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Abstract: Although correctly identifying the language of short texts should prove useful in a large number of applica-
tions, few satisfactory attemps are reported in the literature.
In this paper we describe a Naive Bayes Classifier that performs well on very short texts, as well as the corpus
that we created from movie subtitles for training it.
Both the corpus and the algorithm are available under the GNU Lesser General Public License.

1 INTRODUCTION

Being able to identify the language of a given text
proves useful in a large number of applications. It
can be used by indexing tools, such as those used in
search engines and in desktop search software, to pro-
vide the ability of making language specific queries.
Text-to-speech applications capable of reading multi-
ple languages need to first identify the language cor-
rectly. It may support automatic translation tools in
those cases where the source language is not known.
Finally, OCR digitalization of written text can make
use of language identification, both to classify the out-
put document and to improve the OCR process itself
(as language specific knowledge might be used to im-
prove the accuracy of the conversion).

Many of the difficulties posed by language iden-
tification have therefore already been studied, and a
variety of methods that given enough text, are able
to quickly and accurately identify a language, have
been proposed. Those methods are largely resistant
to spelling errors.

However, for short texts the performance de-
grades quickly. The literature devotes little attention
to the accuracy of state-of-the-art algorithms when
very short texts are tested. On documents that are 25
characters long, one of the most widely used algo-
rithms (Cavnar and Trenkle, 1994) identifies the lan-
guage correctly only about 80% of the times (Figure
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Figure 1: Identification accuracy

1). There are many situations where a higher accuracy
is required.

For example, we might want to develop a mul-
tilingual spellchecker used by an instant messaging
(chat) client, able to guess the language that is being
used. With the existing techniques, there will be a
non negligible chance of the language not being iden-
tified correctly until after a number of messages have
already been sent.

An even more striking example is provided by
SMS texts, which are usually very short. Most phones
use T9 to allow for fast typing of alphabetic messages



using only the 9 number keys. To work properly, such
a system needs to know the language being used. If
a user writes regularly in two or more languages it
would be convenient to initially propose words in all
those languages, and switch to only one language as
soon as it has been correctly identified.

Considering these situations, where the language
of short text strings needs to be identified with a high
accuracy, in this paper we discuss a Naive Bayes Clas-
sifier we implemented and tested, obtaining promis-
ing results.

The paper is organized as follows: Section 2 sur-
veys the related work, Section 3 describes the corpus
we built by exploiting movie subtitles, Section 4 for-
malizes the problem we face and introduces the fea-
tures we use, Section 5 discusses our Naive Bayes
Classifier, and Section 6 concludes and highlights
some future research directions.

2 RELATED WORK

The most widely used methods to programmati-
cally identify the language of a given text compare
the characteristics (usually called features) of the text
with those most common in the various languages.
The features most often compared are n-grams. Given
a string, an n-gram is defined as any sequence com-
posed by n consecutive characters. 3-grams are com-
monly called trigrams and are the most widely used
n-grams.

Most free programs providing language identifi-
cation of text are based on the work of Cavnar and
Trenkle (Cavnar and Trenkle, 1994). These authors
described a simple algorithm comparing the 300 most
frequent trigrams in every language with the top 300
trigrams of the text given in input. The trigrams are
ordered from the most frequent to the least frequent,
without keeping any additional frequency informa-
tion. The language whose profile is most similar to the
profile of the input text is then chosen. This method
has been proved to work well in practice given long
enough input strings. Accuracy is nearly 100% for
texts more than 300 characters long. For simplicity
in the rest of the paper this algorithm will be called
ROCNNN, where ROC stands for Rank Order Clas-
sifier, and NNN is the number of features stored for
each language (thus the original version will be called
ROC300).

A number of improvements have since been pro-
posed. Prager (Prager, 1999) compared the results ob-
tained using n-grams of various length, words, and
combinations thereof. Those features were weighted
using their inverse document frequency (features

found in less languages were weighted higher; the ter-
minology is a remainder from the document retrieval
field), while the distance used was the cosine distance
of the vectors normalized in feature space.

Ahmed et al. (Ahmed et al., 2004) calculate the
distance from a given feature model using a custom
“cumulative frequency addition” measure in compar-
ison with an algorithm similar to naive Bayes. A
database is used to store the frequencies of all tri-
grams encountered in the training set.

Other classification methods such as decision trees
(Hakkinen et al., 2001) and vector quantization (Pham
and Tran, 2003) have been proposed. While look-
ing promising, it is hard to reach final conclusions,
as not much information is provided about the exact
methodologies by which the results were obtained.

MacNamara et al. (MacNamara et al., 1998) ex-
plore the application of specific architecture of Recur-
rent Neural Networks to the problem, showing they
perform worse than trigrams methods. It must how-
ever be noted that a wide variety of Neural Networks
exists, and other variations might give better results.

Elworthy (Elworthy, 1998) proposes to avoid pro-
cessing the whole document, managing only as many
characters as needed to reach the required confidence
level. This speeds up the text categorization, specially
in the case of very long texts, under the assumption
that all documents are monolingual.

3 LANGUAGE CORPORA

All algorithms using statistical comparison of lan-
guage features need some amount of text in the lan-
guages of interest to be trained. The bigger and the
more representative of the language the data is, the
better the algorithm will perform.

Big existing corpora are freely available in
some languages (http://corpus.byu.edu/, http:
//www.clres.com/corp.html), but homogeneous
corpora for a relatively high number of languages
were needed. The Universal Declaration of Hu-
man Rights has been translated into at least 375 lan-
guages and dialects, and is therefore much used when
text in a large number of idioms is needed. Wikipedia
is also available in a wide range of languages, it is
therefore quite easy to harvest a large number of data
in any of the languages Wikipedia exists. The Inter-
net may be the most obvious place to look for data, as
it contains huge amounts of text in almost every lan-
guage, spanning every field. Movie subtitles in vari-
ous languages can be downloaded from a number of
websites. They contain a nice compromise between
formal and informal language (whereas most other



sources only provide text written in formal language).
In the sequel we describe how subtitles were used
to build our own multilingual corpus. BBC World-
service contains articles in a wide range of lan-
guages (http://www.bbc.co.uk/worldservice/
languages/index.shtml) which might be easily
scraped. Combining some of the sources above, in a
clever and statistically sound way, may provide even
better results.

Since none of the corpora described above
met our needs, we built our own corpus by
using movie subtitles. To obtain subtitles open-
subtitles.org’s XMLRPC public API was used
(http://trac.opensubtitles.org/projects/
opensubtitles/wiki/XMLRPC).

We downloaded subtitles from 22 languages. For
each language a corpus of approximately 500 thou-
sand characters was generated, another 50 thousand
characters of text were kept in a separate file for test-
ing purposes. All languages chosen use the Latin
script, the only exception being Greek. Having one
non Latin script makes sure the results are easy to
generalize to other languages, including those which
use non Latin scripts composed of a small number of
characters. Scripts like Chinese have not been looked
at.

To evaluate the impact of the use of different
corpora we compared the trigrams provided by
TextCat (http://odur.let.rug.nl/~vannoord/
TextCat/), and used by most other free language
identification tools, with those extracted from the
subtitle corpus. It does not come as a surprise
that, when using the testing data obtained from
the subtitles, the trigrams obtained from the same
kind of text provide a more accurate identification.
The gap closes considerably when testing the first
two chapters of the novel “The Picture of Dorian
Gray”, a comparison is shown in Figure 2. Lastly, as
seen in the same figure, when English news articles
were tested, the results were inverted and our subtitle
corpus performed worse. This makes it likely TextCat
has been trained using a corpus composed mostly by
news articles or text using a similar vocabulary, while
it is reasonable to say that a novel uses terminology
more similar to the one used in movie scripts.

While there is no evidence of our corpus be-
ing better that the one which has been used to train
TextCat, it is clear that the choice of the corpus does
have a big influence on the results. Knowing the con-
text of the application developed can thus be helpful
to improve it’s performance, by using this information
to appropriately select the training corpus.

4 FORMAL DESCRIPTION OF
THE PROBLEM

There are a number of Languages (or classes) in
which a text can be written. Given any text in input
it will have, for each language in the given set, a cer-
tain known prior probability of being in that language,
and a posterior probability based on the characters of
which it is composed, this latter probability is the one
we are interested in. The prior probability can be fixed
or may depend on external factors; most methods cov-
ered by the literature implicitly suppose input text has
the same chance of being in every language. Most of-
ten the programs identifying a language only return
the one having the highest posterior probability.

Bayes’ theorem states that for any given language

P(L|C) =
P(C|L)P(L)

P(C)
where P(L) is the prior probability of a text be-

ing in the chosen language and P(C) is the probability
of the characters of any random text being exactly as
they are in the input string; this latter value is constant
for any fixed input.

We are trying to determine P(L|C), the proba-
bility of the language being L given the characters
C.

In order to solve the problem, we need to model
and select features we will exploit.

Features modeling. Features can be anything from
n-grams frequencies to average word length, from
vowel/consonant ratio to the number of two letter
words. There is some ambiguity as to the meaning
of the word “feature”, as often it is used to mean
those characteristics whose frequency are actually be-
ing used as features. In the literature usually an n-
gram is called a feature, whereas the actual feature
used is the n-gram frequency. From now on we will
follow this convention, and will call n-grams features.

The most useful and easy to use features are n-
grams and words. A useful property they have is that
any text can be easily subdivided into a finite number
of such features. Suppose now that we know the fre-
quency of every possible feature in every language.
From Bayes’ theorem we can conclude that, a text
having n features F1,F2, ...,Fn, has a probability of be-
ing in a certain language L, equal to

P(L|F1,F2, ...,Fn) =
P(F1,F2, ...,Fn|L)P(L)

P(F1,F2, ...,Fn)
(1)

Unfortunately the conditional probability
P(F1,F2, ...,Fn|L) depends on the interdependence
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Figure 2: A comparison of TextCat versus the same algorithm trained with the subtitle corpus.

between the various features, which is much harder
to elicit from the training data and to store that the
single feature distributions. The problem can be
simplified by assuming all features are conditionally
independent (even if they are not). This is exactly the
(naive) assumption made by naive Bayes classifiers,
which have been proved to work very well in practice.

Feature selection. In order to improve accuracy, in-
creasing the number of features stored is the first thing
that springs into mind. With one caveat, if the training
data is too specific, storing a too high number of fea-
tures might worsen the performance: it has been ob-
served (Cavnar and Trenkle, 1994) that the most fre-
quent n-grams characterize the language while other
n-grams tend to be more specific to the topic (and
have sometimes been used to distinguish documents
by subject). However this can not be true if the train-
ing corpus is chosen appropriately, that is, sufficiently
generic, or specifically chosen for the given context.

In the implementations discussed in this paper the
selection is based only on the frequency of the fea-
tures in the various languages. But a more sophis-
ticated selection could weight this factor against the
frequencies in the languages most similar.

Features can be arbitrarily combined. This throws
away some information but saves space and allows
for more features to be stored. It is best to combine
features that are likely to have a similar influence on
the language selection. In the comparisons made here
all characters were converted to lowercase, effectively
combining trigrams like ‘Bob’ and ‘bob’. Further-
more all non alphabetic characters were stripped (with
the exception of the apostrophe) which means com-
bining features such as ‘n,_a’ with ‘n_a’ (where ‘_’ is
used to represent spaces).

When texts are short the start and end of the
strings become more influential. Thus our experi-
ments those places and everywhere a paragraph ends

and the next one starts, have been replaced by the two
characters ‘||’.

Once the features have been stored a way needs to
be devised to decide, given a text in input, which of
these feature sets is most similar (or most “nearby”).

All algorithms analyzed make use of some kind of
distance measure, but most do not use the statistical
model described in the previous chapter directly.

Prager (Prager, 1999) for example has proposed
the use of cosine distance: the implementation devel-
oped for the test did not use the inverse document fre-
quency of the original algorithm, and instead of using
the frequencies directly their square root was used, as
this proved to give far better results.

An optimal distance measure would be the prob-
ability of the input text being in a given language,
knowing nothing more that the feature distribution of
the various languages. Next section describes how to
calculate this probability.

5 OUR NAIVE BAYES
CLASSIFIER

A naive Bayes classifier has been built as such
a classifier uses the exposed formalization directly,
and it thus becomes more easy to draw further sta-
tistically sound conclusions. More specifically this
method provides a confidence level that can be used
as an estimate of the accuracy of the result.

The naive assumption made is that all trigrams are
statistically independent. No other algorithm copes
directly with the interdependence between trigram, so
this assumption should not be in any way penalizing.

Under this assumption

P(L|F1,F2, ...,Fn) =
1
K

P(L)
n

∏
i=1

P(Fi|L)



where K is equal to P(F1,F2, ...,Fn), which is con-
stant once the features are fixed, and can thus be ig-
nored leaving the classification task unaffected. P(L)
has also been supposed constant.

As all possible trigrams could not be realistically
stored, a special feature “others” (O), has been used
to denote any of the least frequent trigrams. Thus first
the 3000 most frequent trigrams for each language
were selected. Then their frequency was stored for
every language, while the cumulative frequency of the
remaining characters was stored as the frequency of
O.

Sometimes a trigram would have no occurrences
in a language corpus. This obviously is because the
training corpus has to be finite. We can not suppose
that a feature has frequency zero, as that clearly would
break the algorithm: P(Fi|L) would be zero for some
i, voiding the influence of all other features. The
workaround is to use a default value for the trigrams
never encountered. It was experimentally found that
using any value between 0.01 and 5 as the number
of occurrences in the whole language corpus worked
well. The value of 1 was chosen1.

The results obtained were not in the [0,1] range as
the constant P(L)/K has been ignored. This can be
easily overcome by normalizing the resulting confi-
dence levels.

However, because of the naive assumption, the
probability values obtained this way were not real-
istic. Any trigram influences those nearby (as they
have two characters in common), in a particular way
for long strings the confidence was overestimated.
It was experimentally found that very realistic re-
sults for short strings could be obtained by using the
square root of the confidence levels and then normal-
izing them again. Some more empirical tests showed
that even better result are given using con1/log(1+size),
where con is the initial confidence level, and size is
the number of characters in the given text. It is im-
portant to note that, for long strings, the default value
used for not encountered trigrams, while not influenc-
ing the classification, does have a big influence on the
resulting confidence levels.

The performance of naive Bayes proved to be sim-
ilar (Figure 3) to that of other algorithms that have so
far been considered.

Using prior probabilities can improve these re-
sults.

1Ahmed et al. (Ahmed et al., 2004) tried to solve the
same problem normalizing the values in the [1, 2] range.
This however very much alters the behaviour of the clas-
sifier, even when no values equal to zero are encountered.
This is easily proved: for example, 0.01× 0.01 is equal to
0.1×0.001, whereas 1.01×1.01 is not equal to 1.1×1.001.
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Figure 3: Naive Bayes compared to ROC.

Most language identification methods provide
some kind of confidence values (related to the dis-
tance measure), unfortunately those values have no
real statistical meaning; the only useful property they
all have is that, for any fixed text, languages having
a higher confidence are more likely to be the one
searched for (exactly the supposition on which the
classification is based). Usually the values are not in
the [0..1] range, but even after normalizing the values
to make their sum equal to 1, the value obtained is not
of much use. The biggest flaw is that there is abso-
lutely no guarantee that the same confidence means
the same thing for different texts. That being said,
having an approximate probability is still better than
having none at all. In our work, we attempted to get
an as accurate approximation as possible.

As shown in the previous section, if C(L|F) is
the probability of the language being L given the
features F , under the assumption of having no prior
knowledge, this value will be directly proportional to
P(F |L). At the same time the following proportional-
ity follows from (1):

P(L|F) ∝ P(F |L)P(L)

where some prior knowledge is assumed (i.e. P(L)
may change when L changes). Thus we can ob-
tain P(L|F) by calculating the combined confidence
C(L|F) = C(F |L)P(L) and normalizing the results.

Figure 4 shows an example of the accuracy im-
provement that can be provided by the use of prior
knowledge. In this example the prior probability of
the most likely language was set to 80%, meaning
20% of the times a wrong language was intentionally
suggested. Similarly, the prior probability of the next
four languages was equal and cumulatively spanning
18%. All other languages covered the remaining 2%.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  5  10  15  20  25  30  35

e
rr

o
r 

ra
te

input length

with priors
without priors

Figure 4: Experiments where prior knowledge about the
language distribution is exploited.

6 CONCLUSIONS AND FUTURE
WORK

In this paper proved how good accuracy identi-
fying short text can be archived using the statistical
properties of trigrams, combined with some prior in-
formation about the language probabilities. To train
the algorithm a suitable multilingual corpus is needed,
thus we built our own corpus from movie subtitles.
All source code written for this paper can be found
on-line2.

The naive Bayes classifier could be improved in
two ways. First, the feature selection could be made
more sophisticated, by trying to select features that
are more likely to discriminate between similar lan-
guages, and by including features other than trigrams.
Additionally, while the confidence levels proved to
give good results in practice, improvements could be
made either by a theoretical study of the effect of the
naive assumption, or by rigorous experimental tests
showing exactly how accurate the confidence levels
are and perhaps improving their approximation. Sec-
ond, the subtitle corpus sometimes contained text in a
wrong language. Those that were discovered were re-
moved by hand, but a way to automatically detect and
remove the incriminating subtitles (or parts of them)
would further improve the robustness of the resulting
corpus.

Another research direction that we plan to pur-
sue in the close future involves the identification of
the language of a given text obtained by running the
text through a spell checker in the different target lan-
guages and using the number of errors in each lan-
guage (or the Hamming distance from the corrected
text) as a distance estimate. This is obviously very in-

2http://github.com/fela/rlid

efficient but it might provide a very high accuracy. It
would be interesting to see what degree of accuracy
is possible. This method could be also used as a fall-
back after other algorithms fail to identify a given text
with the required confidence, or only in the case the
input text is very short. Not all languages would need
to be tested, only those between which faster algo-
rithms are in doubt. When detecting the languages of
multilingual documents this method might be used to
reliably determine the exact point where the language
switches.

A use case that has never been addressed in the
literature is the case of a multilingual document for
which it is required to know which parts are written
in which language. The easiest way to solve this prob-
lem is by splitting the text into sentences or paragraph
and then applying one of the existing algorithms to
each piece thus obtained. As shown, however, if the
pieces are too short it becomes likely to get a number
of inaccurate results. To solve this the locality prin-
ciple can be used: nearby words and sentences are
likely to be written in the same language. A proof
of concept implementation showing an application
of this idea has previously been developed (Winkel-
molen, 2010). Further improvements in accuracy and
speed could be made, using some of the results that
have been described here.
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