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Abstract. Multiagent Systems (MASs) are distributed systems com-
posed by autonomous, reactive, proactive, heterogeneous communicating
entities. In order to dynamically verify the behavior of such complex sys-
tems, a decentralized solution able to scale with the number of agents is
necessary. When, for physical, infrastructural, or legal reasons, the mon-
itor is not able to observe all the events emitted by the MAS, gaps are
generated. In this paper we present a runtime verification decentralized
approach to handle observation gaps in a MAS.
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1 Introduction and Motivations

Distributed Runtime Verification (DRV) is a relatively new research sub-field
aimed at designing fault-tolerant distributed algorithms that monitor other dis-
tributed algorithms, with the end goal of developing lightweight software systems
that are more efficient that traditional verification techniques [17,18]. The lit-
erature on DRV is almost limited [26,27,28,31,24,15] and becomes even more
limited when we consider DRV of a special kind of systems: multiagent systems
(MASs [36]). In the MAS area, in fact, we are only aware of our own previous
works [25,4,7].

Another sub-field which is raising more and more attention in the RV area
concerns partial observability of the monitored events which can cause gaps in
the event traces [16,33,29,12]. Also in this case, when we consider MASs as the
target system of the verification activity, we find very few works, all related with
norm monitoring [22,23].

This paper addresses the two issues above, decentralized runtime verification
of partially observable systems, in a MAS context. The findings presented in
this work can be generalized and applied to other kinds of systems, but – for
presentation purposes – we concentrate our investigation on MASs.

The main source of inspiration for our work is the paper by Stoller et al. [33],
where the authors introduce runtime verification with state estimation. With
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respect to a more standard RV approach, they are interested in checking system
executions (traces) containing gaps. A gap represents the absence of information
in the trace of observed events and corresponds to an execution point where the
monitor knows that the system emitted some event, but does not know which
one. In offline RV gaps in the trace logs are due to the process of sampling ob-
served events in order to reduce the monitoring overhead. Gaps can also be met
in online RV, where the system behavior is analyzed while the system is running
and problems with the infrastructure, privacy and legal issues that prevent the
monitor to observe some kind of events, faults in the monitor observation capa-
bilities, may generate gaps. Although the problems raised by online and offline
RV with gaps share many similarities, the online setting is much more chal-
lenging. Each time a gap is perceived, the monitor must make guesses on the
possible actual events that the gap represents and save all the states generated
by these guesses. A possibly huge logical tree-like structure with states as nodes,
and moves from states to states as edges, represents the open possibilities1. In
offline RV, this logical tree-like structure can be explored following a depth-first
search, requiring a limited amount of memory. If the RV takes place online, its
exploration must follow a breadth-first strategy, with much more space needed
to save the states, as the final trace of events is unknown and the levels of the
structure are generated and explored at the same time. In order to cope with
the state space explosion due to guesses in the online RV scenario, we propose
to decentralize the monitoring activity.

RV decentralization is a very natural choice when the system under monitor-
ing is a MAS, which is distributed by definition, and may improve efficiency, as
the verification process can be spread on different machines improving perfor-
mance; scalability, as under some conditions depending on the protocol [7,25] it
is possible to associate one monitor with each agent in the MAS, keeping under
control the RV complexity even when the number of agents grows; feasibility, as
for physical/logical/legal reasons one single monitor might not be able to observe
all the events generated by the MAS.

The feature that is usually subject to verification (both static and dynamic) in
a MAS is its communicative behavior [13,14,21,34,37,20,32,35,10]. With respect
to [33], in this work we do not aim at verifying temporal properties. Rather, we
want to check the conformance of the MAS actual communicative behavior to an
Agent Interaction Protocol (AIP) that models the allowed interactions among
agents, under the hypotesis that some interactions could not be observed. The
research question we address is thus how to evaluate the probability that a MAS
satisfies an AIP, in the presence of gaps.

In [11] we introduced Probabilistic Trace Expressions (PTEs) and the theory
behind them. In this work we take a more pragmatical perspective and we show
how to use PTEs for decentralized RV of AIPs within MASs with gaps.

1 In the remainder we will use the term “branch” to denote paths in this logical
structure, and we will sometime use “states” meaning “the final states of all the
possible branches”, when this does not generate confusion.
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2 Background

2.1 Probabilistic Trace Expressions

Trace expressions [5,1,19,3,2,8,9,6] are based on the notions of event and event
type. We denote by E the fixed universe of events subject to monitoring. An event
trace over E is a possibly infinite sequence of events in E, and a trace expression
over E denotes a set of event traces over E. Trace expressions are built on top
of event types (chosen from a set ET), each specifying a subset of events in E. A
trace expression τ ∈ T represents a set of possibly infinite event traces, and is
defined on top of the following operators:
• ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε.
• ϑ:τ (prefix), denoting the set of all traces whose first event e matches the event
type ϑ, and the remaining part is a trace of τ .
• τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of τ1 with those of τ2.
• τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
• τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
• τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with the
traces of τ2.

Trace expressions support recursion through cyclic terms expressed by finite
sets of recursive syntactic equations, as supported by modern Prolog systems.

A probabilistic trace expression is a trace expression where event types have
a probability associated with them [11]. PTEs are suitable to manage guesses
in the presence of observation gaps; in order for this management to work, we
assume that each gap represents one single unobserved event.

As an example, the probabilistic trace expression

τ = e1[0.2]:τ1∨e2[0.8]:(τ2|τ3)

represents the protocol where we can accept the event e1 with probability 0.2,
or, the event e2 with probability 0.8. If we consume the event e1, we go to the
new state τ1, while, if we consume e2, we go to a state where we can have all
possible interleaving of τ2 and τ3. If there is a gap in the monitoring activity and
the monitor is not able to observe which event took place, it can nevertheless
make its guesses which involve e1 and e2, associate a probability with each of
them, and keep both possibilities.

Like a “normal” trace expression, a probabilistic trace expression τ can be
seen as the current state of a protocol that started in some initial state τinit
and reached τ after n events O1...On took place. Tese events moved τinit to τ

through intermediate states τq1, τq2, ... , τqn = τ . If we denote with τ
O→ τ ′ the

transition from state τ to state τ ′ due to the event O taking place and being
observed, we may write

τinit
O1→ τq1

O2→ τq2
O3→ τq3...

On→ τqn, where τqn = τ .
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In order to properly manage probabilities, it is convenient to associate with
τ – in an explicit and easily computable way – the probability of the protocol
to have reached τ starting from τinit and having observed O1...On.

We define a “probabilistic trace expression state” the triple consisting of a
trace expression τ , a sequence of events O1...On observed before reaching τ , and
the probability πτ that the protocol reached τ . We represent the state with the
notation 〈τ, πtr, O1...On〉.

2.2 Decentralized MAS Monitoring with DecAMon

In [25] we presented the DecAMon algorithm to decentralize agent interaction
protocols modeled using trace expressions. There, we defined the notion of “mon-
itoring safe” partition. A partition can be used to drive the distribution process.
To decentralize the monitoring activity, we project the global AIP onto each sub-
set of agents belonging to the partition, where by “projection” we mean that we
maintain only the interactions involving agents in the chosen subset. In general,
not all the partitions can be used for the RV decentralization. A partition that
can be used to decentralize the RV of a protocol is called “monitoring safe” and
the algorithm presented in [25] generates all the monitoring safe partitions for a
given AIP.

Since under the conditions considered in this paper we may observe gaps,
we could not have only one single state representing the current situation of the
protocol, like it happens in our previous works; instead, we have to maintain all
the states that may be possibly reached “via the gaps”. As already anticipated,
each state can be represented as a tuple 〈τ, π, evs〉, where τ is the PTE repre-
senting the current state of the protocol and π is the joint probability that the
sequence of events evs is compliant with τ [11].

Let us name M0 the set of possible initial states of the monitor (as there
may be more than one). The number 0 stands for the 0th iteration, since at the
beginning we have not consumed any event yet. We can first run DecAMon on
the global AIP to find a good set of monitoring safe partitions and, after that,
we can use one of them to project the τs in M0 onto the subsets of the agents.
Once we have obtained the distributed versions of the initial τs via projection,
we can generate one monitor for each partition, and decentralize the RV.

The combination of decentralization and lack of information calls for a syn-
chronized management of gaps. Since each monitor has a different state repre-
senting its current protocol evolution, when there is an observation gap, each
monitor can have different opinions about which are the correct events that
might suitably “fill the gap”. The local perspectives can be compared and used
by the monitors to cut wrong guesses, and hence wrong states, on the basis of dis-
tributed knowledge. Despite the overhead due to synchronization, this approach
may dramatically improve performance, as discussed in the next sections.
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3 Handling Gaps in Decentralized RV

Gaps represent lack of information, thus a point (or points) in the event trace
where the monitor does not know what event had been actually generated by
the system under monitoring. In the remainder we will write that “gaps can be
observed”, in the sense that a monitor can realize that something went wrong
and that an event was generated by the system, and not correctly observed.
We also assume that, in a decentralized setting, when one monitor “observes a
gap”, all the monitors “observe a gap” as well. From a technical viewpoint, this
could be obtained by forcing one monitor to inform the others when it observes
a gap. This would require some shared clock among the monitors as, in order
for our algorithm to work, the gap must take place at the same time for all the
monitors hence raising clock synchronization issues. Given that these issues are
well known and well studied in distributed systems [30], we leave them out of
our investigation.

When a centralized monitor observes a gap, since it is the only monitor
checking the event trace w.r.t. the AIP specification, it can make guesses on
what the gap is and reason on its own guesses, eventually tagging some of them
as wrong due to successive observations. When there are many monitors, each
one monitoring a subset of the agents, and hence a sub-protocol of the global
AIP, each monitor can still suppose what the observed gap is, but the reasoning
on its suppositions must be shared with the others. This sharing phase among
the monitors is crucial, because it allows them to cut wrong branches on the
basis of what other monitors suppose, or what they are fully sure of.

Let us consider two monitors m1 and m2 that observe a gap. Given that
the protocols driving the two monitors are different, although being derived via
projection from the same global protocol, m1 might suppose that the events
admissible for filling the observed gap are e1 and e2, while m2 could instead
suppose that admissible events are e2 and e3. Both m1 and m2 must keep track
of these possibilities in their local knowledge bases, and – so far – they do not
need to share they guesses.

Let us now suppose that in the current state of m1, in the branch where e1
was supposed to have taken place, the only successive possible event is e4, while
in the branch for e2 the only possible event is e5. If, after the gap, m1 observes
e5, it can cut the branch where the gap was associated with e1, because e5 would
not be allowed after e1. The gap before e5, that could be filled in principle by
e1 and e2, becomes bound - “without any doubt”2 - to e2. After having found
2 Modulo the assumption that observed events are compliant with the foreseen proto-

col. Gaps may inevitably generate false negatives. In this case, m1 assumes that the
gap was e2 because this would be consistent with the successive observation of e5
and with the protocol to be respected. If the gap were any other event, a protocol
violation would have taken place and m1 should have raised a protocol monitoring
exception. Depending on the protocol, the violation could be recognized later on, or
never. Suppose for example an infinite protocol where only as are allowed. A gap
will be necessarily filled with a even if the actual event was b, and if the successive
observed events are all as, the violation will never be discovered.
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the right value for the gap and cut one branch, m1 informs m2 allowing it to cut
the branch where the value for that gap was guessed to be e3. In this way, both
m1 and m2 can continue the verification process supposing that the unobserved
event represented by the gap was e2, with some given probability due to the
probability associated with e2 in the PTE modelling the protocol.

Before presenting the decentralized monitoring algorithm, we make some
considerations on the kind of gaps a monitor can observe. So far, we considered
generic events. This is correct and consistent with the general approach presented
in [11], but in a MAS scenario where PTEs model agent interaction protocols
we can be more specific. In this scenario, in fact, the universe of events is Msgs,
namely the universe of the possible messages among agents. Such special events
can be represented as a1

c=⇒ a2, meaning that agent a1 sends a message to a2
with content c. Since messages are composed by (at least) three mandatory com-
ponents, sender, receiver and content, there can be many partially instantiated
gaps such as:

– gap(a1 =⇒ a2), where the content of the message is unknown;
– gap( m=⇒ a2), where the sender is unknown;
– gap(a1

m=⇒ ), where the receiver is unknown.

Although, for sake of clarity, in the sequel we consider gaps where neither
the sender, nor the receiver, nor the content are known (total absence of infor-
mation), all the combinations of “information holes” are possible, and partially
instantiated gaps may be exploited to reduce branches due to guesses. The al-
gorithm presented in the next section can be easily adjusted to take partially
instantiated gaps into account.

3.1 Synchronizing Decentralized Gaps Management

We present the algorithm used by the decentralized monitors to synchronize the
gaps management, in order to cut useless branches and check the compliance of
interactions with the protocol. When an event is generated by the system, two
different situations can take place.

Case 1: The event is not a gap
If the event is not a gap, each monitor that observed it can use the event for

updating its local state(s). If some branches have been removed as in the previous
example involving m1 and m2, the monitor has to inform the other monitors of
the associations between gaps and events that are not admissible any longer.
This phase can be reiterated until all the monitors have cut all the possible
wrong brnches, and have nothing more to say. After this synchronizations stage,
the monitoring process continues in the normal way.

Case 2: The event is a gap
To keep the presentation simple, we assume that gaps are observed by all the

monitors at the same time. Each monitor guesses the events admissible to fill the
gap, according to its local states. If the gap is partially instantiated (some of its
components were correctly observed, like the sender, or the content, or both),
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the monitor can use this information to reduce the set of possible candidate
events.

The two cases can be seen as a reduce and extend stages, respectively. When
the monitor observes a fully instantiated event it can invalidate zero, one or more
branches. If the invalid branches contain gaps, the monitor can also invalidate
the associations between these gaps and the guessed events, and can allow the
other monitors to invalidate these associations as well via communication. On
the other hand, observation of gaps generates as many branches as the events
that, according to the AIP, could fill the gap. We can formalize this intuition in
the following way.

Given M0 as the set of global states {〈τ1, π1, []〉, ..., 〈τn, πn, []〉}.

1. Distribute M0 with respect to a given partition P = {{ags1}, ..., {agsnp}},
projecting the states onto subsets of the agents involved (the function Π
projects an AIP τ onto a set of agents ags removing all the events whose
sender and receiver do not belong to ags), obtaining

M0,{ags1} = {〈Π(τ1, {ags1}), π1, []〉, ..., 〈Π(τn, {ags1}), πn, []〉}

...

M0,{agsnp} = {〈Π(τ1, {agsnp}), π1, []〉, ..., 〈Π(τn, {agsnp}), πn, []〉}

2. Each monitor observes only the event messages involving the agents belong-
ing to its set agsi:
(a) if the event message is a gap, the monitor guesses what it could be and

generates as many states as the possible events (extend);
(b) if the event message is ground, the monitor can cut branches, and in

this case it communicates with other monitors the gap values that are
no longer admissible (reduce).

3. If, after observation of an event or because of information received from other
monitors, the set of possible current states for a monitor m becomes empty,
m stops the monitoring process, informs all the other monitors, and they
also stop monitoring. The absence of possible current states for a monitor is
due to a protocol violation that took place, preventing at least one monitor
to move a further step. So, the system checked does not satisfy the agent
interaction protocol and the associated probability is 0.

4. Else,
(a) if there are no events left to analyze, the monitoring process ends and

the resulting probability is evaluated (see after how);
(b) else, repeat from step 2.

To be more clear, in step 2, given the current event message, each monitor
queries its current state following the PTE operational semantics presented in
[11] in order to check if the event message is admissible or not. In the updating
phase, the monitors inform the others trying to cut not admissible branches.
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If the monitoring process ends without violations detected and there are no
more events left to analyze, each monitor stops with at least one admissible
branch. Each monitor states its own evaluation of the probability that the sys-
tem’s behavior satisfies the agent interaction protocol. This probability can be
computed summing up all the joint probabilities contained in all the final states,
corresponding to the last nodes of the admissible branches. This leads to hav-
ing one estimated value for each monitor: we can adopt different strategies to
summarize the final, and global, one. One way could be to take the smallest
value among all those estimated by all the monitors, meaning that we want to
be cautious and we consider the lowest probability of acceptance; otherwise we
could take the biggest value, meaning that we want to be optimi stic since we
trust the probabilities used in our specification. In other scenarios we could take
the means of the values computed by the monitors, or a weighted means where
weights model each monitor’s trustability, or other domain-dependent strategies.

4 Example

We present a simple example helping us to show how the extend and reduce
steps work. We consider a scenario involving a MAS involving four agents:
{alice, bob, charlie, dave}. The set of events of our interest is the set of mes-
sages that these agents can use to communicate with each other.

Given the PTE
τ = τ1∨τ2

τ1 = alice
msg1=⇒ bob[0.7]:(bob msg2=⇒ charlie[0.6]:τ1|bob

msg3=⇒ dave[0.4]:ε)

τ2 = alice
msg4=⇒ dave[0.3]:(charlie msg5=⇒ dave[0.3]:ε|bob msg3=⇒ dave[0.7]:τ2)

We decentralize τ on each single agent, obtaining3:

M0,{alice} = {〈Π(τ, {alice}), 1, []〉} = {〈τalice, 1, []〉}

M0,{bob} = {〈Π(τ, {bob}), 1, []〉} = {〈τbob, 1, []〉}

M0,{charlie} = {〈Π(τ, {charlie}), 1, []〉} = {〈τcharlie, 1, []〉}

M0,{dave} = {〈Π(τ, {dave}), 1, []〉} = {〈τdave, 1, []〉}

where
τalice = τ1alice

∨τ2alice

τ1alice
= alice

msg1=⇒ bob[0.7]:τ1alice

τ2alice
= alice

msg4=⇒ dave[0.3]:τ2alice

τbob = τ1bob
∨τ2bob

τ1bob
= alice

msg1=⇒ bob[0.7]:(bob msg2=⇒ charlie[0.6]:τ1|bob
msg3=⇒ dave[0.4]:ε)

3 The initial probability of each state is 1, since we do not want to influence the
probability evaluation process (multiplication of probabilities).
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τ2bob
= bob

msg3=⇒ dave[0.7]:τ2bob

τcharlie = τ1charlie
∨τ2charlie

τ1charlie
= bob

msg2=⇒ charlie[0.6]:τ1charlie

τ2charlie
= charlie

msg5=⇒ dave[0.3]:τ2charlie

τdave = τ1dave
∨τ2dave

τ1dave
= bob

msg3=⇒ dave[0.4]:ε

τ2dave
= alice

msg4=⇒ dave[0.3]:(charlie msg5=⇒ dave[0.3]:ε|bob msg3=⇒ dave[0.7]:τ2dave
)

Let us suppose that the monitors observe a gap now. Each monitor moves to
a new set of states corresponding to the possible values for the gap.

M0,{alice}
gap→ {

〈τ1alice
, 0.7, [gap(alice msg1=⇒ bob)]〉,

〈τ2alice
, 0.3, [gap(alice msg4=⇒ dave)]〉,

〈τalice, 1, [gap(none)]〉

} = M1,{alice}

M0,{bob}
gap→ {

〈(bob msg2=⇒ charlie[0.6]:τ1|bob
msg3=⇒ dave[0.4]:ε), 0.7, [gap(alice msg1=⇒ bob)]〉,

〈τ2bob
, 0.7, [gap(bob msg3=⇒ dave)]〉,

〈τbob, 1, [gap(none)]〉

} = M1,{bob}

M0,{charlie}
gap→ {

〈τ1charlie
, 0.6, [gap(bob msg2=⇒ charlie)]〉,

〈τ2charlie
, 0.3, gap(charlie msg5=⇒ dave)〉,

〈τcharlie, 1, [gap(none)]〉

} = M1,{charlie},

M0,{dave}
gap→ {

〈ε, 0.4, gap(bob msg3=⇒ dave)〉,

〈(charlie msg5=⇒ dave[0.3]:ε|bob msg3=⇒ dave[0.7]:τ2dave
), 0.3, gap(alice msg4=⇒ dave)〉,

〈τdave, 1, [gap(none)]〉

} = M1,{dave}
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Since they observed a gap, the monitors do not know what the actual event
was. Because of this, they have to generate more branches, where each branch
represents a possible value for the gap. This is the extend step.

Let us now suppose that the monitors observe event msg2. Since msg2 is a
ground event, everything is known about it, in particular the monitors know that
its sender is bob and its receiver is charlie. Since the monitors observe only the
gaps and the events that involve the agents in the partition they are in charge
for, the only monitors that observe msg2 are M1,{bob} and M1,{charlie}.

By consuming msg2, the first iteration of the algorithm leads to:

M1,{bob}
bob

msg2=⇒ charlie→ {

〈τ1|bob
msg3=⇒ dave[0.4]:ε, 0.42, [gap(alice msg1=⇒ bob), bob msg2=⇒ charlie]〉

} = M2,{bob}

M1,{charlie}
bob

msg2=⇒ charlie→ {

〈τ1charlie
, 0.36, [gap(bob msg2=⇒ charlie), bob msg2=⇒ charlie]〉,

〈τ1charlie
, 0.6, [gap(none), bob msg2=⇒ charlie]〉

} = M2,{charlie}

It is interesting to analyze what happened in M2,{bob}, where the reduce step
took place. In fact, the ground event msg2 makes the other two branches not
valid anymore. More in detail, the second branch was 〈τ2bob

, 0.7, [gap(msg3)]〉,
and τ2bob

does not accept the event msg2 and cannot move to a new state.
In the same way, the PTE in the third branch 〈τbob, 1, gap(none)〉 is τbob, and
τbob cannot accept the event msg2 either. Even though this information seems
important for monitor M2,{bob} only, it is actually of interest also for the other
monitors. In fact, it allows all of them to know “without any doubt” that the
only event that can be associated with the first gap is msg1, since it is the gap
value associated with the only possible branch of M2,{bob}. The monitor M2,{bob}
can inform the other monitors that the only admissible value for the gap is msg1.
The monitors’ new states become:

M2,{charlie} = {〈τ1charlie
, 0.6, [gap(none), bob msg2=⇒ charlie]〉}

M1,{alice} = {〈τ1alice
, 0.7, [gap(alice msg1=⇒ bob)]〉}

M1,{dave} = {〈τdave, 1, [gap(none)]〉}

This example shows how the knowledge of a monitor can have a positive
impact on the knowledge of the other monitors. In general, this positive impact
can be obtained any time one monitor discovers that one branch is no longer
valid and can hence invalidate the associations of events with gaps therein. This
information may trigger many communication iterations among the monitors,
because, when one monitor is updated it can also “invalidate one branch” and
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the related gap-events associations, and may need to inform the others of some
association which is no longer possible. In the previous example, one single iter-
ation was enough.

As we already anticipated, the proposed approach may lead to false negatives,
due to an optimistic approach of the monitors that stubbornly assume that
observed events are compliant with the protocol, if there is just one possibility
left to make such an assumption. Also in this example, the monitors gave the
correctness of the ground event msg2 (the second event observed) for granted.
But let us suppose that the actual event masked by the gap was not msg1,
but msg4, and that the successive message msg2 was sent from bob to charlie by
mistake and did not comply with the protocol. In this scenario, since the monitors
do not know for sure what the first gap was, it is reasonable to consider msg2 a
valid message and hence cut the branch where the gap has been supposed to be
msg4. This is a problem intrinsically related to the state estimation approach,
since until it is acceptable to observe an event in a state, the monitors keep
track of the related branch. Only when a monitor, observing an event, loses all
its branches it can conclude that a protocol violation took place because some
wrong assumption on gaps – confirmed by successive observations – had been
made in the past. This delay in the error detection, which could also be infinite,
can be reduced introducing a threshold on the probability that a branch must
have to be considered valid. In this way, if aftr observing an event the probability
associated with a branch becomes lower than a chosen threshold, the monitor
can cut that branch and make error detection possibly quicker.

5 Experimental results

In our experiments we have considered the four following features:

1. the number of agents involved in the MAS we want to verify at runtime;
2. the number of shuffled sub-PTEs due to shuffle operators | in the AIP: we

name shuffled sub-PTE each portion of the PTE composed via a |, so for
example τ3 = alice

msg1=⇒ bob[0.7]:ε | bob msg3=⇒ dave[0.4]:ε consists of 2 shuffled
sub-PTEs; we point out that when decentralizing the monitoring, we can
associate one different monitor with each shuffled sub-PTE, as shuffled sub-
PTE are independent one from the other and can be monitored in a fully
decentralized way;

3. the number of operators for each shuffled sub-PTE in the AIP;
4. the number of gaps contained in the analyzed traces.

In Table 1, we report the results of our experiments. For each row, we keep
the number of shuffled sub-PTE, agents and operators fixed, while we change the
length of the traces and the percentage of gaps inside each trace. For each row we
executed many different runs and we have measured the total time required for
recognizing the set of 300 randomly generated traces. We changed the number
of gaps contained inside the traces and we tested both the centralized [11] and



12 D. Ancona, A. Ferrando, and V. Mascardi

Table 1. Average time of the centralized and decentralized algorithms; “sh. PTE”
stands for “shuffled sub-PTE”.

# sh. PTEs # agents for sh. PTE # operations for sh. PTE Centralized [sec] Decentralized [sec]

10 10 20 6.64 1.26
10 10 15 8.26 1.04
10 5 20 9.85 1.49
10 5 15 9.92 1.28
10 15 15 14.86 1.23
10 5 10 18.35 1.08
10 15 10 20.25 1.61
10 10 10 29.59 1.98
15 5 15 93.34 2.73
15 15 10 116.61 3.56
10 15 20 126.31 25.32
15 10 10 283.70 4.14
15 5 10 349.30 2.23
20 10 10 355.90 3.99
15 5 20 363.67 5.83
20 5 15 558.59 9.28
20 5 20 801.37 7.82
15 20 10 952.43 12.36
20 5 10 1223.85 10.64
20 15 10 1340.29 9.57
20 20 10 1727.26 2.89

the decentralized algorithms. In the following, we reported the graphics obtained
from such executions.

Concerning the figures, the traces used in our experiments contain only gaps
(namely, we run experiments in the worst possible scenario), so the algorithm
makes only expansions and never reductions. We chose traces with only gaps to
stress the algorithms as much as possible. In real scenarios gaps should be the
exceptions, and perfectly observable events the norm.

In Figures 1 and 2, both the centralized and the decentralized algorithms
seem to show linear complexity with respect the number of the agents involved,
even if the decentralized algorithm has better performances.
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Fig. 1. Centralized algorithm: changing number of agents.

In Figures 3 and 4, we can observe that the complexity of the centralized
algorithm seems to grow in a quadratic way, while the decentralized one seems
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Fig. 2. Decentralized algorithm: changing number of agents.

to grows linearly. This can be explained by the decentralization of the monitoring
of shuffled sub-PTEs, as if we add one operator to each shuffled sub-PTE, the
monitor in charge for that shuffled sub-PTE will need to manage one more
operator only, whereas the centralized monitor will cope with as many new
operators as the shuffled sub-PTEs in the trace expression. We point out that
we use “seems to” to reflect that the complexities emerging from the figures
have not been computed on the basis of the algorithm, but have been estimated
on the basis of the experiments, and the behaviour in situations involving a
limited number of agents, operators, shuffled sub-PTEs, might not be the actual
asymptotic behaviour of the algorithm.
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Fig. 3. Centralized algorithm: changing number of operators.

In Figures 5 and 6, we can appreciate the real advantages of decentralization,
as – from the figures – it seems that we have an exponential complexity for the
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Fig. 4. Decentralized algorithm: changing number of operators.

centralized algorithm and a pseudo-quadratic complexity for the decentralized
one. We emphasise that in the decentralized case (Figure 6) we were able to
run experiments with 40 shuffled sub-PTEs, while in the centralized case we
had to stop with half shuffled sub-PTEs, and with an execution time hundred
times higher. The number of shuffled sub-PTEs is indeed the feature which
most impacts the algorithms performance, and this in not a surprise; intuitively,
when we add a new shuffled sub-PTE we have to interleave it with all the
already existent shuffled sub-PTEs. In the centralized case, this brings to a
state explosion, while in the decentralized one, since we can decentralize the
monitoring of each shuffled sub-PTEs, we simply have to add a new monitor. In
this way, we can avoid the state explosion, even if the presence of a new monitor
increases the exchange of messages among the monitors needed to synchronize
information about gaps.
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Fig. 5. Centralized algorithm: changing number of shuffled sub-PTEs.
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6 Conclusions and Future Work

In this paper we presented a distributed approach to runtime verification where
we may lack some pieces of information about observed events. With respect to
standard runtime verification, the state estimation approach allows us to be more
reliable, especially in scenarios where partial or total absence of information is
frequent.

For the sake of clarity, we considered only totally uninstantiated gaps. This
choice has been made to make the development of monitors easier. Naturally, the
presence of part of information about the event could be used by the monitors in
order to cut useless branches. We will extend our implementation to cope with
partially instantiated gaps.

Another future work will be to consider a threshold in order to cut branches
that are unreasonable to maintain, as the pobability to be correct is too low.
Fixed a threshold, a monitor will be able to remove all the branches with a joint
probability associated with them lower than the chosen threshold. This will bring
the advantage of anticipating the error detection and to prune useless branches
related to unreasonable possibilities.
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