
Distributed Runtime Verification
of JADE Multiagent Systems

Daniela Briola, Viviana Mascardi and Davide Ancona

Abstract Verifying that agent interactions in a multiagent system (MAS)
are compliant to a given global protocol is of paramount importance for most
systems, and is mandatory for safety-critical applications. Runtime verifica-
tion requires a proper formalism to express such a protocol, a possibly non
intrusive mechanism for capturing agent interactions, and a method for ver-
ifying that captured interactions are compliant to the global protocol. Pro-
jecting the global protocol onto agents’ subsets can improve efficiency and
fault tolerance by allowing the distribution of the verification mechanism.
Since many real MASs are based on JADE, a well known open source plat-
form for MAS development, we implemented a monitor agent that achieves
all the goals above using the “Attribute Global Types” (AGT) formalism
for representing protocols. Using our JADE monitor we were able to verify
FYPA, an extremely complex industrial MAS currently used by Ansaldo STS
for allocating platforms and tracks to trains inside Italian stations, besides
the Alternating Bit and the Iterated Contract Net protocols which are well
known in the distributed systems and MAS communities. Depending on the
monitored MAS, the performances of our monitor are either comparable or
slightly worse than those of the JADE Sniffer because of the logging of the
verification activities. Reducing the log files dimension, re-implementing the
monitor in a way independent from the JADE Sniffer, and heavily exploit-
ing projections are the three directions we are pursuing for improving the
monitor’s performances, still keeping all its features.

1 Introduction

Verification of the compliance of interaction protocols in distributed and dy-
namic systems is of paramount importance for most applications. This can

DIBRIS, Genoa University, Italy
e-mail: {daniela.briola,viviana.mascardi,davide.ancona}@unige.it

1

2 Daniela Briola, Viviana Mascardi and Davide Ancona

Fig. 1 Our modular framework for distributed runtime verification of MASs.

take place at design-time (offline or static verification) or at runtime (online
or dynamic). In the latter case, a layer between the monitor executing the
verification and the system under monitoring must exist, so that interactions
can be captured and verified against the protocol.

If the system has been engineered as a multiagent system (MAS), then
the choice of JADE1 as the platform for implementing it may be a very
natural one. JADE, implemented in Java, is the state-of-the-art tool for MAS
development and has been used for many real industrial applications, as
described in the JADE Homepage. FYPA (Find Your Path, Agent! [6, 7,
8]) is another industrial MAS developed in JADE and currently being used
by Ansaldo STS, the Italian leader in railways signaling and automation,
for allocating platforms and tracks to trains inside Italian stations in quasi-
real time. Many academic applications spanning different domains are also
described in the literature ([4, 13], just to cite a few ones). Due to the wide
range of possible application fields and to the large amount of real use cases
of JADE, supporting runtime verification of interaction protocols in JADE
MASs would be a concrete step towards the reliability reinforcement and the
industrial exploitation of MASs: in this paper we describe our contribution
for the achievement of this goal.

We have designed and implemented a framework for distributed runtime
verification of MASs and a dedicated layer for monitoring JADE interactions.
The framework consists of (1) a formalism for describing “agent interaction
protocols” (AIPs) based on Attributes Global Types (AGT) [1, 10]; (2) an
algorithm to project AIPs onto subsets of agents, to obtain simpler protocols
expressed in the same AGT formalism [2]; (3) a mechanism for capturing
messages between the JADE agents under monitoring, in a transparent way;
and (4) a method for verifying that interactions are compliant with the AIP
[3].

The strength of our framework, represented in Figure 1, is its high mod-
ularity and potential for code reuse, because the first three components are
independent from the actual MAS under monitoring. The fourth one (in a

1 http://jade.tilab.com.

Distributed Runtime Verification of JADE Multiagent Systems 3

dashed box in the figure) is the subject of this paper, and has been expressly
developed for JADE. A layer has been developed for Jason2 too [3].

The paper is organized as follows: Section 2 describes the design and im-
plementation of the JADE monitor; Section 3 describes the three MASs we
have monitored in order to assess the feasibility of our proposal, Section 4
describes our experiments and presents a performance analysis, and Section
5 discusses related approaches and concludes.

2 Runtime Verification of JADE MASs

In order to verify at runtime the interactions taking place in a JADE MAS,
we have designed a monitor meeting the following requirements for non in-
trusiveness and code reuse:

1. the monitor must be able to supervise the execution of the MAS without
interfering with it,

2. the monitor activity must require no changes to the agents’ code,
3. the formalism for representing the AIP must be AGT,
4. the Prolog code already developed for implementing verification of in-

teractions w.r.t. AGT and for protocol projection must be re-used as it is.
To meet requirements 1 and 2 we extended the JADE Sniffer agent, which

is able to capture all the messages exchanged during the execution of the
MAS in a non intrusive way: JADE is developed under the LGPL (Lesser
General Public License) and the Java source code is available to the research
community, so we were able to modify it to achieve our goals.

To meet requirements 3 and 4 we exploited the JPL library3, providing
a bidirectional interface between Java and SWI Prolog. As all our previous
works on AGT were implemented in Prolog, allowing our JADE Monitor to
use Prolog programs and predicates was the best way to ensure reusability.

The monitor is sketched in Figure 2 and is highly modular: we modified
the code of the JADE Sniffer’s class just as little as possible and we defined
the method which converts a JADE message into a Prolog representation
amenable for runtime verification in a separate class, to allow developers to
modify that class only if a parsing different from the one we provided is
required.

The monitor reads a file containing the Prolog code implementing verifi-
cation and projection, and a configuration file listing the agents to be moni-
tored, and onto which the protocol projection will be performed. A log file is
written as the monitoring goes on.

The Prolog file contains definitions for three predicates:
– initialize(LogFile, SniffedAgents), which sets LogFile as the file

where writing the outcome of the verification, and projects the global protocol
defined by the global type/1 predicate onto SniffedAgents.

2 http://jason.sourceforge.net.
3 http://www.swi-prolog.org/packages/jpl/java api/.

4 Daniela Briola, Viviana Mascardi and Davide Ancona

Fig. 2 The JADE monitor.

– remember(ParsedMsg), which inserts the Prolog representation of the
JADE captured message into a message list, where messages are ordered by
time stamp (if they have a time stamp, which is not mandatory) or in order
of arrival.

– verify(CurrentTime), which verifies the compliance to the global pro-
tocol of each message remembered in the message list and whose time stamp
is lower than CurrentTime.

These predicates are called in different methods of the monitor code:
– in the toolSetup() method, which initializes the agent, the Prolog

file is consulted to make the predicates defined there available, and the
initialize(LogFile, SniffedAgents) predicate is called;

– in the action() method of the SniffListenerBehaviour class, the
JADE message msg is translated into a Prolog term by calling ParsedMsg =

MsgParser.format message(msg) and the obtained term is saved into the
Prolog message list by calling remember(ParsedMsg);

– a new Ticker behavior, re-executed every tick milliseconds (tick is set
to 100 in our setting) is added to the monitor in the setup. This behavior
calls the predicate verify(CurrentTime), so that every 100 milliseconds all
the messages exchanged in the last 100 milliseconds are verified.

The choice of first remembering the captured messages, and then verifying
them, is due to problems with the order in which messages are forwarded to
the JADE Sniffer agent, that sometimes do not respect their actual order:
if this happens, the monitor could identify a violation of the protocol due
to the wrong order of messages when, actually, the violation does not exist.
To avoid this risk, we decided to split the interaction verification into two
phases. In this way no problems due to the captured messages order arise,
provided that the capturing delay is lower than the tick value. On the other
hand, a violation of the protocol could be identified some milliseconds later,
because messages are not checked as soon as they arrive. Our choice of de-

Distributed Runtime Verification of JADE Multiagent Systems 5

laying the violation identification rather then raising false violations can be
easily changed calling the verify predicate as soon as a message is received,
after the call to the remember predicate. The log file (the excerpt below refers
to the Alternating Bit Protocol mentioned in Section 3) stores the result of
parsing and verification in the form:

Conversion from Jade message (INFORM

:sender(agent-identifier:name bob@... :addresses(sequence ...))

:receiver(set(agent-identifier:name carol@... :addresses (...)))

:content "m2")

to Prolog message

msg(performative(inform),sender(bob),receiver(carol),content(m2))

which leads from protocol state

(m2:m3:m1:**|(a1, 0):(m1, 1):**)|(m2, 1):(a2, 0):**|(m3, 1):(a3, 0):**

to protocol state

(m3:m1:m2:**|(a1, 0):(m1, 1):**)|(a2, 0):(m2, 1):**|(m3, 1):(a3, 0):**

Messages are also printed on the shell, for getting an immediate feedback on
the MAS execution.

3 Test Cases

By means of AGT we were able to concisely represent protocols which are well
known in the concurrent systems and MAS communities, like the Alternating
Bit Protocol (ABP4) and the FIPA Iterated Contract Net Protocol (ICNP5).
We developed two MASs that are expected to adhere to these protocols,
in order to verify the ability of our monitor to detect deviations from the
expected behavior and to assess its performances.

Our instance of the ABP MAS involves one agent bob that sends m1 to
alice, m2 to carol, m3 to dave, and waits for their respective acknowledges
a1, a2, a3 before resending m1, m2, m3, with the constraint that for each iter-
ation i, m1i must precede m2i, which must precede m3i, and each acknowledge
aki must follow mki and precede mki+1, with k ranging from 1 to 3.

The ICNP MAS exploits the JADE implementation of the ICNP FIPA
protocol offered by the jade.proto package6 and one implementation of the
ICNP MAS provided by JADE’s developers7: in our instance, one sender

agent playing the role of Initiatior interacts with three receivers playing
the role of Responder, numbered from 1 to 3.

The representation of the ABP and ICNP protocols using our AGT for-
malism is described in [10], where the advantages in terms of readability and
conciseness with respect to other existing proposals are widely discussed. Due
to space constraints, the reader is invited to refer to [10] for more details.

The FYPA (Find Your Path, Agent!) MAS was developed in JADE start-
ing from 2009. It automatically allocates trains moving into a railway station

4 en.wikipedia.org/wiki/Alternating bit protocol.
5 fipa.org/specs/fipa00030.
6 http://jade.tilab.com/doc/api/jade/proto/package-summary.html.
7 http://jade.tilab.com/doc/examples/protocols.html.

6 Daniela Briola, Viviana Mascardi and Davide Ancona

Fig. 3 FYPA Reservation protocol.

to tracks, in order to allow them to enter the station and reach their desti-
nation (either the station’s exit or a node where they will stop) considering
real time information on the traffic inside the station and on availability of
tracks. The station can be modeled as a direct non planar graph, where nodes
are special railway tracks where trains can stop, and arcs are railway tracks
connecting two nodes. The FYPA Reservation protocol described in AUML
in Figure 3 involves agents representing trains and nodes. Each train knows
the paths {P1 = Ns...Ne; ...; Pk = Ns...Ne} it could follow to go from the
node where it is (Ns, for start), to the node where it needs to stop (Ne,
for end). Such paths are computed by a legacy Ansaldo application which is
wrapped by an agent named PathAgent, not modeled here. Each train also
knows which path it is currently trying to reserve, how many nodes answered
to its requests and in which way, and how much delay it can accept: to reserve
a path, the train must obtain a reservation for each node in it. To reserve a
node, a train T1 asks if it is free, waits for the answer from the node (free
or already reserved by another train in an overlapping time slot) and then
reserves the resource, which might also mean stealing it to the train T2 that
reserved it before (this usually takes place if the priority of T1 is higher than
that of T2). In this case, the node will inform train T2 by following the Cancel
protocol, and T1 will try to reserve the same path in different time slots. Each
node knows the arcs that it manages (those that enter in it). It also knows
which trains optioned or reserved the node, in which time slots, from which
node they are expected to arrive, and which arc they can traverse.

In [11] we presented the formalization of the FYPA protocol using AGTs.
That formalization, with minor modifications, has been used for verifying the
MAS actual executions as discussed in Section 4.

Distributed Runtime Verification of JADE Multiagent Systems 7

In the instance of FYPA we tested, train treno 1 tries to reserve the path
nodo 1, nodo 3, nodo 4, nodo 6 under the following conditions:
– FYPA1: all the nodes in the path are free, as there were no previous
reservations: the reservation is completed without any problem;
– FYPA2: there was a previous reservation for one node (nodo 3), by a
train with priority higher than treno 1’s priority: treno 1 must change the
reservation slots for its path;
– FYPA3: there was a previous reservation for one node (nodo 3), by a train
with priority lower than treno 1’s priority: treno 1 steals the reservation
and successfully reserves the full path.

4 Experiments

We tested our JADE monitor with the ABP, the ICNP, and FYPA. With the
ABP, which does not use attributes, we were also able to successfully check
that projection works as expected. The results were the expected ones in case
of both absence and presence of protocol violations.

Because of space constraints, we cannot provide details on all the three
MASs. In this section we give the flavor of which kind of properties we were
able to test with the FYPA MAS.

The test station consists of six nodes and train treno 1, with priority 2,
enters from nodo 1 and then moves to nodo 3, nodo 4, nodo 6.

The AGT modeling the FYPA protocol has been described in [11]. As
discussed below, we were able to test “local”, “horizontal” and “vertical”
properties of messages. All our tests gave the expected result, namely a vi-
olation was correctly detected when we manually inserted some error in the
message content or order, and the protocol verification correctly terminated
when we did not insert any error.

“Local” properties of messages. Each message must have the right type. For
example, a query if message must be sent by an agent playing the “Train”
role, like treno 1, to an agent playing the “Node” role, like nodo 3, and the
arguments of the query if content must contain the priority of the sender,
the node from which the train will arrive and a coherent time interval. This
message satisfies them:

msg(treno_1, nodo_3, query_if, free(2,240000,310000,nodo_1), cid(1), ts(1))

“Horizontal” properties of messages sequences. When a train contacts a se-
quence of nodes to verify whether they are free in order to optionally issue a
reservation request, the arguments of the query if messages must form a co-
herent path: the “From” argument in message mi+1 must be the same as the
receiver of message mi, the time slot’s first extreme in message mi+1 must be
the same as the time slot’s second extreme in message mi, the conversation
id must be the same, and the train cannot change its priority, apart from set-
ting it equal to infinity (inf) for requests than must necessarily be satisfied.

8 Daniela Briola, Viviana Mascardi and Davide Ancona

For example, this trace (an extract of a real monitor log file) respects these
constraints:

msg(treno_1,nodo_1,query_if,free(inf,156000,186000,init), cid(1),ts(1))

msg(treno_1,nodo_3,query_if,free(2,186000,256000,nodo_1), cid(1),ts(2))

msg(treno_1,nodo_4,query_if,free(2,256000,286000,nodo_3), cid(1),ts(3))

msg(treno_1,nodo_6,query_if,free(2,286000,326000,nodo_4), cid(1),ts(4))

Note that in the query if message sent to the station entering node (in this
case, nodo 1), the From field is set to the value initial (init) because there
is no “coming from” node (the train is arriving from outside the station).

“Vertical” properties of conversations between a train and a node. Apart from
the requirement that during a single conversation the train does not change
the conversation id, we can identify one more constraint: if a node is reserved,
it must inform the train that sent a query if message of the arc it could have
used to reach it and of the time slot when it will be free again. This time slot
must start after the time slot’s start indicated by the train in its query if
message, even if it may overlap with it. A trace like this (again from a real
log file) respects both constraints:

msg(treno_1,nodo_3,query_if,free(2,24000,31000,nodo_1), cid(1),ts(1))

msg(nodo_3,treno_1,inform,reserved(da0,1,2,dummy,31001,38001),cid(1),ts(2))

Since a train can interact with the same node many times, for example be-
cause the attempt to reserve a path failed and then the train has to try to re-
serve a new one, we added and successfully tested another vertical constraint
that involves conversation loops: if a train sends more than one query if
message to the same node, the conversation id must be different since the
messages belong to different conversations.

Performances. Table 1 shows the performance analysis of three cate-
gories of execution: with our monitor, with the “plain” JADE Sniffer, with
none of them.
– Column Test refers to the test we run among those discussed in Section 3.
– Column R (for Runs) reports the number of runs of a MAS. For example,
R equal to 10 means that we performed 10 MAS executions with our monitor,
10 executions with the JADE Sniffer, and 10 executions with none.
– Column Msg (for Messages) reports the average number of messages
exchanged among the agents per run. While in ABP and FYPA the average
number is always the same as the exact number per run, as the MAS evolution
is deterministic, in the ICNP MAS there is a random choice that participants
can make about bidding or not. This means that the runs are not always
the same and the number of messages per run can change. We run the MAS
many times and we selected 5 runs for each execution category (with monitor,
with JADE Sniffer, with none) which show homogeneous features, namely a
number of iterations between the initiator and the participants between 4
and 7, and which guarantee that the average number of messages is the same
for each category.

Distributed Runtime Verification of JADE Multiagent Systems 9

– Column M (for Monitor) reports the average number of milliseconds per
message when using our monitor. This value changes from MAS to MAS,
as deciding to send one message may require less or more reasoning from
the agent, and hence less or more time. JS (for JADE Sniffer) reports the
average number of milliseconds per message when using the JADE Sniffer
and N (for None) reports the average number of milliseconds per message
when using none of them.
– Column M/JS (deg.) reports the ratio between the performances with our
monitor and with the JADE Sniffer and the degradation in percentage (“deg.”
field in round brackets). Similarly, M/N (deg.) reports the performances
ratio and degradation between the execution with the monitor and with no
JADE built-in agent, and JS/N (deg.) reports the performances ratio and
degradation between the execution with the JADE Sniffer and with no JADE
built-in agent.

Test R Msg M JS N M/JS (deg.) M/N (deg.) JS/N (deg.)

ABP 10 20000 1.93 1.62 0.14 1.19 (19%) 13.78 (1278%) 11.38 (1038%)

ICNP 5 13 12.28 10.47 2.26 1.17 (17%) 5.43 (443%) 4.63 (363%)

FYPA1 5 12 8.10 8.05 2.77 1.01 (1%) 2.92 (192%) 2.90 (190%)

FYPA2 5 20 6.43 6.56 2.63 0.98 (-2%) 2.44 (144%) 2.49 (149%)

FYPA3 5 12 6.61 6.35 2.83 1.04 (4%) 2.33 (130%) 2.24 (124%)

Table 1 Performances of the monitor execution.

For each test, we measured the complete execution time of the MAS. In
particular, we measured the number of milliseconds between the start of the
protocol (first message sent) and the protocol completion (last message re-
ceived). Since the ABP is an infinite protocol, we measured the time between
bob’s setup and the 10000th execution of its action() method.

In order to verify the portability of our framework across different oper-
ating systems, the experiments with FYPA were run on an Acer 7750 with
Intel Core I5 2.3 GHz, 6 GB RAM and Windows 7 Home, whereas the others
on an Acer TravelMate 6293 with Intel Core 2 Duo P8400/2.26 GHz, 4 GB
RAM, and Mandriva Linux 2009 operating system.

Table 1 shows that the degradation due to the exploitation of the monitor
agent with respect to the exploitation of the plain JADE Sniffer is usually
between 1% and 19%, with only one test, FYPA2, where the monitor per-
formed slightly better than the JADE Sniffer. The degradation when using
the monitor should be mainly due to the fact that the monitor performs many
I/O operations for writing the log both on file and on standard output. To
make an example, the average dimension of the log files for our ABP tests is
300KB, which justifies the required additional time.

The JADE Sniffer agent is very time-consuming due both to its sniffing
capabilities and to its complex graphical interface which requires updates
on the fly. Using the JADE Sniffer w.r.t. not using it degrades the MAS
performances up to 1038%. It is not surprising then the degradation due to
the usage of the monitor w.r.t not using it, up to 1278%, since the monitor
adds features to the JADE Sniffer.

10 Daniela Briola, Viviana Mascardi and Davide Ancona

From Table 1 we may also notice that the degradation of both the monitor
and the JADE Sniffer with respect to using none worsens with the number
of exchanged messages. In communication intensive MASs, the presence of
agents like the JADE Sniffer and our monitor may represent a bottleneck.
By implementing the monitor from scratch instead of relying on the Sniffer
agent, keeping the textual interface and removing the GUI, by reducing the
dimensions of the monitor’s log files reporting only the identified problems,
and by exploiting the projections presented in [2] that avoid bottlenecks due
to the single centralized monitor, we are confident to overcome most problems
related with the monitor’s performance.

5 Related Work and Conclusions

Although there are many proposals for runtime verification of agent inter-
action protocols, that we carefully analyzed in our previous papers on this
subject, the attempts to integrate such mechanisms into JADE are, to the
best of our knowledge, still missing.

Tools supporting the engineering of JADE MAS are described for example
in [12] and [9]. In [12] data mining tools processing the results of the exe-
cution of large scale MASs in a monitored environment are discussed. They
have been integrated in the INGENIAS Development Kit8, in order to facil-
itate the verification of MAS models at the design level rather than at the
programming level. The achieved results could be applied to JADE even if,
to the best of our understanding, this has not been done. In [9], the authors
present a unit testing approach for MASs based on the use of Mock Agents.
Each Mock Agent is responsible for testing a single role of an agent under
successful and exceptional scenarios. Aspect-oriented techniques are used to
monitor and control the execution of asynchronous test cases. The approach
has been implemented on top of JADE platform. None of these attempts has
the same aim as ours, and thus those proposals and ours cannot be compared.
Rather, they could be complemented for providing an integrated framework
for engineering and developing JADE MASs.

The work probably most similar to ours, but not interfaced with JADE, is
Scribble9, a tool chain for runtime verification of distributed Java or Python
programs against Scribble protocols specifications. Given a Scribble speci-
fication of a global protocol, the tool chain validates consistency properties
and generates Scribble local protocol specifications for each participant (role)
defined in the protocol. At runtime, an independent monitor is assigned to
each Java (or Python) endpoint and verifies the local trace of communication
actions executed during the session. Besides the different target languages,
the main difference of Scribble w.r.t. our work is that we can monitor legacy
MASs whose source code is not available because our monitor does not require

8 ingenias.sourceforge.net/.
9 http://www.scribble.org.

Distributed Runtime Verification of JADE Multiagent Systems 11

any change to the agents’ code, whereas the Scribble toolchain generates the
executable code for the protocol endpoints starting from the specification of
the protocol, hence it is suitable for monitoring systems which are created
from the protocol specification, but not for legacy ones.

Our implementation of a JADE monitor agent suffers from some limi-
tation, but our tests with three real MASs are very promising. The three
problems that we experienced with our monitor are all related to the deci-
sion of extending the JADE Sniffer agent. The first is the one described in
Section 2, regarding the messages order, the second arises when an agent
that is under capturing by the monitor is born: the monitor needs some mil-
liseconds to react and start capturing it, but if in the meanwhile the agent
starts sending messages, the monitor could not receive them, and in this case
a violation of the protocol is surely identified (even if it is a false positive).
The last problem is related with performances, as discussed in Section 4.

We are studying a new version of the monitor that implements a JADE
kernel service that captures all messages exchanged by the agents: in this way
we should be able to avoid all the three problems above. A comparison with
similar solutions including [5] and Scribble is also under way.

References

1. Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic checking

of protocol conformance in multi-agent systems. In: SAC. ACM (2013)
2. Ancona, D., Briola, D., Seghrouchni, A.E.F., Mascardi, V., Taillibert, P.: Efficient

verification of MASs with projections. In: EMAS Pre-proceedings (2014)
3. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-monitoring

MASs from multiparty global session types in Jason. In: DALT X, LNAI, vol. 7784.

Springer (2012)
4. Balachandran, B.M., Enkhsaikhan, M.: Developing multi-agent e-commerce applica-

tions with JADE. In: KES (3), LNCS, pp. 941–949. Springer (2007)
5. Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: A commitment-based MAS ar-

chitecture. In: EMAS, LNCS, vol. 8245, pp. 38–57. Springer (2013)
6. Briola, D., Mascardi, V.: Design and implementation of a NetLogo interface for the

stand-alone FYPA system. In: WOA, pp. 41–50 (2011)
7. Briola, D., Mascardi, V., Martelli, M.: Intelligent agents that monitor, diagnose and

solve problems: Two success stories of industry-university collaboration. In: J. of Inf.

Assurance and Security, vol. 4, pp. 106–117 (2009)
8. Briola, D., Mascardi, V., Martelli, M., Caccia, R., Milani, C.: Dynamic resource allo-

cation in a MAS: A case study from the industry. In: WOA (2009)
9. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent systems

using mock agents and aspects. In: SELMAS, pp. 83–90. ACM (2006)
10. Mascardi, V., Ancona, D.: Attribute global types for dynamic checking of protocols in

logic-based multiagent systems. TPLP 13(4-5-Online-Supplement) (2013)
11. Mascardi, V., Briola, D., Ancona, D.: On the expressiveness of attribute global types:

The formalization of a real multiagent system protocol. In: AI*IA (2013)
12. Serrano, E., Gómez-Sanz, J.J., Bot́ıa, J.A., Pavón, J.: Intelligent data analysis applied

to debug complex software systems. Neurocomput. 72(13-15), 2785–2795 (2009)
13. Ughetti, M., Trucco, T., Gotta, D.: Development of agent-based, peer-to-peer mobile

applications on ANDROID with JADE. In: UBICOMM (2008)

