
Agent Interaction Protocols:
The Good, the Bad and the Ugly

Davide Ancona, Angelo Ferrando, Luca Franceschini, Viviana Mascardi

Università degli Studi di Genova, Genoa, Italy
davide.ancona@unige.it, angelo.ferrando@dibris.unige.it,

luca.franceschini@dibris.unige.it, viviana.mascardi@unige.it

Abstract. Interaction Protocols are fundamental elements to provide
the entities in a system, be them actors, agents, services, or other com-
municating pieces of software, a means to agree on a global interaction
pattern and to be sure that all the other entities in the system adhere
to it as well. Tagging some protocols as good ones and others as bad
is common to all the research communities where interaction is crucial,
and it is not surprising that some protocol features are recognized as bad
ones everywhere. In this paper we analyze the notion of good, bad and
ugly protocols in the MAS community and outside, and we explore the
possibility that bad protocols are not that bad, after all. In particular,
we concentrate on the problem of MAS monitoring under the assumption
of partial observability: even if the global protocol ruling the MAS is a
good one, partial or no observability of some events therein can make
the actually monitorable protocol a bad one, with covert channels due
to unobservable events. An observability-driven protocol transformation
algorithm is presented, and its implementation and experiments with the
trace expression formalism are discussed.

Keywords: Good Agent Interaction Protocols, Bad Agent Interaction
Protocols, Monitoring, Runtime Verification, Partial Observability

1 Introduction

Interaction Protocols are a key ingredient in MASs as they explicitly represent
the agents expected/allowed communicative patterns and can be used either to
check the compliance of the agent actual behavior w.r.t. expected one [1, 8] or
to drive the agent behavior itself [4].

Interaction protocols are also crucial outside the MAS community: what we
name an “Agent Interaction Protocol”, AIP, is referenced as a “Choreography”
in the Service Oriented Computing community [31] and as a “Global Type” in
the multiparty session types one [13, 25].

In the MAS community, AIPs describe interaction patterns characterizing
the system as a whole. This global viewpoint is supported by many formalisms
and notations such as AUML [26], commitment machines and their extensions
[9, 10, 18, 35, 37], the Blindingly Simple Protocol Language (BSPL) and its Splee

II

extension [17, 32], the Hierarchical Agent Protocol Notation (HAPN) [36], trace
expressions [6].

When moving from the specification to the execution stage, the AIP must
be enacted by agents in the MAS: besides the global description of the protocol,
the “local” description of the AIP portion each agent is in charge of, is required
to run the AIP. The AIP enactment is usually left to Computer-Aided Software
Engineering tools that move from AIP diagrams directly into agent skeletons in
some concrete agent oriented programming language [19, 24, 30], or to algorithms
that translate the AIP textual representation to some abstract, intermediate
formalism for modeling the local viewpoint [15, 22]. Such intermediate formalisms
are not perceived as the main target of the research and no standardization e↵ort
has been put on them.

In the SOC community, on the contrary, formalisms exist for modeling both
the global and the local perspectives. As observed by [29], WS-CDL1 follows an
interaction-oriented (“global”) approach, whereas in BPEL4Chor2 the business
process of each partner involved in a choreography is specified using an abstract
version of BPEL3: BPEL4Chor follows a process-oriented (“local”) approach.

In the multiparty session types community, the main emphasis is on type-
checking aspects: the formalism used to represent global types is relevant, as well
as its expressive power, but even more relevant are the properties of the “global
to local” projection function w.r.t. type-safety issues:

Multiparty session types are a type discipline that can enforce strong com-

munication safety for distributed processes, via a choreographic specifica-

tion (called global type) of the interaction between several peers. Global

types are then projected to end-point types (called local types), against

which processes can be statically type-checked. Well-typed processes are

guaranteed to interact correctly, following the global protocol [21].

Whatever the research area, assumptions on the protocols are made which
allow them to be classified as good, bad and ugly. Whereas the classification of
ugly protocols may depend on the protocol purpose and on the formalism used
to express it, almost all the authors agree on tagging as “bad” the same classes
of protocols based on problems they might raise during the projection and/or
enactment stages.

In this paper we first discuss what is generally perceived as a bad, good or
ugly protocol and we motivate why bad protocols as not necessarily as bad (Sec-
tion 2). In Section 3 we provide some background knowledge on trace expressions
and in Section 4 we present an algorithm for observability-driven transformation
of AIPs. This algorithm, implemented for trace expressions, might transform a
good protocol into a bad or even a ugly one, hence moving “from heaven to hell”.
Finally, in Section 5, we discuss the related works and conclude.

1 Web Services Choreography Description Language Version 1.0 W3C Candidate Rec-
ommendation 9 November 2005, https://www.w3.org/TR/ws-cdl-10/.

2 BPEL4Chor Choreography Extension for BPEL, http://www.bpel4chor.org/.
3 Web Services Business Process Execution Language Version 2.0, OASIS Standard, 11
April 2007, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

III

2 The Good, the Bad and the Ugly

2.1 The Good

Let us consider the following interaction protocol expressed in natural language:

1. Alice sends a whatsApp message to her mother Barbara asking her to buy
a book (plus some implausible excuse for not doing it herself, which is not
relevant for our work);

2. Barbara sends an email message to her friend Carol, responsible for the Book
Shop front end, to reserve that book;

3. Carol receives Barbara email and sends a whatsApp message to Dave, the
responsible of the Book Shop warehouse, to check the availability of the book
and order it if necessary;

4. Dave checks if the book is available in the warehouse;
(a) if it is,

i. he sends a whatsApp message to Emily who is in charge for physically
managing the books and informing the clients if they requests can
be satisfied immediately;

ii. Emily takes the book to the front end and sends a confirmation email
to Barbara telling that the book is already there;

(b) otherwise,
i. Dave sends an email to Frank, the point of contact for the publisher

of the required book, and orders it;
ii. Frank sends a confirmation to Barbara via whatsApp telling her that

the book will be available in two days.

For readability, we express the protocol using a more compact and formal

syntax where a

mns,cnt
=) b stands for “agent a sends a message with content

cnt via communication means mns to agent b”. Symbol : stands for the prefix
operator (int:P is the protocol whose first allowed interaction is int, and the
remainder is the protocol P) and has precedence over the other operators, _
stands for mutual exclusiveness, and ✏ represents the empty protocol:

P1 = alice

wa,buy
=) barbara:barbara

em,reserve
=) carol :carol

wa,checkAvail
=) dave:

(dave
wa,take2shop

=) emily :emily

em,availNow
=) barbara:✏ _

dave

em,order
=) frank :frank

wa,avail2Days
=) barbara:✏)

P1 receives the unanimous appreciation whatever the research community.
In fact, two very intuitive properties are met: 1. apart from the first one, the
message that each agent sends is a reaction to the message it just received, and
there is an evident cause-e↵ect link between two sequential messages; 2. in case
some mutually exclusive choice must be made, the choice is up to only one agent
involved in the protocol, and hence it is feasible.

These good properties take di↵erent names depending on the research com-
munities and on the authors. The first one is named, for example, “sequential-
ity” [16], “connectedness for sequence” [29], “explicit causality” [32]; the second
“knowledge for choice” [16], “local choice” [28], “unique point of choice” [29].

IV

Meeting these two properties is closely related to the absence of covert chan-
nels; they ensure that all communications between di↵erent participants are ex-
plicitly stated, and rule out those protocols whose implementation or enactment
relies on the presence of secret/invisible communications between participants: a
protocol description must contain all and only the interactions used to implement
it [16].

2.2 The Bad

Those protocols that do not respect the connectedness for sequence and unique
point of choice properties are bad, and it is not di�cult to see why.

Let us consider protocol P2:

P2 = alice

wa,buy
=) barbara:carol

wa,checkAvail
=) dave:

(dave
wa,take2shop

=) emily :✏ _ frank

wa,avail2Days
=) barbara:✏)

The protocol states that carol can send a checkAvail message to dave only
after alice has sent a buy message to barbara, but how can carol know if and
when alice sent that message?

Also, the protocol states that either dave sends a message to emily , or frank
sends a message to barbara: how can frank know if he is allowed to send a message
to barbara, without coordinating with dave via some covert channel not shown
in the protocol?

Many authors observe that bad protocols cannot be used for designing In-
teraction-Oriented Programming systems where interactions are first-class con-
cepts:

The flow of causality is reflected in the flow of information: there are

no hidden flows of causality because there are no hidden flows of in-

formation. Indeed, if there were any hidden flows, then the very idea

of protocols as a basis for Interaction-Oriented Programming would be

called into question [32].

2.3 The Ugly

Protocols which are not syntactically correct are ugly, and are ignored by all
the authors. However, some protocols may be ugly even if they are syntactically
correct:

– “Causality unsafety”: consider the two shu✏ed sequences carol
wa,buy
=) dave:✏

|alice wa,buy
=) barbara:✏, where | models interleaving (a.k.a. shu✏ing) between

two protocol branches; suppose we are only able to observe what alice sends,
and what dave receives. If alice sends buy and dave receives buy, we might
think that the protocol above is respected. However, that observation might
be due to alice sending buy to dave, which is not an allowed interaction: the
protocol above is not causality safe [29].

V

– “Non-Determinism”: given an interaction taking place in some protocol state,
we might want to deterministically know how to move to the next state. For
example, if alice asks her mother to buy a book, and the protocol is

alice

wa,buy
=) barbara : barbara

wa,reserve
=) carol : ✏ _

alice

wa,buy
=) barbara : barbara

wa,buyItY ourself
=) alice : ✏

we could move on either branch. If we opt to move on the first branch, the
next expected action is that barbara asks carol to reserve a book. If, instead,
barbara tells alice to buy the book by herself, we have to backtrack to the
previous protocol state in order to check that this interaction is allowed as
well; this is extremely ine�cient and should be avoided [6].

– “Non-Contractivenness”: recursive definitions are a very powerful feature to
express complex protocols in a compact way, but – if we set no rules – we
might end up with definitions like P = P_P which are not “contractive”, as
there is no means to “consume” interactions from P while rewriting it. This
makes writing algorithms that halt on such protocols unfeasible [6].

While the notions of good and bad protocols are universally recognized, ug-
liness also depends on the formalism and its expressive power. In the sequel we
will concentrate on bad protocols.

2.4 Yin and Yang

Bad protocols have very few defenders, but there is always something good in
the bad, and something bad in the good. Are there situations where using bad
protocols makes sense?

Let us suppose that the protocol is used for monitoring purposes: it does not
need to be implemented or enacted. The agents in the MAS are already there,
and they are heterogeneous black boxes behaving according to their own policies
and goals, in full autonomy. However, they act inside a society and they must
respect the society rules, expressed as an interaction protocol. The monitor is in
charge of observing messages that agents exchange, in a completely non obtrusive
way, and check if they are compliant with the protocol ruling the MAS.

Let us suppose that the MAS protocol is P1. If the monitor is able to observe
any kind of message, transmitted over any kind of communication means, we are
in a standard situation, with a monitor in charge for verifying the compliance of
actual interactions with a good protocol.

But what if the monitor cannot observe email messages? The protocol ruling
the MAS is still P1, and it is still a good protocol, but from the monitor point
of view it contains covert channels: the unobservable interactions taking place
via email. Keeping them in the protocol would lead to false positives, as the
monitor would look for messages foreseen by the protocol that it cannot see and
would hence detect a protocol violation, but removing them from P1 leads to
P2: a bad protocol! If the monitor observation ability is not perfect – which
is an extremely realistic situation – there is no gain in struggling against bad
protocols: unobservable interactions are there and generate the same problems
of covert channels.

VI

Nevertheless, if there is a single, centralized monitor for the whole MAS, bad
protocols are harmless. Let us consider P2: the monitor knows that after ob-

serving alice

wa,buy
=) barbara it must observe carol

wa,checkAvail
=) dave and nothing

else. Either it succeeds, or it fails. Covert channels have no impact on centralized
monitoring.

The situation where monitoring bad protocols becomes really bad is when
we want to decentralize the monitoring activity, by having di↵erent monitors in
charge for disjoint subsets of the agents in the MAS. Let us consider P2 again:
if there is one monitor M1 observing alice and barbara, and another monitor

M2 observing carol and dave, the sequentiality between alice

wa,buy
=) barbara

and carol

wa,checkAvail
=) dave cannot be verified by any of them. Should we then

discard bad protocols from our investigation, because of the problems they raise
in a decentralized monitoring setting? No: a solution for partially decentralizing
the monitoring activity also in case of bad protocols has been recently proposed
[23], which makes bad protocols harmless (or at least, less dangerous) even in
that context.

Given that good protocols where unobservable interactions have been re-
moved can become bad protocols and that perfect observability cannot be al-
ways given for granted, we claim that – at least for monitoring purposes – bad
protocols can be necessary to suitably model observable protocols.

3 Background: Modeling AIPs with Trace Expressions

The general mechanism we propose for taking unobservable events4 into account
during MAS monitoring, discussed in Section 4, can be applied to any formalism.
However, to make our proposal more practical, we will discuss the algorithm we
implemented for a specific formalism, trace expressions [3, 6], and we briefly in-
troduce it in the sequel. Trace expressions are a protocol specification formalism
expressly designed for runtime verification, inspired by initial work on monitor-
ing agent interactions in MASs [5]. They are based on the notions of event and
event type.

Events and event types

We denote by E the fixed universe of events subject to monitoring. An event trace
ē over E is a possibly infinite sequence of events in E, and a trace expression over
E denotes a set of event traces over E.

Trace expressions are built on top of event types (chosen from a set ET), each
specifying a subset of E.

4 Even if in this paper we mainly address agent interaction protocols characterized
by interaction events, trace expressions can be used to model events of any kind. In
the sequel we will use the term “event” instead of the more specific “interaction” or
“communicative event” ones to stress the generalizability of the approach.

VII

The semantics of event types is specified by the function match: if e is an
event, and # is an event type, then match(e,#) holds if and only if event e
matches event type #; hence, the semantics J#K of an event type # is the set
{e 2 E | match(e,#) holds}. For generality, we leave unspecified the formalism
used for defining event types; in practice, in our implementation match is defined
by a Prolog predicate.

Syntax

A trace expression ⌧ 2 T is defined on top of the following operators:5

• ✏ (empty trace), denoting the singleton set {✏} containing the empty event
trace ✏.
• #:⌧ (prefix), denoting the set of all traces whose first event e matches the event
type #, and the remaining part is a trace of ⌧ .
• ⌧1·⌧2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of ⌧1 with those of ⌧2.
• ⌧1^⌧2 (intersection), denoting the intersection of the traces of ⌧1 and ⌧2.
• ⌧1_⌧2 (union), denoting the union of the traces of ⌧1 and ⌧2.
• ⌧1|⌧2 (shu✏e), denoting the set obtained by shu✏ing the traces of ⌧1 with the
traces of ⌧2.

Trace expressions support recursion through cyclic terms expressed by finite
sets of recursive syntactic equations, as supported by modern Prolog systems. If

match(alice
wa,buy
=) barbara, buy), P4 = buy:(✏ _ P4) denotes the protocol where

alice may send one buy request to barbara and either terminate (✏) or start the
protocol again (_ P4). The traces denoted by P4 are

{alice wa,buy
=) barbara, alice

wa,buy
=) barbara alice

wa,buy
=) barbara, ..., (alice

wa,buy
=)

barbara)n, ..., (alice
wa,buy
=) barbara)!}

namely, traces consisting of n instances of event alice
wa,buy
=) barbara, with n � 1,

plus the infinite trace.

Semantics

The semantics of trace expressions is specified by a transition relation � ✓ T⇥E⇥
T, where T and E denote the set of trace expressions and of events, respectively.
We write ⌧1

e�! ⌧2 to mean (⌧1, e, ⌧2) 2 �; the transition ⌧1
e�! ⌧2 expresses

the property that the system under monitoring can safely move from the state
specified by ⌧1 into the state specified by ⌧2 when event e is observed.

Figure 1 defines the transition system, together with the auxiliary predicate
✏() checking whether a trace expression is allowed to contain the empty trace;
if ✏(⌧) holds, then it means that the monitored system can safely terminate.

5 Binary operators associate from left, and are listed in decreasing order of precedence,
that is, the first operator has the highest precedence.

VIII

(prefix)

#:⌧
e�! ⌧

match(e,#) (or-l)

⌧
1

e�! ⌧ 0
1

⌧
1

_⌧
2

e�! ⌧ 0
1

(or-r)

⌧
2

e�! ⌧ 0
2

⌧
1

_⌧
2

e�! ⌧ 0
2

(and)

⌧
1

e�! ⌧ 0
1

⌧
2

e�! ⌧ 0
2

⌧
1

^⌧
2

e�! ⌧ 0
1

^⌧ 0
2

(shu✏e-l)

⌧
1

e�! ⌧ 0
1

⌧
1

|⌧
2

e�! ⌧ 0
1

|⌧
2

(shu✏e-r)

⌧
2

e�! ⌧ 0
2

⌧
1

|⌧
2

e�! ⌧
1

|⌧ 0
2

(cat-l)

⌧
1

e�! ⌧ 0
1

⌧
1

·⌧
2

e�! ⌧ 0
1

·⌧
2

(cat-r)

⌧
2

e�! ⌧ 0
2

⌧
1

·⌧
2

e�! ⌧ 0
2

✏(⌧1)

(✏-empty)

✏(✏)
(✏-or-l)

✏(⌧
1

)
✏(⌧

1

_⌧
2

)
(✏-or-r)

✏(⌧
2

)
✏(⌧

1

_⌧
2

)
(✏-others)

✏(⌧
1

) ✏(⌧
2

)
✏(⌧

1

op ⌧
2

)
op2{|,·,^}

Fig. 1. Transition system for trace expressions

Some considerations on events and event types

For presentation purposes, the protocols shown in Section 2 did not include event
types but events. A simplified variant of P1 with event types is P5, where

P5 = bookReservationReq : availabilityCheckReq :
(availableNow : ✏ _ order : okOrder : available2Days : ✏)

and, for example,

match(barbara
em,reserve

=) carol , bookReservationReq)

match(barbara
wa,reserve

=) carol , bookReservationReq)

match(george
em,reserve

=) hillary , bookReservationReq)

match(george
wa,reserve

=) hillary , bookReservationReq)

match(carol
wa,checkAvail

=) dave, availabilityCheckReq)

match(hillary
wa,checkAvail

=) dave, availabilityCheckReq)

match(dave
em,availNow

=) barbara, availableNow)

match(dave
em,availNow

=) george, availableNow)

and so on.

The sequence barbara

em,reserve
=) carol hillary

wa,checkAvail
=) dave is correct

w.r.t. P5 since the first event matches bookReservationReq, after which an
event matching availabilityCheckReq is expected and in fact the second event
matches it. Clearly, this sequence of messages does not make sense: we would like
to state that the receiver of the first message must be the sender of the second
one, but we cannot express such a constraint if the event type and protocol
languages do not support variables.

Parametric trace expressions [7] overcome this limitation by introducing pa-
rameters in the trace expression formalism. Without parameters, we need to
design the protocol in a di↵erent way, to explicitly account that events involving
di↵erent agents should belong to di↵erent event types. In the previous sections
we did not provide the syntax and semantics of parametric trace expressions
for sake of presentation clarity, as they raise some technical details that would

IX

require space to be properly addressed. However, the algorithm presented in
Section 4.1 works for trace expressions that might have parameters inside.

As far as observability is concerned, an event type bookReservationReq that
models reservation requests whatever the communication means used to send
them (whatsApp or email) makes sense in most situations, but those where the
observability of messages is di↵erent depending on the communication means.

Both sequences

barbara

em,reserve
=) carol carol

wa,checkAvail
=) dave

and
barbara

wa,reserve
=) carol carol

wa,checkAvail
=) dave

are correct w.r.t. P5, but might lead to di↵erent monitoring outcomes if the
likelihood of barbara

em,reserve
=) carol to be observed by the monitor is di↵erent

from that of barbara
wa,reserve

=) carol .
In Section 4 we will limit our investigation to non-deterministic and con-

tractive6 trace expressions and we will assume that protocols are designed in a
correct way: event types model only sets of events whose observability likelihood
is equivalent.

4 From Heaven to Hell

In this section we discuss how to transform a good protocol to a (possibly)
bad one, due to unobservability or partial observability of events in the original
protocol.

First of all, we need to associate with each event foreseen by the protocol, its
“observability likelihood”, namely the likelihood that the event can be observed
by the monitor. If, when the event takes place, the monitor can always observe
it, we associate 1 with the event. If the monitor can never observe the event (for
example, the monitor can sni↵ whatsApp messages only, and the event is an email
message), we associate 0 with it. If the event is transmitted over an unreliable
or leaky channel, we may associate a number between 0 and 1, excluding the
extremes, with it. The higher this number, the more likely the monitor will be
able to observe the event when it takes place.

Let us consider P1 again, and let us suppose that:

1. the observability likelihood of messages exchanged via email is 0;
2. the observability likelihood of whatsApp messages sent by frank is 0.95;
3. the observability likelihood of the other whatsApp messages is 1.

Condition 1 forces us to remove all messages exchanged via email from the
protocol, and condition 3 forces us to keep all the other whatsApp messages but
those sent from frank . The first and last conditions would lead to protocol P2.
The second condition, however, requires a special treatment. In fact, message

frank

wa,okOrder
=) dave could be either observed or not and both cases would be

correct, even if the first one should be much more frequent than the second.

6 See Section 2.3.

X

The subprotocol where frank
wa,okOrder

=) dave can either take place or not can

be modeled by frank

wa,okOrder
=) dave : ✏ _ ✏. The transformation from P1 to the

protocol which takes observability likelihood into account requires the following
steps:

1. since the observability likelihood of messages exchanged via email is 0, re-
move them by P1;

2. since the observability likelihood of the whatsApp message sent by frank is
0.95, substitute it with the corresponding subprotocol where the message
can take place or not, and concatenate this subprotocol with the remainder;

3. since the observability likelihood of the other whatsApp messages is 1, keep
them all.

The result is
P3 = alice

wa,buy
=) barbara : carol

wa,checkAvail
=) dave :

(dave
wa,take2shop

=) emily : ✏ _ (frank
wa,okOrder

=) dave : ✏ _ ✏) · ✏)

which can be simplified into the equivalent protocol

P30 = alice

wa,buy
=) barbara : carol

wa,checkAvail
=) dave :

(dave
wa,take2shop

=) emily : ✏ _ (frank
wa,okOrder

=) dave : ✏ _ ✏))

Since dealing with likelihoods in (0, 1) results into a more complex protocol,
as the original protocol must be extended with the choice between observing
the event or not, we might want to collapse likelihoods greater than a given
threshold to 1, to avoid proliferation of choices. For this reason we assume that
the protocol designer can set a threshold above which events will be considered
fully observable. Let Th be such threshold and P be the protocol to transform.

P 0 is obtained by P applying the following rules; L is the observability like-
lihood of interaction int

1. if L > Th, int is kept;

2. if 0 < L Th, int is transformed into the subprotocol where int can either
take place or not, and suitably concatenated with the remainder;

3. if L = 0, int is discarded.

Since di↵erent monitors might observe di↵erent events and observability
might change over time, causing an evolution of the observable protocol, mod-
eling the good global protocol and then transforming it based on contingencies
is a better engineering approach than directly modeling the partial, observable
protocol. However, even if we start from a good P protocol, P 0 might be bad or
even ugly.

XI

4.1 Observability-driven transformation of trace expressions

We implemented the algorithm sketched above for protocols modeled as trace
expressions. The code has been developed in SWI-Prolog7 and is shown below,
along with comments starting with % that explain each clause.

The predicate that implements the algorithm is filter events(Protocol-

ToFilter, FilteredProtocol, Th, PrId). Since in our setting protocols are
first class entities which can be analyzed, manipulated, and exchanged among
agents, they are characterized by a unique name, PrId. ProtocolToFilter is
the Prolog representation of the trace expression where unobservable events
must be filtered out, FilteredProtocol is the transformation result, Th is the
threshold above which an event is considered fully observable and hence kept in
FilteredProtocol.

Each event type must be associated with its likelihood to be observed, thanks
to the observable(ET, Lkl, PrId) predicate.

As an example, if we had a parametric English Auction interaction protocol
where the buy(X) parametric event type observability is 0.5, and the observ-
ability of all the other event types is 1, we would write

obse rvab l e (buy (X) , 0 . 5 , e n g l i s h au c t) :� ! .
obse rvab l e (E, 1 , e n g l i s h au c t) :� E \= buy () .

where ! prevents the Prolog interpreter from backtracking when it is ex-
ecuted8 and \= stands for “cannot unify with”. Uppercase symbols represent
logical variables, and p :- q, r, s. should be read as “if q, r, s hold, then p
holds”.

filter events operates according to the trace expression syntax. We omit
the rule for dealing with parameters.

f i l t e r e v e n t s (ep s i l on , ep s i l on , ,) :� ! .
% empty t r a c e exp r e s s i on ep s i l o n i s transformed in to ep s i l o n

f i l t e r e v e n t s (ET:T, TFi l tered , Th, PrId) :�
obse rvab l e (ET, 0 , PrId) , ! ,
f i l t e r e v e n t s (T, TFi l tered , Th, PrId) .

% t ra c e exp r e s s i on ET:T where obse rvab l e (ET, 0 , PrId) i s
% transformed in to TFi l t e red i f T i s transformed in to
% TFi l t e red (ET i s removed)

f i l t e r e v e n t s (ET:T, TFi l tered , Th, PrId) :�
obse rvab l e (ET, Lkl , PrId) , Lkl > Th, ! ,
f i l t e r e v e n t s (T, T1 , Th, PrId) ,
TFi l t e red = ET:T1 , ! .

% t ra c e exp r e s s i on ET:T where obse rvab l e (ET, Lkl , PrId) and
% Lkl > Th i s transformed in to ET:T1 , where T1 r e s u l t s from
% trans forming T (ET i s kept)

7 http://www.swi-prolog.org/.
8 The functioning of “cut” is more complex than this, but we can ignore the details.

XII

f i l t e r e v e n t s (ET:T, TFi l tered , Th, PrId) :�
obse rvab l e (ET, Lkl , PrId) ,
f i l t e r e v e n t s (T, T1 , Th, PrId) , Lkl =< Th,
TFi l t e red = ((ET: ep s i l o n) \/ ep s i l o n) ⇤ T1) , ! .

% in t r a c e exp r e s s i on ET:T where obse rvab l e (ET, Lkl , PrId) and
% Lkl <= Th, ET becomes op t i ona l .
% ET:T becomes ((ET: ep s i l o n)\/ ep s i l o n)⇤T

f i l t e r e v e n t s (T1\/T2 , TFi l tered , Th, PrId) :�
f i l t e r e v e n t s (T1 , TFi ltered1 , Th, PrId) ,
f i l t e r e v e n t s (T2 , TFi ltered2 , Th, PrId) ,
TFi l t e red = (TFi l te red1 \/ TFi l t e red2) , ! .

% f i l t e r i n g T1\/T2 means f i l t e r i n g T1 , f i l t e r i n g T2 , and
% j o i n i n g the r e s u l t s with the \/ operator .
% The same holds f o r the other operators , | , ⇤ , /\ (not shown)

The code for filter events is 36 lines long and – provided a basic knowledge
of logic programming – is self-explaining. Despite its simplicity, it can operate
on very complex parametric and recursive (also non terminating) protocols. The
magic behind the “invisible” management of non terminating protocols like P4
is the use of the SWI-Prolog coinduction library9 which allows to cope with
infinite terms without entering into loops.

4.2 Experiments

We have experimented the filtering algorithm on a parametric trace expres-
sions modeling the English Auction where the auctioneer proposes to sell an
item for a given price and the bidders either accept or reject the proposal; as
long as more than one bidder accepts, the price – which is a parameter of the
protocol – is raised and another negotiation round is made. The protocol is
consistent with the existing descriptions of the English Auction that can be
found online, even if it slightly di↵ers from the English Auction FIPA specifi-
cation. The protocol description, as well as its code, can be downloaded from
http://parametricTraceExpr.altervista.org/.

As anticipated, we initially assumed that the only partially observable event
was buy(X) with observability likelihood 0.5. By setting the threshold to 0.7,
all occurrences of buy(X) became optional, while with a threshold equal to 0.4

they were all kept in the protocol. By setting the observability likelihood of
buy(X) to 0, any occurrence of buy(X) was removed from the protocol.

The algorithm was also run on a variant of the Alternating Bit Protocol [21]
with 6 agents.

Di↵erent observability likelihoods and di↵erent thresholds were set with both
protocols, to test the algorithm in an exhaustive way.

9 http://www.swi-prolog.org/pldoc/doc/_SWI_/library/coinduction.pl.

XIII

5 Related Work and Conclusions

In this paper we have analyzed the notions of good, bad and ugly protocols
inside and outside the MAS community, and we have motivated the reason why
bad protocols are not that bad by considering runtime monitoring of MASs with
unobservable events.

To the best of our knowledge, MAS monitoring under partial or imperfect
observability has been addressed in the context of normative multi-agent orga-
nizations only, and by just a few works. Among them, [2] spun o↵ from [14]
and shows how to move from the heaven of ideal norms to the earthly condition
of approximate norms. The paper focuses on conditional norms with deadlines
and sanctions [34]; ideal norms are those that can be perfectly monitored given
a monitor, and optimality of a norm approximation means that any other ap-
proximation would fail to detect at least as many violations of the ideal norm.
Given a set of ideal norms, a set of observable properties, and some relation-
ships between observable properties and norms, the paper presents algorithms
to automatically synthesize optimal approximations of the ideal norms defined in
terms of the observable properties. Even if the purpose of our work is in principle
similar to that of [2, 14], the approaches used to model AIPs are too di↵erent –
also in expressive power – to compare them.

A more recent work in the normative agents area is [20] that proposes in-
formation models and algorithms for monitoring norms under partial action
observability by reconstructing unobserved actions from observed actions. The
reconstruction process entails: (i) searching for the actions that have been per-
formed by unobserved agents; and (ii) using the actions found to increase the
knowledge about the state of the world. That paper proposes an approach that
complements ours. While we assume to know in advance which events cannot be
monitored, and we transform the ideal protocol into a monitorable one based on
this information, the authors of [20] “guess” the actions that the monitor could
not observe, but that must have taken place because of their visible e↵ects.

Whereas we are not aware of proposals to monitor agent interactions using
commitment machines, BSPL, Splee, or HAPN under partial observability as-
sumptions, we could mention dozens of works tackling this problem outside the
MAS community.

Indeed, partial ability of monitors to observe events is a well studied problem
in many contexts including command and control [38] and runtime verification.
In [33] the authors address the problem of gaps in the observed program execu-
tions. To deal with the e↵ects of sampling on runtime verification, they consider
event sequences as observation sequences of a Hidden Markov Model (HMM),
and use an HMM model of the monitored program to fill in sampling-induced
gaps in observation sequences, and extend the classic forward algorithm for HMM
state estimation to compute the probability that the property is satisfied by an
execution of the program. Similarly to [20], that work complements ours by es-
timating the likelihood of an event to occur, whereas we assume to know that
likelihood, and we transform the protocol – and hence the expected sequence of
observed events – based on this knowledge. Other works pursuing the objective

XIV

of suitably dealing with “lossy traces” in the runtime verification area are [11,
27].

As part of our future work, we will further explore the relationships between
our proposal and related works in the RV field: we just started our state-of-the-
art analysis and we feel that many interesting works are still to be discovered.
Also, we plan to create a proof of concept of our work by implementing a JADE
[12] MAS where some events cannot be observed, and showing the full process
of moving from a good protocol to a bad, but monitorable, one, and actually
monitoring it. In fact, MAS monitoring of parametric trace expressions is already
integrated on top of JADE [7] and the event filtering based on their observability
can be easily integrated as well. We need to wrap these pieces up and associate
a clear engineering methodology with them, to make our approach available to
the research community.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The Sci↵ abductive
proof-procedure. In: AI*IA 2005: Advances in Artificial Intelligence, Proceedings.
LNCS, vol. 3673, pp. 135–147. Springer (2005)

2. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors.
In: International conference on Autonomous Agents and Multi-Agent Systems,
AAMAS 2014. pp. 117–124. IFAAMAS/ACM (2014)

3. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P.M.,
Gay, S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi,
V., Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V., Yoshida, N.:
Behavioral types in programming languages. Foundations and Trends in Program-
ming Languages 3(2-3), 95–230 (2016)

4. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class
entities for self-adaptive agents. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E.
(eds.) International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2015. Proceedings. pp. 1019–1029. ACM (2015)

5. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In: Declarative
Agent Languages and Technologies X - 10th International Workshop, DALT 2012,
Revised Selected Papers. LNCS, vol. 7784, pp. 76–95. Springer (2012)

6. Ancona, D., Ferrando, A., Mascardi, V.: Theory and Practice of Formal Methods:
Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday, chap.
Comparing Trace Expressions and Linear Temporal Logic for Runtime Verification,
pp. 47–64. Springer (2016), http://dx.doi.org/10.1007/978-3-319-30734-3_6

7. Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification of multi-
agent systems. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2017. pp. 1457–1459. ACM (2017)

8. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of protocol confor-
mance and agent interoperability. In: Computational Logic in Multi-Agent Systems
VI, 2005, Revised Selected and Invited Papers. LNCS, vol. 3900, pp. 265–283.
Springer (2005)

9. Baldoni, M., Baroglio, C., Capuzzimati, F.: A commitment-based infrastructure
for programming socio-technical systems. ACM Trans. Internet Techn. 14(4), 23:1–
23:23 (2014), http://doi.acm.org/10.1145/2677206

XV

10. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Exploiting social commit-
ments in programming agent interaction. In: PRIMA 2015: Principles and Practice
of Multi-Agent Systems - 18th International Conference, Proceedings. LNCS, vol.
9387, pp. 566–574. Springer (2015)

11. Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring compliance
policies over incomplete and disagreeing logs. In: Runtime Verification, Third In-
ternational Conference, RV 2012, Revised Selected Papers. LNCS, vol. 7687, pp.
151–167. Springer (2012)

12. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

13. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: CONCUR
2008 - Concurrency Theory, 19th International Conference. Proceedings. LNCS,
vol. 5201, pp. 418–433. Springer (2008)

14. Bulling, N., Dastani, M., Knobbout, M.: Monitoring norm violations in multi-
agent systems. In: International conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2013. pp. 491–498. IFAAMAS (2013)

15. Casella, G., Mascardi, V.: West2East: exploiting web service technologies to en-
gineer agent-based software. IJAOSE 1(3/4), 396–434 (2007), https://doi.org/
10.1504/IJAOSE.2007.016267

16. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012), https://doi.
org/10.2168/LMCS-8(1:24)2012

17. Chopra, A.K., Christie, S., Singh, M.P.: Splee: A declarative information-based lan-
guage for multiagent interaction protocols. In: Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017. pp. 1054–1063.
ACM (2017)

18. Chopra, A.K., Singh, M.P.: Cupid: Commitments in relational algebra. In: Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. pp. 2052–
2059. AAAI Press (2015)

19. Cossentino, M.: From requirements to code with the PASSI methodology. Agent-
oriented methodologies 3690, 79–106 (2005)

20. Criado, N., Such, J.M.: Norm monitoring under partial action observability. IEEE
Trans. Cybernetics 47(2), 270–282 (2017), https://doi.org/10.1109/TCYB.2015.
2513430

21. Deniélou, P., Yoshida, N.: Multiparty session types meet communicating automata.
In: Programming Languages and Systems - 21st European Symposium on Program-
ming, ESOP 2012. Proceedings. LNCS, vol. 7211, pp. 194–213. Springer (2012)

22. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design
abstractions for business processes. IEEE Trans. Software Eng. 31(12), 1015–1027
(2005), https://doi.org/10.1109/TSE.2005.140

23. Ferrando, A., Ancona, D., Mascardi, V.: Decentralizing MAS monitoring with De-
cAMon. In: Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS 2017. pp. 239–248. ACM (2017)

24. Garćıa-Ojeda, J.C., DeLoach, S.A., Robby: AgentTool III: from process definition
to code generation. In: 8th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Volume 2. pp. 1393–1394. IFAAMAS
(2009), http://doi.acm.org/10.1145/1558109.1558311

25. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL. pp. 273–284. ACM (2008)

XVI

26. Huget, M., Odell, J.: Representing agent interaction protocols with agent UML.
In: 3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004). pp. 1244–1245. IEEE Computer Society (2004)

27. Joshi, Y., Tchamgoue, G.M., Fischmeister, S.: Runtime verification of LTL on lossy
traces. In: Proceedings of the Symposium on Applied Computing, SAC 2017. pp.
1379–1386. ACM (2017)

28. Ladkin, P.B., Leue, S.: Interpreting message flow graphs. Formal Aspects of Com-
puting 7(5), 473–509 (1995)

29. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction-and process-oriented choreographies. In: 2008 Sixth IEEE International
Conference on Software Engineering and Formal Methods. pp. 323–332. IEEE
(2008)

30. Padgham, L., Winiko↵, M.: Prometheus: A methodology for developing intelligent
agents. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: Part 1. pp. 37–38. AAMAS ’02, ACM, New York,
NY, USA (2002), http://doi.acm.org/10.1145/544741.544749

31. Papazoglou, M.P.: Service -oriented computing: Concepts, characteristics and di-
rections. In: Proceedings of the Fourth International Conference on Web Infor-
mation Systems Engineering. pp. 3–. WISE ’03, IEEE Computer Society (2003),
http://dl.acm.org/citation.cfm?id=960322.960404

32. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
blindingly simple protocol language. In: 10th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Volume 1-3. pp. 491–
498. IFAAMAS (2011)

33. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Runtime Verification -
Second International Conference, RV 2011, Revised Selected Papers. LNCS, vol.
7186, pp. 193–207. Springer (2011)

34. Tinnemeier, N.A.M., Dastani, M., Meyer, J.C., van der Torre, L.W.N.: Program-
ming normative artifacts with declarative obligations and prohibitions. In: Proceed-
ings of the 2009 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, IAT 2009. pp. 145–152. IEEE Computer Society (2009)

35. Winiko↵, M., Liu, W., Harland, J.: Enhancing commitment machines. In: Declara-
tive Agent Languages and Technologies II, Second International Workshop, DALT
2004, Revised Selected Papers. LNCS, vol. 3476, pp. 198–220. Springer (2004)

36. Yadav, N., Padgham, L., Winiko↵, M.: A tool for defining agent protocols in
HAPN: (demonstration). In: Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2015. pp. 1935–1936. ACM
(2015)

37. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.C., Tambe, M. (eds.)
Intelligent Agents VIII, 8th International Workshop, ATAL 2001, Revised Papers.
vol. 2333, pp. 235–247. Springer (2002)

38. Yukish, M., Peluso, E., Phoha, S., Sircar, S., Licari, J., Ray, A., Mayk, I.: Limits of
control in designing distributed C2 experiments under imperfect communications.
In: Military Communications Conference, 1994. MILCOM ’94. IEEE (1994)

