

An Agent-Based and Context-Oriented Approach to Symbol Recognition

in Diagrammatic Drawings

Giovanni Casella Vincenzo Deufemia Viviana Mascardi

DISI – Università di Genova

Genova, Italy

DMI – Università di Salerno

Fisciano (SA), Italy

casella@disi.unige.it

DMI – Università di Salerno

Via Ponte don Melillo

84084, Fisciano (SA), Italy

deufemia@unisa.it

DISI – Università di Genova

Via Dodecaneso 35

16146, Genova, Italy

mascardi@disi.unige.it

Abstract

In the last two decades, one new technology, that of

agent-based systems, and one emerging research

discipline, that of on-line recognition of hand-drawn

diagrams, have gained wide attention and consensus.

Since the application of the agent technology to

disciplines where, traditionally, more standard

approaches are adopted, usually leads to valuable and

interesting results, we propose an agent-based system for

on-line recognition of hand-drawn diagrams. In our

system, agents are used 1) to manage the activity of

parsers implemented according to the grammar

formalism of Sketch Grammars, 2) to coordinate

themselves in order to provide efficient and precise

interpretations of the sketch to the user, and 3) to solve

ambiguities by exploiting contextual information.

Keywords: Sketch understanding, agent-based systems,

diagram recognition, visual language parsing.

1. Introduction

In the last two decades, one new technology, that of

agent-based systems, and one emerging research

discipline, that of on-line recognition of hand-drawn

diagrams, have received growing attention and

consensus.

The AgentLink III Technology Roadmap [15]

introduces agent-based systems as:

“[...] one of the most vibrant and important areas of

research and development to have emerged in

information technology in the 1990s. Put at its simplest,

an agent is a computer system that is capable of flexible

autonomous action in dynamic, unpredictable, typically

multi-agent domains.”

The application of the agent technology in disciplines

where, traditionally, more standard approaches were

adopted, usually leads to valuable and interesting results.

This happened for example to applications in the

logistics, transportation, utility management, defense,

and e-commerce fields, where commercial companies are

heavily investing on agents.

As far as the recognition of hand-drawn diagrams is

concerned, we may observe that, although it finds a

natural application in a wide range of domains, such as

engineering, software design, and architecture, it still

remains a particularly difficult task since freehand

sketching is an inherently imprecise process. Moreover,

the symbols of a sketched diagram can be drawn by using

a different stroke-order, -number, and -direction, and the

recognition of continuous sketches also involves the

activities of segmentation and clustering of the user’s

strokes at the same time. To make these problems more

tractable, many recognition systems work under some

assumptions about how the sketches are drawn [20].

Contextual information can be helpful in recognizing

hand-drawn symbols, since ambiguities in the sketches

can be correctly solved by analyzing the context around

the ambiguous parts. In particular, when a recognized

symbol is unique to a context then the recognizer may

use this symbol to determine the context and thereby

resolve pending recognition ambiguities.

In this paper, we propose to apply the agent

technology to on-line recognition of hand-drawn

diagrams, a domain area where the adoption of agents is

still in its early infancy. The approach upon which

parsers are based, is the grammar formalism of Sketch

Grammars for modeling diagrammatic sketch notations

and for the automatic generation of the corresponding

recognizers [7]. Agents are used to manage the activity

of parsers and to coordinate themselves in order to

provide efficient and precise interpretations of the sketch

to the user.

The paper is organized as follows. Section 2 outlines

our recognition approach. Section 3 describes the

grammar formalism for sketch languages and the

associated parsing technique, and Section 4 describes the

multi-agent system built on top of these parsers. Related

work and final remarks are discussed in Section 5.

2. The Proposed Recognition System

The architecture of the proposed agent-based sketch

recognition system is shown in Fig. 1. The system takes

the sequence of strokes drawn by the user on the sketch-

based interface as its input. A stroke, defined as the locus

of the tip of the pen from pen-down to pen-up positions,

is represented by a sequence of points. Since the

sampling density depends on the sketching speed, a re-

sampling process is needed to ensure a correct and

effective recognition. When the density of raw points is

high, re-sampling deletes redundant points in order to

reduce calculation complexity; on the other hand, when

the density is low, it adds more points in order to reduce

recognition error.

Shared Dictionary

Symbol Recognition

Agent 1
 •••

new

stroke
Raw Point

Resample
Key Point

Detection

Stroke

Classification

Stroke Segmentation and Classification

Symbol Recognition

interpretation
Coordinator Agent

Symbol Recognition

Agent 2

Symbol Recognition

Agent N

Sketch Editor

Figure 1. The architecture of the sketch recognition
system.

After re-sampling, the recognition of key points takes

place. A key point is a point that contains the most

characterizing geometric features of a sketch. For

example, a high curvature point, a tangency point, a

corner point and an inflexion point. Key points are likely

to be the points that separate the composite sketch into

simple strokes, allowing symbols to be drawn with

multiple pen strokes, and a single pen stroke to contain

multiple symbols. We apply the key point detection

algorithm IPAN99 [5].

When key points and strokes have been recognized,

the proposed system faces to activity of classifying the

obtained strokes using fitting algorithms for primitive

shapes. In this paper we consider two types of primitive

shapes: lines and arcs. We apply the least square fitting

for the recognition of lines [8], and the technique

proposed in [18] for the elliptical arcs. The classified

strokes are stored into a shared dictionary implemented

using a blackboard architecture [12].

Intelligent agents are exploited from this stage on. In

fact, the recognition of the domain language symbols

takes place by applying incremental parsers managed by

Symbol Recognition Agents, (SRAs), to the classified

strokes stored into the dictionary. Each SRA is

responsible for the recognition of a domain symbol, and

faces this task by managing the life cycle of the

incremental parsers associated to it (activating,

suspending, and killing them), and by exploiting

knowledge on the domain context. When a new stroke

classification enters the shared dictionary, each SRA

checks if it can belong to the symbol it is recognizing. In

positive case, it gives the classified stroke in input to its

associated parser(s). Contextual information is obtained

by cooperating with other SRAs in the system. When a

symbol is almost completely recognized, the SRA

associates a context value to its interpretation, and sends

this information to the Coordinator Agent (CA).

The information associated to symbol interpretation

allows the CA to solve possible conflicts and to give an

interpretation of the sketch drawn so far. The CA is also

able to apply heuristics in order to identify symbol

interpretations that can be pruned, thus reducing the

number of active parsers.

3. Specification and Generation of Symbol

Recognizers

In this section we present Sketch Grammars (SkGs,

for short) [7], which is the grammar formalism used in

the proposed recognition approach for modeling the

shape of the domain symbols, and the associated parsing

strategy that is a suitable extension of the well-known LR

technique [2].

3.1 Sketch Grammars

The idea underlying the formalism is to use grammar

productions for clustering pen strokes that constitute

input sketches, into shapes of the domain language.

Productions have also associated actions that allow

designers to specify the display of the recognized shapes,

to specify editing gestures, and to define routines for

verifying properties on the sketches.

Sketch Grammars represent a direct extension of

context-free string grammars, where more general

relations other than concatenation are allowed: an SkG G

can be seen as a context-free string attributed grammar

where the productions have the following format:

(A Γ → x1(p1) R1 x2(p2) R2 … xm-1(pm-1) Rm-1 xm(pm), Act)

A is a nonterminal symbol, each xj is a terminal or

nonterminal symbol, each pj is an optional value between

0 and 100 indicating the importance of the shape xj in the

modeled symbol, and each Rj is a sequence of (spatial

and/or temporal) relations (〈RELj1
h1

(t1),...,RELjn
hn

(tn)〉)

with 1≤k≤n. RELji
hi

(ti)

relates attributes of xj+1 with

attributes of xj-hi, with 0≤hi<j, by means of a threshold ti.

We denote REL1
0
(0) simply as REL1.

Act specifies the actions that have to be executed

when the production is reduced during the parsing

process. These may include a set of rules used to

synthesize the values of the attributes of A from those of

x1, x2,…, xm, a set of display instructions used to display

properties of the sketches after the strokes are

recognized, etc. Actions are enclosed into the brackets {

}. Γ is used to dynamically insert new terminal shapes in

the input during the parsing process, enhancing the

expressive power of the formalism.

Thus, SkGs specify a sentence by combining symbols

with spatial and temporal relations. The idea of

associating importance values to the shapes of the

productions comes from noting that the symbols of a

particular domain have different structural complexity.

As an example, Use Case Diagrams [17] include Actor

symbols, which are obtained through the composition of

several strokes, and Participate symbols, which are

simple lines. Hence, importance values can be associated

to the complex domain symbols. They allow the

generated recognizers to associate a value to the partially

recognized symbols, in order to aid the recognition of

messy or incomplete symbols. Indeed, the shapes that

allow us to distinguish a symbol from the others with a

high degree of certainty will have associated a high

importance value.

The following production specifies the Actor symbol

 Actor → Ellipse (45) <joint1_1(t1)>

Line1(25) < near(t2), near1(t3)>

Line2(12) < joint2_1(t4), near1(t5), near2(t6)>

Line3(3) <joint2_1
2(t7), rotate2(135,t8)>

Line4(12)<joint2_1
3(t9), rotate3(135,t8)> Line5(3),

 { Actor.attach(1) = Ellipse.attach(1) ∪ Line1.attach(1); }

Ellipse

Line2

Line1

Line3

Line5 Line4

 (a) (b)

Figure 2. The Actor symbol.

The Actor symbol is composed by an ellipse and five

lines, as shown in Fig. 2(a) (the attributes are represented

with bullets). The non-terminals Ellipse and Line cluster

the single stroke arcs that form an ellipse and the parallel

single stroke lines, respectively. The attribute 1 of

Ellipse, which represents its borderline, is jointed to the

attributes 1 of Line1, Line2, and Line3. The latter are

rotated with respect to the former of 45 and -45 degrees,

respectively. The values t1,…,t9 specify the error margin

in the satisfaction of the relations. The attribute 1 of

Actor is calculated from the values of the attributes of

Ellipse and Line1. Finally, the importance values indicate

that the head and the body of the Actor symbol have a

greater weight with respect to the other strokes for

discriminating an incomplete actor symbol. The strokes

depicted in the sketch of Fig. 1(b), satisfy the relations

established by the production rules.

By means of similar rules, it is possible to define Use

Case symbols (that are ellipses), Participate symbols

(lines), Generalize symbols (arrows), etc.

3.2 Symbol Recognizers

Symbol recognizers try to cluster the classified

strokes into symbols of the domain language. The

parsing technique extends the approaches proposed in

[6]: the parsers scan the input in an incremental and non-

sequential way, driven by the spatial relations specified

by the grammar productions.

Each symbol recognizer is automatically generated

from a sketch grammar modeling the shape of domain

symbol [7]. The input to the incremental parser is formed

by the stroke classification stored in the shared

dictionary, a parse tree, and a graph stack built on the

strokes analyzed so far. The parser restructures the parse

tree, which represents the recognized strokes, on the base

of the new strokes, and updates the graph stack. Each

node of the tree has associated a truthfulness value and

an importance rate obtained by combining the accuracy

values and by summing the importance values,

respectively, associated to the grammar symbols in the

graph stack. The output of the symbol recognizer is

obtained by analyzing the parse tree and the graph stack,

and consists of the quintuple: name of the symbol,

attributes of the symbol for calculating context

information, stroke sequence analyzed by the parser,

which corresponds to the leaves of the parse tree,

truthfulness value and importance rate.

Fig. 3 shows the recognition process of an actor

symbol. In particular, from the bottom to the top it shows

the incremental editing of the symbol, the primitive

shapes (more similar to the last edited stroke) identified

by the primitive shape recognizer, and the incremental

construction of the parse tree. Note that the third edited

stroke is divided in two simple strokes.

ARC ARC

Ellipse Line Line Line Line Line

Actor

LINE LINE LINE LINE LINE

25 12 3 12 3 45

parse tree

primitive

shapes

new strokes

on-line

symbol

construction

Figure 3. Incremental recognition of an actor
symbol.

4. Intelligent Agents for Coordinating and

Disambiguating the Recognition Process

An intelligent agent is a software or hardware entity

aware of its dynamic and unpredictable environment,

able to react to the changes that take place in it, driven by

long-term goals, autonomous, and social [13].

If we consider the activity of freehand drawing using

computer-aided tools, the “virtual blank sheet” where the

user draws represents a dynamic and unpredictable

environment. A set of collaborating entities that monitor

this virtual environment, react to changes that take place

in it (i.e., new strokes drawn by the user), have a

complex long term goal (giving an interpretation to what

the user is drawing), operate in an autonomous way to

reach this goal (no explicit input or suggestions is

required to the user), and cooperate to reach their goal

(thus exhibiting a social behavior), can be definitely

called a multi-agent system, or MAS.

Thus, the adoption of intelligent agents for facing the

problem of recognizing freehand drawing sketches seems

very appropriate and promising. As already introduced in

Section 2, our MAS consists of many instances of

Symbol Recognition Agents (SRAs) and of one

Coordinator Agent (CA).

4.1 Symbol Recognition Agents

The main goal of each SRA is to recognize domain

symbol instances (Actor, Participate, UseCase, Include,

Generalize, etc., in our running example inspired by

UML Use Case Diagrams) by collaborating with other

SRAs to obtain contextual feedback.

In order to recognize domain symbol instances, each

SRA manages the execution of a set of parsers (described

in Section 3) for that symbol, and decides when starting,

killing or suspending them.

The life cycle of each SRA is characterized by four

phases: 1) check the shared dictionary for new interesting

strokes; 2) try to recognize a symbol using the new

strokes found during the first step; 3) collaborate with

other SRAs to obtain feedback on the recognition; and 4)

interact with the CA.

Checking the shared dictionary. When a new stroke

becomes available in the dictionary, each SRA decides

whether the stroke may be interesting for recognizing its

domain symbol or not. For example, the SRA that

recognizes the Actor symbol (Actor SRA) is interested in

both arcs and lines, while the Generalize SRA is

interested only in lines.

Recognizing a symbol. The technical aspects of the

recognition process performed by a parser have been

outlined in Section 3.2. Here, we consider the behavior

of the Actor SRA to exemplify how SRAs use these

parsers. Let us suppose that an arc enters the dictionary

before an oblique line, and that before the arc entry, the

dictionary was empty. When the Actor SRA realizes that

there is an arc in the dictionary, it starts a new parser

process, with the arc as input. The parser recognizes that

the arc might be part of the head of an actor, and updates

its recognized symbol. When the line enters the

dictionary, the Actor SRA gives it in input to the running

parser. In our example, the parser using the arc cannot

use the oblique line: according to grammar of the Actor

symbol given in Section 3.1, the parser needs that both

the actor’s head (the arc) and body have been drawn,

before being able to attach arms or legs (the oblique line)

to it. Thus, a new parser is started with only the oblique

line as input. When a parser is fed with a new stroke in

input, it also needs to reconsider the other strokes in the

dictionary. In fact, it might happen that the usage of a

new stroke makes the usage of other pre-existing strokes

possible, thanks to production rules that become able to

reduce.

It may happen that two parsers are recognizing the

same instance of the symbol, although they started from

different initial states and applied different production

rules. If two parsers reach the same state and are

recognizing the same instance of symbol, the SRA kills

one of them. Note that the user might draw more

instances of the same symbol (for example, two Actors

related with a Generalize symbol). In this case, the

mechanism of creating a new parser for each stroke

ensures that all the drawn instances will be analyzed and

recognized. When one parser reaches a high importance

rate in the recognition of a symbol, the symbol is added

to the set of the symbols recognized by the SRA.

As an example, let us consider the recognition

process shown in Fig. 4. The numbers associated to the

strokes denote the temporal sequence of the drawing

process. The strokes from 1 to 6 are recognized as the

actor a1 by the Actor SRA. Moreover, stroke 1 is also

recognized as the Use Case symbol u1, whereas the line

strokes from 2 to 6 are recognized as the Participate

symbols p1, p2, p3, p4, and p5. Strokes 7 and 8 are

correctly recognized as the Participate symbol p6 and

UseCase symbol u2, respectively. Finally, stroke 9 is

recognized as the Participate symbol p7, but it is also

used with strokes 5 and 6 to recognize the Generalize

symbol g1.

Shared

Dictionary

User Sketch

Segmentation/

Classification

Participate
SRA

p1=<2> - p2=<3>
p3=<4> - p4=<5>
p5=<6> - p6=<7>

p7=<9>

a1

u1

p1

u2 p6

Include
SRA

UseCase
SRA

u1=<1>
u2=<8>

g1=<9,5,6>

Generalize
SRA

a1=<1,2,3,
4,5,6>

Actor
SRA

Extend
SRA

p3

p4

p5

p2
g1

p7

1

2
3

4

5 6

8
7

9

Coordinator

Agent

Figure 4. The recognition process of a UML Use
Case diagram.

Collaborating with other SRAs. When a symbol is

recognized, the SRA starts the collaboration process to

obtain context information for the recognized symbol,

while the parser goes on with its activity. The

collaboration consists of sending a feedback request

message containing information about the recognized

symbol to all the SRAs that recognize related symbols

(and that are known “a priori” by each SRA).

Two domain symbols are related if the domain

language defines a relation between them. When a SRA

receives a feedback request, it checks its set of

recognized symbols to give an answer. If it finds a

symbol that satisfies the language relationship with the

symbol in the feedback request, it sends a positive

response to the requester, otherwise it sends a negative

response. As an example, in UML Use Case diagrams the

Use Case symbol is related to Participate, Include and

Extend symbols [17]. Thus, when the Use Case SRA in

Fig. 4 recognizes u2, it sends a feedback request to Actor

SRA, Extend SRA, and Include SRA. The first replies

with a positive response, since a1 is correctly related to

u2, while the others reply with a negative response.

Interacting with the Coordinator Agent. At each

editing step, besides updating the information about

previously recognized symbol, the SRAs communicate to

the CA the information about the new recognized

symbols (whose importance rate is higher than a given

threshold) including the set of strokes that form the

symbol, its truthfulness value, and the positive feedback

collected.

4.2 The Coordination Agent

The CA incrementally analyzes the information

received from SRAs and produces an interpretation of

the hand-drawn diagram as output. The CA looks for

conflicts by checking if there are symbols that share one

or more strokes. Conflicts may take place either because

a stroke is classified both as a line and as an arc due to

the sketch inaccuracy, or because the same stroke,

although correctly classified, is used by two SRAs to

recognize two different symbols. As an example, in Fig.

4, strokes 5 and 6 are used to recognize both g1 and a1.

In order to support the incremental resolution of

conflicts, the CA uses a graph structure to efficiently

represent both the information produced by the SRAs,

and that obtained during the resolution of the conflicts.

In particular, the nodes of the graph correspond to the

symbol interpretations provided by the SRAs, whereas

the edges can be of two types. The conflict edges link

conflicting symbols and are labeled with the difference

between the truthfulness associated to the symbols (in

absolute value), whereas the feedback edges link symbols

that have produced a positive feedback during their

recognition. The conflict between two symbols is solved

in favor of the one having the following higher value:

)
#

#
(21

n

rn
wtrwcv +=

where tr is the truthfulness value of the symbol, n is the

total number of nodes, #rn is the number of nodes

without conflicts (unambiguous symbols) reachable by

following a feedback edge from the symbol, and w1 and

w2 are values between 0 and 1 that depend on the domain

language. In particular, for languages where symbols in

the diagrams are involved in many relations with other

symbols, w2 must be greater than w1, in order to weight

the existence of feedback more than the truthfulness of

the symbol. Vice versa, for languages with few relations

between symbols in diagrams, it is more important to

consider the truthfulness associated to the symbol, and

thus w1 must be greater then w2. Unambiguous symbols

are used to solve conflicts because they represent stable

and not conflicting elements in the current sketch

interpretation.

Conflicts are solved starting from:

1. Those that involve one symbol with feedback from

unambiguous symbol(s) (unambiguous feedback)

and one symbol without unambiguous feedback.

2. Those that involve symbols with higher difference

between the number of unambiguous feedback.

3. Those that involve symbols with higher difference of

truthfulness value.

This criterion helps in solving the “easiest” conflicts

first, in order to obtain new unambiguous symbols that

can be used to solve other conflicts.

At the bottom of Fig. 4 it is shown the graph

constructed by the CA on the input sketch, where the

conflict edges and feedback edges are visualized with

continuous arrows and dashed arrows, respectively.

Symbol a1 is in conflict with several symbols (p1, p2,

p3, p4, p5, u1). The first conflict that is solved is the one

between a1 and p1. Indeed, a1 collected two

unambiguous feedback from p6 and u2, while p1 did not

receive unambiguous feedback (the one from u1 is not

unambiguous). Supposing that a1 has a greater cv value

than p1, a1 wins the conflict. The conflict resolution

goes on and if a1 becomes an unambiguous symbol (in

case it wins all its conflicts), then p7 gets an

unambiguous feedback from a1 useful to solve its

conflict with g1.

When a conflict is solved, the graph is updated.

When a new (modified, resp.) symbol is communicated

to the CA, a new node is added to the graph (the node

corresponding to the symbol in the graph is updated,

resp.) together with the corresponding conflict and

feedback edges. The conflict resolution is applied to that

portion of the graph reachable from the new (modified,

resp.) node. Thus, the resolution of the conflicts does not

involve those parts of the diagram that are not related

with the added or modified symbol.

In order to reduce the number of active parsers the

CA selects and communicates to the SRAs the ones that

can be pruned. Many heuristics can be chosen: for

example, pruning could be applied to parsers that have

recognized symbols without feedback, and are involved

in conflicts with symbols having feedback, or to parsers

recognizing symbols whose constituent strokes all belong

to another symbol with more positive feedback. For

example, in Fig. 4, the Participate symbols p1, p2, p4,

and p5 can be pruned since they are sub-pieces of the

Actor symbol a1 and they have no positive feedback.

5. Related and Future Work

In the last two decades several approaches have been

proposed for the recognition of freehand drawings.

Among the most traditional and old systems, we may cite

the Rubine recognition engine, a trainable recognizer for

single stroke gestures represented by global features and

classified according to a linear function of the features

[19]. The Electronic Cocktail Napkin (ECN) employs a

bottom-up recognition method able to represent

ambiguities in the user’s sketches, and capable of

refining its early interpretations by analyzing the

surrounding context [9]. By the observation that in

certain domains people draw objects using consistent

stroke orderings, Sezgin and Davis have proposed a

technique to model and recognize sketches using Hidden

Markov Models (HMM) [20]. This approach exploits

regularities to perform very efficient segmentation and

recognition, but requires each object to be completed

before the next one is drawn. Kara and Stahovich [11]

present a domain-independent, multi-stroke, trainable

shape recognizer that learns new definitions from single

prototype examples. The assumptions under which this

approach work are that the sketch always includes

“marker symbols” easy to recognize, and that the hand-

drawn diagram always consists of shapes linked by

arrows. Finally, in [3] Alvarado and Davis present a

parsing approach based on dynamically constructed

Bayesian networks.

With respect to these systems, our proposal aims at

creating a general sketch recognition system that does

not rely on any assumption on the drawing style, and is

not tailored to any specific domain.

The main originality of our work consists of the

exploitation of intelligent agents for the coordination of

parsers automatically generated from sketch grammars.

Thus, our system is definitely different from all those just

discussed. If we come to consider the technology that

mainly characterizes our approach, we find that very few

approaches are based on it. One of the oldest systems we

are aware of, is QuickSet, a suite of agents for

multimodal human-computer communication [4]. A very

similar, but more recent, agent-based multimodal system

is Demo, described in [10]. In [1], Achten and Jessurun

discuss how graphic unit recognition in drawings can

take place using a multi-agent systems approach, where

singular agents may specialize in graphic unit-

recognition, and multi-agent systems can address

problems of ambiguity through negotiation mechanisms.

In [16], Mackenzie and Alechina propose an agent-based

technique for the classification and understanding of

child-like sketches of animals, using a live pen-based

input device. Finally, in [14] Juchmes and Leclercq

describe EsQUIsE, an interactive tool for free-hand

sketches to support early architectural design.

When we compare our proposal with those using the

agent technology, we find that the main difference lies in

the intended usage domain of the system, that is very

specific for all the implemented systems. The only

general-purpose view is provided by Achten and

Jessurun that, however, do not propose a concrete MAS

architecture, but just analyze the feasibility of adopting

multi-agent techniques to sketch recognition.

The usage domain of our system comprises any visual

language that can be modeled by a sketch grammar. In

this paper we have used UML Use Case Diagrams to

exemplify the functionality of our system, but we could

use animal forms, architectural sketches, or Gannt charts

as well, provided that we had parsers for them. Luckily,

an approach for automatically generating parsers from

visual grammars has been proposed by one of the authors

[6], and our system has been designed to be fully

compliant with these automatically-generated parsers.

The internal behavior of the agents in the system and the

interactions among them remain unchanged, no matter

which parsers are managed by the SRAs.

Another difference between the related agent-based

approaches and ours, lies in the technique used to

recognize each single stroke, and each symbol from a set

of strokes, since we extensively use automatically

generated parsers.

The main limitation of our approach, that also drives

our current and future work, is the lack of experimental

results. Among the other agent-based systems considered

in this section, it seems that a prototype exists for all of

them, apart from the general proposal in [1]. We are

currently implementing a prototype of our system using

the multi-agent platform JADE (http://jade.tilab.com/).

References

[1] H.H. Achten, and A.J. Jessurun, “An Agent Framework for
Recognition of Graphic Units in Drawings”, Proc. of
eCAADe'02, 2002, pp. 246-253.

[2] Aho, A.V., R. Sethi, and J.D. Ullman, Compilers
Principles, Techniques, and Tools. Addison-Wesley, 1987.

[3] C. Alvarado, and R. Davis, “Dynamically Constructed
Bayes Nets for Multi-Domain Sketch Understanding”, Proc. of
IJCAI’05, 2005, pp. 1407-1412.

[4] P. R. Cohen, M. Johnston, D. McGee, I. Smith, J. Pittman,
L. Chen, and J. Clow, “Multimodal interaction for distributed
interactive simulation”, in Proc. of IAAI’97, 1997.

[5] D. Chetverikov and Z. Szabo, “A Simple and Efficient
Algorithm for Detection of High Curvature Points in Planar
Curves”, Proc. the APRG Workshop, 1999, pp. 175-184.

[6] G. Costagliola, V. Deufemia, G. Polese, M. Risi, “A
Parsing Technique for Sketch Recognition Systems”, Proc. of
IEEE Symposium VL/HCC’04, Italy, 2004, pp. 19-26.

[7] G. Costagliola, V. Deufemia, M. Risi, “Sketch Grammars:
A Formalism for Describing and Recognizing Diagrammatic
Sketch Languages”, Proc. of ICDAR’05, Korea, 2005, IEEE
Press, pp. 1226-1230.

[8] Duda, R.O., and P.E. Hart, Pattern Classification and
Scene Analysis, Wiley Press, New York, 1973.

[9] M.D. Gross, “The Electronic Cocktail Napkin – A
Computational Environment for Working with Design
Diagrams”, Design Studies 17(1), 1996, pp. 53-69.

[10] E. Kaiser, D. Demirdjian, A. Gruenstein, X. Li, J.
Niekrasz, M. Wesson, and S. Kumar, “Demo: A Multimodal
Learning Interface for Sketch, Speak and Point Creation of a
Schedule Chart”, Proc. of ICMI'04, 2004, pp. 329-330.

[11] L.B. Kara and T.F. Stahovich, “Hierarchical Parsing and
Recognition of Hand-sketched Diagrams”, Proc. of UIST’04,
ACM Press, 2004, pp. 13-22.

[12] B. Hayes-Roth, “A Blackboard Architecture for Control”,
Artificial Intelligence, 26(3), 1985, pp. 251-321.

[13] N. R. Jennings, K. P. Sycara, and M. Wooldridge A
Roadmap of Agent Research and Development, Autonomous
Agents and Multi-Agent Systems Journal 1(1), 1998, pp 7-36.

[14] R. Juchmes and P. Leclercq, “A Multi-Agent System for
the Interpretation of Architectural Sketches”, in Proc. of 2004
Eurographics Workshop on Sketch-Based Interfaces and
Modeling, Grenoble, France, pp. 53-61.

[15] M. Luck, P. McBurney, O. Shehory, et al. “Agent
Technology: Computing as Interaction – A Roadmap for
Agent-Based Computing”, AgentLink III, 2005.

[16] G. Mackenzie and N. Alechina, “Classifying Sketches of
animals using an Agent-Based System”, Proc. of CAIP'03,
2003, LNCS 2756, pp. 521-529.

[17] Object Management Group. UML version 2.0, 2005,
http://www.omg.org/docs/formal/05-07-04.pdf

[18] M. Pilu, A. Fitzgibbon, and R. Fisher, “Direct Least-
Square Fitting of Ellipses”, IEEE Transactions on Pattern
Analysis and Machine Intelligence 21(5), 1999, pp. 476-480.

[19] D. Rubine, “Specifying Gestures by Example”, Computer
Graphics 25(4), 1991, pp. 329-337.

[20] T.M. Sezgin and R.Davis, “HMM-based Efficient Sketch
Recognition”, Proc. of IUI’05, 2005, ACM Press, pp. 281-283.

