
A Multi-Agent System for Hand-drawn Diagram Recognition

G. Casella1,2, V. Deufemia1, V. Mascardi2

1 DMI – Università di Salerno
 Via Ponte don Melillo

84084, Fisciano (SA), Italy
 deufemia@unisa.it

2 DISI – Università di Genova
 Via Dodecaneso 35
 16146, Genova, Italy

 mascardi@disi.unige.it
casella@disi.unige.it

Abstract

In this paper we present AgentSketch, an agent-
based system for on-line recognition of hand-drawn
diagrams. Agents are used for managing the activity of
symbol recognizers and for providing efficient
interpretations of the sketch to the user thanks to the
use of contextual information for ambiguity resolution.
The system can be applied to a variety of domains by
providing recognizers of the symbols in that domain. A
first experimental evaluation has been performed on
the domain of UML use case diagrams to verify the
effectiveness of the proposed approach.

1. Introduction

In the last years sketch recognition algorithms have
obtained a growing importance mostly thanks to the
diffusion of tablet PCs and intelligent pen-based
interfaces. In particular, sketch-based user interfaces
have been developed for a variety of different
disciplines, including engineering design, user
interface design and architectures.

The problem of sketch recognition is critical to the
success of such interfaces, since the recognition
accuracy should make them useful and predictable to
end-users. The sketchy graphic objects drawn on a
tablet using a digital pen are usually not easy for
machines to understand and process. This problem is
particularly difficult since sketches are almost never
drawn perfectly, they contain internal inconsistencies
even when drawn by the same person.

In this paper we present AgentSketch, an agent-
based system for the on-line recognition of symbols in

diagrammatic sketches. An intelligent agent is a
software or hardware entity aware of its dynamic and
unpredictable environment, able to react to the changes
that take place in it, driven by long-term goals,
autonomous, and social . Exploiting agents for sketch
recognition represents a suitable solution since the
activity of drawing with sketch-based interfaces
represents a dynamic and unpredictable environment,
and the recognizers of diagrammatic symbols have to
possess the distinctive features of agents previously
describe.

At the lowest level of our system, the symbols of
the domain language are recognized by applying
suitable symbol recognizers to the interpretations of
elementary strokes. Several symbol recognizers , , ,
can be integrated into our approach in spite of the fact
that they differ one from another under several aspects.
Their execution is coordinated by Symbol Recognition
Agents, which also cooperate with other agents to
compute contextual information for the symbols they
are recognizing. The interpretation of the whole sketch
is accomplished by the Sketch Interpretation Agent,
which disambiguates the recognized symbols
exploiting the domain context.

We have applied AgentSketch to the domain of
UML use case diagrams , and performed a preliminary
evaluation study. The obtained results have highlighted
the effectiveness of the proposed context-based
recognition approach.

The paper is organized as follows. In Section 2 we
describe the proposed multi-agent recognition system
and a preliminary evaluation is presented in Section 3.
Finally, we discuss the related work in Section 4 and
give the conclusion in Section 5.

mailto:deufemia@unisa.it
mailto:casella@disi.unige.it
mailto:mascardi@disi.unige.it

2. AgentSketch

AgentSketch is a system for recognizing freely
hand-drawn diagrammatic sketches exploiting the
multi-agent framework presented in []. It can be
applied to a variety of domains by providing

recognizers of the symbols in that domain. Its
architecture for recognizing UML use case diagrams is
shown in Fig. 1. The system is composed by four kinds
of agents:

Interface Agent. It represents an interface between the
agent-based system and the generic "Input Suppliers".

Input Supplier

Jade Platform

Sketch
Interpretation Agent

Interface
Agent

new
input

(stroke)

Stroke
Segmenter

Input

Pre-processing Agent

Stroke
Classifier

HDSR
Java

Comm SRA

HDSR
Jess engine

UseCase SRA

HDSR
Jess engine

Generalize SRA

HDSR
Jess engine

Actor SRA

Symbol Recognition Agents

Figure 1. The AgentSketch architecture

The nature of these input suppliers may vary according
to the type of sketch to be interpreted and to the
drawing process (on-line vs. off-line). For example,
they might be editors suitable for on-line drawing of
diagrammatic sketch, as well as interfaces that allow
the user to select an existing image to be interpreted
(useful for an off-line recognition process). The
Interface Agent is responsible for converting the
information produced by the input suppliers into a
format compliant with that used by the "Input Pre-
Processing Agent" and by the "Sketch Interpretation
Agent" (SIA), and vice versa. It sends each new
available piece of input (or the whole input, in case of
an off-line recognition process) to the Input Pre-
Processing Agent, and interacts with the SIA for
sending the user's interpretation requests to it, and for
delivering its answer to the user. For any new input
supplier to be linked to the framework, a new "stub"
inside the Interface Agent must be created ad-hoc.

Input Pre-Processing Agent. The main activity of this
agent is to classify the user strokes into a sequence of
domain independent primitive shapes. It is composed
of two modules, the Stroke Segmenter and the Stroke
Classifier. Both modules have been implemented using
third parties software and, for their highly modular
implementation, might be easily replaceable with other
pieces of software with the same purpose. The Stroke
Segmenter segments strokes into substrokes by
identifying key points. In this way, symbols can be
drawn with multiple pen strokes, and a single pen

stroke can contain multiple symbols. Each substroke
may be classified by the Stroke Classifier as either a
line, an arc or an ellipse. However, if the user stroke is
imprecise, then the Stroke Classifier may classify it as
more than one primitive shape (for example, both as a
line and as an arc).

Symbol Recognition Agents. Each SRA is devoted to
recognize a particular symbol of the domain and
collaborates with the SIA that deals with the sketch
interpretation activity. Moreover if the graphical
language in which the sketch is drawn allows to
exploit contextual information for interpreting each
symbol in the right way, SRAs may collaborate with
other SRAs in order to apply context knowledge to the
symbols they are recognizing. As an example in UML
use case diagrams , there will be a SRA devoted to
recognize generalize symbols by managing the
execution of Hand-Drawn Symbol Recognizers -
HDSRs for short - for the generalize symbol, and by
collaborating with other SRAs to obtain contextual
feedback. SRAs try to recognize domain symbol by
applying suitable HDSRs to the stroke classifications
produced by the Input Pre-Processing Agent. The Input
Pre-Processing Agent sends a stroke classification to
an SRA only if the SRA may use it to recognize new
domain symbols (i.e. strokes classified as ellipses will
not be sent to the SRA devoted to recognize the
generalize symbol, which does not include ellipses).

When a new symbol has been recognized by a
HDSR, the corresponding SRA starts the collaboration

process with other SRAs for obtaining contextual
information. The collaboration consists of sending a
feedback request message containing the attributes
about the recognized symbol to all the SRAs that
recognize related symbols (and that are known “a
priori” by each SRA). When an SRA receives a
feedback request message, it checks its set of
recognized symbols to give a response. If it finds a
symbol that satisfies the language relationship with the
symbol in the feedback request, it sends a positive
response to the requester; otherwise, it sends a
negative response. For example, due to the rules that
govern the definition of well-formed UML use case
diagrams, an SRA that recognizes an actor symbol
should ask a feedback to the SRA that recognizes
communication symbols, since actors participate to
use cases, to which they are connected via a
communication symbol.

Sketch Interpretation Agent. The SIA provides the
correct interpretation either of the sketch drawn so far
(in case of an on-line drawing process) or of the entire
sketch (in case of an off-line recognition process) to
the Interface Agent. In particular, it analyzes the
information received from SRAs and solves conflicts
that might arise. When all the conflicts have been
solved, the SIA provides the sketch interpretation to
the user, interacting with the Interface Agent.

In case symbols are decomposed into strokes, the
SIA looks for conflicts by checking if there are
symbols that share one or more strokes. Conflicts may
take place either because a stroke is classified as two
different shapes (for example, as a line and as an arc)
due to the sketch inaccuracy, or because the same
stroke, although correctly classified, is used by two
SRAs to recognize two different symbols. By using the
feedback of the recognized symbols and their accuracy,
the SIA solves the conflicts starting by those where it
is almost easy to identify the right interpretation. In
this way, the SIA is able to free some symbols by the
conflicts they were involved in. These symbols are
used for solving other conflicts, and the process goes
on until there are no more conflicts left

Finally, the SIA selects and communicates to the
SRAs the active HDSRs that can be pruned. Heuristics
are useful to avoid deleting symbols considered as
mistaken due to the incompleteness of the input sketch.
As an example, pruning could be applied to symbols
without feedback involved in conflicts with symbols
having feedback and to recognizing symbols whose
constituent strokes all belong to another symbol with
more positive feedback, and so on. The choice of the
heuristics to be applied also depends from the domain
language. It is important to select accurately symbols
to be pruned because if the system decides to prune a
symbol but it is not a mistaken recognized symbol then
the symbol will not further considered for the next

sketch interpretation requests. On the other hand, if
symbols are correctly pruned, the system will be able
to quickly reply to the user sketch interpretation
requests.

AgentSketch has been implemented on top of the
Jade agent-based platform using Java 1.5.

The Interface Agent implemented in AgentSketch
provides a stub for an on-line editor that takes
advantage of Java Swing components and Satin .

Agents in AgentSketch communicate by
exchanging messages encoded in FIPA-ACL messages
, a communication language natively supported by
Jade. Instead, the content language of the message is
not fixed by the FIPA-ACL specification, and may be
chosen by the MAS developer. We express it in XML
according to a set of XML-Schemas that we have
defined. The messages exchanged within AgentSketch
have various purposes, such as communicating the
availability of new stroke classifications,
requesting/providing feedbacks, requesting/providing
the sketch interpretation, and so on. Jade offers the
means for sending and receiving messages, also to and
from remote computers, in a way that is transparent to
the agent developer: for each agent, it maintains a
private queue of incoming ACL messages that our
agents access in a blocking mode.

The HDSRs included in AgentSketch have been
implemented, following the approach presented in , as
a set of Jess rules able to recognize the symbols
belonging to the UML Use Case language. In our
future work we want to exploit Web Services
Technology to implement replaceable, independent,
self-consistent HDSRs. This would allow to reach a
complete decoupling between agents and HDSR,
decoupling which is not fully achieved in our current
architecture. In fact, by publishing their functionalities
as Web Services, HDSRs might be implemented by
anyone and in any language, might be physically
stored anywhere, might run on any platform, and might
be replaced with a minimal effort. In order to access
them, agents should only know their physical address
and the specification of the offered services. These
services would consist of operations that given a set of
stroke classifications, return a recognized symbol, if
any.

In our current implementation of AgentSketch,
each SRA checks symbol relations for feedback
exchange purposes. In particular exploiting the
attributes of symbols recognized by HDSRs, SRAs are
able to check a set of relations between symbols (or
symbol’s portions/points) such as near, intersect,
touch, parallel, and so on.

3. Experimental evaluation

An experiment was designed to evaluate the
effectiveness of the recognition system for use case
diagrams domain .

Such diagrams are composed of use cases
(represented by ovals), actors (represented by stick
figures), and connectors among them. There is only
one relationship that may occur between actors and
use cases; it is visualized as a solid line, named
communication link, and means that an actor
participates to a use case. Instead, four types of
relationships between use cases are supported by
UML: communication links, inclusion (visualized as a
dashed arrow from the including to the included use
case, with label «include»), extension (a dashed arrow
from the extending to the extended use case, with label
«extend»), and generalization (a solid line ending in a
hollow triangle drawn from the specialized to the more
general use case). The only relationship that may hold
among actors is generalization.

We recruited twenty subjects with basic knowledge
of use case diagrams, to which we briefly introduced
AgentSketch, included the multi-stroke symbol
recognition capabilities.

When they felt comfortable with the system we
asked them to draw two diagrams, containing all use
case symbols, representing real software systems. The
two diagrams were formed by 16 and 23 symbols,
respectively. Fig. 2 shows one of the diagrams
sketched by the subjects with AgentSketch.

Figure 2. A use case diagram sketched by a
subject with AgentSketch

To analyze the importance of the contextual
information for the interpretation of sketched symbols,
we compared the results obtained by the context-based
recognizer, indicated with CR, with those obtained
deactivating the SIA contextual reasoning module,
indicated with BR (baseline recognizer). In the BR
approach the conflicts are solved by considering the

shape’s accuracy only. Table 1 contains some statistics
on the recognition performances of both systems. In
particular, for each domain symbol we reported: the
number of instances drawn by the subjects, those
correctly recognized by BR and CR (in percentages)
and the percentage of instances not recognized by any
HDSR (%US).

Table 1. Recognition statistics by symbol

#Instances %correct
BR

%correct
CR

%U.S

Actor 100 73 84 0

Use Case 260 79.23 92.69 7.31

Comm. 280 92.50 97.86 1.43

Include 60 61.67 66.67 11.67

Extend 40 60 67.5 10

Generalize 40 65 87.5 7.5

Total 780 80.13 89.87 4.74

% correct BR = symbols correctly interpreted without using
contextual information

% correct CR = percentage of symbol instances correctly interpreted
using contextual information

% US = percentage of symbol instances unrecognized

The results show that the context-based conflict
resolution technique implemented by the SIA
considerably improves the overall precision in the
recognition. On average, the baseline system correctly
identified 80% of the symbols, while CR correctly
identified 90%.

4. Related Work

Very few approaches for the recognition of
freehand drawings are based on agent technology.
When we compare our proposal with those using the
agent technology, we find that the main differences lie
in the intended usage domain of the system, which is
very specific for all the implemented systems

QuickSet is a suite of agents for multimodal
human-computer communication . Underneath the
QuickSet suite of agents lies a distributed, blackboard-
based, multi-agent architecture. The gesture
recognition agent recognizes gestures from strokes
drawn on the map. Along with the coordinate values,
each stroke from the user interface also provides
contextual information about objects touched or
encircled by the stroke. Recognition results are an n-
best list of interpretations and an associated probability
estimate for each interpretation. This list is then passed
to the multimodal integrator that accepts typed feature
structures from both the gesture and the parser agents
(that interpret natural language sentences), and unifies
them.

In , Mackenzie and Alechina propose an agent-
based technique for the classification and
understanding of child-like sketches of animals, using
a live pen-based input device. Once the segmentation
stage is completed, an agent-based search of the
resultant data begins in an attempt to isolate
recognizable high-level features within the sketch.
Newly recognized strokes are inserted into an “arena”
(a sort of blackboard shared by all the agents, where
agents can move), and every single agent is in charge
of recognizing a specific high-level feature. Agents
wander around the arena looking for strokes that they
can use for recognizing a symbol. The mobile agents
gradually become more and more restless over time if
they are unsuccessful in their task. The more restless
an agent is, the less reputable it is considered by other
agents.

In Juchmes et al. describe EsQUIsE, an interactive
tool for free-hand sketches to support early
architectural design. The EsQUIsE environment uses
pen computer technologies featuring the “virtual blank
sheet”. Lines drawn on the screen are captured and
interpreted in real time thanks to the activity and
collaboration of different types of agents. The system
also involves agents that recognize individual chars,
and a dictionary agent. When many different
interpretations of the drawing are possible, the agents
must work together to propose a pertinent
interpretation of the sketch. In Azar et al. extend the
previous multi-agent architecture with the possibility
of interpreting vocal information also. The graphical
inputs are interpreted by either rule-based agents or
model-based agents, while the spoken inputs are
interpreted by model-based vocal agents.

With respect to these systems, our proposal aims at
creating a general sketch recognition system that does
not rely on any assumption on the drawing style, and is
not tailored to any specific domain.

4. Conclusions

In this paper we have presented AgentSketch, an
agent-based system for interpreting hand-sketched
symbols in a context-driven fashion. The recognition
process is supported by intelligent agents (SRAs) that
manage the activity of hand-drawn symbol
recognizers, and coordinate themselves in order to
provide efficient and precise interpretations of the
sketch to the user. We have performed a first
experimental evaluation of the system on the use case
diagrams domain, and the results have indicated that
the use of context to disambiguate symbol significantly
reduced recognition error over a baseline system that
did not consider contextual information.

References
[1] A. Apte, V. Vo, and T.D. Kimura, “Recognizing

Multistroke Geometric Shapes: An Experimental
Evaluation”, in Proc. of User Interface and Software
Technology, 1993, ACM Press, pp. 121-128.

[2] S. Azar, L. Couvreury, V. Delfosse, B. Jaspartz and C.
Boulanger, “An Agent-Based Multimodal Interface for
Sketch Interpretation”, in Proc. of International
Workshop on Multimedia Signal Processing, British
Columbia, Canada.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. “Developing
Multi-Agent Systems with JADE”, in 7th International
Workshop Agent Theories Architectures and Languages,
Lecture Notes in Computer Science, Springer, 2000,
vol. 1986, pp. 89-103.

[4] P. R. Cohen, M. Johnston, D. McGee, I. Smith, J.
Pittman, L. Chen, and J. Clow, “Multimodal Interaction
for Distributed Interactive Simulation”, in Proc.of
Innovative Applications of Artificial Intelligence
Conference, 1997, AAAI Press, pp. 978-985.

[5] FIPA ORG, FIPA ACL Message Structure Specification,
Document no. SC00061G, 2002.

[6] L. Gennari, L.B. Kara, and T.F. Stahovich, “Combining
Geometry and Domain Knowledge to Interpret Hand-
Drawn Diagrams”, Computers & Graphics, 29(4), 2005,
pp. 547-562.

[7] T. Hammond and R. Davis, “LADDER, A Sketching
Language for User Interface Developers”, Computers &
Graphics, 29(4), 2005, pp. 518-532.

[8] J.I. Hong, and J.A. Landay, “SATIN: A Toolkit for
Informal Ink-based Applications”, in Proc. of User
Interface and Software Technology (UIST’00), 2000,
ACM Press, pp. 63-72.

[9] R. Juchmes, P. Leclercq, and S. Azar, “A Freehand-
Sketch Environment for Architectural Design Supported
by a Multi-Agent System”, Computers & Graphics,
29(6), 2005, pp. 905-915.

[10] B. Krishnapuram, C. Bishop, and M. Szummer,
“Generative Bayesian Models for Shape Recognition”,
in Proc.of 10th International Workshop on Frontiers in
Handwriting Recognition (IWFHR-9), 2004, IEEE CS
Press, pp. 20-25.

[11] M. Luck, P. McBurney, O. Shehory, S. Willmott, and the
AgentLink Community, “Agent Technology: Computing
as Interaction – A Roadmap for Agent-Based
Computing”, AgentLink III, 2005.

[12] G. Mackenzie and N. Alechina, “Classifying Sketches
of Animals using an Agent-Based System”, in Proc.of
10th International Conference on Computer Analysis of
Images and Patterns, Springer, Lecture Notes in
Computer Science, vol. 2756 , 2003, pp. 521-529

[13] Object Management Group. UML Specification ver. 2.0.
http://www.omg.org/technology/documents/formal/
uml.htm, 2005.

