewriting with equality
and ordering constraints over an infinite domain (e.g.
to model pure names or indexes). This specification
language can be used to specify concurrent systems
with relations over data of individual processes (or of
group of processes). Decidability results for verifica-
tion problems in fragments of the resulting specifica-
tion language are discussed in [1]. In the same paper
we compare the proposed specification language with
other models of concurrent computation like (Colored)
Petri nets.

In this research line we are currently addressing
the problem of finding more general constraint lan-
guages to symbolically represent and manipulate dif-

ferent types of communication topologies (e.g. trees
and graphs) useful to reason about the behaviour of a
larger class of concurrent systems.

Conclusions

Research on computational logic in Genova is very
lively, and will be even more in the future thanks to
the interest on its practical applications raised outside
the boundaries of academia. Part of this research has
been carried out in joint projects with the Logic Pro-
gramming and Automated Reasoning Group in Torino.
Some results of this effort are described in [9], and the
active collaboration is witnessed by many other joint
activities [10,11].

Moreover, recently we decided to propose projects
and joint activities for the development of an Interac-
tion-oriented Framework for Designing, Verifying and
Programming Multi-Agent Systems, called MERCU-
RIO [7], in collaboration also with the groups of the
Universities of Bologna and Parma.

The connections between the Logic Programming
Groups in Torino and Genova date back to more than
30 years ago. The heads of the groups, Alberto and
Maurizio Martelli, besides the same family name,
share many common experiences: they worked to-
gether at the National Research Council in Pisa, were
involved in the committees of conferences and work-
shops on Computational Logics, and, when moved
to Torino and Genova respectively, founded research
groups with the same objectives. The profitable collab-
oration will be pursued in the future with the hope to
contribute in making research on Computational Logic
an Italian excellence.

References

[1] P. Abdulla, G. Delzanno, and L. Van Begin. A classification
of the expressive power of well-structured transition systems.
Technical report, 2010. To appear in Information and Compu-
tation.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time
temporal logic. J. ACM, 49:672–713, 2002.

[3] D. Ancona and V. Mascardi. Coo-BDI: Extending the BDI
model with cooperativity. In J. A. Leite, A. Omicini, L. Ster-
ling, and P. Torroni, editors, Proc. of the 1st Declarative Agent
Languages and Technologies Int. Workshop, DALT’03, Revised
Selected and Invited Papers, LNAI, pages 109–134. Springer,
2004.

[4] M. Ancona, V. Mascardi, G. Quercini, A. Bogdanovych, H. de
Lumley, L. Papaleo, S. Simoff, and A. Traverso. Virtual in-
stitutions for preserving and simulating the culture of Mount
Bego’s ancient people. In Proc. of the 11th VAST International

Symposium on Virtual Reality, Archaeology and Cultural Her-
itage, 2010.

[5] J-M. Andreoli and R. Pareschi. Linear ojects: Logical pro-
cesses with built-in inheritance. New Generation Comput.,
9(3/4):445–474, 1991.

[6] E. Appiani, M. Martelli, and V. Mascardi. A multi-agent ap-
proach to vehicle monitoring in motorway. Technical report,
CS Department of Genova University, 2000. DISI TR-00-13,
Poster session of AVBS 2001.

[7] M. Baldoni, C. Baroglio, F. Bergenti, A. Boccalatte,
E. Marengo, M. Martelli, V. Mascardi, L. Padovani, V. Patti,
A. Ricci, G. Rossi, and A. Santi. MERCURIO: An interaction-
oriented framework for designing, verifying and programming
multi-agent systems. In N. Fornara and G. Vouros, editors,
Notes of the Eleventh International Workshop on Coordination,
Organization, Institutions and Norms in Agent Systems, pages
134–149, 2010.

[8] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli,
V. Mascardi, V. Patti, and C. Schifanella. Reasoning about
agents’ interaction protocols inside DCaseLP. In J. A. Leite,
A. Omicini, P. Torroni, and P. Yolum, editors, Proc. of the 2nd
Declarative Agent Languages and Technologies Int. Workshop,
DALT’04, Revised Selected and Invited Papers, volume 3476
of LNCS, pages 112–131. Springer, 2004.

[9] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, C. Schifanella,
L. Torasso, and V. Mascardi. Personalization, verification and
conformance for logic-based communicating agents. In F. Cor-
radini, F. De Paoli, E. Merelli, and A. Omicini, editors, Proc. of
the WOA 2005 National Workshop, Dagli Oggetti Agli Agenti,
pages 177–183. Pitagora Editrice Bologna, 2005.

[10] M. Baldoni, C. Baroglio, and V. Mascardi, editors. Proc. of the
Multi-Agent Logics, Languages, and Organisations, Federated
Workshops, MALLOW’007, Agent, Web Services and Ontolo-
gies, Integrated Methodologies (MALLOW-AWESOME’007)
workshop. 2007.

[11] M. Baldoni, A. Boccalatte, F. De Paoli, M. Martelli, and
V. Mascardi, editors. Proc. of WOA, Workshop dagli Oggetti
agli Agenti. Seneca Edizioni (Italy), 2007.

[12] M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Modeling
agents in a logic action language. In Proc. of the Workshop on
Practical Reasoning Agents, FAPR 2000, 2000.

[13] B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism
for specifying multiagent software systems. In P. Ciancarini
and M. Wooldridge, editors, Proc. of the 1st Agent-Oriented
Software Engineering Int. Workshop, AOSE’00, Revised Pa-
pers, volume 1957 of LNCS, pages 91–104. Springer, 2000.

[14] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. Wiley, 2007.

[15] A. Bogdanovych, L. Papaleo, M. Ancona, V. Mascardi,
G. Quercini, S. Simoff, A. Cohen, and A. Traverso. Integrat-
ing agents and virtual institutions for sharing cultural heritage
on the web. In Notes of the Workshop On Intelligent Cultural
Heritage (satellite workshop of AI*IA 2009), 2009.

[16] M. Bozzano and G. Delzanno. Automatic verification of se-
crecy properties for linear logic specifications of cryptographic
protocols. J. Symb. Comput., 38(5):1375–1415, 2004.

[17] M. Bozzano, G. Delzanno, and M. Martelli. A bottom-up se-
mantics for linear logic programs. In 2nd International Confer-
ence on Principles and Practice of Declarative Programming,
PPDP 2000, pages 92–102, 2000.

[18] M. Bozzano, G. Delzanno, and M. Martelli. An effective fix-
point semantics for linear logic programs. TPLP, 2(1):85–122,
2002.

[19] M. Bozzano, G. Delzanno, and M. Martelli. Model checking
linear logic specifications. TPLP, 4(5-6):573–619, 2004.

[20] D. Briola, A. Locoro, and V. Mascardi. Ontology Agents in
FIPA-compliant Platforms: a Survey and a New Proposal. In
M. Baldoni, M. Cossentino, F. De Paoli, and V. Seidita, editors,
Proc. of WOA 2008: Dagli oggetti agli agenti. Seneca Edizioni,
2008.

[21] D. Briola, M. Martelli, and V. Mascardi. Specification, simula-
tion and verification of negotiation protocols in a unified agent-
based framework (extended abstract). In Notes of the 12th
Italian Conference on Theoretical Computer Science, ICTCS,
2010.

[22] D. Briola, V. Mascardi, and M. Martelli. Intelligent agents that
monitor, diagnose and solve problems: Two success stories of
industry-university collaboration. Journal of Information As-
surance and Security, 4(2):106–116, 2009.

[23] D. Briola, V. Mascardi, M. Martelli, G. Arecco, R. Caccia, and
C. Milani. A prolog-based MAS for railway signalling mon-
itoring: Implementation and experiments. In Workshop Dagli
Oggetti agli Agenti, WOA’08, Proceedings. Seneca Edizioni,
2008.

[24] G. Casella and V. Mascardi. West2East: exploiting WEb
Service Technologies to Engineer Agent-based SofTware.
IJAOSE, 1(3/4):396–434, 2007.

[25] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaître,
N. Maudet, J. A. Padget, S. Phelps, J. A. Rodríguez-Aguilar,
and P. Sousa. Issues in multiagent resource allocation. Infor-
matica (Slovenia), 30(1):3–31, 2006.

[26] E. M. Clarke and E. A. Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In
Logic of Programs, pages 52–71, 1981.

[27] A. Cuppari, P. L. Guida, M. Martelli, V. Mascardi, and F. Zini.
An agent-based prototype for freight trains traffic management.
In P. G. Larsen, editor, Proc. of the 5th FMERail Workshop.
Held in conjunction with FM’99. Springer, 1999.

[28] M. Delato, A. Martelli, M. Martelli, V. Mascardi, and A. Verri.
A multimedia, multichannel and personalized news provider.
In G. Ventre and R. Canonico, editors, Proc. of the 1st Int.
Workshop on Multimedia Interactive Protocols and Systems,
MIPS 2003, volume 2899 of LNCS, pages 388–399. Springer,
2003.

[29] G. Delzanno. Constraint-based automatic verification of ab-
stract models of multithreaded programs. TPLP, 7(1-2):67–91,
2007.

[30] G. Delzanno and M. Martelli. Proofs as computations in lin-
ear logic. Theoretical Computer Science, 258(1–2):269–297,
2001.

[31] G. Delzanno and A. Podelski. Constraint-based deductive
model checking. STTT, 3(3):250–270, 2001.

[32] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm Java-
Prolog integration in tuProlog. Sci. Comput. Program.,
57(2):217–250, 2005.

[33] T. Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous ac-
tive agents, I: Semantics. Artificial Intelligence, 108(1-2):179–
255, 1999.

[34] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never”
revisited: on branching versus linear time temporal logic. J.
ACM, 33(1):151–178, 1986.

[35] M. Fisher and H. Barringer. Concurrent METATEM processes
– A language for distributed AI. In Proc. of the European Sim-
ulation Multiconference. SCS Press, Copenhagen, Denmark,
1991.

[36] E. Friedman-Hill. Jess in Action : Java Rule-Based Systems
(In Action series). Manning Publications, 2002.

[37] G. De Giacomo, Y. Lespérance, and H. J. Levesque. Congolog,
a concurrent programming language based on the situation cal-
culus. Artificial Intelligence, 121:109–169, 2000.

[38] J-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[39] P. Klemperer. Auctions: Theory and practice. Princeton Uni-

versity Press, 2004.
[40] V. Mascardi, D. Briola, M. Martelli, R. Caccia, and C. Mi-

lani. Monitoring and diagnosing railway signalling with logic-
based distributed agents. In Proc. of the International Work-
shop on Computational Intelligence in Security for Information
Systems, CISIS’08, pages 108–115. Springer, 2008.

[41] V. Mascardi, A. Locoro, and P. Rosso. Automatic ontology
matching via upper ontologies: A systematic evaluation. IEEE
Trans. Knowl. Data Eng., 22(5):609–623, 2010.

[42] V. Mascardi, M. Martelli, and I. Gungui. DCaseLP: a prototyp-
ing environment for multi-language agent systems. In M. Das-
tani, A. El-Fallah Seghrouchni, J. Leite, and P. Torroni, editors,
Proc. of the 1st Int. Workshop on Languages, Methodologies
and Development Tools for Multi-Agent Systems, LADS’007,
volume 5118 of LNCS, pages 139–155. Springer, 2008.

[43] V. Mascardi, M. Martelli, and L. Sterling. Logic-based spec-
ification languages for intelligent software agents. TPLP,
4(4):429–494, 2004.

[44] Dale Miller. Specifications using multiple-conclusion logic
programs. In ALP, pages 3–4, 1994.

[45] R. Montagna, G. Delzanno, M. Martelli, and V. Mascardi.
BDIATL: An alternating-time BDI logic for multiagent sys-
tems. In M. P. Gleizes, G. A. Kaminka, A. Nowé, S. Ossowski,
K. Tuyls, and K. Verbeeck, editors, Proc. of the 3rd European
Workshop on Multi-Agent Systems, EUMAS’05, pages 214–
223. Koninklijke Vlaamse Academie van Belie voor Weten-
schappen en Kunsten, 2005.

[46] A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-
effect problems in linear-time and branching-time intention
logics. In J. Myopoulos and R. Reiter, editors, Proc. of the
12th Int. Joint Conf. on Artificial Intelligence, IJCAI-91. Mor-
gan Kaufmann publishers, 1991.

[47] A. S. Rao and M. P. Georgeff. Modelling rational agents within
a BDI-architecture. In Proc. of the 2nd Int. Conference of Prin-
ciples of Knowledge Representation and Reasoning. Morgan
Kaufmann publishers, 1991.

[48] D. Roggero, F. Patrone, and V. Mascardi. Designing and
implementing electronic auctions in a multiagent system en-
vironment. In F. Corradini, F. De Paoli, E. Merelli, and
A. Omicini, editors, Proc. of the WOA 2005 National Work-
shop, Dagli Oggetti Agli Agenti, pages 157–163. Pitagora Ed-
itrice Bologna, 2005.

[49] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60:51–92, 1993.

[50] W. Vickrey. Auction and bidding games. In Recent advances in
Game Theory, pages 15–27. Princeton University Conference,
1962.

[51] M. Wooldridge. Reasoning about rational agents. MIT press,
2000.

