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Abstract 

 
In the last two decades, one new technology, that of 

agent-based systems, and one emerging research 

discipline, that of on-line recognition of hand-drawn 

diagrams, have gained wide attention and consensus. 

Since the application of the agent technology to 

disciplines where, traditionally, more standard 

approaches are adopted, usually leads to valuable and 

interesting results, we propose an agent-based system for 

on-line recognition of hand-drawn diagrams. In our 

system, agents are used 1) to manage the activity of 

parsers implemented according to the grammar 

formalism of Sketch Grammars, 2) to coordinate 

themselves in order to provide efficient and precise 

interpretations of the sketch to the user, and 3) to solve 

ambiguities by exploiting contextual information. 

Keywords: Sketch understanding, agent-based systems, 

diagram recognition, visual language parsing. 

1. Introduction 

In the last two decades, one new technology, that of 

agent-based systems, and one emerging research 

discipline, that of on-line recognition of hand-drawn 

diagrams, have received growing attention and 

consensus. 

The AgentLink III Technology Roadmap [15] 

introduces agent-based systems as: 

“[...] one of the most vibrant and important areas of 

research and development to have emerged in 

information technology in the 1990s. Put at its simplest, 

an agent is a computer system that is capable of flexible 

autonomous action in dynamic, unpredictable, typically 

multi-agent domains.” 

The application of the agent technology in disciplines 

where, traditionally, more standard approaches were 

adopted, usually leads to valuable and interesting results. 

This happened for example to applications in the 

logistics, transportation, utility management, defense, 

and e-commerce fields, where commercial companies are 

heavily investing on agents. 

As far as the recognition of hand-drawn diagrams is 

concerned, we may observe that, although it finds a 

natural application in a wide range of domains, such as 

engineering, software design, and architecture, it still 

remains a particularly difficult task since freehand 

sketching is an inherently imprecise process. Moreover, 

the symbols of a sketched diagram can be drawn by using 

a different stroke-order, -number, and -direction, and the 

recognition of continuous sketches also involves the 

activities of segmentation and clustering of the user’s 

strokes at the same time. To make these problems more 

tractable, many recognition systems work under some 

assumptions about how the sketches are drawn [20]. 

Contextual information can be helpful in recognizing 

hand-drawn symbols, since ambiguities in the sketches 

can be correctly solved by analyzing the context around 

the ambiguous parts. In particular, when a recognized 

symbol is unique to a context then the recognizer may 

use this symbol to determine the context and thereby 

resolve pending recognition ambiguities.  

In this paper, we propose to apply the agent 

technology to on-line recognition of hand-drawn 

diagrams, a domain area where the adoption of agents is 

still in its early infancy. The approach upon which 

parsers are based, is the grammar formalism of Sketch 

Grammars for modeling diagrammatic sketch notations 

and for the automatic generation of the corresponding 

recognizers [7]. Agents are used to manage the activity 

of parsers and to coordinate themselves in order to 

provide efficient and precise interpretations of the sketch 

to the user. 

The paper is organized as follows. Section 2 outlines 

our recognition approach. Section 3 describes the 

grammar formalism for sketch languages and the 

associated parsing technique, and Section 4 describes the 

multi-agent system built on top of these parsers. Related 

work and final remarks are discussed in Section 5. 

2. The Proposed Recognition System 

The architecture of the proposed agent-based sketch 

recognition system is shown in Fig. 1. The system takes 

the sequence of strokes drawn by the user on the sketch-

based interface as its input. A stroke, defined as the locus 

of the tip of the pen from pen-down to pen-up positions, 

is represented by a sequence of points. Since the 

sampling density depends on the sketching speed, a  re-

sampling process is needed to ensure a correct and 

effective recognition. When the density of raw points is 

high, re-sampling deletes redundant points in order to 



  

 

reduce calculation complexity; on the other hand, when 

the density is low, it adds more points in order to reduce 

recognition error. 

 
 

 

 

 

 

 

 

Shared Dictionary 

Symbol Recognition  

Agent 1 
 ••• 

new  

stroke 
Raw Point  

Resample 
Key Point 

Detection 

Stroke 

Classification 

Stroke Segmentation and Classification 

Symbol Recognition 

interpretation 
Coordinator Agent 

Symbol Recognition  

Agent 2 

Symbol Recognition  

Agent N 

Sketch Editor 

 

Figure 1. The architecture of the sketch recognition 
system. 

After re-sampling, the recognition of key points takes 

place. A key point is a point that contains the most 

characterizing geometric features of a sketch. For 

example, a high curvature point, a tangency point, a 

corner point and an inflexion point. Key points are likely 

to be the points that separate the composite sketch into 

simple strokes, allowing symbols to be drawn with 

multiple pen strokes, and a single pen stroke to contain 

multiple symbols. We apply the key point detection 

algorithm IPAN99 [5]. 

When key points and strokes have been recognized, 

the proposed system faces to activity of classifying the 

obtained strokes using fitting algorithms for primitive 

shapes. In this paper we consider two types of primitive 

shapes: lines and arcs. We apply the least square fitting 

for the recognition of lines [8], and the technique 

proposed in [18] for the elliptical arcs. The classified 

strokes are stored into a shared dictionary implemented 

using a blackboard architecture [12]. 

Intelligent agents are exploited from this stage on. In 

fact, the recognition of the domain language symbols 

takes place by applying incremental parsers managed by 

Symbol Recognition Agents, (SRAs), to the classified 

strokes stored into the dictionary. Each SRA is 

responsible for the recognition of a domain symbol, and 

faces this task by managing the life cycle of the 

incremental parsers associated to it (activating, 

suspending, and killing them), and by exploiting 

knowledge on the domain context. When a new stroke 

classification enters the shared dictionary, each SRA 

checks if it can belong to the symbol it is recognizing. In 

positive case, it gives the classified stroke in input to its 

associated parser(s). Contextual information is obtained 

by cooperating with other SRAs in the system. When a 

symbol is almost completely recognized, the SRA 

associates a context value to its interpretation, and sends 

this information to the Coordinator Agent (CA). 

The information associated to symbol interpretation 

allows the CA to solve possible conflicts and to give an 

interpretation of the sketch drawn so far. The CA is also 

able to apply heuristics in order to identify symbol 

interpretations that can be pruned, thus reducing the 

number of active parsers. 

3. Specification and Generation of Symbol 

Recognizers 

In this section we present Sketch Grammars (SkGs, 

for short) [7], which is the grammar formalism used in 

the proposed recognition approach for modeling the 

shape of the domain symbols, and the associated parsing 

strategy that is a suitable extension of the well-known LR 

technique [2]. 

3.1  Sketch Grammars 

The idea underlying the formalism is to use grammar 

productions for clustering pen strokes that constitute 

input sketches, into shapes of the domain language. 

Productions have also associated actions that allow 

designers to specify the display of the recognized shapes, 

to specify editing gestures, and to define routines for 

verifying properties on the sketches. 

Sketch Grammars represent a direct extension of 

context-free string grammars, where more general 

relations other than concatenation are allowed: an SkG G 

can be seen as a context-free string attributed grammar 

where the productions have the following format: 
 

(A Γ → x1(p1) R1 x2(p2) R2 … xm-1(pm-1) Rm-1 xm(pm), Act) 
 

A is a nonterminal symbol, each xj is a terminal or 

nonterminal symbol, each pj is an optional value between 

0 and 100 indicating the importance of the shape xj in the 

modeled symbol, and each Rj is a sequence of (spatial 

and/or temporal) relations (〈RELj1
h1

(t1),...,RELjn
hn

(tn)〉) 

with 1≤k≤n. RELji
hi

(ti)
 

relates attributes of xj+1 with 

attributes of xj-hi, with 0≤hi<j, by means of a threshold ti. 

We denote REL1
0
(0) simply as REL1. 

Act specifies the actions that have to be executed 

when the production is reduced during the parsing 

process. These may include a set of rules used to 

synthesize the values of the attributes of A from those of 

x1, x2,…, xm, a set of display instructions used to display 

properties of the sketches after the strokes are 

recognized, etc. Actions are enclosed into the brackets { 

}. Γ is used to dynamically insert new terminal shapes in 

the input during the parsing process, enhancing the 

expressive power of the formalism. 

Thus, SkGs specify a sentence by combining symbols 

with spatial and temporal relations. The idea of 

associating importance values to the shapes of the 

productions comes from noting that the symbols of a 

particular domain have different structural complexity. 

As an example, Use Case Diagrams [17] include Actor 

symbols, which are obtained through the composition of 

several strokes, and Participate symbols, which are 

simple lines. Hence, importance values can be associated 

to the complex domain symbols. They allow the 

generated recognizers to associate a value to the partially 

recognized symbols, in order to aid the recognition of 

messy or incomplete symbols. Indeed, the shapes that 

allow us to distinguish a symbol from the others with a 

high degree of certainty will have associated a high 

importance value. 



  

 

The following production specifies the Actor symbol 

 Actor →  Ellipse (45) <joint1_1(t1)>  

Line1(25) < near(t2), near1(t3)> 

Line2(12) < joint2_1(t4), near1(t5), near2(t6)> 

Line3(3) <joint2_1
2(t7), rotate2(135,t8)> 

Line4(12)<joint2_1
3(t9), rotate3(135,t8)> Line5(3), 

     { Actor.attach(1) = Ellipse.attach(1) ∪ Line1.attach(1); } 
 

                                          

Ellipse 

Line2 

Line1 

Line3 

Line5 Line4 

 
          (a)               (b) 

Figure 2. The Actor symbol. 

The Actor symbol is composed by an ellipse and five 

lines, as shown in Fig. 2(a) (the attributes are represented 

with bullets). The non-terminals Ellipse and Line cluster 

the single stroke arcs that form an ellipse and the parallel 

single stroke lines, respectively. The attribute 1 of 

Ellipse, which represents its borderline, is jointed to the 

attributes 1 of Line1, Line2, and Line3. The latter are 

rotated with respect to the former of 45 and -45 degrees, 

respectively. The values t1,…,t9 specify the error margin 

in the satisfaction of the relations. The attribute 1 of 

Actor is calculated from the values of the attributes of 

Ellipse and Line1. Finally, the importance values indicate 

that the head and the body of the Actor symbol have a 

greater weight with respect to the other strokes for 

discriminating an incomplete actor symbol. The strokes 

depicted in the sketch of Fig. 1(b), satisfy the relations 

established by the production rules. 

By means of similar rules, it is possible to define Use 

Case symbols (that are ellipses), Participate symbols 

(lines), Generalize symbols (arrows), etc.  

3.2  Symbol Recognizers 

Symbol recognizers try to cluster the classified 

strokes into symbols of the domain language. The 

parsing technique extends the approaches proposed in 

[6]: the parsers scan the input in an incremental and non-

sequential way, driven by the spatial relations specified 

by the grammar productions. 

Each symbol recognizer is automatically generated 

from a sketch grammar modeling the shape of domain 

symbol [7]. The input to the incremental parser is formed 

by the stroke classification stored in the shared 

dictionary, a parse tree, and a graph stack built on the 

strokes analyzed so far. The parser restructures the parse 

tree, which represents the recognized strokes, on the base 

of the new strokes, and updates the graph stack. Each 

node of the tree has associated a truthfulness value and 

an importance rate obtained by combining the accuracy 

values and by summing the importance values, 

respectively, associated to the grammar symbols in the 

graph stack. The output of the symbol recognizer is 

obtained by analyzing the parse tree and the graph stack, 

and consists of the quintuple: name of the symbol, 

attributes of the symbol for calculating context 

information, stroke sequence analyzed by the parser, 

which corresponds to the leaves of the parse tree, 

truthfulness value and importance rate. 

Fig. 3 shows the recognition process of an actor 

symbol. In particular, from the bottom to the top it shows 

the incremental editing of the symbol, the primitive 

shapes (more similar to the last edited stroke) identified 

by the primitive shape recognizer, and the incremental 

construction of the parse tree. Note that the third edited 

stroke is divided in two simple strokes. 
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Figure 3. Incremental recognition of an actor 
symbol. 

4. Intelligent Agents for Coordinating and 

Disambiguating the Recognition Process 

An intelligent agent is a software or hardware entity 

aware of its dynamic and unpredictable environment, 

able to react to the changes that take place in it, driven by 

long-term goals, autonomous, and social [13]. 

If we consider the activity of freehand drawing using 

computer-aided tools, the “virtual blank sheet” where the 

user draws represents a dynamic and unpredictable 

environment. A set of collaborating entities that monitor 

this virtual environment, react to changes that take place 

in it (i.e., new strokes drawn by the user), have a 

complex long term goal (giving an interpretation to what 

the user is drawing), operate in an autonomous way to 

reach this goal (no explicit input or suggestions is 

required to the user), and cooperate to reach their goal 

(thus exhibiting a social behavior), can be definitely 

called a multi-agent system, or MAS. 

Thus, the adoption of intelligent agents for facing the 

problem of recognizing freehand drawing sketches seems 

very appropriate and promising. As already introduced in 

Section 2, our MAS consists of many instances of 

Symbol Recognition Agents (SRAs) and of one 

Coordinator Agent (CA). 

4.1  Symbol Recognition Agents 

The main goal of each SRA is to recognize domain 

symbol instances (Actor, Participate, UseCase, Include, 

Generalize, etc., in our running example inspired by 

UML Use Case Diagrams) by collaborating with other 

SRAs to obtain contextual feedback.  



  

 

In order to recognize domain symbol instances, each 

SRA manages the execution of a set of parsers (described 

in Section 3) for that symbol, and decides when starting, 

killing or suspending them.  

The life cycle of each SRA is characterized by four 

phases: 1) check the shared dictionary for new interesting 

strokes; 2) try to recognize a symbol using the new 

strokes found during the first step; 3) collaborate with 

other SRAs to obtain feedback on the recognition; and 4) 

interact with the CA. 

Checking the shared dictionary. When a new stroke 

becomes available in the dictionary, each SRA decides 

whether the stroke may be interesting for recognizing its 

domain symbol or not. For example, the SRA that 

recognizes the Actor symbol (Actor SRA) is interested in 

both arcs and lines, while the Generalize SRA is 

interested only in lines. 

Recognizing a symbol. The technical aspects of the 

recognition process performed by a parser have been 

outlined in Section 3.2. Here, we consider the behavior 

of the Actor SRA to exemplify how SRAs use these 

parsers. Let us suppose that an arc enters the dictionary 

before an oblique line, and that before the arc entry, the 

dictionary was empty. When the Actor SRA realizes that 

there is an arc in the dictionary, it starts a new parser 

process, with the arc as input. The parser recognizes that 

the arc might be part of the head of an actor, and updates 

its recognized symbol. When the line enters the 

dictionary, the Actor SRA gives it in input to the running 

parser. In our example, the parser using the arc cannot 

use the oblique line: according to grammar of the Actor 

symbol given in Section 3.1, the parser needs that both 

the actor’s head (the arc) and body have been drawn, 

before being able to attach arms or legs (the oblique line) 

to it. Thus, a new parser is started with only the oblique 

line as input. When a parser is fed with a new stroke in 

input, it also needs to reconsider the other strokes in the 

dictionary. In fact, it might happen that the usage of a 

new stroke makes the usage of other pre-existing strokes 

possible, thanks to production rules that become able to 

reduce. 

It may happen that two parsers are recognizing the 

same instance of the symbol, although they started from 

different initial states and applied different production 

rules. If two parsers reach the same state and are 

recognizing the same instance of symbol, the SRA kills 

one of them. Note that the user might draw more 

instances of the same symbol (for example, two Actors 

related with a Generalize symbol). In this case, the 

mechanism of creating a new parser for each stroke 

ensures that all the drawn instances will be analyzed and 

recognized. When one parser reaches a high importance 

rate in the recognition of a symbol, the symbol is added 

to the set of the symbols recognized by the SRA. 

As an example, let us consider the recognition 

process shown in Fig. 4. The numbers associated to the 

strokes denote the temporal sequence of the drawing 

process. The strokes from 1 to 6 are recognized as the 

actor a1 by the Actor SRA. Moreover, stroke 1 is also 

recognized as the Use Case symbol u1, whereas the line 

strokes from 2 to 6 are recognized as the Participate 

symbols p1, p2, p3, p4, and p5. Strokes 7 and 8 are 

correctly recognized as the Participate symbol p6 and 

UseCase symbol u2, respectively. Finally, stroke 9 is 

recognized as the Participate symbol p7, but it is also 

used with strokes 5 and 6 to recognize the Generalize 

symbol g1. 
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Figure 4. The recognition process of a UML Use 
Case diagram. 

Collaborating with other SRAs. When a symbol is 

recognized, the SRA starts the collaboration process to 

obtain context information for the recognized symbol, 

while the parser goes on with its activity. The 

collaboration consists of sending a feedback request 

message containing information about the recognized 

symbol to all the SRAs that recognize related symbols 

(and that are known “a priori” by each SRA). 

Two domain symbols are related if the domain 

language defines a relation between them. When a SRA 

receives a feedback request, it checks its set of 

recognized symbols to give an answer. If it finds a 

symbol that satisfies the language relationship with the 

symbol in the feedback request, it sends a positive 

response to the requester, otherwise it sends a negative 

response. As an example, in UML Use Case diagrams the 

Use Case symbol is related to Participate, Include and 

Extend symbols [17]. Thus, when the Use Case SRA in 

Fig. 4 recognizes u2, it sends a feedback request to Actor 

SRA, Extend SRA, and Include SRA. The first replies 

with a positive response, since a1 is correctly related to 

u2, while the others reply with a negative response. 

Interacting with the Coordinator Agent. At each 

editing step, besides updating the information about 

previously recognized symbol, the SRAs communicate to 

the CA the information about the new recognized 

symbols (whose importance rate is higher than a given 



  

 

threshold) including the set of strokes that form the 

symbol, its truthfulness value, and the positive feedback 

collected. 

4.2  The Coordination Agent 

The CA incrementally analyzes the information 

received from SRAs and produces an interpretation of 

the hand-drawn diagram as output. The CA looks for 

conflicts by checking if there are symbols that share one 

or more strokes. Conflicts may take place either because 

a stroke is classified both as a line and as an arc due to 

the sketch inaccuracy, or because the same stroke, 

although correctly classified, is used by two SRAs to 

recognize two different symbols. As an example, in Fig. 

4, strokes 5 and 6 are used to recognize both g1 and a1. 

In order to support the incremental resolution of 

conflicts, the CA uses a graph structure to efficiently 

represent both the information produced by the SRAs, 

and that obtained during the resolution of the conflicts. 

In particular, the nodes of the graph correspond to the 

symbol interpretations provided by the SRAs, whereas 

the edges can be of two types. The conflict edges link 

conflicting symbols and are labeled with the difference 

between the truthfulness associated to the symbols (in 

absolute value), whereas the feedback edges link symbols 

that have produced a positive feedback during their 

recognition. The conflict between two symbols is solved 

in favor of the one having the following higher value: 

)
#

#
( 21

n

rn
wtrwcv +=  

where tr is the truthfulness value of the symbol, n is the 

total number of nodes, #rn is the number of nodes 

without conflicts (unambiguous symbols) reachable by 

following a feedback edge from the symbol, and w1 and 

w2 are values between 0 and 1 that depend on the domain 

language. In particular, for languages where symbols in 

the diagrams are involved in many relations with other 

symbols, w2 must be greater than w1, in order to weight 

the existence of feedback more than the truthfulness of 

the symbol. Vice versa, for languages with few relations 

between symbols in diagrams, it is more important to 

consider the truthfulness associated to the symbol, and 

thus w1 must be greater then w2. Unambiguous symbols 

are used to solve conflicts because they represent stable 

and not conflicting elements in the current sketch 

interpretation. 

Conflicts are solved starting from: 

1. Those that involve one symbol with feedback from 

unambiguous symbol(s) (unambiguous feedback) 

and one symbol without unambiguous feedback. 

2. Those that involve symbols with higher difference 

between the number of unambiguous feedback. 

3. Those that involve symbols with higher difference of 

truthfulness value. 

This criterion helps in solving the “easiest” conflicts 

first, in order to obtain new unambiguous symbols that 

can be used to solve other conflicts. 

At the bottom of Fig. 4 it is shown the graph 

constructed by the CA on the input sketch, where the 

conflict edges and feedback edges are visualized with 

continuous arrows and dashed arrows, respectively. 

Symbol a1 is in conflict with several symbols (p1, p2, 

p3, p4, p5, u1). The first conflict that is solved is the one 

between a1 and p1. Indeed, a1 collected two 

unambiguous feedback from p6 and u2, while p1 did not 

receive unambiguous feedback (the one from u1 is not 

unambiguous). Supposing that a1 has a greater cv value 

than p1, a1 wins the conflict. The conflict resolution 

goes on and if a1 becomes an unambiguous symbol (in 

case it wins all its conflicts), then p7 gets an 

unambiguous feedback from a1 useful to solve its 

conflict with g1. 

When a conflict is solved, the graph is updated. 

When a new (modified, resp.) symbol is communicated 

to the CA, a new node is added to the graph (the node 

corresponding to the symbol in the graph is updated, 

resp.) together with the corresponding conflict and 

feedback edges.  The conflict resolution is applied to that 

portion of the graph reachable from the new (modified, 

resp.) node. Thus, the resolution of the conflicts does not 

involve those parts of the diagram that are not related 

with the added or modified symbol. 

In order to reduce the number of active parsers the 

CA selects and communicates to the SRAs the ones that 

can be pruned. Many heuristics can be chosen: for 

example, pruning could be applied to parsers that have 

recognized symbols without feedback, and are involved 

in conflicts with symbols having feedback, or to parsers 

recognizing symbols whose constituent strokes all belong 

to another symbol with more positive feedback. For 

example, in Fig. 4, the Participate symbols p1, p2, p4, 

and p5 can be pruned since they are sub-pieces of the 

Actor symbol a1 and they have no positive feedback. 

5. Related and Future Work 

In the last two decades several approaches have been 

proposed for the recognition of freehand drawings. 

Among the most traditional and old systems, we may cite 

the Rubine recognition engine, a trainable recognizer for 

single stroke gestures represented by global features and 

classified according to a linear function of the features 

[19]. The Electronic Cocktail Napkin (ECN) employs a 

bottom-up recognition method able to represent 

ambiguities in the user’s sketches, and capable of 

refining its early interpretations by analyzing the 

surrounding context [9]. By the observation that in 

certain domains people draw objects using consistent 

stroke orderings, Sezgin and Davis have proposed a 

technique to model and recognize sketches using Hidden 

Markov Models (HMM) [20]. This approach exploits 

regularities to perform very efficient segmentation and 

recognition, but requires each object to be completed 

before the next one is drawn. Kara and Stahovich [11] 

present a domain-independent, multi-stroke, trainable 

shape recognizer that learns new definitions from single 

prototype examples. The assumptions under which this 

approach work are that the sketch always includes 

“marker symbols” easy to recognize, and that the hand-



  

 

drawn diagram always consists of shapes linked by 

arrows. Finally, in [3] Alvarado and Davis present a 

parsing approach based on dynamically constructed 

Bayesian networks.  

With respect to these systems, our proposal aims at 

creating a general sketch recognition system that does 

not rely on any assumption on the drawing style, and is 

not tailored to any specific domain. 

The main originality of our work consists of the 

exploitation of intelligent agents for the coordination of 

parsers automatically generated from sketch grammars. 

Thus, our system is definitely different from all those just 

discussed. If we come to consider the technology that 

mainly characterizes our approach, we find that very few 

approaches are based on it. One of the oldest systems we 

are aware of, is QuickSet, a suite of agents for 

multimodal human-computer communication [4]. A very 

similar, but more recent, agent-based multimodal system 

is Demo, described in [10]. In [1], Achten and Jessurun 

discuss how graphic unit recognition in drawings can 

take place using a multi-agent systems approach, where 

singular agents may specialize in graphic unit-

recognition, and multi-agent systems can address 

problems of ambiguity through negotiation mechanisms. 

In [16], Mackenzie and Alechina propose an agent-based 

technique for the classification and understanding of 

child-like sketches of animals, using a live pen-based 

input device. Finally, in [14] Juchmes and Leclercq 

describe EsQUIsE, an interactive tool for free-hand 

sketches to support early architectural design.  

When we compare our proposal with those using the 

agent technology, we find that the main difference lies in 

the intended usage domain of the system, that is very 

specific for all the implemented systems. The only 

general-purpose view is provided by Achten and 

Jessurun that, however, do not propose a concrete MAS 

architecture, but just analyze the feasibility of adopting 

multi-agent techniques to sketch recognition.  

The usage domain of our system comprises any visual 

language that can be modeled by a sketch grammar. In 

this paper we have used UML Use Case Diagrams to 

exemplify the functionality of our system, but we could 

use animal forms, architectural sketches, or Gannt charts 

as well, provided that we had parsers for them. Luckily, 

an approach for automatically generating parsers from 

visual grammars has been proposed by one of the authors 

[6], and our system has been designed to be fully 

compliant with these automatically-generated parsers. 

The internal behavior of the agents in the system and the 

interactions among them remain unchanged, no matter 

which parsers are managed by the SRAs. 

Another difference between the related agent-based 

approaches and ours, lies in the technique used to 

recognize each single stroke, and each symbol from a set 

of strokes, since we extensively use automatically 

generated parsers. 

The main limitation of our approach, that also drives 

our current and future work, is the lack of experimental 

results. Among the other agent-based systems considered 

in this section, it seems that a prototype exists for all of 

them, apart from the general proposal in [1]. We are 

currently implementing a prototype of our system using 

the multi-agent platform JADE (http://jade.tilab.com/).  
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