
Specification, simulation and verification of negotiation protocols
in a unified agent-based framework

Extended Abstract

Daniela Briola, Maurizio Martelli, Viviana Mascardi
DISI - Dipartimento di Informatica e Scienze dell'Informazione, Università degli Studi di Genova

{daniela.briola, maurizio.martelli, viviana.mascardi}@unige.it

Abstract: In this paper, we describe a framework for specifying, simulating and verifying
negotiation protocols following an agent-based approach. Most of the components of this
framework have already been implemented and tested, whereas verification facilities using temporal
logic, which are the most innovative aspect of this proposal, are being designed at the time of
writing.

1. Introduction
Multi-Agent Systems (MASs) originate from contributions coming from different research fields:
Artificial Intelligence, object-oriented languages and expert systems were the main ones. Starting
from 1990, “Agent Oriented Programming” [1] was recognized as a discipline on its own, and
nowadays it is a successful and lively multidisciplinary research field, spanning different domains.
MASs are widely used to model and develop complex systems where autonomous entities need to
interact in order to solve a problem or to achieve a complex goal. An agent is an hardware or
software system situated in an environment that it perceives and modifies, autonomous, capable of
flexible actions, reactive, proactive and social [2]. Besides being employed as a metaphor to
describe and model complex systems, the intelligent agents technology also provides tools for
implementing such systems. More recently, agents and MASs started to be exploited for simulating
the emerging behavior of a system made up of a large amount of actors: we refer to this third
application of agents and MASs as “Agent-based modeling and simulation of social/biological
domains” [3].
Our research is focused on modeling and simulating the behavior of complex systems where a
limited set of agents must cooperate (or compete) to share a limited set of resources under
topological and spatial constraints. This type of problems has been defined “Multiagent Resource
Allocation (MARA) problems” [4]. We have designed an interaction protocol that either finds a
sub-optimal solution to the MARA problem described in the sequel in a finite amount of time (in
the order of minutes), or informs the user that it cannot find a solution.
Although in this paper we concentrated on the specific MARA problem that we were asked to solve
by Ansaldo STS, the methodology we followed for solving it and the tools we used (or that we
mean to use in the future) could be as well exploited for different problems and scenarios. For this
reason, we think of the JADE platform extended with visualization capabilities thanks to NetLogo
and with verification ones thanks to Concurrent MetateM as a unified agent-based framework for
the specification, simulation and verification of negotiation protocols.

2. Description of our MARA problem
Our MARA problem derives from a case study provided to us by Ansaldo STS, a technology
company operating in the global Railway & Mass Transit Transportation Systems business with the
provision of traffic management, planning, train control and signalling systems and services.
Although the case study refers to a very concrete application of Ansaldo STS, we had to generalize
it in the following way because of a signed Non Disclosure Agreement.
The generalized problem consists of:

• A set of indivisible resources that must be assigned to different entities in different time
slots (each resource can be used by only one entity in each time slot).

• A set of entities with different priorities, each needing to use some of the available resources
for one or more time slots; entities have preferences over the set of resources they can
obtain.

• A direct non planar graph of dependencies among resources: if an entity can use resource R
only if it used a resource from {R1 , R2 , ..., Rn} in the previous time slot, then we represent
these dependencies as arcs R1 → R, R2 → R, ..., Rn → R in the graph.

• A set of resources named “start points” that can be assigned to entities without requiring the
prior usage of other resources (no arc enters in the corresponding node).

• A set of resources named “end points” that, once assigned to one entity, allow the entity to
complete its job (no arc exits from the corresponding node).

• A set of couples of conflicting arcs in the graph of dependencies: an entity releasing R1 for
accessing R2, where the usage of R2 depends on the previous usage of R1, might conflict
with an entity releasing R3 for accessing R4. The two entities might indeed need to use the
same transportation means for accessing R2 from R1 and R4 from R3 respectively, and the
transportation means might be non shareable as well.

• A static allocation plan that assigns resources to entities for pre-defined time slots, in such a
way that no conflicts arise.

Since we are going to simulate what happens the real world, where entities happen to use resources
for longer than planned and where resources can break up, a dynamic reallocation of resources over
time is often required. Thus, the interaction protocol we designed to allow agents to compute a re-
allocation when the static allocation plan cannot be satisfied, has the following features:

• the re-allocation is feasible, namely free of conflicts; in our scenario, conflicts may arise
both because two or more entities would want to access the same resource in the same time
slot, and because two or more entities would want to use conflicting arcs in the same time
slot;

• the re-allocation task, whose output is either a feasible reallocation or a message stating that
no feasible re-allocations exist, is completed within a pre-defined amount of time;

• each entity minimizes the changes between its new plan and its static allocation plan: the
start and end point must always remain those stated in the static allocation plan, but the
nodes in between may change, as well as the time slots during which resources are used;

• each entity minimizes the delay in which it reaches the end point with respect to its static
allocation plan;

• the number of entities and resources involved in the re-allocation process is kept to the
minimum;

• in case no feasible re-allocation exists, the algorithm stops.

3. Design
In order to face the dynamic resource allocation problem we designed and implemented a MAS
characterized by three types of agents each with its own capabilities and view of the system:
Resource Agents (RAs), User Agents (UAs), Interface Agents (IAs). The graph becomes the
Environment where agents live. There is no central control of the state of the graph, which is indeed
spread all over the RAs.

Resource Agent. Each node in the graph is managed by one RA. RAs do not take decisions about
which UA will obtain the control of the node but keep track of the node’s state (free/occupied). RAs
also manage the allocation of arcs entering the node.
UAs interact with RAs for knowing whether the node is free or occupied in a given time slot. RAs
answer the question and, in case the node is not free, tell which UA occupies the node for the given
time slot, its priority, and when the node will become free again.

RAs also manage the allocation of the arcs incoming into the node they control. The RA controlling
node N has the list of all its neighbors, namely those RAs controlling nodes Nfrom such that an arc
Nfrom → N exists. For each arc Nfrom → N, the RA also possesses the list of arcs A1 , ..., Ak that
conflict with Nfrom → N.
When the RA receives a reservation request for node N and chooses the free arc Nfrom → N to reach
it, it updates its reservation table by marking the arc as occupied, answers the request, and informs
all the RAs that may be interested by this reservation, namely those controlling arcs A1 , ..., Ak,
about the new state of the arc.
These RAs need to know that arcs conflicting with Nfrom → N can not be used for the specified time
slot. In this way, the neighbours of RA have up-to-date information about the state of the arcs that
might cause conflicts with their own arcs, and will be able to provide conflict-free answers to
successive reservation requests.
User Agent. UAs represent entities that want to traverse the graph. Each UA has an original plan
stated in the static allocation plan and consisting of the list of nodes to traverse together with arrival
and departure time for each of them. As soon as an UA enters the graph, no matter if it is on time or
late, it always tries to get a reservation for the nodes in its original path. UAs do not try to reserve a
specific arc to reach a node: they ask RAs to reserve the most suitable arc for them.
UAs do not know the topology of the graph; they may interact with the Path Agent (introduced later
) to obtain information on the paths that connect the start point where they enter the graph with the
end point they must reach to exit the graph. UAs communicate with RAs to reserve resources.
Every UA has a priority that it uses to reserve a resource or even to steal a resource to another UA.
Since each UA has the unique goal of getting out of the graph, it continues to look for a path in it
until it obtains the reservation for all the nodes in the path. If one, or more, nodes are already
reserved by one other UA, the UA can steal the resource if it has a higher priority. In this situation
the UA that lost the resource must search for another path in the graph.
If an UA looses the reservation of one of these nodes, for example because a UA with higher
priority stole the node to it, it will start the search again until it will succeed in reserving all the
nodes in one path.
Interface Agent. IAs act as an interface between the MAS and the external environment. There are
different types of IAs, but the most interesting for the protocol is The Path Agent (PA), that
exploits its knowledge about the graph topology and geometry. Given two nodes, it returns a list of
selected paths connecting them ordered from the best one to the worst one. The strategy for
selecting and ordering the paths depends on the application. In Ansaldo-STS’s application, it
depends on the number of nodes in the path and on geometrical constraints.

4. Implementation in JADE and NetLogo
The system that implements the architecture above, as
well as the complex interaction protocol for resource
re-allocation that we just sketched and that we could
not describe in detail for space constraints, have been
developed using JADE [5], a platform for building
MASs compliant to the FIPA standard [6] that offers a
ready-to-use infrastructure for message exchange.
Since JADE offers no built-in graphical interface, we
added an “off-line” interface for showing the way
agents move in the graph, after the JADE simulation
stops. During their execution in JADE, all agents create
a log file. We realized a program in the NetLogo tool
[7] for Agent-Based Modeling and Simulation that

Figure 1: NetLogo GUI showing UAs (triangles) that
must reach the end node with the same color.

reads the configuration of the graph and the agent’s log files and shows how UAs moved on the
graph during the time (Figure 1). NetLogo offers a graphical interface “for free”, that is, the
NetLogo programming language includes commands to graphically represent agents, their
environment, and the way they move in it. Integrating NetLogo GUI in JADE in such a way that
visualization of UAs moves was on-line instead of off-line, raised many technical problems that,
although easy to solve from a theoretical point of view, should have required too much time and
effort from us. Hence, we opted for the off-line visualization that gave satisfactory results without
requiring too much effort and time.

5. Verification using temporal logic
Verification of MASs using temporal logic raised a lot of attention starting from the early nineties.
In order to make our systems an agent-based framework, we plan to integrate verification
capabilities offered by Concurrent MetateM [8] into it.
Concurrent MetateM is a multi-agent language in which each agent is programmed using a set of
(augmented) temporal logic specifications of the behaviour it should exhibit. These specifications
are directly executed in order to generate the behaviour of the agent. As a result, there is no risk of
invalidating the logic as with systems where logical specification must first be translated to a lower-
level implementation. Two prototypical implementations of the Concurrent MetateM interpreter
exist. The root of the MetateM concept is Gabbay's separation theorem; any arbitrary temporal logic
formula can be rewritten in a logically equivalent past => future form. Execution proceeds by a
process of continually matching rules against a history, and firing those rules when antecedents are
satisfied. In order to verify MASs using temporal logic, agents should be specified in the
Concurrent MetateM language instead of in natural language and then directly programmed in
JADE, as it happens now. We are exploring the use of the Prometheus Design Tool for MASs
(http://www.cs.rmit.edu.au/agents/pdt/) as a suitable means for specifying agents and their
interactions in an high-level, declarative graphical language, and then translating this specification
into both a Concurrent MetateM one for verification, and into JADE agents for simulation. We
faced a similar translation problem in the recent past [9], and we intend to apply an approach similar
to the one discussed there, which proved to be successful.

6. Conclusions
In this extended abstract, we described our experience in specifying, simulating and visualizing the
behavior of agents in a MAS, engaged in an interaction protocol for solving a complex MARA
problem. We also outlined the intended use of existing techniques for verifying MASs using
temporal logic and how we would like to integrate them into our system, in order to make it a
unified agent-based framework for the specification, simulation and verification of negotiation
protocols.

Bibliography
1. Y. Shoham, “Agent-oriented programming”, Artificial Intelligence 60(1)
2. N. Jennings, K. Sycara, M. Wooldridge, JAAMAS 1(1), 1998
3. C. M. Macal and M. J. North, Proc. of Winter Simulation Conference, 2007
4. Y. Chevaleyre, et al. Issues in multiagent resource allocation. Informatica, 30:3–31, 2006
5. F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with JADE. Wiley, 2007
6. FIPA http://www.fipa.org/
7. NetLogo. http://ccl.northwestern.edu/netlogo/
8. M. Fisher. A Survey of Concurrent METATEM - the Language and its Applications. In Proc. of the First
international Conference on Temporal Logic, 480-505, 1994.
9. G. Casella, V. Mascardi: West2East: exploiting WEb Service Technologies to Engineer Agent-based SofTware.
IJAOSE 1(3/4): 396-434, 2007.

http://www.fipa.org/
http://ccl.northwestern.edu/netlogo/

